
NI Modular Instruments Python API
Documentation

Release 1.4.1

National Instruments

Aug 20, 2021

Drivers

1 About 1

2 Installation 3

3 Contributing 5

4 Support / Feedback 7

5 Bugs / Feature Requests 9

6 Documentation 11
6.1 Additional Documentation . 11

7 License 13
7.1 nidcpower module . 13

7.1.1 Installation . 13
7.1.2 Usage . 13
7.1.3 API Reference . 14

7.2 nidigital module . 166
7.2.1 Installation . 166
7.2.2 Usage . 167
7.2.3 API Reference . 168

7.3 nidmm module . 270
7.3.1 Installation . 270
7.3.2 Usage . 271
7.3.3 API Reference . 271

7.4 nifgen module . 337
7.4.1 Installation . 337
7.4.2 Usage . 337
7.4.3 API Reference . 338

7.5 niscope module . 440
7.5.1 Installation . 440
7.5.2 Usage . 440
7.5.3 API Reference . 442

7.6 niswitch module . 571
7.6.1 Installation . 571
7.6.2 Usage . 571

i

7.6.3 API Reference . 572
7.7 nise module . 620

7.7.1 Installation . 620
7.7.2 Usage . 621
7.7.3 API Reference . 621

7.8 nimodinst module . 632
7.8.1 Installation . 632
7.8.2 Usage . 632
7.8.3 API Reference . 632

7.9 nitclk module . 638
7.9.1 Installation . 638
7.9.2 Usage . 638
7.9.3 API Reference . 638

8 Indices and tables 651

Python Module Index 653

Index 655

ii

CHAPTER 1

About

The nimi-python repository generates Python bindings (Application Programming Interface) for interacting with the
Modular Instrument drivers. The following drivers are supported:

• NI-DCPower (Python module: nidcpower)

• NI-Digital Pattern Driver (Python module: nidigital)

• NI-DMM (Python module: nidmm)

• NI-FGEN (Python module: nifgen)

• NI-ModInst (Python module: nimodinst)

• NI-SCOPE (Python module: niscope)

• NI Switch Executive (Python module: nise)

• NI-SWITCH (Python module: niswitch)

• NI-TClk (Python module: nitclk)

It is implemented as a set of Mako templates and per-driver metafiles that produce a Python module for each driver.
The driver is called through its public C API using the ctypes Python library.

nimi-python supports all the Operating Systems supported by the underlying driver.

nimi-python follows Python Software Foundation support policy for different versions. At this time this includes
Python 3.6 and above using CPython.

1

http://makotemplates.org
https://docs.python.org/2/library/ctypes.html
https://devguide.python.org/#status-of-python-branches

NI Modular Instruments Python API Documentation, Release 1.4.1

2 Chapter 1. About

CHAPTER 2

Installation

Driver specific installation instructions can be found on Read The Docs:

• nidcpower

• nidigital

• nidmm

• nifgen

• nimodinst

• niscope

• nise

• niswitch

• nitclk

3

http://nimi-python.readthedocs.io/en/master/nidcpower.html#installation
http://nimi-python.readthedocs.io/en/master/nidigital.html#installation
http://nimi-python.readthedocs.io/en/master/nidmm.html#installation
http://nimi-python.readthedocs.io/en/master/nifgen.html#installation
http://nimi-python.readthedocs.io/en/master/nimodinst.html#installation
http://nimi-python.readthedocs.io/en/master/niscope.html#installation
http://nimi-python.readthedocs.io/en/master/nise.html#installation
http://nimi-python.readthedocs.io/en/master/niswitch.html#installation
http://nimi-python.readthedocs.io/en/master/nitclk.html#installation

NI Modular Instruments Python API Documentation, Release 1.4.1

4 Chapter 2. Installation

CHAPTER 3

Contributing

We welcome contributions! You can clone the project repository, build it, and install it by following these instructions.

5

https://github.com/ni/nimi-python/blob/master/CONTRIBUTING.md

NI Modular Instruments Python API Documentation, Release 1.4.1

6 Chapter 3. Contributing

CHAPTER 4

Support / Feedback

The packages included in nimi-python package are supported by NI. For support, open a request through the NI
support portal at ni.com.

7

http://www.ni.com

NI Modular Instruments Python API Documentation, Release 1.4.1

8 Chapter 4. Support / Feedback

CHAPTER 5

Bugs / Feature Requests

To report a bug or submit a feature request specific to NI Modular Instruments Python bindings (nimi-python), please
use the GitHub issues page.

Fill in the issue template as completely as possible and we will respond as soon as we can.

For hardware support or any other questions not specific to this GitHub project, please visit NI Community Forums.

9

https://github.com/ni/nimi-python/issues
https://forums.ni.com/

NI Modular Instruments Python API Documentation, Release 1.4.1

10 Chapter 5. Bugs / Feature Requests

CHAPTER 6

Documentation

Documentation is available here.

6.1 Additional Documentation

Refer to your driver documentation for device-specific information and detailed API documentation.

11

http://nimi-python.readthedocs.io

NI Modular Instruments Python API Documentation, Release 1.4.1

12 Chapter 6. Documentation

CHAPTER 7

License

nimi-python is licensed under an MIT-style license (see LICENSE). Other incorporated projects may be licensed
under different licenses. All licenses allow for non-commercial and commercial use.

7.1 nidcpower module

7.1.1 Installation

As a prerequisite to using the nidcpower module, you must install the NI-DCPower runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-DCPower) can be installed with pip:

$ python -m pip install nidcpower~=1.4.1

Or easy_install from setuptools:

$ python -m easy_install nidcpower

7.1.2 Usage

The following is a basic example of using the nidcpower module to open a session to a Source Meter Unit and measure
voltage and current.

import nidcpower
Configure the session.

with nidcpower.Session(resource_name='PXI1Slot2/0') as session:
session.measure_record_length = 20
session.measure_record_length_is_finite = True
session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE

(continues on next page)

13

https://github.com/ni/nimi-python/blob/master/LICENSE
http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

session.voltage_level = 5.0

session.commit()
print('Effective measurement rate: {0} S/s'.format(session.measure_record_delta_

→˓time / 1))

samples_acquired = 0
print('Channel Num Voltage Current In Compliance')
row_format = '{0:15} {1:3d} {2:8.6f} {3:8.6f} {4}'
with session.initiate():

channel_indices = '0-{0}'.format(session.channel_count - 1)
channels = session.get_channel_names(channel_indices)
for i, channel_name in enumerate(channels):

samples_acquired = 0
while samples_acquired < 20:

measurements = session.channels[channel_name].fetch_
→˓multiple(count=session.fetch_backlog)

samples_acquired += len(measurements)
for i in range(len(measurements)):

print(row_format.format(channel_name, i, measurements[i].voltage,
→˓measurements[i].current, measurements[i].in_compliance))

Additional examples for NI-DCPower are located in src/nidcpower/examples/ directory.

7.1.3 API Reference

Session

class nidcpower.Session(self, resource_name, channels=None, reset=False, options={}, indepen-
dent_channels=True)

Creates and returns a new NI-DCPower session to the instrument(s) and channel(s) specified in resource name
to be used in all subsequent NI-DCPower method calls. With this method, you can optionally set the initial state
of the following session properties:

• nidcpower.Session.simulate

• nidcpower.Session.driver_setup

After calling this method, the specified channel or channels will be in the Uncommitted state.

To place channel(s) in a known start-up state when creating a new session, set reset to True. This action is
equivalent to using the nidcpower.Session.reset() method immediately after initializing the session.

To open a session and leave the channel(s) in an existing configuration without passing through a transitional
output state, set reset to False. Next, configure the channel(s) as in the previous session, change the desired
settings, and then call the nidcpower.Session.initiate() method to write both settings.

Details of Independent Channel Operation

With this method and channel-based NI-DCPower methods and properties, you can use any channels in the
session independently. For example, you can initiate a subset of channels in the session with nidcpower.
Session.initiate(), and the other channels in the session remain in the Uncommitted state.

When you initialize with independent channels, each channel steps through the NI-DCPower programming state
model independently of all other channels, and you can specify a subset of channels for most operations.

Note You can make concurrent calls to a session from multiple threads, but the session executes the calls one
at a time. If you specify multiple channels for a method or property, the session may perform the operation on

14 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

multiple channels in parallel, though this is not guaranteed, and some operations may execute sequentially.

Parameters

• resource_name (str, list, tuple) – Specifies the resource name as seen in
Measurement & Automation Explorer (MAX) or lsni, for example “PXI1Slot3” where
“PXI1Slot3” is an instrument’s resource name. If independent_channels is False, resource
name can also be a logical IVI name.

If independent_channels is True, resource name can be names of the in-
strument(s) and the channel(s) to initialize. Specify the instrument(s) and
channel(s) using the form “PXI1Slot3/0,PXI1Slot3/2-3,PXI1Slot4/2-3 or
PXI1Slot3/0,PXI1Slot3/2:3,PXI1Slot4/2:3”, where “PXI1Slot3” and “PXI1Slot4” are
instrument resource names followed by channels. If you exclude a channels string after an
instrument resource name, all channels of the instrument(s) are included in the session.

• channels (str, list, range, tuple) – For new applications, use the default
value of None and specify the channels in resource name.

Specifies which output channel(s) to include in a new session. Specify multiple channels by
using a channel list or a channel range. A channel list is a comma (,) separated sequence
of channel names (for example, 0,2 specifies channels 0 and 2). A channel range is a lower
bound channel followed by a hyphen (-) or colon (:) followed by an upper bound channel
(for example, 0-2 specifies channels 0, 1, and 2).

If independent_channels is False, this argument specifies which channels to include in a
legacy synchronized channels session. If you do not specify any channels, by default all
channels on the device are included in the session.

If independent_channels is True, this argument combines with resource name to specify
which channels to include in an independent channels session. Initializing an independent
channels session with a channels argument is deprecated.

• reset (bool) – Specifies whether to reset channel(s) during the initialization procedure.

• options (dict) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status False
cache True
simulate False
record_value_coersions False
driver_setup {}

• independent_channels (bool) – Specifies whether to initialize the session with in-
dependent channels. Set this argument to False on legacy applications or if you are unable
to upgrade your NI-DCPower driver runtime to 20.6 or higher.

7.1. nidcpower module 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

Methods

abort

nidcpower.Session.abort()
Transitions the specified channel(s) from the Running state to the Uncommitted state. If a sequence
is running, it is stopped. Any configuration methods called after this method are not applied until the
nidcpower.Session.initiate() method is called. If power output is enabled when you
call the nidcpower.Session.abort() method, the output channels remain in their current
state and continue providing power.

Use the nidcpower.Session.ConfigureOutputEnabled() method to disable power
output on a per channel basis. Use the nidcpower.Session.reset() method to disable
output on all channels.

Refer to the Programming States topic in the NI DC Power Supplies and SMUs Help for information
about the specific NI-DCPower software states.

Related Topics:

Programming States

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].abort()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.abort()

clear_latched_output_cutoff_state

nidcpower.Session.clear_latched_output_cutoff_state(output_cutoff_reason)
Clears the state of an output cutoff that was engaged. To clear the state for all output cutoff reasons,
use ALL.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].clear_latched_output_cutoff_state()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.clear_latched_output_cutoff_state()

Parameters output_cutoff_reason (nidcpower.OutputCutoffReason) –
Specifies the reasons for which to clear the output cutoff state.

16 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

ALL Clears all output cutoff conditions
VOLTAGE_OUTPUT_HIGHClears cutoffs caused when the output exceeded the high cutoff

limit for voltage output
VOLTAGE_OUTPUT_LOWClears cutoffs caused when the output fell below the low cutoff

limit for voltage output
CURRENT_MEASURE_HIGHClears cutoffs caused when the measured current exceeded the

high cutoff limit for current output
CURRENT_MEASURE_LOWClears cutoffs caused when the measured current fell below the

low cutoff limit for current output
VOLTAGE_CHANGE_HIGHClears cutoffs caused when the voltage slew rate increased be-

yond the positive change cutoff for voltage output
VOLTAGE_CHANGE_LOWClears cutoffs caused when the voltage slew rate decreased be-

yond the negative change cutoff for voltage output
CURRENT_CHANGE_HIGHClears cutoffs caused when the current slew rate increased be-

yond the positive change cutoff for current output
CURRENT_CHANGE_LOWClears cutoffs caused when the voltage slew rate decreased be-

yond the negative change cutoff for current output

close

nidcpower.Session.close()
Closes the session specified in vi and deallocates the resources that NI-DCPower reserves. If power
output is enabled when you call this method, the output channels remain in their existing state and
continue providing power. Use the nidcpower.Session.ConfigureOutputEnabled()
method to disable power output on a per channel basis. Use the nidcpower.Session.
reset() method to disable power output on all channel(s).

Related Topics:

Programming States

Note: One or more of the referenced methods are not in the Python API for this driver.

Note: This method is not needed when using the session context manager

commit

nidcpower.Session.commit()
Applies previously configured settings to the specified channel(s). Calling this method moves the
NI-DCPower session from the Uncommitted state into the Committed state. After calling this
method, modifying any property reverts the NI-DCPower session to the Uncommitted state. Use
the nidcpower.Session.initiate() method to transition to the Running state. Refer to
the Programming States topic in the NI DC Power Supplies and SMUs Help for details about the
specific NI-DCPower software states.

Related Topics:

Programming States

7.1. nidcpower module 17

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].commit()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.commit()

configure_aperture_time

nidcpower.Session.configure_aperture_time(aperture_time,
units=nidcpower.ApertureTimeUnits.SECONDS)

Configures the aperture time on the specified channel(s).

The supported values depend on the units. Refer to the Aperture Time topic for your device in the
NI DC Power Supplies and SMUs Help for more information. In general, devices support discrete
apertureTime values, and if you configure apertureTime to some unsupported value, NI-DCPower
coerces it up to the next supported value.

Refer to the Measurement Configuration and Timing or DC Noise Rejection topic for your device
in the NI DC Power Supplies and SMUs Help for more information about how to configure your
measurements.

Related Topics:

Aperture Time

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_aperture_time()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.configure_aperture_time()

Parameters

• aperture_time (float) – Specifies the aperture time. Refer to the Aperture
Time topic for your device in the NI DC Power Supplies and SMUs Help for more
information.

• units (nidcpower.ApertureTimeUnits) – Specifies the units for aper-
tureTime. Defined Values:

SECONDS Specifies seconds.
POWER_LINE_CYCLES Specifies Power Line Cycles.

18 Chapter 7. License

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

create_advanced_sequence

nidcpower.Session.create_advanced_sequence(sequence_name, property_names,
set_as_active_sequence=True)

Creates an empty advanced sequence. Call the nidcpower.Session.
create_advanced_sequence_step() method to add steps to the active advanced
sequence.

You can create multiple advanced sequences in a session.

Support for this method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence meth-
ods is unsupported.

Use this method in the Uncommitted or Committed programming states. Refer to the Programming
States topic in the NI DC Power Supplies and SMUs Help for more information about NI-DCPower
programming states.

Related Topics:

Advanced Sequence Mode

Programming States

nidcpower.Session.create_advanced_sequence_step()

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].create_advanced_sequence()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.create_advanced_sequence()

Parameters

• sequence_name (str) – Specifies the name of the sequence to create.

• property_names (list of str) – Specifies the names of the properties you
reconfigure per step in the advanced sequence. The following table lists which prop-
erties can be configured in an advanced sequence for each NI-DCPower device that
supports advanced sequencing. A Yes indicates that the property can be configured
in advanced sequencing. An No indicates that the property cannot be configured in
advanced sequencing.

Property PXIe-4135 PXIe-4136 PXIe-4137 PXIe-4138 PXIe-4139 PXIe-4140/4142/4144 PXIe-4141/4143/4145 PXIe-4162/4163
nidcpower.Session.dc_noise_rejection Yes No Yes No Yes No No Yes
nidcpower.Session.aperture_time Yes Yes Yes Yes Yes Yes Yes Yes

Continued on next page

7.1. nidcpower module 19

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

Table 1 – continued from previous page
Property PXIe-4135 PXIe-4136 PXIe-4137 PXIe-4138 PXIe-4139 PXIe-4140/4142/4144 PXIe-4141/4143/4145 PXIe-4162/4163
nidcpower.Session.measure_record_length Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.sense Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.ovp_enabled Yes Yes Yes No No No No No
nidcpower.Session.ovp_limit Yes Yes Yes No No No No No
nidcpower.Session.pulse_bias_delay Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_off_time Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_on_time Yes Yes Yes Yes Yes No No No
nidcpower.Session.source_delay Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.current_compensation_frequency Yes No Yes No Yes No Yes Yes
nidcpower.Session.current_gain_bandwidth Yes No Yes No Yes No Yes Yes
nidcpower.Session.current_pole_zero_ratio Yes No Yes No Yes No Yes Yes
nidcpower.Session.voltage_compensation_frequency Yes No Yes No Yes No Yes Yes
nidcpower.Session.voltage_gain_bandwidth Yes No Yes No Yes No Yes Yes
nidcpower.Session.voltage_pole_zero_ratio Yes No Yes No Yes No Yes Yes
nidcpower.Session.current_level Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.current_level_range Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.voltage_limit Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.voltage_limit_high Yes Yes Yes Yes Yes Yes Yes No
nidcpower.Session.voltage_limit_low Yes Yes Yes Yes Yes Yes Yes No
nidcpower.Session.voltage_limit_range Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.current_limit Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.current_limit_high Yes Yes Yes Yes Yes Yes Yes No
nidcpower.Session.current_limit_low Yes Yes Yes Yes Yes Yes Yes No
nidcpower.Session.current_limit_range Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.voltage_level Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.voltage_level_range Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.output_enabled Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.output_function Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.output_resistance Yes No Yes No Yes No Yes No
nidcpower.Session.pulse_bias_current_level Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_bias_voltage_limit Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_bias_voltage_limit_high Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_bias_voltage_limit_low Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_current_level Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_current_level_range Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_voltage_limit Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_voltage_limit_high Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_voltage_limit_low Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_voltage_limit_range Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_bias_current_limit Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_bias_current_limit_high Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_bias_current_limit_low Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_bias_voltage_level Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_current_limit Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_current_limit_high Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_current_limit_low Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_current_limit_range Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_voltage_level Yes Yes Yes Yes Yes No No No
nidcpower.Session.pulse_voltage_level_range Yes Yes Yes Yes Yes No No No

Continued on next page

20 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Table 1 – continued from previous page
Property PXIe-4135 PXIe-4136 PXIe-4137 PXIe-4138 PXIe-4139 PXIe-4140/4142/4144 PXIe-4141/4143/4145 PXIe-4162/4163
nidcpower.Session.transient_response Yes Yes Yes Yes Yes Yes Yes Yes

• set_as_active_sequence (bool) – Specifies that this current sequence is
active.

create_advanced_sequence_commit_step

nidcpower.Session.create_advanced_sequence_commit_step(set_as_active_step=True)
Creates a Commit step in the Active advanced sequence. A Commit step configures channels to a
user-defined known state before starting the advanced sequence. When a Commit step exists in the
Active advanced sequence, you cannot set the output method to Pulse Voltage or Pulse Current in
either the Commit step (-1) or step 0. When you create an advanced sequence step, each property
you passed to the nidcpower.Session.create_advanced_sequence() method is reset
to its default value for that step unless otherwise specified.

Support for this Method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence meth-
ods is unsupported.

Related Topics:

Advanced Sequence Mode

Programming States

nidcpower.Session.create_advanced_sequence()

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].create_advanced_sequence_commit_step()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.create_advanced_sequence_commit_step()

Parameters set_as_active_step (bool) – Specifies whether the step created with
this method is active in the Active advanced sequence.

create_advanced_sequence_step

nidcpower.Session.create_advanced_sequence_step(set_as_active_step=True)
Creates a new advanced sequence step in the advanced sequence specified by the Active advanced se-
quence. When you create an advanced sequence step, each property you passed to the nidcpower.

7.1. nidcpower module 21

https://docs.python.org/3/library/functions.html#bool
REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

Session.create_advanced_sequence() method is reset to its default value for that step
unless otherwise specified.

Support for this Method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence meth-
ods is unsupported.

Related Topics:

Advanced Sequence Mode

Programming States

nidcpower.Session.create_advanced_sequence()

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].create_advanced_sequence_step()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.create_advanced_sequence_step()

Parameters set_as_active_step (bool) – Specifies whether the step created with
this method is active in the Active advanced sequence.

delete_advanced_sequence

nidcpower.Session.delete_advanced_sequence(sequence_name)
Deletes a previously created advanced sequence and all the advanced sequence steps in the advanced
sequence.

Support for this Method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence meth-
ods is unsupported.

Related Topics:

Advanced Sequence Mode

Programming States

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

22 Chapter 7. License

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
https://docs.python.org/3/library/functions.html#bool
REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].delete_advanced_sequence()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.delete_advanced_sequence()

Parameters sequence_name (str) – specifies the name of the sequence to delete.

disable

nidcpower.Session.disable()
This method performs the same actions as the nidcpower.Session.reset() method, except
that this method also immediately sets the nidcpower.Session.output_enabled property
to False.

This method opens the output relay on devices that have an output relay.

export_attribute_configuration_buffer

nidcpower.Session.export_attribute_configuration_buffer()
Exports the property configuration of the session to the specified configuration buffer.

You can export and import session property configurations only between devices with identical
model numbers and the same number of configured channels.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-DCPower returns an error.

Support for this Method

Calling this method in Sequence Source Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped to
the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the import-
ing session:

• The configuration exported from channel 0 is imported into channel 1.

• The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Using Properties and Properties

Setting Properties and Properties Before Reading Them

7.1. nidcpower module 23

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

Return type bytes

Returns Specifies the byte array buffer to be populated with the exported property config-
uration.

export_attribute_configuration_file

nidcpower.Session.export_attribute_configuration_file(file_path)
Exports the property configuration of the session to the specified file.

You can export and import session property configurations only between devices with identical
model numbers and the same number of configured channels.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-DCPower returns an error.

Support for this Method

Calling this method in Sequence Source Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped to
the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the import-
ing session:

• The configuration exported from channel 0 is imported into channel 1.

• The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Using Properties and Properties

Setting Properties and Properties Before Reading Them

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

Parameters file_path (str) – Specifies the absolute path to the file to contain the
exported property configuration. If you specify an empty or relative path, this method
returns an error. Default file extension: .nidcpowerconfig

fetch_multiple

nidcpower.Session.fetch_multiple(count, timeout=hightime.timedelta(seconds=1.0))
Returns a list of named tuples (Measurement) that were previously taken and are stored in

24 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

the NI-DCPower buffer. This method should not be used when the nidcpower.Session.
measure_when property is set to ON_DEMAND. You must first call nidcpower.Session.
initiate() before calling this method.

Fields in Measurement:

• voltage (float)

• current (float)

• in_compliance (bool)

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].fetch_multiple()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.fetch_multiple()

Parameters

• count (int) – Specifies the number of measurements to fetch.

• timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) – Specifies the maximum time allowed for this method to
complete. If the method does not complete within this time interval, NI-DCPower
returns an error.

Note: When setting the timeout interval, ensure you take into account any triggers
so that the timeout interval is long enough for your application.

Return type list of Measurement

Returns

List of named tuples with fields:

• voltage (float)

• current (float)

• in_compliance (bool)

get_channel_name

nidcpower.Session.get_channel_name(index)
Retrieves the output channelName that corresponds to the requested index. Use the nidcpower.
Session.channel_count property to determine the upper bound of valid values for index.

7.1. nidcpower module 25

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm,supportedfunctions)
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

Parameters index (int) – Specifies which output channel name to return. The index
values begin at 1.

Return type str

Returns Returns the output channel name that corresponds to index.

get_channel_names

nidcpower.Session.get_channel_names(indices)
Returns a list of channel names for the given channel indices.

Parameters indices (basic sequence types or str or int) – Index list
for the channels in the session. Valid values are from zero to the total number of chan-
nels in the session minus one. The index string can be one of the following formats:

• A comma-separated list—for example, “0,2,3,1”

• A range using a hyphen—for example, “0-3”

• A range using a colon—for example, “0:3 “

You can combine comma-separated lists and ranges that use a hyphen or colon. Both
out-of-order and repeated indices are supported (“2,3,0,” “1,2,2,3”). White space char-
acters, including spaces, tabs, feeds, and carriage returns, are allowed between charac-
ters. Ranges can be incrementing or decrementing.

Return type list of str

Returns The channel name(s) at the specified indices.

get_ext_cal_last_date_and_time

nidcpower.Session.get_ext_cal_last_date_and_time()
Returns the date and time of the last successful calibration.

Return type hightime.datetime

Returns Indicates date and time of the last calibration.

get_ext_cal_last_temp

nidcpower.Session.get_ext_cal_last_temp()
Returns the onboard temperature of the device, in degrees Celsius, during the last successful exter-
nal calibration.

Return type float

Returns Returns the onboard temperature of the device, in degrees Celsius, during the
last successful external calibration.

get_ext_cal_recommended_interval

nidcpower.Session.get_ext_cal_recommended_interval()
Returns the recommended maximum interval, in months, between external calibrations.

Return type hightime.timedelta

26 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

Returns Specifies the recommended maximum interval, in months, between external cal-
ibrations.

get_self_cal_last_date_and_time

nidcpower.Session.get_self_cal_last_date_and_time()
Returns the date and time of the oldest successful self-calibration from among the channels in the
session.

Note: This method is not supported on all devices.

Return type hightime.datetime

Returns Returns the date and time the device was last calibrated.

get_self_cal_last_temp

nidcpower.Session.get_self_cal_last_temp()
Returns the onboard temperature of the device, in degrees Celsius, during the oldest successful self-
calibration from among the channels in the session.

For example, if you have a session using channels 1 and 2, and you perform a self-calibration
on channel 1 with a device temperature of 25 degrees Celsius at 2:00, and a self-calibration was
performed on channel 2 at 27 degrees Celsius at 3:00 on the same day, this method returns 25 for
the temperature parameter.

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Return type float

Returns Returns the onboard temperature of the device, in degrees Celsius, during the
oldest successful calibration.

import_attribute_configuration_buffer

nidcpower.Session.import_attribute_configuration_buffer(configuration)
Imports a property configuration to the session from the specified configuration buffer.

You can export and import session property configurations only between devices with identical
model numbers and the same number of configured channels.

Support for this Method

Calling this method in Sequence Source Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped to
the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__() method.

7.1. nidcpower module 27

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the import-
ing session:

• The configuration exported from channel 0 is imported into channel 1.

• The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Programming States

Using Properties and Properties

Setting Properties and Properties Before Reading Them

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

Parameters configuration (bytes) – Specifies the byte array buffer that contains
the property configuration to import.

import_attribute_configuration_file

nidcpower.Session.import_attribute_configuration_file(file_path)
Imports a property configuration to the session from the specified file.

You can export and import session property configurations only between devices with identical
model numbers and the same number of configured channels.

Support for this Method

Calling this method in Sequence Source Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped to
the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the import-
ing session:

• The configuration exported from channel 0 is imported into channel 1.

• The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Programming States

Using Properties and Properties

Setting Properties and Properties Before Reading Them

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

28 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#bytes

NI Modular Instruments Python API Documentation, Release 1.4.1

Parameters file_path (str) – Specifies the absolute path to the file containing the
property configuration to import. If you specify an empty or relative path, this method
returns an error. Default File Extension: .nidcpowerconfig

initiate

nidcpower.Session.initiate()
Starts generation or acquisition, causing the specified channel(s) to leave the Uncommitted state
or Committed state and enter the Running state. To return to the Uncommitted state call the
nidcpower.Session.abort() method. Refer to the Programming States topic in the NI DC
Power Supplies and SMUs Help for information about the specific NI-DCPower software states.

Related Topics:

Programming States

Note: This method will return a Python context manager that will initiate on entering and abort on
exit.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].initiate()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.initiate()

lock

nidcpower.Session.lock()
Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:

• The application called the nidcpower.Session.lock() method.

• A call to NI-DCPower locked the session.

• After a call to the nidcpower.Session.lock() method returns successfully, no other threads can
access the device session until you call the nidcpower.Session.unlock() method or exit out of
the with block when using lock context manager.

• Use the nidcpower.Session.lock() method and the nidcpower.Session.unlock()
method around a sequence of calls to instrument driver methods if you require that the device retain its
settings through the end of the sequence.

You can safely make nested calls to the nidcpower.Session.lock() method within the same thread. To
completely unlock the session, you must balance each call to the nidcpower.Session.lock() method
with a call to the nidcpower.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

7.1. nidcpower module 29

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

with nidcpower.Session('dev1') as session:
with session.lock():

Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type context manager

Returns When used in a with statement, nidcpower.Session.lock() acts as a context man-
ager and unlock will be called when the with block is exited

measure

nidcpower.Session.measure(measurement_type)
Returns the measured value of either the voltage or current on the specified output channel. Each call
to this method blocks other method calls until the hardware returns the measurement. To measure
multiple output channels, use the nidcpower.Session.measure_multiple() method.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].measure()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.measure()

Parameters measurement_type (nidcpower.MeasurementTypes) – Specifies
whether a voltage or current value is measured. Defined Values:

VOLTAGE The device measures voltage.
CURRENT The device measures current.

Return type float

Returns Returns the value of the measurement, either in volts for voltage or amps for
current.

measure_multiple

nidcpower.Session.measure_multiple()
Returns a list of named tuples (Measurement) containing the measured voltage and current values
on the specified output channel(s). Each call to this method blocks other method calls until the
measurements are returned from the device. The order of the measurements returned in the array
corresponds to the order on the specified output channel(s).

Fields in Measurement:

• voltage (float)

• current (float)

30 Chapter 7. License

https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

• in_compliance (bool) - Always None

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].measure_multiple()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.measure_multiple()

Return type list of Measurement

Returns

List of named tuples with fields:

• voltage (float)

• current (float)

• in_compliance (bool) - Always None

query_in_compliance

nidcpower.Session.query_in_compliance()
Queries the specified output device to determine if it is operating at the compliance limit.

The compliance limit is the current limit when the output method is set to DC_VOLTAGE. If the
output is operating at the compliance limit, the output reaches the current limit before the desired
voltage level. Refer to the nidcpower.Session.ConfigureOutputFunction() method
and the nidcpower.Session.ConfigureCurrentLimit() method for more information
about output method and current limit, respectively.

The compliance limit is the voltage limit when the output method is set to DC_CURRENT. If the
output is operating at the compliance limit, the output reaches the voltage limit before the desired
current level. Refer to the nidcpower.Session.ConfigureOutputFunction() method
and the nidcpower.Session.ConfigureVoltageLimit() method for more information
about output method and voltage limit, respectively.

Related Topics:

Compliance

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

7.1. nidcpower module 31

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm,supportedfunctions)

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.channels[...].query_in_compliance()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_in_compliance()

Return type bool

Returns Returns whether the device output channel is in compliance.

query_latched_output_cutoff_state

nidcpower.Session.query_latched_output_cutoff_state(output_cutoff_reason)
Discovers if an output cutoff limit was exceeded for the specified reason. When an
output cutoff is engaged, the output of the channel(s) is disconnected. If a limit
was exceeded, the state is latched until you clear it with the nidcpower.Session.
clear_latched_output_cutoff_state() method or the nidcpower.Session.
reset() method.

outputCutoffReason specifies the conditions for which an output is disconnected.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_latched_output_cutoff_state()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_latched_output_cutoff_state()

Parameters output_cutoff_reason (nidcpower.OutputCutoffReason) –
Specifies which output cutoff conditions to query.

ALL Any output cutoff condition was met
VOLTAGE_OUTPUT_HIGHThe output exceeded the high cutoff limit for voltage output
VOLTAGE_OUTPUT_LOWThe output fell below the low cutoff limit for voltage output
CURRENT_MEASURE_HIGHThe measured current exceeded the high cutoff limit for

current output
CURRENT_MEASURE_LOWThe measured current fell below the low cutoff limit for

current output
VOLTAGE_CHANGE_HIGHThe voltage slew rate increased beyond the positive change

cutoff for voltage output
VOLTAGE_CHANGE_LOWThe voltage slew rate decreased beyond the negative

change cutoff for voltage output
CURRENT_CHANGE_HIGHThe current slew rate increased beyond the positive change

cutoff for current output
CURRENT_CHANGE_LOWThe current slew rate decreased beyond the negative

change cutoff for current output

Return type bool

32 Chapter 7. License

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

Returns

Specifies whether an output cutoff has engaged.

True An output cutoff has engaged for the conditions in output cutoff reason.
False No output cutoff has engaged.

query_max_current_limit

nidcpower.Session.query_max_current_limit(voltage_level)
Queries the maximum current limit on an output channel if the output channel is set to the specified
voltageLevel.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_max_current_limit()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_max_current_limit()

Parameters voltage_level (float) – Specifies the voltage level to use when calcu-
lating the maxCurrentLimit.

Return type float

Returns Returns the maximum current limit that can be set with the specified volt-
ageLevel.

query_max_voltage_level

nidcpower.Session.query_max_voltage_level(current_limit)
Queries the maximum voltage level on an output channel if the output channel is set to the specified
currentLimit.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_max_voltage_level()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_max_voltage_level()

Parameters current_limit (float) – Specifies the current limit to use when calcu-
lating the maxVoltageLevel.

Return type float

Returns Returns the maximum voltage level that can be set on an output channel with the
specified currentLimit.

7.1. nidcpower module 33

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

query_min_current_limit

nidcpower.Session.query_min_current_limit(voltage_level)
Queries the minimum current limit on an output channel if the output channel is set to the specified
voltageLevel.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_min_current_limit()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_min_current_limit()

Parameters voltage_level (float) – Specifies the voltage level to use when calcu-
lating the minCurrentLimit.

Return type float

Returns Returns the minimum current limit that can be set on an output channel with the
specified voltageLevel.

query_output_state

nidcpower.Session.query_output_state(output_state)
Queries the specified output channel to determine if the output channel is currently in the state
specified by outputState.

Related Topics:

Compliance

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_output_state()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_output_state()

Parameters output_state (nidcpower.OutputStates) – Specifies the output
state of the output channel that is being queried. Defined Values:

VOLTAGE The device maintains a constant voltage by adjusting the current.
CURRENT The device maintains a constant current by adjusting the voltage.

Return type bool

Returns Returns whether the device output channel is in the specified output state.

34 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

read_current_temperature

nidcpower.Session.read_current_temperature()
Returns the current onboard temperature, in degrees Celsius, of the device.

Return type float

Returns Returns the onboard temperature, in degrees Celsius, of the device.

reset

nidcpower.Session.reset()
Resets the specified channel(s) to a known state. This method disables power generation, resets
session properties to their default values, commits the session properties, and leaves the session
in the Uncommitted state. Refer to the Programming States topic for more information about NI-
DCPower software states.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].reset()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.reset()

reset_device

nidcpower.Session.reset_device()
Resets the device to a known state. The method disables power generation, resets session properties
to their default values, clears errors such as overtemperature and unexpected loss of auxiliary power,
commits the session properties, and leaves the session in the Uncommitted state. This method also
performs a hard reset on the device and driver software. This method has the same functionality
as using reset in Measurement & Automation Explorer. Refer to the Programming States topic for
more information about NI-DCPower software states.

This will also open the output relay on devices that have an output relay.

reset_with_defaults

nidcpower.Session.reset_with_defaults()
Resets the device to a known state. This method disables power generation, resets session properties
to their default values, commits the session properties, and leaves the session in the Running state. In
addition to exhibiting the behavior of the nidcpower.Session.reset() method, this method
can assign user-defined default values for configurable properties from the IVI configuration.

self_cal

nidcpower.Session.self_cal()
Performs a self-calibration upon the specified channel(s).

7.1. nidcpower module 35

https://docs.python.org/3/library/functions.html#float
javascript:LaunchHelp('NI_DC_Power_Supplies_Help.chm::/programmingStates.html#running')

NI Modular Instruments Python API Documentation, Release 1.4.1

This method disables the output, performs several internal calculations, and updates calibration
values. The updated calibration values are written to the device hardware if the nidcpower.
Session.self_calibration_persistence property is set to WRITE_TO_EEPROM . Re-
fer to the nidcpower.Session.self_calibration_persistence property topic for
more information about the settings for this property.

When calling nidcpower.Session.self_cal() with the PXIe-4162/4163, specify all chan-
nels of your PXIe-4162/4163 with the channelName input. You cannot self-calibrate a subset of
PXIe-4162/4163 channels.

Refer to the Self-Calibration topic for more information about this method.

Related Topics:

Self-Calibration

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].self_cal()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.self_cal()

self_test

nidcpower.Session.self_test()
Performs the device self-test routine and returns the test result(s). Calling this method implicitly
calls the nidcpower.Session.reset() method.

When calling nidcpower.Session.self_test() with the PXIe-4162/4163, specify
all channels of your PXIe-4162/4163 with the channels input of nidcpower.Session.
__init__(). You cannot self test a subset of PXIe-4162/4163 channels.

Raises SelfTestError on self test failure. Properties on exception object:

• code - failure code from driver

• message - status message from driver

Self-Test Code Description
0 Self test passed.
1 Self test failed.

send_software_edge_trigger

nidcpower.Session.send_software_edge_trigger(trigger)
Asserts the specified trigger. This method can override an external edge trigger.

36 Chapter 7. License

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)

NI Modular Instruments Python API Documentation, Release 1.4.1

Related Topics:

Triggers

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].send_software_edge_trigger()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.send_software_edge_trigger()

Parameters trigger (nidcpower.SendSoftwareEdgeTriggerType) – Spec-
ifies which trigger to assert. Defined Values:

NIDCPOWER_VAL_START_TRIGGER Asserts the Start trigger.
NIDCPOWER_VAL_SOURCE_TRIGGER Asserts the Source trigger.
NIDCPOWER_VAL_MEASURE_TRIGGER Asserts the Measure trigger.
NIDCPOWER_VAL_SEQUENCE_ADVANCE_TRIGGERAsserts the Sequence Advance

trigger.
NIDCPOWER_VAL_PULSE_TRIGGER Asserts the Pulse trigger.
NIDCPOWER_VAL_SHUTDOWN_TRIGGER Asserts the Shutdown trigger.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

set_sequence

nidcpower.Session.set_sequence(values, source_delays)
Configures a series of voltage or current outputs and corresponding source delays. The source mode
must be set to Sequence for this method to take effect.

Refer to the Configuring the Source Unit topic in the NI DC Power Supplies and SMUs Help for
more information about how to configure your device.

Use this method in the Uncommitted or Committed programming states. Refer to the Programming
States topic in the NI DC Power Supplies and SMUs Help for more information about NI-DCPower
programming states.

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

7.1. nidcpower module 37

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].set_sequence()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.set_sequence()

Parameters

• values (list of float) – Specifies the series of voltage levels or current
levels, depending on the configured output method. Valid values: The valid values
for this parameter are defined by the voltage level range or current level range.

• source_delays (list of float) – Specifies the source delay that follows
the configuration of each value in the sequence. Valid Values: The valid values are
between 0 and 167 seconds.

unlock

nidcpower.Session.unlock()
Releases a lock that you acquired on an device session using nidcpower.Session.lock(). Refer to
nidcpower.Session.unlock() for additional information on session locks.

wait_for_event

nidcpower.Session.wait_for_event(event_id, timeout=hightime.timedelta(seconds=10.0))
Waits until the specified channel(s) have generated the specified event.

The session monitors whether each type of event has occurred at least once since the last time this
method or the nidcpower.Session.initiate() method were called. If an event has only
been generated once and you call this method successively, the method times out. Individual events
must be generated between separate calls of this method.

Note: Refer to Supported Methods by Device for more information about supported devices.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].wait_for_event()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.wait_for_event()

Parameters

38 Chapter 7. License

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)

NI Modular Instruments Python API Documentation, Release 1.4.1

• event_id (nidcpower.Event) – Specifies which event to wait for. Defined
Values:

NIDCPOWER_VAL_SOURCE_COMPLETE_EVENTWaits for the Source Complete
event.

NIDCPOWER_VAL_MEASURE_COMPLETE_EVENTWaits for the Measure Com-
plete event.

NIDCPOWER_VAL_SEQUENCE_ITERATION_COMPLETE_EVENTWaits for the Sequence Iteration
Complete event.

NIDCPOWER_VAL_SEQUENCE_ENGINE_DONE_EVENTWaits for the Sequence Engine
Done event.

NIDCPOWER_VAL_PULSE_COMPLETE_EVENTWaits for the Pulse Complete
event.

NIDCPOWER_VAL_READY_FOR_PULSE_TRIGGER_EVENTWaits for the Ready for Pulse
Trigger event.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

• timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) – Specifies the maximum time allowed for this method to
complete, in seconds. If the method does not complete within this time interval,
NI-DCPower returns an error.

Note: When setting the timeout interval, ensure you take into account any triggers
so that the timeout interval is long enough for your application.

Properties

active_advanced_sequence

nidcpower.Session.active_advanced_sequence
Specifies the advanced sequence to configure or generate.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].active_advanced_sequence

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.active_advanced_sequence

The following table lists the characteristics of this property.

7.1. nidcpower module 39

https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Active Advanced Sequence

• C Attribute: NIDCPOWER_ATTR_ACTIVE_ADVANCED_SEQUENCE

active_advanced_sequence_step

nidcpower.Session.active_advanced_sequence_step
Specifies the advanced sequence step to configure.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].active_advanced_sequence_step

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.active_advanced_sequence_step

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Active Advanced Sequence Step

• C Attribute: NIDCPOWER_ATTR_ACTIVE_ADVANCED_SEQUENCE_STEP

actual_power_allocation

nidcpower.Session.actual_power_allocation
Returns the power, in watts, the device is sourcing on each active channel if the nidcpower.
Session.power_allocation_mode property is set to AUTOMATIC or MANUAL.

40 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Valid Values: [0, device per-channel maximum power]

Default Value: Refer to the Supported Properties by Device topic for the default value by
device.

Note: This property is not supported by all devices. Refer to the Supported Properties by Device
topic for information about supported devices.

This property returns -1 when the nidcpower.Session.power_allocation_mode prop-
erty is set to DISABLED.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].actual_power_allocation

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.actual_power_allocation

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Actual Power Allocation

• C Attribute: NIDCPOWER_ATTR_ACTUAL_POWER_ALLOCATION

aperture_time

nidcpower.Session.aperture_time
Specifies the measurement aperture time for the channel configuration. Aperture time is specified in
the units set by the nidcpower.Session.aperture_time_units property. for informa-
tion about supported devices. Refer to the Aperture Time topic in the NI DC Power Supplies and
SMUs Help for more information about how to configure your measurements and for information
about valid values. Default Value: 0.01666666 seconds

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].aperture_time

7.1. nidcpower module 41

NI Modular Instruments Python API Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.aperture_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Aperture Time

• C Attribute: NIDCPOWER_ATTR_APERTURE_TIME

aperture_time_units

nidcpower.Session.aperture_time_units
Specifies the units of the nidcpower.Session.aperture_time property for the channel
configuration. for information about supported devices. Refer to the Aperture Time topic in the NI
DC Power Supplies and SMUs Help for more information about how to configure your measure-
ments and for information about valid values. Default Value: SECONDS

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].aperture_time_units

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.aperture_time_units

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ApertureTimeUnits
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Aperture Time Units

• C Attribute: NIDCPOWER_ATTR_APERTURE_TIME_UNITS

42 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

autorange

nidcpower.Session.autorange
Specifies whether the hardware automatically selects the best range to measure the signal.
Note the highest range the algorithm uses is dependent on the corresponding limit range prop-
erty. The algorithm the hardware uses can be controlled using the nidcpower.Session.
autorange_aperture_time_mode property.

Note: Autoranging begins at module startup and remains active until the module is reconfigured or
reset. This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Autorange

• C Attribute: NIDCPOWER_ATTR_AUTORANGE

autorange_aperture_time_mode

nidcpower.Session.autorange_aperture_time_mode
Specifies whether the aperture time used for the measurement autorange algo-
rithm is determined automatically or customized using the nidcpower.Session.
autorange_minimum_aperture_time property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange_aperture_time_mode

7.1. nidcpower module 43

NI Modular Instruments Python API Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_aperture_time_mode

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.AutorangeApertureTimeMode
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Autorange Aperture Time Mode

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_APERTURE_TIME_MODE

autorange_behavior

nidcpower.Session.autorange_behavior
Specifies the algorithm the hardware uses for measurement autoranging.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_behavior

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.AutorangeBehavior
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Autorange Behavior

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_BEHAVIOR

44 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

autorange_minimum_aperture_time

nidcpower.Session.autorange_minimum_aperture_time
Specifies the measurement autorange aperture time used for the measurement autorange al-
gorithm. The aperture time is specified in the units set by the nidcpower.Session.
autorange_minimum_aperture_time_units property. This value will typically be
smaller than the aperture time used for measurements.

Note: For smaller ranges, the value is scaled up to account for noise. The factor used to scale the
value is derived from the module capabilities. This property is not supported by all devices. Refer
to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange_minimum_aperture_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_minimum_aperture_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Autorange Minimum Aperture Time

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_APERTURE_TIME

autorange_minimum_aperture_time_units

nidcpower.Session.autorange_minimum_aperture_time_units
Specifies the units of the nidcpower.Session.autorange_minimum_aperture_time
property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange_minimum_aperture_time_units

7.1. nidcpower module 45

NI Modular Instruments Python API Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_minimum_aperture_time_units

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ApertureTimeUnits
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Autorange Minimum Aperture Time Units

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_APERTURE_TIME_UNITS

autorange_minimum_current_range

nidcpower.Session.autorange_minimum_current_range
Specifies the lowest range used during measurement autoranging. Limiting the lowest range used
during autoranging can improve the speed of the autoranging algorithm and minimize frequent and
unpredictable range changes for noisy signals.

Note: The maximum range used is the range that includes the value specified in the compliance
limit property, nidcpower.Session.voltage_limit_range property or nidcpower.
Session.current_limit_range property, depending on the selected nidcpower.
Session.output_function. This property is not supported by all devices. Refer to Supported
Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange_minimum_current_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_minimum_current_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

46 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Measurement:Advanced:Autorange Minimum Current Range

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_CURRENT_RANGE

autorange_minimum_voltage_range

nidcpower.Session.autorange_minimum_voltage_range
Specifies the lowest range used during measurement autoranging. The maximum range used is range
that includes the value specified in the compliance limit property. Limiting the lowest range used
during autoranging can improve the speed of the autoranging algorithm and/or minimize thrashing
between ranges for noisy signals.

Note: The maximum range used is the range that includes the value specified in the compliance
limit property, nidcpower.Session.voltage_limit_range property or nidcpower.
Session.current_limit_range property, depending on the selected nidcpower.
Session.output_function. This property is not supported by all devices. Refer to Supported
Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange_minimum_voltage_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_minimum_voltage_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Autorange Minimum Voltage Range

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_VOLTAGE_RANGE

autorange_threshold_mode

nidcpower.Session.autorange_threshold_mode
Specifies thresholds used during autoranging to determine when range changing occurs.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic.

7.1. nidcpower module 47

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange_threshold_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_threshold_mode

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.AutorangeThresholdMode
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Autorange Threshold Mode

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_THRESHOLD_MODE

auto_zero

nidcpower.Session.auto_zero
Specifies the auto-zero method to use on the device. Refer to the NI PXI-4132 Measurement Con-
figuration and Timing and Auto Zero topics for more information about how to configure your
measurements. Default Value: The default value for the NI PXI-4132 is ON . The default value for
all other devices is OFF, which is the only supported value for these devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].auto_zero

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.auto_zero

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.AutoZero
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Auto Zero

48 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NIDCPOWER_ATTR_AUTO_ZERO

auxiliary_power_source_available

nidcpower.Session.auxiliary_power_source_available
Indicates whether an auxiliary power source is connected to the device. A value of False may indi-
cate that the auxiliary input fuse has blown. Refer to the Detecting Internal/Auxiliary Power topic in
the NI DC Power Supplies and SMUs Help for more information about internal and auxiliary power.
power source to generate power. Use the nidcpower.Session.power_source_in_use
property to retrieve this information.

Note: This property does not necessarily indicate if the device is using the auxiliary

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Advanced:Auxiliary Power Source Available

• C Attribute: NIDCPOWER_ATTR_AUXILIARY_POWER_SOURCE_AVAILABLE

channel_count

nidcpower.Session.channel_count
Indicates the number of channels that NI-DCPower supports for the instrument that was chosen
when the current session was opened. For channel-based properties, the IVI engine maintains a
separate cache value for each channel.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Channel Count

• C Attribute: NIDCPOWER_ATTR_CHANNEL_COUNT

7.1. nidcpower module 49

NI Modular Instruments Python API Documentation, Release 1.4.1

compliance_limit_symmetry

nidcpower.Session.compliance_limit_symmetry
Specifies whether compliance limits for current generation and voltage generation for the device are
applied symmetrically about 0 V and 0 A or asymmetrically with respect to 0 V and 0 A. When set
to Symmetric, voltage limits and current limits are set using a single property with a positive value.
The resulting range is bounded by this positive value and its opposite. When set to Asymmetric,
you must separately set a limit high and a limit low using distinct properties. For asymmetric limits,
the range bounded by the limit high and limit low must include zero. Default Value: Symmetric
Related Topics: Compliance Ranges Changing Ranges Overranging

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].compliance_limit_symmetry

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.compliance_limit_symmetry

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ComplianceLimitSymmetry
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Compliance Limit Symmetry

• C Attribute: NIDCPOWER_ATTR_COMPLIANCE_LIMIT_SYMMETRY

current_compensation_frequency

nidcpower.Session.current_compensation_frequency
The frequency at which a pole-zero pair is added to the system when the channel is in Constant
Current mode. for information about supported devices. Default Value: Determined by the value of
the NORMAL setting of the nidcpower.Session.transient_response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

50 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/compliance.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html
NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.channels[...].current_compensation_frequency

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_compensation_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Custom Transient Response:Current:Compensation Fre-
quency

• C Attribute: NIDCPOWER_ATTR_CURRENT_COMPENSATION_FREQUENCY

current_gain_bandwidth

nidcpower.Session.current_gain_bandwidth
The frequency at which the unloaded loop gain extrapolates to 0 dB in the absence of additional
poles and zeroes. This property takes effect when the channel is in Constant Current mode. for
information about supported devices. Default Value: Determined by the value of the NORMAL setting
of the nidcpower.Session.transient_response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_gain_bandwidth

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_gain_bandwidth

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Custom Transient Response:Current:Gain Bandwidth

7.1. nidcpower module 51

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NIDCPOWER_ATTR_CURRENT_GAIN_BANDWIDTH

current_level

nidcpower.Session.current_level
Specifies the current level, in amps, that the device attempts to generate on the specified channel(s).
This property is applicable only if the nidcpower.Session.output_function property is
set to DC_CURRENT. nidcpower.Session.output_enabled property for more informa-
tion about enabling the output channel. Valid Values: The valid values for this property are defined
by the values to which the nidcpower.Session.current_level_range property is set.

Note: The channel must be enabled for the specified current level to take effect. Refer to the

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Current Level

• C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL

current_level_autorange

nidcpower.Session.current_level_autorange
Specifies whether NI-DCPower automatically selects the current level range based on the desired
current level for the specified channels. If you set this property to ON , NI-DCPower ignores
any changes you make to the nidcpower.Session.current_level_range property. If
you change the nidcpower.Session.current_level_autorange property from ON to
OFF, NI-DCPower retains the last value the nidcpower.Session.current_level_range
property was set to (or the default value if the property was never set) and uses that value as
the current level range. Query the nidcpower.Session.current_level_range prop-
erty by using the nidcpower.Session._get_attribute_vi_int32() method for in-
formation about which range NI-DCPower automatically selects. The nidcpower.Session.

52 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

current_level_autorange property is applicable only if the nidcpower.Session.
output_function property is set to DC_CURRENT. Default Value: OFF

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_level_autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_level_autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Current Level Autorange

• C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_AUTORANGE

current_level_range

nidcpower.Session.current_level_range
Specifies the current level range, in amps, for the specified channel(s). The range defines
the valid value to which the current level can be set. Use the nidcpower.Session.
current_level_autorange property to enable automatic selection of the current level
range. The nidcpower.Session.current_level_range property is applicable only if the
nidcpower.Session.output_function property is set to DC_CURRENT. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs
Help.

Note: The channel must be enabled for the specified current level range to take effect. Refer to the

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_level_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_level_range

The following table lists the characteristics of this property.

7.1. nidcpower module 53

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Current Level Range

• C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_RANGE

current_limit

nidcpower.Session.current_limit
Specifies the current limit, in amps, that the output cannot exceed when generating the desired
voltage level on the specified channel(s). This property is applicable only if the nidcpower.
Session.output_function property is set to DC_VOLTAGE and the nidcpower.
Session.compliance_limit_symmetry property is set to SYMMETRIC. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
Valid Values: The valid values for this property are defined by the values to which nidcpower.
Session.current_limit_range property is set.

Note: The channel must be enabled for the specified current limit to take effect. Refer to the

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Current Limit

• C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT

54 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

current_limit_autorange

nidcpower.Session.current_limit_autorange
Specifies whether NI-DCPower automatically selects the current limit range based on the de-
sired current limit for the specified channel(s). If you set this property to ON , NI-DCPower ig-
nores any changes you make to the nidcpower.Session.current_limit_range prop-
erty. If you change this property from ON to OFF, NI-DCPower retains the last value
the nidcpower.Session.current_limit_range property was set to (or the default
value if the property was never set) and uses that value as the current limit range. Query
the nidcpower.Session.current_limit_range property by using the nidcpower.
Session._get_attribute_vi_int32() method for information about which range NI-
DCPower automatically selects. The nidcpower.Session.current_limit_autorange
property is applicable only if the nidcpower.Session.output_function property is set to
DC_VOLTAGE. Default Value: OFF

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_limit_autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Current Limit Autorange

• C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_AUTORANGE

current_limit_behavior

nidcpower.Session.current_limit_behavior

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_limit_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_behavior

7.1. nidcpower module 55

NI Modular Instruments Python API Documentation, Release 1.4.1

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_BEHAVIOR

current_limit_high

nidcpower.Session.current_limit_high
Specifies the maximum current, in amps, that the output can produce when generating the desired
voltage on the specified channel(s). This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:‘nidcpower.Session.ComplianceLimitSymmetry.html>‘__ property is set to
Asymmetric and the Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__
property is set to DC Voltage. You must also specify a Current
Limit Low <p:py:meth:‘nidcpower.Session.CurrentLimitLow.html>‘__ to com-
plete the asymmetric range. Valid Values: [1% of Current Limit Range
<p:py:meth:‘nidcpower.Session.CurrentLimitRange.html>‘__, Current Limit Range
<p:py:meth:‘nidcpower.Session.CurrentLimitRange.html>‘__] The range bounded by the limit high
and limit low must include zero. Default Value: Refer to Supported Properties by Device for the
default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth:‘nidcpower.Session.OverrangingEnabled.html>‘__ property is set to TRUE.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

56 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Current Limit High

• C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_HIGH

current_limit_low

nidcpower.Session.current_limit_low
Specifies the minimum current, in amps, that the output can produce when generating the desired
voltage on the specified channel(s). This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:‘nidcpower.Session.ComplianceLimitSymmetry.html>‘__ property is set to
Asymmetric and the Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__
property is set to DC Voltage. You must also specify a Current
Limit High <p:py:meth:‘nidcpower.Session.CurrentLimitHigh.html>‘__ to com-
plete the asymmetric range. Valid Values: [-Current Limit Range
<p:py:meth:‘nidcpower.Session.CurrentLimitRange.html>‘__, -1% of Current Limit Range
<p:py:meth:‘nidcpower.Session.CurrentLimitRange.html>‘__] The range bounded by the limit high
and limit low must include zero. Default Value: Refer to Supported Properties by Device for the
default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth:‘nidcpower.Session.OverrangingEnabled.html>‘__ property is set to TRUE.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Current Limit Low

• C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_LOW

7.1. nidcpower module 57

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python API Documentation, Release 1.4.1

current_limit_range

nidcpower.Session.current_limit_range
Specifies the current limit range, in amps, for the specified channel(s). The range defines
the valid value to which the current limit can be set. Use the nidcpower.Session.
current_limit_autorange property to enable automatic selection of the current limit
range. The nidcpower.Session.current_limit_range property is applicable only if the
nidcpower.Session.output_function property is set to DC_VOLTAGE. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs
Help.

Note: The channel must be enabled for the specified current limit to take effect. Refer to the

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_limit_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Current Limit Range

• C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_RANGE

current_pole_zero_ratio

nidcpower.Session.current_pole_zero_ratio
The ratio of the pole frequency to the zero frequency when the channel is in Constant Current mode.
for information about supported devices. Default Value: Determined by the value of the NORMAL
setting of the nidcpower.Session.transient_response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

58 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

set.

Example: my_session.channels[...].current_pole_zero_ratio

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_pole_zero_ratio

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Custom Transient Response:Current:Pole-Zero Ratio

• C Attribute: NIDCPOWER_ATTR_CURRENT_POLE_ZERO_RATIO

dc_noise_rejection

nidcpower.Session.dc_noise_rejection
Determines the relative weighting of samples in a measurement. Refer to the NI PXIe-4140/4141
DC Noise Rejection, NI PXIe-4142/4143 DC Noise Rejection, or NI PXIe-4144/4145 DC Noise
Rejection topic in the NI DC Power Supplies and SMUs Help for more information about noise
rejection. for information about supported devices. Default Value: NORMAL

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].dc_noise_rejection

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.dc_noise_rejection

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.DCNoiseRejection
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 59

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Measurement:Advanced:DC Noise Rejection

• C Attribute: NIDCPOWER_ATTR_DC_NOISE_REJECTION

digital_edge_measure_trigger_input_terminal

nidcpower.Session.digital_edge_measure_trigger_input_terminal
Specifies the input terminal for the Measure trigger. This property is used only when the
nidcpower.Session.measure_trigger_type property is set to DIGITAL_EDGE. for
this property. You can specify any valid input terminal for this property. Valid terminals are listed in
Measurement & Automation Explorer under the Device Routes tab. Input terminals can be specified
in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify
the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal
name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you
can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_measure_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_measure_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Measure Trigger:Digital Edge:Input Terminal

• C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_MEASURE_TRIGGER_INPUT_TERMINAL

digital_edge_pulse_trigger_input_terminal

nidcpower.Session.digital_edge_pulse_trigger_input_terminal
Specifies the input terminal for the Pulse trigger. This property is used only when the nidcpower.
Session.pulse_trigger_type property is set to digital edge. You can specify any valid
input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer
under the Device Routes tab. Input terminals can be specified in one of two ways. If the device is
named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified

60 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input ter-
minal can also be a terminal from another device. For example, you can set the input terminal on
Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_pulse_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_pulse_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Pulse Trigger:Digital Edge:Input Terminal

• C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_PULSE_TRIGGER_INPUT_TERMINAL

digital_edge_sequence_advance_trigger_input_terminal

nidcpower.Session.digital_edge_sequence_advance_trigger_input_terminal
Specifies the input terminal for the Sequence Advance trigger. Use this property only
when the nidcpower.Session.sequence_advance_trigger_type property is set to
DIGITAL_EDGE. the NI DC Power Supplies and SMUs Help for information about supported
devices. You can specify any valid input terminal for this property. Valid terminals are listed in
Measurement & Automation Explorer under the Device Routes tab. Input terminals can be specified
in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify
the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal
name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you
can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic
in

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

7.1. nidcpower module 61

NI Modular Instruments Python API Documentation, Release 1.4.1

set.

Example: my_session.channels[...].digital_edge_sequence_advance_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_sequence_advance_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Sequence Advance Trigger:Digital Edge:Input Terminal

• C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SEQUENCE_ADVANCE_TRIGGER_INPUT_TERMINAL

digital_edge_shutdown_trigger_input_terminal

nidcpower.Session.digital_edge_shutdown_trigger_input_terminal
Specifies the input terminal for the Shutdown trigger. This property is used only when the
nidcpower.Session.shutdown_trigger_type property is set to digital edge. You can
specify any valid input terminal for this property. Valid terminals are listed in Measurement & Au-
tomation Explorer under the Device Routes tab. Input terminals can be specified in one of two ways.
If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the
fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.
The input terminal can also be a terminal from another device. For example, you can set the input
terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_shutdown_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_shutdown_trigger_input_terminal

The following table lists the characteristics of this property.

62 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Shutdown Trigger:Digital Edge:Input Terminal

• C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SHUTDOWN_TRIGGER_INPUT_TERMINAL

digital_edge_source_trigger_input_terminal

nidcpower.Session.digital_edge_source_trigger_input_terminal
Specifies the input terminal for the Source trigger. Use this property only when the nidcpower.
Session.source_trigger_type property is set to DIGITAL_EDGE. for information about
supported devices. You can specify any valid input terminal for this property. Valid terminals are
listed in Measurement & Automation Explorer under the Device Routes tab. Input terminals can be
specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For
example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_source_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_source_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Source Trigger:Digital Edge:Input Terminal

• C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SOURCE_TRIGGER_INPUT_TERMINAL

7.1. nidcpower module 63

NI Modular Instruments Python API Documentation, Release 1.4.1

digital_edge_start_trigger_input_terminal

nidcpower.Session.digital_edge_start_trigger_input_terminal
Specifies the input terminal for the Start trigger. Use this property only when the nidcpower.
Session.start_trigger_type property is set to DIGITAL_EDGE. for information about
supported devices. You can specify any valid input terminal for this property. Valid terminals are
listed in Measurement & Automation Explorer under the Device Routes tab. Input terminals can be
specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For
example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_start_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_start_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Start Trigger:Digital Edge:Input Terminal

• C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_START_TRIGGER_INPUT_TERMINAL

driver_setup

nidcpower.Session.driver_setup
Indicates the Driver Setup string that you specified when initializing the driver. Some cases exist
where you must specify the instrument driver options at initialization time. An example of this
case is specifying a particular device model from among a family of devices that the driver sup-
ports. This property is useful when simulating a device. You can specify the driver-specific options
through the DriverSetup keyword in the optionsString parameter in the nidcpower.Session.
__init__() method or through the IVI Configuration Utility. You can specify driver-specific
options through the DriverSetup keyword in the optionsString parameter in the nidcpower.
Session.__init__() method. If you do not specify a Driver Setup string, this property returns
an empty string.

The following table lists the characteristics of this property.

64 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Driver Setup

• C Attribute: NIDCPOWER_ATTR_DRIVER_SETUP

exported_measure_trigger_output_terminal

nidcpower.Session.exported_measure_trigger_output_terminal
Specifies the output terminal for exporting the Measure trigger. Refer to the Device Routes tab
in Measurement & Automation Explorer for a list of the terminals available on your device. for
information about supported devices. Output terminals can be specified in one of two ways. If the
device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully
qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].exported_measure_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_measure_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Measure Trigger:Export Output Terminal

• C Attribute: NIDCPOWER_ATTR_EXPORTED_MEASURE_TRIGGER_OUTPUT_TERMINAL

7.1. nidcpower module 65

NI Modular Instruments Python API Documentation, Release 1.4.1

exported_pulse_trigger_output_terminal

nidcpower.Session.exported_pulse_trigger_output_terminal
Specifies the output terminal for exporting the Pulse trigger. Refer to the Device Routes tab in
Measurement & Automation Explorer for a list of the terminals available on your device. Output
terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is
PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].exported_pulse_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_pulse_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Pulse Trigger:Export Output Terminal

• C Attribute: NIDCPOWER_ATTR_EXPORTED_PULSE_TRIGGER_OUTPUT_TERMINAL

exported_sequence_advance_trigger_output_terminal

nidcpower.Session.exported_sequence_advance_trigger_output_terminal
Specifies the output terminal for exporting the Sequence Advance trigger. Refer to the Device Routes
tab in Measurement & Automation Explorer for a list of the terminals available on your device. for
information about supported devices. Output terminals can be specified in one of two ways. If the
device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully
qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

66 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

set.

Example: my_session.channels[...].exported_sequence_advance_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_sequence_advance_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Sequence Advance Trigger:Export Output Terminal

• C Attribute: NIDCPOWER_ATTR_EXPORTED_SEQUENCE_ADVANCE_TRIGGER_OUTPUT_TERMINAL

exported_source_trigger_output_terminal

nidcpower.Session.exported_source_trigger_output_terminal
Specifies the output terminal for exporting the Source trigger. Refer to the Device Routes tab in
MAX for a list of the terminals available on your device. for information about supported devices.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal
is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].exported_source_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_source_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 67

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Triggers:Source Trigger:Export Output Terminal

• C Attribute: NIDCPOWER_ATTR_EXPORTED_SOURCE_TRIGGER_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

nidcpower.Session.exported_start_trigger_output_terminal
Specifies the output terminal for exporting the Start trigger. Refer to the Device Routes tab in
Measurement & Automation Explorer (MAX) for a list of the terminals available on your device.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal
is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0. for information about supported devices.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].exported_start_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_start_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Start Trigger:Export Output Terminal

• C Attribute: NIDCPOWER_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

fetch_backlog

nidcpower.Session.fetch_backlog
Returns the number of measurements acquired that have not been fetched yet.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].fetch_backlog

68 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.fetch_backlog

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Fetch Backlog

• C Attribute: NIDCPOWER_ATTR_FETCH_BACKLOG

instrument_firmware_revision

nidcpower.Session.instrument_firmware_revision
Contains the firmware revision information for the device you are currently using.

Tip: This property can be set/get on specific instruments within your nidcpower.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].instrument_firmware_revision

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.instrument_firmware_revision

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Firmware Revision

• C Attribute: NIDCPOWER_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

nidcpower.Session.instrument_manufacturer
Contains the name of the manufacturer for the device you are currently using.

7.1. nidcpower module 69

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific instruments within your nidcpower.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].instrument_manufacturer

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.instrument_manufacturer

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Manufacturer

• C Attribute: NIDCPOWER_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

nidcpower.Session.instrument_model
Contains the model number or name of the device that you are currently using.

Tip: This property can be set/get on specific instruments within your nidcpower.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].instrument_model

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.instrument_model

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Model

• C Attribute: NIDCPOWER_ATTR_INSTRUMENT_MODEL

70 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

interlock_input_open

nidcpower.Session.interlock_input_open
Indicates whether the safety interlock circuit is open. Refer to the Safety Interlock topic in the NI
DC Power Supplies and SMUs Help for more information about the safety interlock circuit. about
supported devices.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information

Tip: This property can be set/get on specific instruments within your nidcpower.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].interlock_input_open

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.interlock_input_open

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Advanced:Interlock Input Open

• C Attribute: NIDCPOWER_ATTR_INTERLOCK_INPUT_OPEN

io_resource_descriptor

nidcpower.Session.io_resource_descriptor
Indicates the resource descriptor NI-DCPower uses to identify the physical device. If you initialize
NI-DCPower with a logical name, this property contains the resource descriptor that corresponds to
the entry in the IVI Configuration utility. If you initialize NI-DCPower with the resource descriptor,
this property contains that value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 71

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Resource De-
scriptor

• C Attribute: NIDCPOWER_ATTR_IO_RESOURCE_DESCRIPTOR

logical_name

nidcpower.Session.logical_name
Contains the logical name you specified when opening the current IVI session. You can pass a logical
name to the nidcpower.Session.__init__() method. The IVI Configuration utility must
contain an entry for the logical name. The logical name entry refers to a method section in the IVI
Configuration file. The method section specifies a physical device and initial user options.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name

• C Attribute: NIDCPOWER_ATTR_LOGICAL_NAME

measure_buffer_size

nidcpower.Session.measure_buffer_size
Specifies the number of samples that the active channel measurement buffer can hold. The default
value is the maximum number of samples that a device is capable of recording in one second. for
information about supported devices. Valid Values: 1000 to 2147483647 Default Value: Varies by
device. Refer to Supported Properties by Device topic in the NI DC Power Supplies and SMUs Help
for more information about default values.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_buffer_size

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_buffer_size

The following table lists the characteristics of this property.

72 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Measure Buffer Size

• C Attribute: NIDCPOWER_ATTR_MEASURE_BUFFER_SIZE

measure_complete_event_delay

nidcpower.Session.measure_complete_event_delay
Specifies the amount of time to delay the generation of the Measure Complete event, in seconds.
for information about supported devices. Valid Values: 0 to 167 seconds Default Value: The NI
PXI-4132 and NI PXIe-4140/4141/4142/4143/4144/4145/4154 supports values from 0 seconds to
167 seconds.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_complete_event_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_delay

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Measure Complete Event:Event Delay

• C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_DELAY

measure_complete_event_output_terminal

nidcpower.Session.measure_complete_event_output_terminal
Specifies the output terminal for exporting the Measure Complete event. for information about

7.1. nidcpower module 73

NI Modular Instruments Python API Documentation, Release 1.4.1

supported devices. Output terminals can be specified in one of two ways. If the device is named
Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal
name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_complete_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Measure Complete Event:Output Terminal

• C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_OUTPUT_TERMINAL

measure_complete_event_pulse_polarity

nidcpower.Session.measure_complete_event_pulse_polarity
Specifies the behavior of the Measure Complete event. for information about supported devices.
Default Value: HIGH

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_complete_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_pulse_polarity

The following table lists the characteristics of this property.

74 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Measure Complete Event:Pulse:Polarity

• C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_PULSE_POLARITY

measure_complete_event_pulse_width

nidcpower.Session.measure_complete_event_pulse_width
Specifies the width of the Measure Complete event, in seconds. The minimum event pulse width
value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is
250 ns. The maximum event pulse width value for all devices is 1.6 microseconds. for information
about supported devices. Valid Values: 1.5e-7 to 1.6e-6 Default Value: The default value for PXI
devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_complete_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Measure Complete Event:Pulse:Width

• C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_PULSE_WIDTH

7.1. nidcpower module 75

NI Modular Instruments Python API Documentation, Release 1.4.1

measure_record_delta_time

nidcpower.Session.measure_record_delta_time
Queries the amount of time, in seconds, between between the start of two consecutive measurements
in a measure record. Only query this property after the desired measurement settings are committed.
for information about supported devices. two measurements and the rest would differ.

Note: This property is not available when Auto Zero is configured to Once because the amount of
time between the first

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_record_delta_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_record_delta_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Measure Record Delta Time

• C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_DELTA_TIME

measure_record_length

nidcpower.Session.measure_record_length
Specifies how many measurements compose a measure record. When this property is set to
a value greater than 1, the nidcpower.Session.measure_when property must be set to
AUTOMATICALLY_AFTER_SOURCE_COMPLETE or ON_MEASURE_TRIGGER. for information
about supported devices. Valid Values: 1 to 16,777,216 Default Value: 1

Note: This property is not available in a session involving multiple channels.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_record_length

76 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_record_length

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Measure Record Length

• C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH

measure_record_length_is_finite

nidcpower.Session.measure_record_length_is_finite
Specifies whether to take continuous measurements. Call the nidcpower.Session.abort()
method to stop continuous measurements. When this property is set to False and the nidcpower.
Session.source_mode property is set to SINGLE_POINT, the nidcpower.Session.
measure_when property must be set to AUTOMATICALLY_AFTER_SOURCE_COMPLETE or
ON_MEASURE_TRIGGER. When this property is set to False and the nidcpower.Session.
source_mode property is set to SEQUENCE, the nidcpower.Session.measure_when
property must be set to ON_MEASURE_TRIGGER. for information about supported devices. Default
Value: True

Note: This property is not available in a session involving multiple channels.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_record_length_is_finite

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_record_length_is_finite

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 77

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Measurement:Measure Record Length Is Finite

• C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH_IS_FINITE

measure_trigger_type

nidcpower.Session.measure_trigger_type
Specifies the behavior of the Measure trigger. for information about supported devices. Default
Value: DIGITAL_EDGE

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_trigger_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Measure Trigger:Trigger Type

• C Attribute: NIDCPOWER_ATTR_MEASURE_TRIGGER_TYPE

measure_when

nidcpower.Session.measure_when
Specifies when the measure unit should acquire measurements. Unless this property is con-
figured to ON_MEASURE_TRIGGER, the nidcpower.Session.measure_trigger_type
property is ignored. Refer to the Acquiring Measurements topic in the NI DC Power Sup-
plies and SMUs Help for more information about how to configure your measurements. De-
fault Value: If the nidcpower.Session.source_mode property is set to SINGLE_POINT,
the default value is ON_DEMAND. This value supports only the nidcpower.Session.
measure() method and nidcpower.Session.measure_multiple() method. If the
nidcpower.Session.source_mode property is set to SEQUENCE, the default value is
AUTOMATICALLY_AFTER_SOURCE_COMPLETE. This value supports only the nidcpower.
Session.fetch_multiple() method.

78 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_when

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_when

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.MeasureWhen
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Measure When

• C Attribute: NIDCPOWER_ATTR_MEASURE_WHEN

merged_channels

nidcpower.Session.merged_channels
Specifies the channel(s) to merge with a designated primary channel of an SMU in order to increase
the maximum current you can source from the SMU. This property designates the merge channels
to combine with a primary channel. To designate the primary channel, initialize the session to the
primary channel only. Note: You cannot change the merge configuration with this property when
the session is in the Running state. For complete information on using merged channels with this
property, refer to Merged Channels in the NI DC Power Supplies and SMUs Help.

Note: This property is not supported by all devices. Refer to Supported Properties by Device
for information about supported devices. Devices that do not support this property behave as if no
channels were merged. Default Value: Refer to the Supported Properties by Device topic for the
default value by device.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].merged_channels

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.merged_channels

The following table lists the characteristics of this property.

7.1. nidcpower module 79

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Merged Channels

• C Attribute: NIDCPOWER_ATTR_MERGED_CHANNELS

output_capacitance

nidcpower.Session.output_capacitance
Specifies whether to use a low or high capacitance on the output for the specified channel(s). for
information about supported devices. Refer to the NI PXI-4130 Output Capacitance Selection topic
in the NI DC Power Supplies and SMUs Help for more information about capacitance.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_capacitance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_capacitance

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.OutputCapacitance
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Output Capacitance

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CAPACITANCE

output_connected

nidcpower.Session.output_connected
Specifies whether the output relay is connected (closed) or disconnected (open). The nidcpower.

80 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Session.output_enabled property does not change based on this property; they are inde-
pendent of each other. about supported devices. Set this property to False to disconnect the output
terminal from the output. to the output terminal might discharge unless the relay is disconnected.
Excessive connecting and disconnecting of the output can cause premature wear on the relay. De-
fault Value: True

Note: Only disconnect the output when disconnecting is necessary for your application. For exam-
ple, a battery connected

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_connected

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_connected

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Connected

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CONNECTED

output_cutoff_current_change_limit_high

nidcpower.Session.output_cutoff_current_change_limit_high
Specifies a limit for positive current slew rate, in amps per microsecond, for output cutoff. If the
current increases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() method with CURRENT_CHANGE_HIGH as
the output cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_change_limit_high

7.1. nidcpower module 81

NI Modular Instruments Python API Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_change_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Current Change Limit High

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_CHANGE_LIMIT_HIGH

output_cutoff_current_change_limit_low

nidcpower.Session.output_cutoff_current_change_limit_low
Specifies a limit for negative current slew rate, in amps per microsecond, for output cutoff. If the
current decreases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state()method with CURRENT_CHANGE_LOW as the
output cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_change_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_change_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Current Change Limit Low

82 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_CHANGE_LIMIT_LOW

output_cutoff_current_measure_limit_high

nidcpower.Session.output_cutoff_current_measure_limit_high
Specifies a high limit current value, in amps, for output cutoff. If the measured current exceeds this
limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() method with CURRENT_MEASURE_HIGH as
the output cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_measure_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_measure_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Current Measure Limit High

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_MEASURE_LIMIT_HIGH

output_cutoff_current_measure_limit_low

nidcpower.Session.output_cutoff_current_measure_limit_low
Specifies a low limit current value, in amps, for output cutoff. If the measured current falls below
this limit, the output is disconnected.

To find out whether an output has fallen below this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() method with CURRENT_MEASURE_LOW as
the output cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

7.1. nidcpower module 83

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_measure_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_measure_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Current Measure Limit Low

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_MEASURE_LIMIT_LOW

output_cutoff_current_overrange_enabled

nidcpower.Session.output_cutoff_current_overrange_enabled
Enables or disables current overrange functionality for output cutoff. If enabled, the output is dis-
connected when the measured current saturates the current range.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() method with VOLTAGE_OUTPUT_HIGH as
the output cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_overrange_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_overrange_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

84 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Current Overrange Enabled

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_OVERRANGE_ENABLED

output_cutoff_delay

nidcpower.Session.output_cutoff_delay
Delays disconnecting the output by the time you specify, in seconds, when a limit is exceeded.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_delay

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Delay

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_DELAY

output_cutoff_enabled

nidcpower.Session.output_cutoff_enabled
Enables or disables output cutoff functionality. If enabled, you can define output cutoffs that, if
exceeded, cause the output of the specified channel(s) to be disconnected. When this property is
disabled, all other output cutoff properties are ignored.

Note: Refer to Supported Properties by Device for information about supported devices. Instru-
ments that do not support this property behave as if this property were set to False.

7.1. nidcpower module 85

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Enabled

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_ENABLED

output_cutoff_voltage_change_limit_high

nidcpower.Session.output_cutoff_voltage_change_limit_high
Specifies a limit for positive voltage slew rate, in volts per microsecond, for output cutoff. If the
voltage increases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() with VOLTAGE_CHANGE_HIGH as the out-
put cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_voltage_change_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_change_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

86 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Voltage Change Limit High

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_CHANGE_LIMIT_HIGH

output_cutoff_voltage_change_limit_low

nidcpower.Session.output_cutoff_voltage_change_limit_low
Specifies a limit for negative voltage slew rate, in volts per microsecond, for output cutoff. If the
voltage decreases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() with VOLTAGE_CHANGE_LOW as the output
cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_voltage_change_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_change_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Voltage Change Limit Low

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_CHANGE_LIMIT_LOW

output_cutoff_voltage_output_limit_high

nidcpower.Session.output_cutoff_voltage_output_limit_high
Specifies a high limit voltage value, in volts, for output cutoff. If the voltage output exceeds this
limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() method with VOLTAGE_OUTPUT_HIGH as
the output cutoff reason.

7.1. nidcpower module 87

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_voltage_output_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_output_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Voltage Output Limit High

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_OUTPUT_LIMIT_HIGH

output_cutoff_voltage_output_limit_low

nidcpower.Session.output_cutoff_voltage_output_limit_low
Specifies a low limit voltage value, in volts, for output cutoff. If the voltage output falls below this
limit, the output is disconnected.

To find out whether an output has fallen below this limit, call the nidcpower.Session.
query_latched_output_cutoff_state()method with VOLTAGE_OUTPUT_LOW as the
output cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_voltage_output_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_output_limit_low

The following table lists the characteristics of this property.

88 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Voltage Output Limit Low

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_OUTPUT_LIMIT_LOW

output_enabled

nidcpower.Session.output_enabled
Specifies whether the output is enabled (True) or disabled (False). Depending on the value you spec-
ify for the nidcpower.Session.output_function property, you also must set the voltage
level or current level in addition to enabling the output the nidcpower.Session.initiate()
method. Refer to the Programming States topic in the NI DC Power Supplies and SMUs Help for
more information about NI-DCPower programming states. Default Value: The default value is True
if you use the nidcpower.Session.__init__() method to open the session. Otherwise the
default value is False, including when you use a calibration session or the deprecated programming
model.

Note: If the session is in the Committed or Uncommitted states, enabling the output does not take
effect until you call

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Enabled

• C Attribute: NIDCPOWER_ATTR_OUTPUT_ENABLED

7.1. nidcpower module 89

NI Modular Instruments Python API Documentation, Release 1.4.1

output_function

nidcpower.Session.output_function
Configures the method to generate on the specified channel(s). When DC_VOLTAGE
is selected, the device generates the desired voltage level on the output as long as
the output current is below the current limit. You can use the following properties
to configure the channel when DC_VOLTAGE is selected: nidcpower.Session.
voltage_level nidcpower.Session.current_limit nidcpower.Session.
current_limit_high nidcpower.Session.current_limit_low nidcpower.
Session.voltage_level_range nidcpower.Session.current_limit_range
nidcpower.Session.compliance_limit_symmetry When DC_CURRENT
is selected, the device generates the desired current level on the output as long as
the output voltage is below the voltage limit. You can use the following properties
to configure the channel when DC_CURRENT is selected: nidcpower.Session.
current_level nidcpower.Session.voltage_limit nidcpower.Session.
voltage_limit_high nidcpower.Session.voltage_limit_low nidcpower.
Session.current_level_range nidcpower.Session.voltage_limit_range
nidcpower.Session.compliance_limit_symmetry

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_function

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_function

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.OutputFunction
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Function

• C Attribute: NIDCPOWER_ATTR_OUTPUT_FUNCTION

output_resistance

nidcpower.Session.output_resistance
Specifies the output resistance that the device attempts to generate for the specified channel(s). This
property is available only when you set the nidcpower.Session.output_function prop-
erty on a support device. Refer to a supported device’s topic about output resistance for more infor-
mation about selecting an output resistance. about supported devices. Default Value: 0.0

90 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic
for information

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_resistance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_resistance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Resistance

• C Attribute: NIDCPOWER_ATTR_OUTPUT_RESISTANCE

overranging_enabled

nidcpower.Session.overranging_enabled
Specifies whether NI-DCPower allows setting the voltage level, current level, voltage limit and
current limit outside the device specification limits. True means that overranging is enabled. Refer
to the Ranges topic in the NI DC Power Supplies and SMUs Help for more information about
overranging. Default Value: False

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].overranging_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.overranging_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

7.1. nidcpower module 91

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Overranging Enabled

• C Attribute: NIDCPOWER_ATTR_OVERRANGING_ENABLED

ovp_enabled

nidcpower.Session.ovp_enabled
Enables (True) or disables (False) overvoltage protection (OVP). Refer to the Output Overvoltage
Protection topic in the NI DC Power Supplies and SMUs Help for more information about overvolt-
age protection. for information about supported devices. Default Value: False

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].ovp_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ovp_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:OVP Enabled

• C Attribute: NIDCPOWER_ATTR_OVP_ENABLED

ovp_limit

nidcpower.Session.ovp_limit
Determines the voltage limit, in volts, beyond which overvoltage protection (OVP) engages. for
information about supported devices. Valid Values: 2 V to 210 V Default Value: 210 V

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

92 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].ovp_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ovp_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:OVP Limit

• C Attribute: NIDCPOWER_ATTR_OVP_LIMIT

power_allocation_mode

nidcpower.Session.power_allocation_mode
Determines whether the device sources the power its source configuration requires or a specific
wattage you request; determines whether NI-DCPower proactively checks that this sourcing power
is within the maximum per-channel and overall sourcing power of the device.

When this property configures NI-DCPower to perform a sourcing power check, a device
is not permitted to source power in excess of its maximum per-channel or overall sourcing
power. If the check determines a source configuration or power request would require the
device to do so, NI-DCPower returns an error.

When this property does not configure NI-DCPower to perform a sourcing power check,
a device can attempt to fulfill source configurations that would require it to source power
in excess of its maximum per-channel or overall sourcing power and may shut down to
prevent damage.

Default Value: Refer to the Supported Properties by Device topic for the default value by
device.

Note: This property is not supported by all devices. Refer to the Supported Properties by Device
topic for information about supported devices. Devices that do not support this property behave as
if this property were set to DISABLED.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

7.1. nidcpower module 93

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.channels[...].power_allocation_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.power_allocation_mode

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.PowerAllocationMode
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Power Allocation Mode

• C Attribute: NIDCPOWER_ATTR_POWER_ALLOCATION_MODE

power_line_frequency

nidcpower.Session.power_line_frequency
Specifies the power line frequency for specified channel(s). NI-DCPower uses this value to select a
timebase for setting the nidcpower.Session.aperture_time property in power line cycles
(PLCs). in the NI DC Power Supplies and SMUs Help for information about supported devices.
Default Value: NIDCPOWER_VAL_60_HERTZ

Note: This property is not supported by all devices. Refer to the Supported Properties by Device
topic

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].power_line_frequency

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.power_line_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

94 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Power Line Frequency

• C Attribute: NIDCPOWER_ATTR_POWER_LINE_FREQUENCY

power_source

nidcpower.Session.power_source
Specifies the power source to use. NI-DCPower switches the power source used by the device to
the specified value. Default Value: AUTOMATIC is set to AUTOMATIC. However, if the session is
in the Committed or Uncommitted state when you set this property, the power source selection only
occurs after you call the nidcpower.Session.initiate() method.

Note: Automatic selection is not persistent and occurs only at the time this property

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.PowerSource
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Advanced:Power Source

• C Attribute: NIDCPOWER_ATTR_POWER_SOURCE

power_source_in_use

nidcpower.Session.power_source_in_use
Indicates whether the device is using the internal or auxiliary power source to generate power.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.PowerSourceInUse
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Advanced:Power Source In Use

• C Attribute: NIDCPOWER_ATTR_POWER_SOURCE_IN_USE

7.1. nidcpower module 95

NI Modular Instruments Python API Documentation, Release 1.4.1

pulse_bias_current_level

nidcpower.Session.pulse_bias_current_level
Specifies the pulse bias current level, in amps, that the device attempts to generate on the specified
channel(s) during the off phase of a pulse. This property is applicable only if the nidcpower.
Session.output_function property is set to PULSE_CURRENT. Valid Values: The valid
values for this property are defined by the values you specify for the nidcpower.Session.
pulse_current_level_range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_bias_current_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_current_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Bias Current Level

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LEVEL

pulse_bias_current_limit

nidcpower.Session.pulse_bias_current_limit
Specifies the pulse bias current limit, in amps, that the output cannot exceed when generating the
desired pulse bias voltage on the specified channel(s) during the off phase of a pulse. This prop-
erty is applicable only if the nidcpower.Session.output_function property is set to
PULSE_VOLTAGE. Valid Values: The valid values for this property are defined by the values you
specify for the nidcpower.Session.pulse_current_limit_range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

96 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_bias_current_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_current_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT

pulse_bias_current_limit_high

nidcpower.Session.pulse_bias_current_limit_high
Specifies the maximum current, in amps, that the output can produce when gen-
erating the desired pulse voltage on the specified channel(s) during the off phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth:‘nidcpower.Session.ComplianceLimitSymmetry.html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__
property is set to Pulse Voltage. You must also specify a Pulse Bias Current
Limit Low <p:py:meth:‘nidcpower.Session.PulseBiasCurrentLimitLow.html>‘__ to com-
plete the asymmetric range. Valid Values: [1% of Pulse Current Limit Range
<p:py:meth:‘nidcpower.Session.PulseCurrentLimitRange.html>‘__, Pulse Current Limit Range
<p:py:meth:‘nidcpower.Session.PulseCurrentLimitRange.html>‘__] The range bounded by the
limit high and limit low must include zero. Default Value: Refer to Supported Properties by Device
for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth:‘nidcpower.Session.OverrangingEnabled.html>‘__ property is set to TRUE or if the
Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

7.1. nidcpower module 97

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python API Documentation, Release 1.4.1

set.

Example: my_session.channels[...].pulse_bias_current_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_current_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit High

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT_HIGH

pulse_bias_current_limit_low

nidcpower.Session.pulse_bias_current_limit_low
Specifies the minimum current, in amps, that the output can produce when gen-
erating the desired pulse voltage on the specified channel(s) during the off phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth:‘nidcpower.Session.ComplianceLimitSymmetry.html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__
property is set to Pulse Voltage. You must also specify a Pulse Bias Cur-
rent Limit High <p:py:meth:‘nidcpower.Session.PulseBiasCurrentLimitHigh.html>‘__
to complete the asymmetric range. Valid Values: [-Pulse Current Limit Range
<p:py:meth:‘nidcpower.Session.PulseCurrentLimitRange.html>‘__, -1% of Pulse Current Limit
Range <p:py:meth:‘nidcpower.Session.PulseCurrentLimitRange.html>‘__] The range bounded by
the limit high and limit low must include zero. Default Value: Refer to Supported Properties by
Device for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth:‘nidcpower.Session.OverrangingEnabled.html>‘__ property is set to TRUE or if the
Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_bias_current_limit_low

98 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python API Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_current_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit Low

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT_LOW

pulse_bias_delay

nidcpower.Session.pulse_bias_delay
Determines when, in seconds, the device generates the Pulse Complete event after generating the off
level of a pulse. Valid Values: 0 to 167 seconds Default Value: 16.67 milliseconds

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_bias_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_delay

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Pulse Bias Delay

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_DELAY

7.1. nidcpower module 99

NI Modular Instruments Python API Documentation, Release 1.4.1

pulse_bias_voltage_level

nidcpower.Session.pulse_bias_voltage_level
Specifies the pulse bias voltage level, in volts, that the device attempts to generate on the specified
channel(s) during the off phase of a pulse. This property is applicable only if the nidcpower.
Session.output_function property is set to PULSE_VOLTAGE. Valid Values: The valid
values for this property are defined by the values you specify for the nidcpower.Session.
pulse_voltage_level_range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_bias_voltage_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_voltage_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Bias Voltage Level

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LEVEL

pulse_bias_voltage_limit

nidcpower.Session.pulse_bias_voltage_limit
Specifies the pulse voltage limit, in volts, that the output cannot exceed when generating the de-
sired current on the specified channel(s) during the off phase of a pulse. This property is applicable
only if the nidcpower.Session.output_function property is set to PULSE_CURRENT.
Valid Values: The valid values for this property are defined by the values you specify for the
nidcpower.Session.pulse_voltage_limit_range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

100 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_bias_voltage_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_voltage_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT

pulse_bias_voltage_limit_high

nidcpower.Session.pulse_bias_voltage_limit_high
Specifies the maximum voltage, in volts, that the output can produce when gen-
erating the desired pulse current on the specified channel(s) during the off phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth:‘nidcpower.Session.ComplianceLimitSymmetry.html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__
property is set to Pulse Current. You must also specify a Pulse Bias Voltage
Limit Low <p:py:meth:‘nidcpower.Session.PulseBiasVoltageLimitLow.html>‘__ to com-
plete the asymmetric range. Valid Values: [1% of Pulse Voltage Limit Range
<p:py:meth:‘nidcpower.Session.PulseVoltageLimitRange.html>‘__, Pulse Voltage Limit Range
<p:py:meth:‘nidcpower.Session.PulseVoltageLimitRange.html>‘__] The range bounded by the
limit high and limit low must include zero. Default Value: Refer to Supported Properties by Device
for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth:‘nidcpower.Session.OverrangingEnabled.html>‘__ property is set to TRUE or if the
Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

7.1. nidcpower module 101

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python API Documentation, Release 1.4.1

set.

Example: my_session.channels[...].pulse_bias_voltage_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_voltage_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit High

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT_HIGH

pulse_bias_voltage_limit_low

nidcpower.Session.pulse_bias_voltage_limit_low
Specifies the minimum voltage, in volts, that the output can produce when gen-
erating the desired pulse current on the specified channel(s) during the off phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth:‘nidcpower.Session.ComplianceLimitSymmetry.html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__
property is set to Pulse Current. You must also specify a Pulse Bias Volt-
age Limit High <p:py:meth:‘nidcpower.Session.PulseBiasVoltageLimitHigh.html>‘__
to complete the asymmetric range. Valid Values: [-Pulse Voltage Limit Range
<p:py:meth:‘nidcpower.Session.PulseVoltageLimitRange.html>‘__, -1% of Pulse Voltage Limit
Range <p:py:meth:‘nidcpower.Session.PulseVoltageLimitRange.html>‘__] The range bounded by
the limit high and limit low must include zero. Default Value: Refer to Supported Properties by
Device for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth:‘nidcpower.Session.OverrangingEnabled.html>‘__ property is set to TRUE or if the
Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_bias_voltage_limit_low

102 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python API Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_voltage_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit Low

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT_LOW

pulse_complete_event_output_terminal

nidcpower.Session.pulse_complete_event_output_terminal
Specifies the output terminal for exporting the Pulse Complete event. Output terminals can be spec-
ified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0. Default Value:The default value for PXI Express devices is 250 ns.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_complete_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_complete_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Pulse Complete Event:Output Terminal

• C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_OUTPUT_TERMINAL

7.1. nidcpower module 103

NI Modular Instruments Python API Documentation, Release 1.4.1

pulse_complete_event_pulse_polarity

nidcpower.Session.pulse_complete_event_pulse_polarity
Specifies the behavior of the Pulse Complete event. Default Value: HIGH

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_complete_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_complete_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Pulse Complete Event:Pulse:Polarity

• C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_PULSE_POLARITY

pulse_complete_event_pulse_width

nidcpower.Session.pulse_complete_event_pulse_width
Specifies the width of the Pulse Complete event, in seconds. The minimum event pulse width value
for PXI Express devices is 250 ns. The maximum event pulse width value for PXI Express devices
is 1.6 microseconds. Default Value: The default value for PXI Express devices is 250 ns.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_complete_event_pulse_width

104 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_complete_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Pulse Complete Event:Pulse:Width

• C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_PULSE_WIDTH

pulse_current_level

nidcpower.Session.pulse_current_level
Specifies the pulse current level, in amps, that the device attempts to generate on the specified
channel(s) during the on phase of a pulse. This property is applicable only if the nidcpower.
Session.output_function property is set to PULSE_CURRENT. Valid Values: The valid
values for this property are defined by the values you specify for the nidcpower.Session.
pulse_current_level_range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_current_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Current Level

7.1. nidcpower module 105

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LEVEL

pulse_current_level_range

nidcpower.Session.pulse_current_level_range
Specifies the pulse current level range, in amps, for the specified channel(s). The range defines
the valid values to which you can set the pulse current level and pulse bias current level. This
property is applicable only if the nidcpower.Session.output_function property is set to
PULSE_CURRENT. For valid ranges, refer to the ranges topic for your device in the NI DC Power
Supplies and SMUs Help.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_current_level_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_level_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Current Level Range

• C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LEVEL_RANGE

pulse_current_limit

nidcpower.Session.pulse_current_limit
Specifies the pulse current limit, in amps, that the output cannot exceed when generating the
desired pulse voltage on the specified channel(s) during the on phase of a pulse. This prop-
erty is applicable only if the nidcpower.Session.output_function property is set to
PULSE_VOLTAGE and the nidcpower.Session.compliance_limit_symmetry prop-
erty is set to SYMMETRIC. Valid Values: The valid values for this property are defined by the values
you specify for the nidcpower.Session.pulse_current_limit_range property.

106 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_current_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit

• C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT

pulse_current_limit_high

nidcpower.Session.pulse_current_limit_high
Specifies the maximum current, in amps, that the output can produce when gen-
erating the desired pulse voltage on the specified channel(s) during the on phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth:‘nidcpower.Session.ComplianceLimitSymmetry.html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__
property is set to Pulse Voltage. You must also specify a Pulse Current
Limit Low <p:py:meth:‘nidcpower.Session.PulseCurrentLimitLow.html>‘__ to com-
plete the asymmetric range. Valid Values: [1% of Pulse Current Limit Range
<p:py:meth:‘nidcpower.Session.PulseCurrentLimitRange.html>‘__, Pulse Current Limit Range
<p:py:meth:‘nidcpower.Session.PulseCurrentLimitRange.html>‘__] The range bounded by the
limit high and limit low must include zero. Default Value: Refer to Supported Properties by Device
for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth:‘nidcpower.Session.OverrangingEnabled.html>‘__ property is set to TRUE or if the
Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__ property is set to a puls-
ing method.

7.1. nidcpower module 107

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_current_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit High

• C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_HIGH

pulse_current_limit_low

nidcpower.Session.pulse_current_limit_low
Specifies the minimum current, in amps, that the output can produce when gen-
erating the desired pulse voltage on the specified channel(s) during the on phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth:‘nidcpower.Session.ComplianceLimitSymmetry.html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__
property is set to Pulse Voltage. You must also specify a Pulse Current
Limit High <p:py:meth:‘nidcpower.Session.PulseCurrentLimitHigh.html>‘__ to com-
plete the asymmetric range. Valid Values: [-Pulse Current Limit Range
<p:py:meth:‘nidcpower.Session.PulseCurrentLimitRange.html>‘__, -1% of Pulse Current Limit
Range <p:py:meth:‘nidcpower.Session.PulseCurrentLimitRange.html>‘__] The range bounded by
the limit high and limit low must include zero. Default Value: Refer to Supported Properties by
Device for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth:‘nidcpower.Session.OverrangingEnabled.html>‘__ property is set to TRUE or if the
Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

108 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_current_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit Low

• C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_LOW

pulse_current_limit_range

nidcpower.Session.pulse_current_limit_range
Specifies the pulse current limit range, in amps, for the specified channel(s). The range defines
the valid values to which you can set the pulse current limit and pulse bias current limit. This
property is applicable only if the nidcpower.Session.output_function property is set to
PULSE_VOLTAGE. For valid ranges, refer to the ranges topic for your device in the NI DC Power
Supplies and SMUs Help.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_current_limit_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_limit_range

The following table lists the characteristics of this property.

7.1. nidcpower module 109

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit Range

• C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_RANGE

pulse_off_time

nidcpower.Session.pulse_off_time
Determines the length, in seconds, of the off phase of a pulse. Valid Values: 10 microseconds to 167
seconds Default Value: 34 milliseconds

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_off_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_off_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Pulse Off Time

• C Attribute: NIDCPOWER_ATTR_PULSE_OFF_TIME

pulse_on_time

nidcpower.Session.pulse_on_time
Determines the length, in seconds, of the on phase of a pulse. Valid Values: 10 microseconds to 167
seconds Default Value: 34 milliseconds

110 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_on_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_on_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Pulse On Time

• C Attribute: NIDCPOWER_ATTR_PULSE_ON_TIME

pulse_trigger_type

nidcpower.Session.pulse_trigger_type
Specifies the behavior of the Pulse trigger. Default Value: NONE

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_trigger_type

The following table lists the characteristics of this property.

7.1. nidcpower module 111

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Pulse Trigger:Trigger Type

• C Attribute: NIDCPOWER_ATTR_PULSE_TRIGGER_TYPE

pulse_voltage_level

nidcpower.Session.pulse_voltage_level
Specifies the pulse current limit, in amps, that the output cannot exceed when generating the desired
pulse voltage on the specified channel(s) during the on phase of a pulse. This property is applicable
only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
Valid Values: The valid values for this property are defined by the values you specify for the
nidcpower.Session.pulse_current_limit_range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_voltage_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Voltage Level

• C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LEVEL

112 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

pulse_voltage_level_range

nidcpower.Session.pulse_voltage_level_range
Specifies the pulse voltage level range, in volts, for the specified channel(s). The range defines
the valid values at which you can set the pulse voltage level and pulse bias voltage level. This
property is applicable only if the nidcpower.Session.output_function property is set to
PULSE_VOLTAGE. For valid ranges, refer to the ranges topic for your device in the NI DC Power
Supplies and SMUs Help.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_voltage_level_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_level_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Voltage Level Range

• C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LEVEL_RANGE

pulse_voltage_limit

nidcpower.Session.pulse_voltage_limit
Specifies the pulse voltage limit, in volts, that the output cannot exceed when generating the
desired pulse current on the specified channel(s) during the on phase of a pulse. This prop-
erty is applicable only if the nidcpower.Session.output_function property is set to
PULSE_CURRENT and the nidcpower.Session.compliance_limit_symmetry prop-
erty is set to SYMMETRIC. Valid Values: The valid values for this property are defined by the values
you specify for the nidcpower.Session.pulse_voltage_limit_range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

7.1. nidcpower module 113

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_voltage_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit

• C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT

pulse_voltage_limit_high

nidcpower.Session.pulse_voltage_limit_high
Specifies the maximum voltage, in volts, that the output can produce when gen-
erating the desired pulse current on the specified channel(s) during the on phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth:‘nidcpower.Session.ComplianceLimitSymmetry.html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__
property is set to Pulse Current. You must also specify a Pulse Voltage
Limit Low <p:py:meth:‘nidcpower.Session.PulseVoltageLimitLow.html>‘__ to com-
plete the asymmetric range. Valid Values: [1% of Pulse Voltage Limit Range
<p:py:meth:‘nidcpower.Session.PulseVoltageLimitRange.html>‘__, Pulse Voltage Limit Range
<p:py:meth:‘nidcpower.Session.PulseVoltageLimitRange.html>‘__] The range bounded by the
limit high and limit low must include zero. Default Value: Refer to Supported Properties by Device
for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth:‘nidcpower.Session.OverrangingEnabled.html>‘__ property is set to TRUE or if the
Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

114 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python API Documentation, Release 1.4.1

set.

Example: my_session.channels[...].pulse_voltage_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit High

• C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_HIGH

pulse_voltage_limit_low

nidcpower.Session.pulse_voltage_limit_low
Specifies the minimum voltage, in volts, that the output can produce when gen-
erating the desired pulse current on the specified channel(s) during the on phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth:‘nidcpower.Session.ComplianceLimitSymmetry.html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__
property is set to Pulse Current. You must also specify a Pulse Volt-
age Limit High <p:py:meth:‘nidcpower.Session.PulseVoltageLimitHigh.html>‘__ to
complete the asymmetric range. Valid Values: [-Pulse Voltage Limit Range
<p:py:meth:‘nidcpower.Session.PulseVoltageLimitRange.html>‘__, -1% of Pulse Voltage Limit
Range <p:py:meth:‘nidcpower.Session.PulseVoltageLimitRange.html>‘__] The range bounded by
the limit high and limit low must include zero. Default Value: Refer to Supported Properties by
Device for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth:‘nidcpower.Session.OverrangingEnabled.html>‘__ property is set to TRUE or if the
Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_voltage_limit_low

7.1. nidcpower module 115

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python API Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit Low

• C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_LOW

pulse_voltage_limit_range

nidcpower.Session.pulse_voltage_limit_range
Specifies the pulse voltage limit range, in volts, for the specified channel(s). The range defines
the valid values to which you can set the pulse voltage limit and pulse bias voltage limit. This
property is applicable only if the nidcpower.Session.output_function property is set to
PULSE_CURRENT. For valid ranges, refer to the ranges topic for your device in the NI DC Power
Supplies and SMUs Help.

Note: The channel must be enabled for the specified current limit to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the
output channel.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_voltage_limit_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_limit_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

116 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit Range

• C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_RANGE

query_instrument_status

nidcpower.Session.query_instrument_status
Specifies whether NI-DCPower queries the device status after each operation. Querying the device
status is useful for debugging. After you validate your program, you can set this property to False
to disable status checking and maximize performance. NI-DCPower ignores status checking for
particular properties regardless of the setting of this property. Use the nidcpower.Session.
__init__() method to override this value. Default Value: True

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:User Options:Query Instrument Status

• C Attribute: NIDCPOWER_ATTR_QUERY_INSTRUMENT_STATUS

ready_for_pulse_trigger_event_output_terminal

nidcpower.Session.ready_for_pulse_trigger_event_output_terminal
Specifies the output terminal for exporting the Ready For Pulse Trigger event. Output terminals
can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0,
you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the
shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].ready_for_pulse_trigger_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ready_for_pulse_trigger_event_output_terminal

The following table lists the characteristics of this property.

7.1. nidcpower module 117

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Ready For Pulse Trigger Event:Output Terminal

• C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_OUTPUT_TERMINAL

ready_for_pulse_trigger_event_pulse_polarity

nidcpower.Session.ready_for_pulse_trigger_event_pulse_polarity
Specifies the behavior of the Ready For Pulse Trigger event. Default Value: HIGH

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].ready_for_pulse_trigger_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ready_for_pulse_trigger_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Ready For Pulse Trigger Event:Pulse:Polarity

• C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_PULSE_POLARITY

ready_for_pulse_trigger_event_pulse_width

nidcpower.Session.ready_for_pulse_trigger_event_pulse_width
Specifies the width of the Ready For Pulse Trigger event, in seconds. The minimum event pulse

118 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

width value for PXI Express devices is 250 ns. The maximum event pulse width value for all
devices is 1.6 microseconds. Default Value: The default value for PXI Express devices is 250 ns

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].ready_for_pulse_trigger_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ready_for_pulse_trigger_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Ready For Pulse Trigger Event:Pulse:Width

• C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_PULSE_WIDTH

requested_power_allocation

nidcpower.Session.requested_power_allocation

Specifies the power, in watts, to request the device to source from each active channel. This
property defines the power to source from the device only if the nidcpower.Session.
power_allocation_mode property is set to MANUAL.

The power you request with this property may be incompatible with the power a given source
configuration requires or the power the device can provide: If the requested power is less than
the power required for the source configuration, the device does not exceed the requested power,
and NI-DCPower returns an error. If the requested power is greater than the maximum per-
channel or overall sourcing power, the device does not exceed the allowed power, and NI-
DCPower returns an error.

Valid Values: [0, device per-channel maximum power] Default Value: Refer to the Supported
Properties by Device topic for the default value by device.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic
for information about supported devices.

7.1. nidcpower module 119

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].requested_power_allocation

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.requested_power_allocation

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Requested Power Allocation

• C Attribute: NIDCPOWER_ATTR_REQUESTED_POWER_ALLOCATION

reset_average_before_measurement

nidcpower.Session.reset_average_before_measurement
Specifies whether the measurement returned from any measurement call starts with a new mea-
surement call (True) or returns a measurement that has already begun or completed(False).
for information about supported devices. When you set the nidcpower.Session.
samples_to_average property in the Running state, the output channel measurements might
move out of synchronization. While NI-DCPower automatically synchronizes measurements upon
the initialization of a session, you can force a synchronization in the running state before you
run the nidcpower.Session.measure_multiple() method. To force a synchroniza-
tion in the running state, set this property to True, and then run the nidcpower.Session.
measure_multiple() method, specifying all channels in the channel name parameter. You can
set the nidcpower.Session.reset_average_before_measurement property to False
after the nidcpower.Session.measure_multiple() method completes. Default Value:
True

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].reset_average_before_measurement

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.reset_average_before_measurement

120 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Reset Average Before Measurement

• C Attribute: NIDCPOWER_ATTR_RESET_AVERAGE_BEFORE_MEASUREMENT

samples_to_average

nidcpower.Session.samples_to_average
Specifies the number of samples to average when you take a measurement. Increasing the num-
ber of samples to average decreases measurement noise but increases the time required to take a
measurement. Refer to the NI PXI-4110, NI PXI-4130, NI PXI-4132, or NI PXIe-4154 Averag-
ing topic for optional property settings to improve immunity to certain noise types, or refer to the
NI PXIe-4140/4141 DC Noise Rejection, NI PXIe-4142/4143 DC Noise Rejection, or NI PXIe-
4144/4145 DC Noise Rejection topic for information about improving noise immunity for those
devices. Default Value: NI PXI-4110 or NI PXI-4130—10 NI PXI-4132—1 NI PXIe-4112—1 NI
PXIe-4113—1 NI PXIe-4140/4141—1 NI PXIe-4142/4143—1 NI PXIe-4144/4145—1 NI PXIe-
4154—500

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].samples_to_average

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.samples_to_average

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Samples To Average

• C Attribute: NIDCPOWER_ATTR_SAMPLES_TO_AVERAGE

7.1. nidcpower module 121

NI Modular Instruments Python API Documentation, Release 1.4.1

self_calibration_persistence

nidcpower.Session.self_calibration_persistence
Specifies whether the values calculated during self-calibration should be written to hardware
to be used until the next self-calibration or only used until the nidcpower.Session.
reset_device()method is called or the machine is powered down. This property affects the be-
havior of the nidcpower.Session.self_cal() method. When set to KEEP_IN_MEMORY ,
the values calculated by the nidcpower.Session.self_cal() method are used in
the existing session, as well as in all further sessions until you call the nidcpower.
Session.reset_device() method or restart the machine. When you set this property
to WRITE_TO_EEPROM , the values calculated by the nidcpower.Session.self_cal()
method are written to hardware and used in the existing session and in all subsequent sessions
until another call to the nidcpower.Session.self_cal() method is made. about supported
devices. Default Value: KEEP_IN_MEMORY

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information

Tip: This property can be set/get on specific instruments within your nidcpower.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].self_calibration_persistence

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.self_calibration_persistence

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.SelfCalibrationPersistence
Permissions read-write
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Advanced:Self-Calibration Persistence

• C Attribute: NIDCPOWER_ATTR_SELF_CALIBRATION_PERSISTENCE

sense

nidcpower.Session.sense
Selects either local or remote sensing of the output voltage for the specified channel(s). Refer to the
Local and Remote Sense topic in the NI DC Power Supplies and SMUs Help for more information
about sensing voltage on supported channels and about devices that support local and/or remote
sensing. Default Value: The default value is LOCAL if the device supports local sense. Otherwise,
the default and only supported value is REMOTE.

122 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sense

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sense

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Sense
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Sense

• C Attribute: NIDCPOWER_ATTR_SENSE

sequence_advance_trigger_type

nidcpower.Session.sequence_advance_trigger_type
Specifies the behavior of the Sequence Advance trigger. for information about supported devices.
Default Value: NONE

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_advance_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_advance_trigger_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 123

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Triggers:Sequence Advance Trigger:Trigger Type

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ADVANCE_TRIGGER_TYPE

sequence_engine_done_event_output_terminal

nidcpower.Session.sequence_engine_done_event_output_terminal
Specifies the output terminal for exporting the Sequence Engine Done Complete event. for informa-
tion about supported devices. Output terminals can be specified in one of two ways. If the device is
named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified
terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_engine_done_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_engine_done_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Engine Done Event:Output Terminal

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_OUTPUT_TERMINAL

sequence_engine_done_event_pulse_polarity

nidcpower.Session.sequence_engine_done_event_pulse_polarity
Specifies the behavior of the Sequence Engine Done event. for information about supported devices.
Default Value: HIGH

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

124 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_engine_done_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_engine_done_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Engine Done Event:Pulse:Polarity

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_PULSE_POLARITY

sequence_engine_done_event_pulse_width

nidcpower.Session.sequence_engine_done_event_pulse_width
Specifies the width of the Sequence Engine Done event, in seconds. The minimum event pulse width
value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is
250 ns. The maximum event pulse width value for all devices is 1.6 microseconds. for information
about supported devices. Valid Values: 1.5e-7 to 1.6e-6 seconds Default Value: The default value
for PXI devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_engine_done_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_engine_done_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

7.1. nidcpower module 125

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Engine Done Event:Pulse:Width

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_PULSE_WIDTH

sequence_iteration_complete_event_output_terminal

nidcpower.Session.sequence_iteration_complete_event_output_terminal
Specifies the output terminal for exporting the Sequence Iteration Complete event. for information
about supported devices. Output terminals can be specified in one of two ways. If the device is
named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified
terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_iteration_complete_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_iteration_complete_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Iteration Complete Event:Output Terminal

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_OUTPUT_TERMINAL

sequence_iteration_complete_event_pulse_polarity

nidcpower.Session.sequence_iteration_complete_event_pulse_polarity
Specifies the behavior of the Sequence Iteration Complete event. for information about supported
devices. Default Value: HIGH

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

126 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_iteration_complete_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_iteration_complete_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Iteration Complete Event:Pulse:Polarity

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_PULSE_POLARITY

sequence_iteration_complete_event_pulse_width

nidcpower.Session.sequence_iteration_complete_event_pulse_width
Specifies the width of the Sequence Iteration Complete event, in seconds. The minimum event pulse
width value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express
devices is 250 ns. The maximum event pulse width value for all devices is 1.6 microseconds. the NI
DC Power Supplies and SMUs Help for information about supported devices. Valid Values: 1.5e-7
to 1.6e-6 seconds Default Value: The default value for PXI devices is 150 ns. The default value for
PXI Express devices is 250 ns.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic
in

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_iteration_complete_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_iteration_complete_event_pulse_width

The following table lists the characteristics of this property.

7.1. nidcpower module 127

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Iteration Complete Event:Pulse:Width

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_PULSE_WIDTH

sequence_loop_count

nidcpower.Session.sequence_loop_count
Specifies the number of times a sequence is run after initiation. Refer to the Sequence Source
Mode topic in the NI DC Power Supplies and SMUs Help for more information about the se-
quence loop count. for information about supported devices. When the nidcpower.Session.
sequence_loop_count_is_finite property is set to False, the nidcpower.Session.
sequence_loop_count property is ignored. Valid Range: 1 to 134217727 Default Value: 1

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_loop_count

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_loop_count

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Sequence Loop Count

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_LOOP_COUNT

128 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

sequence_loop_count_is_finite

nidcpower.Session.sequence_loop_count_is_finite
Specifies whether a sequence should repeat indefinitely. Refer to the Sequence Source Mode topic
in the NI DC Power Supplies and SMUs Help for more information about infinite sequencing.
nidcpower.Session.sequence_loop_count_is_finite property is set to False, the
nidcpower.Session.sequence_loop_count property is ignored. Default Value: True

Note: This property is not supported by all devices. When the

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_loop_count_is_finite

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_loop_count_is_finite

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Sequence Loop Count Is Finite

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_LOOP_COUNT_IS_FINITE

sequence_step_delta_time

nidcpower.Session.sequence_step_delta_time

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_step_delta_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_step_delta_time

The following table lists the characteristics of this property.

7.1. nidcpower module 129

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_STEP_DELTA_TIME

sequence_step_delta_time_enabled

nidcpower.Session.sequence_step_delta_time_enabled

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_step_delta_time_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_step_delta_time_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_STEP_DELTA_TIME_ENABLED

serial_number

nidcpower.Session.serial_number
Contains the serial number for the device you are currently using.

Tip: This property can be set/get on specific instruments within your nidcpower.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].serial_number

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

130 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.serial_number

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Serial Number

• C Attribute: NIDCPOWER_ATTR_SERIAL_NUMBER

shutdown_trigger_type

nidcpower.Session.shutdown_trigger_type
Specifies the behavior of the Shutdown trigger. Default Value: NONE

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].shutdown_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.shutdown_trigger_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Shutdown Trigger:Trigger Type

• C Attribute: NIDCPOWER_ATTR_SHUTDOWN_TRIGGER_TYPE

7.1. nidcpower module 131

NI Modular Instruments Python API Documentation, Release 1.4.1

simulate

nidcpower.Session.simulate
Specifies whether to simulate NI-DCPower I/O operations. True specifies that operation is simu-
lated. Default Value: False

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:User Options:Simulate

• C Attribute: NIDCPOWER_ATTR_SIMULATE

source_complete_event_output_terminal

nidcpower.Session.source_complete_event_output_terminal
Specifies the output terminal for exporting the Source Complete event. for information about sup-
ported devices. Output terminals can be specified in one of two ways. If the device is named Dev1
and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name,
/Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].source_complete_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_complete_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Source Complete Event:Output Terminal

132 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_OUTPUT_TERMINAL

source_complete_event_pulse_polarity

nidcpower.Session.source_complete_event_pulse_polarity
Specifies the behavior of the Source Complete event. for information about supported devices.
Default Value: HIGH

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].source_complete_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_complete_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Source Complete Event:Pulse:Polarity

• C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_PULSE_POLARITY

source_complete_event_pulse_width

nidcpower.Session.source_complete_event_pulse_width
Specifies the width of the Source Complete event, in seconds. for information about supported
devices. The minimum event pulse width value for PXI devices is 150 ns, and the minimum event
pulse width value for PXI Express devices is 250 ns. The maximum event pulse width value for all
devices is 1.6 microseconds Valid Values: 1.5e-7 to 1.6e-6 seconds Default Value: The default value
for PXI devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

7.1. nidcpower module 133

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.channels[...].source_complete_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_complete_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Source Complete Event:Pulse:Width

• C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_PULSE_WIDTH

source_delay

nidcpower.Session.source_delay
Determines when, in seconds, the device generates the Source Complete event, potentially
starting a measurement if the nidcpower.Session.measure_when property is set to
AUTOMATICALLY_AFTER_SOURCE_COMPLETE. Refer to the Single Point Source Mode and
Sequence Source Mode topics for more information. Valid Values: 0 to 167 seconds Default Value:
0.01667 seconds

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].source_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_delay

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Source Delay

134 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NIDCPOWER_ATTR_SOURCE_DELAY

source_mode

nidcpower.Session.source_mode
Specifies whether to run a single output point or a sequence. Refer to the Single Point Source
Mode and Sequence Source Mode topics in the NI DC Power Supplies and SMUs Help for more
information about source modes. Default value: SINGLE_POINT

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].source_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_mode

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.SourceMode
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Source Mode

• C Attribute: NIDCPOWER_ATTR_SOURCE_MODE

source_trigger_type

nidcpower.Session.source_trigger_type
Specifies the behavior of the Source trigger. for information about supported devices. Default Value:
NONE

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].source_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

7.1. nidcpower module 135

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.source_trigger_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Source Trigger:Trigger Type

• C Attribute: NIDCPOWER_ATTR_SOURCE_TRIGGER_TYPE

specific_driver_description

nidcpower.Session.specific_driver_description
Contains a brief description of the specific driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Description

• C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_prefix

nidcpower.Session.specific_driver_prefix
Contains the prefix for NI-DCPower. The name of each user-callable method in NI-DCPower begins
with this prefix.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

136 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Prefix

• C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_PREFIX

specific_driver_revision

nidcpower.Session.specific_driver_revision
Contains additional version information about NI-DCPower.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Revision

• C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

nidcpower.Session.specific_driver_vendor
Contains the name of the vendor that supplies NI-DCPower.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Vendor

• C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_VENDOR

start_trigger_type

nidcpower.Session.start_trigger_type
Specifies the behavior of the Start trigger. for information about supported devices. Default Value:
NONE

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

7.1. nidcpower module 137

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].start_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.start_trigger_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Start Trigger:Trigger Type

• C Attribute: NIDCPOWER_ATTR_START_TRIGGER_TYPE

supported_instrument_models

nidcpower.Session.supported_instrument_models
Contains a comma-separated (,) list of supported NI-DCPower device models.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Supported Instrument
Models

• C Attribute: NIDCPOWER_ATTR_SUPPORTED_INSTRUMENT_MODELS

transient_response

nidcpower.Session.transient_response
Specifies the transient response. Refer to the Transient Response topic in the NI DC Power Supplies
and SMUs Help for more information about transient response. for information about supported
devices. Default Value: NORMAL

138 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].transient_response

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.transient_response

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TransientResponse
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Transient Response

• C Attribute: NIDCPOWER_ATTR_TRANSIENT_RESPONSE

voltage_compensation_frequency

nidcpower.Session.voltage_compensation_frequency
The frequency at which a pole-zero pair is added to the system when the channel is in Constant
Voltage mode. for information about supported devices. Default value: Determined by the value of
the NORMAL setting of the nidcpower.Session.transient_response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].voltage_compensation_frequency

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_compensation_frequency

The following table lists the characteristics of this property.

7.1. nidcpower module 139

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Custom Transient Response:Voltage:Compensation Fre-
quency

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_COMPENSATION_FREQUENCY

voltage_gain_bandwidth

nidcpower.Session.voltage_gain_bandwidth
The frequency at which the unloaded loop gain extrapolates to 0 dB in the absence of additional
poles and zeroes. This property takes effect when the channel is in Constant Voltage mode. for
information about supported devices. Default Value: Determined by the value of the NORMAL setting
of the nidcpower.Session.transient_response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].voltage_gain_bandwidth

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_gain_bandwidth

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Custom Transient Response:Voltage:Gain Bandwidth

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_GAIN_BANDWIDTH

140 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

voltage_level

nidcpower.Session.voltage_level
Specifies the voltage level, in volts, that the device attempts to generate on the specified channel(s).
This property is applicable only if the nidcpower.Session.output_function property is
set to DC_VOLTAGE. nidcpower.Session.output_enabled property for more informa-
tion about enabling the output channel. Valid Values: The valid values for this property are defined
by the values you specify for the nidcpower.Session.voltage_level_range property.

Note: The channel must be enabled for the specified voltage level to take effect. Refer to the

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].voltage_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Voltage Level

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL

voltage_level_autorange

nidcpower.Session.voltage_level_autorange
Specifies whether NI-DCPower automatically selects the voltage level range based on the desired
voltage level for the specified channel(s). If you set this property to ON , NI-DCPower ignores
any changes you make to the nidcpower.Session.voltage_level_range property. If
you change the nidcpower.Session.voltage_level_autorange property from ON to
OFF, NI-DCPower retains the last value the nidcpower.Session.voltage_level_range
property was set to (or the default value if the property was never set) and uses that value as
the voltage level range. Query the nidcpower.Session.voltage_level_range prop-
erty by using the nidcpower.Session._get_attribute_vi_int32() method for in-
formation about which range NI-DCPower automatically selects. The nidcpower.Session.
voltage_level_autorange property is applicable only if the nidcpower.Session.
output_function property is set to DC_VOLTAGE. Default Value: OFF

7.1. nidcpower module 141

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].voltage_level_autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_level_autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Voltage Level Autorange

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL_AUTORANGE

voltage_level_range

nidcpower.Session.voltage_level_range
Specifies the voltage level range, in volts, for the specified channel(s). The range defines
the valid values to which the voltage level can be set. Use the nidcpower.Session.
voltage_level_autorange property to enable automatic selection of the voltage level
range. The nidcpower.Session.voltage_level_range property is applicable only if the
nidcpower.Session.output_function property is set to DC_VOLTAGE. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs
Help.

Note: The channel must be enabled for the specified voltage level range to take effect. Refer to the

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].voltage_level_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_level_range

The following table lists the characteristics of this property.

142 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Voltage Level Range

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL_RANGE

voltage_limit

nidcpower.Session.voltage_limit
Specifies the voltage limit, in volts, that the output cannot exceed when generating the desired
current level on the specified channels. This property is applicable only if the nidcpower.
Session.output_function property is set to DC_CURRENT and the nidcpower.
Session.compliance_limit_symmetry property is set to SYMMETRIC. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
Valid Values: The valid values for this property are defined by the values to which the nidcpower.
Session.voltage_limit_range property is set.

Note: The channel must be enabled for the specified current level to take effect. Refer to the

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].voltage_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Voltage Limit

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT

7.1. nidcpower module 143

NI Modular Instruments Python API Documentation, Release 1.4.1

voltage_limit_autorange

nidcpower.Session.voltage_limit_autorange
Specifies whether NI-DCPower automatically selects the voltage limit range based on the desired
voltage limit for the specified channel(s). If this property is set to ON , NI-DCPower ignores
any changes you make to the nidcpower.Session.voltage_limit_range property. If
you change the nidcpower.Session.voltage_limit_autorange property from ON to
OFF, NI-DCPower retains the last value the nidcpower.Session.voltage_limit_range
property was set to (or the default value if the property was never set) and uses that value
as the voltage limit range. Query the nidcpower.Session.voltage_limit_range
property by using the nidcpower.Session._get_attribute_vi_int32() method
to find out which range NI-DCPower automatically selects. The nidcpower.Session.
voltage_limit_autorange property is applicable only if the nidcpower.Session.
output_function property is set to DC_CURRENT. Default Value: OFF

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].voltage_limit_autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit_autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Voltage Limit Autorange

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_AUTORANGE

voltage_limit_high

nidcpower.Session.voltage_limit_high
Specifies the maximum voltage, in volts, that the output can produce when generating the desired
current on the specified channel(s). This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:‘nidcpower.Session.ComplianceLimitSymmetry.html>‘__ property is set to
Asymmetric and the Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__
property is set to DC Current. You must also specify a Voltage
Limit Low <p:py:meth:‘nidcpower.Session.VoltageLimitLow.html>‘__ to com-
plete the asymmetric range. Valid Values: [1% of Voltage Limit Range
<p:py:meth:‘nidcpower.Session.VoltageLimitRange.html>‘__, Voltage Limit Range
<p:py:meth:‘nidcpower.Session.VoltageLimitRange.html>‘__] The range bounded by the limit
high and limit low must include zero. Default Value: Refer to Supported Properties by Device for
the default value by device. Related Topics: Ranges Changing Ranges Overranging

144 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth:‘nidcpower.Session.OverrangingEnabled.html>‘__ property is set to TRUE.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].voltage_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Voltage Limit High

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_HIGH

voltage_limit_low

nidcpower.Session.voltage_limit_low
Specifies the minimum voltage, in volts, that the output can produce when generating the desired
current on the specified channel(s). This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:‘nidcpower.Session.ComplianceLimitSymmetry.html>‘__ property is set to
Asymmetric and the Output Method <p:py:meth:‘nidcpower.Session.OutputFunction.html>‘__
property is set to DC Current. You must also specify a Voltage Limit High
<p:py:meth:‘nidcpower.Session.VoltageLimitHigh.html>‘__ to complete the asymmetric range.
Valid Values: [-Voltage Limit Range <p:py:meth:‘nidcpower.Session.VoltageLimitRange.html>‘__,
-1% of Voltage Limit Range <p:py:meth:‘nidcpower.Session.VoltageLimitRange.html>‘__] The
range bounded by the limit high and limit low must include zero. Default Value: Refer to Sup-
ported Properties by Device for the default value by device. Related Topics: Ranges Changing
Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth:‘nidcpower.Session.OverrangingEnabled.html>‘__ property is set to TRUE.

7.1. nidcpower module 145

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].voltage_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Voltage Limit Low

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_LOW

voltage_limit_range

nidcpower.Session.voltage_limit_range
Specifies the voltage limit range, in volts, for the specified channel(s). The range defines
the valid values to which the voltage limit can be set. Use the nidcpower.Session.
voltage_limit_autorange property to enable automatic selection of the voltage limit
range. The nidcpower.Session.voltage_limit_range property is applicable only if the
nidcpower.Session.output_function property is set to DC_CURRENT. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs
Help.

Note: The channel must be enabled for the specified voltage limit range to take effect. Refer to the

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].voltage_limit_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit_range

146 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Voltage Limit Range

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_RANGE

voltage_pole_zero_ratio

nidcpower.Session.voltage_pole_zero_ratio
The ratio of the pole frequency to the zero frequency when the channel is in Constant Voltage mode.
for information about supported devices. Default value: Determined by the value of the NORMAL
setting of the nidcpower.Session.transient_response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].voltage_pole_zero_ratio

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_pole_zero_ratio

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Custom Transient Response:Voltage:Pole-Zero Ratio

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_POLE_ZERO_RATIO

Session

7.1. nidcpower module 147

NI Modular Instruments Python API Documentation, Release 1.4.1

• Session

• Methods

– abort

– clear_latched_output_cutoff_state

– close

– commit

– configure_aperture_time

– create_advanced_sequence

– create_advanced_sequence_commit_step

– create_advanced_sequence_step

– delete_advanced_sequence

– disable

– export_attribute_configuration_buffer

– export_attribute_configuration_file

– fetch_multiple

– get_channel_name

– get_channel_names

– get_ext_cal_last_date_and_time

– get_ext_cal_last_temp

– get_ext_cal_recommended_interval

– get_self_cal_last_date_and_time

– get_self_cal_last_temp

– import_attribute_configuration_buffer

– import_attribute_configuration_file

– initiate

– lock

– measure

– measure_multiple

– query_in_compliance

– query_latched_output_cutoff_state

– query_max_current_limit

– query_max_voltage_level

– query_min_current_limit

– query_output_state

– read_current_temperature

148 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– reset

– reset_device

– reset_with_defaults

– self_cal

– self_test

– send_software_edge_trigger

– set_sequence

– unlock

– wait_for_event

• Properties

– active_advanced_sequence

– active_advanced_sequence_step

– actual_power_allocation

– aperture_time

– aperture_time_units

– autorange

– autorange_aperture_time_mode

– autorange_behavior

– autorange_minimum_aperture_time

– autorange_minimum_aperture_time_units

– autorange_minimum_current_range

– autorange_minimum_voltage_range

– autorange_threshold_mode

– auto_zero

– auxiliary_power_source_available

– channel_count

– compliance_limit_symmetry

– current_compensation_frequency

– current_gain_bandwidth

– current_level

– current_level_autorange

– current_level_range

– current_limit

– current_limit_autorange

– current_limit_behavior

– current_limit_high

7.1. nidcpower module 149

NI Modular Instruments Python API Documentation, Release 1.4.1

– current_limit_low

– current_limit_range

– current_pole_zero_ratio

– dc_noise_rejection

– digital_edge_measure_trigger_input_terminal

– digital_edge_pulse_trigger_input_terminal

– digital_edge_sequence_advance_trigger_input_terminal

– digital_edge_shutdown_trigger_input_terminal

– digital_edge_source_trigger_input_terminal

– digital_edge_start_trigger_input_terminal

– driver_setup

– exported_measure_trigger_output_terminal

– exported_pulse_trigger_output_terminal

– exported_sequence_advance_trigger_output_terminal

– exported_source_trigger_output_terminal

– exported_start_trigger_output_terminal

– fetch_backlog

– instrument_firmware_revision

– instrument_manufacturer

– instrument_model

– interlock_input_open

– io_resource_descriptor

– logical_name

– measure_buffer_size

– measure_complete_event_delay

– measure_complete_event_output_terminal

– measure_complete_event_pulse_polarity

– measure_complete_event_pulse_width

– measure_record_delta_time

– measure_record_length

– measure_record_length_is_finite

– measure_trigger_type

– measure_when

– merged_channels

– output_capacitance

150 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– output_connected

– output_cutoff_current_change_limit_high

– output_cutoff_current_change_limit_low

– output_cutoff_current_measure_limit_high

– output_cutoff_current_measure_limit_low

– output_cutoff_current_overrange_enabled

– output_cutoff_delay

– output_cutoff_enabled

– output_cutoff_voltage_change_limit_high

– output_cutoff_voltage_change_limit_low

– output_cutoff_voltage_output_limit_high

– output_cutoff_voltage_output_limit_low

– output_enabled

– output_function

– output_resistance

– overranging_enabled

– ovp_enabled

– ovp_limit

– power_allocation_mode

– power_line_frequency

– power_source

– power_source_in_use

– pulse_bias_current_level

– pulse_bias_current_limit

– pulse_bias_current_limit_high

– pulse_bias_current_limit_low

– pulse_bias_delay

– pulse_bias_voltage_level

– pulse_bias_voltage_limit

– pulse_bias_voltage_limit_high

– pulse_bias_voltage_limit_low

– pulse_complete_event_output_terminal

– pulse_complete_event_pulse_polarity

– pulse_complete_event_pulse_width

– pulse_current_level

7.1. nidcpower module 151

NI Modular Instruments Python API Documentation, Release 1.4.1

– pulse_current_level_range

– pulse_current_limit

– pulse_current_limit_high

– pulse_current_limit_low

– pulse_current_limit_range

– pulse_off_time

– pulse_on_time

– pulse_trigger_type

– pulse_voltage_level

– pulse_voltage_level_range

– pulse_voltage_limit

– pulse_voltage_limit_high

– pulse_voltage_limit_low

– pulse_voltage_limit_range

– query_instrument_status

– ready_for_pulse_trigger_event_output_terminal

– ready_for_pulse_trigger_event_pulse_polarity

– ready_for_pulse_trigger_event_pulse_width

– requested_power_allocation

– reset_average_before_measurement

– samples_to_average

– self_calibration_persistence

– sense

– sequence_advance_trigger_type

– sequence_engine_done_event_output_terminal

– sequence_engine_done_event_pulse_polarity

– sequence_engine_done_event_pulse_width

– sequence_iteration_complete_event_output_terminal

– sequence_iteration_complete_event_pulse_polarity

– sequence_iteration_complete_event_pulse_width

– sequence_loop_count

– sequence_loop_count_is_finite

– sequence_step_delta_time

– sequence_step_delta_time_enabled

– serial_number

152 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– shutdown_trigger_type

– simulate

– source_complete_event_output_terminal

– source_complete_event_pulse_polarity

– source_complete_event_pulse_width

– source_delay

– source_mode

– source_trigger_type

– specific_driver_description

– specific_driver_prefix

– specific_driver_revision

– specific_driver_vendor

– start_trigger_type

– supported_instrument_models

– transient_response

– voltage_compensation_frequency

– voltage_gain_bandwidth

– voltage_level

– voltage_level_autorange

– voltage_level_range

– voltage_limit

– voltage_limit_autorange

– voltage_limit_high

– voltage_limit_low

– voltage_limit_range

– voltage_pole_zero_ratio

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the underlying driver
function call. This can be the actual function based on the Session method being called, or it can be
the appropriate Get/Set Attribute function, such as niDCPower_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities. The
parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or an integer.
If it is a string, you can indicate a range using the same format as the driver: ‘0-2’ or ‘0:2’

Some repeated capabilities use a prefix before the number and this is optional

7.1. nidcpower module 153

NI Modular Instruments Python API Documentation, Release 1.4.1

channels

nidcpower.Session.channels[]

session.channels['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

instruments

nidcpower.Session.instruments[]

session.instruments['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

Enums

Enums used in NI-DCPower

ApertureTimeUnits

class nidcpower.ApertureTimeUnits

SECONDS
Specifies aperture time in seconds.

POWER_LINE_CYCLES
Specifies aperture time in power line cycles (PLCs).

AutoZero

class nidcpower.AutoZero

OFF
Disables auto zero.

ON
Makes zero conversions for every measurement.

ONCE
Makes zero conversions following the first measurement after initiating the device. The device uses these
zero conversions for the preceding measurement and future measurements until the device is reinitiated.

AutorangeApertureTimeMode

class nidcpower.AutorangeApertureTimeMode

154 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

AUTO
NI-DCPower optimizes the aperture time for the autorange algorithm based on the module range.

CUSTOM
The user specifies a minimum aperture time for the algorithm using the nidcpower.Session.
autorange_minimum_aperture_time property and the corresponding nidcpower.Session.
autorange_minimum_aperture_time_units property.

AutorangeBehavior

class nidcpower.AutorangeBehavior

UP_TO_LIMIT_THEN_DOWN
Go to limit range then range down as needed until measured value is within thresholds.

UP
go up one range when the upper threshold is reached.

UP_AND_DOWN
go up or down one range when the upper/lower threshold is reached.

AutorangeThresholdMode

class nidcpower.AutorangeThresholdMode

NORMAL
Thresholds are selected based on a balance between accuracy and hysteresis.

FAST_STEP
Optimized for faster changes in the measured signal. Thresholds are configured to be a smaller percentage
of the range.

HIGH_HYSTERESIS
Optimized for noisy signals to minimize frequent and unpredictable range changes. Thresholds are con-
figured to be a larger percentage of the range.

MEDIUM_HYSTERESIS
Optimized for noisy signals to minimize frequent and unpredictable range changes. Thresholds are con-
figured to be a medium percentage of the range.

HOLD
Attempt to maintain the active range. Thresholds will favor the active range.

ComplianceLimitSymmetry

class nidcpower.ComplianceLimitSymmetry

SYMMETRIC
Compliance limits are specified symmetrically about 0.

ASYMMETRIC
Compliance limits can be specified asymmetrically with respect to 0.

7.1. nidcpower module 155

NI Modular Instruments Python API Documentation, Release 1.4.1

DCNoiseRejection

class nidcpower.DCNoiseRejection

SECOND_ORDER
Second-order rejection of DC noise.

NORMAL
Normal rejection of DC noise.

Event

class nidcpower.Event

SOURCE_COMPLETE

MEASURE_COMPLETE

SEQUENCE_ITERATION_COMPLETE

SEQUENCE_ENGINE_DONE

PULSE_COMPLETE

READY_FOR_PULSE_TRIGGER

MeasureWhen

class nidcpower.MeasureWhen

AUTOMATICALLY_AFTER_SOURCE_COMPLETE
Acquires a measurement after each Source Complete event completes.

ON_DEMAND
Acquires a measurement when the nidcpower.Session.measure() method or nidcpower.
Session.measure_multiple() method is called.

ON_MEASURE_TRIGGER
Acquires a measurement when a Measure trigger is received.

MeasurementTypes

class nidcpower.MeasurementTypes

CURRENT
The device measures current.

VOLTAGE
The device measures voltage.

156 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

OutputCapacitance

class nidcpower.OutputCapacitance

LOW
Output Capacitance is low.

HIGH
Output Capacitance is high.

OutputCutoffReason

class nidcpower.OutputCutoffReason

ALL
Queries any output cutoff condition; clears all output cutoff conditions.

VOLTAGE_OUTPUT_HIGH
Queries or clears cutoff conditions when the output exceeded the high cutoff limit for voltage output.

VOLTAGE_OUTPUT_LOW
Queries or clears cutoff conditions when the output fell below the low cutoff limit for voltage output.

CURRENT_MEASURE_HIGH
Queries or clears cutoff conditions when the measured current exceeded the high cutoff limit for current
output.

CURRENT_MEASURE_LOW
Queries or clears cutoff conditions when the measured current fell below the low cutoff limit for current
output.

VOLTAGE_CHANGE_HIGH
Queries or clears cutoff conditions when the voltage slew rate increased beyond the positive change cutoff
for voltage output.

VOLTAGE_CHANGE_LOW
Queries or clears cutoff conditions when the voltage slew rate decreased beyond the negative change cutoff
for voltage output.

CURRENT_CHANGE_HIGH
Queries or clears cutoff conditions when the current slew rate increased beyond the positive change cutoff
for current output.

CURRENT_CHANGE_LOW
Queries or clears cutoff conditions when the current slew rate decreased beyond the negative change cutoff
for current output.

OutputFunction

class nidcpower.OutputFunction

DC_VOLTAGE
Sets the output method to DC voltage.

7.1. nidcpower module 157

NI Modular Instruments Python API Documentation, Release 1.4.1

DC_CURRENT
Sets the output method to DC current.

PULSE_VOLTAGE
Sets the output method to pulse voltage.

PULSE_CURRENT
Sets the output method to pulse current.

OutputStates

class nidcpower.OutputStates

VOLTAGE
The device maintains a constant voltage by adjusting the current

CURRENT
The device maintains a constant current by adjusting the voltage.

Polarity

class nidcpower.Polarity

HIGH
A high pulse occurs when the event is generated. The exported signal is low level both before and after the
event is generated.

LOW
A low pulse occurs when the event is generated. The exported signal is high level both before and after the
event is generated.

PowerAllocationMode

class nidcpower.PowerAllocationMode

DISABLED
The device attempts to source, on each active channel, the power that the present source configuration
requires; NI-DCPower does not perform a sourcing power check. If the required power is greater than
the maximum sourcing power, the device attempts to source the required amount and may shut down to
prevent damage.

AUTOMATIC
The device attempts to source, on each active channel, the power that the present source configuration re-
quires; NI-DCPower performs a sourcing power check. If the required power is greater than the maximum
sourcing power, the device does not exceed the maximum power, and NI-DCPower returns an error.

MANUAL
The device attempts to source, on each active channel, the power you request with the nidcpower.
Session.requested_power_allocation property; NI-DCPower performs a sourcing power
check. If the requested power is either less than the required power for the present source configura-
tion or greater than the maximum sourcing power, the device does not exceed the requested or allowed
power, respectively, and NI-DCPower returns an error.

158 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

PowerSource

class nidcpower.PowerSource

INTERNAL
Uses the PXI chassis power source.

AUXILIARY
Uses the auxiliary power source connected to the device.

AUTOMATIC
Uses the auxiliary power source if it is available; otherwise uses the PXI chassis power source.

PowerSourceInUse

class nidcpower.PowerSourceInUse

INTERNAL
Uses the PXI chassis power source.

AUXILIARY
Uses the auxiliary power source connected to the device. Only the NI PXI-4110, NI PXIe-4112, NI PXIe-
4113, and NI PXI-4130 support this value. This is the only supported value for the NI PXIe-4112 and NI
PXIe-4113.

SelfCalibrationPersistence

class nidcpower.SelfCalibrationPersistence

KEEP_IN_MEMORY
Keep new self calibration values in memory only.

WRITE_TO_EEPROM
Write new self calibration values to hardware.

SendSoftwareEdgeTriggerType

class nidcpower.SendSoftwareEdgeTriggerType

START

SOURCE

MEASURE

SEQUENCE_ADVANCE

PULSE

SHUTDOWN

7.1. nidcpower module 159

NI Modular Instruments Python API Documentation, Release 1.4.1

Sense

class nidcpower.Sense

LOCAL
Local sensing is selected.

REMOTE
Remote sensing is selected.

SourceMode

class nidcpower.SourceMode

SINGLE_POINT
The source unit applies a single source configuration.

SEQUENCE
The source unit applies a list of voltage or current configurations sequentially.

TransientResponse

class nidcpower.TransientResponse

NORMAL
The output responds to changes in load at a normal speed.

FAST
The output responds to changes in load quickly.

SLOW
The output responds to changes in load slowly.

CUSTOM
The output responds to changes in load based on specified values.

TriggerType

class nidcpower.TriggerType

NONE
No trigger is configured.

DIGITAL_EDGE
The data operation starts when a digital edge is detected.

SOFTWARE_EDGE
The data operation starts when a software trigger occurs.

160 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Exceptions and Warnings

Error

exception nidcpower.errors.Error
Base exception type that all NI-DCPower exceptions derive from

DriverError

exception nidcpower.errors.DriverError
An error originating from the NI-DCPower driver

UnsupportedConfigurationError

exception nidcpower.errors.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

DriverNotInstalledError

exception nidcpower.errors.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

InvalidRepeatedCapabilityError

exception nidcpower.errors.InvalidRepeatedCapabilityError
An error due to an invalid character in a repeated capability

SelfTestError

exception nidcpower.errors.SelfTestError
An error due to a failed self-test

DriverWarning

exception nidcpower.errors.DriverWarning
A warning originating from the NI-DCPower driver

Examples

You can download all nidcpower examples here

nidcpower_advanced_sequence.py

7.1. nidcpower module 161

https://github.com/ni/nimi-python/releases/download/1.4.1/nidcpower_examples.zip

NI Modular Instruments Python API Documentation, Release 1.4.1

Listing 1: (nidcpower_advanced_sequence.py)

1 #!/usr/bin/python
2

3 import argparse
4 import hightime
5 import nidcpower
6 import sys
7

8

9 def example(resource_name, options, voltage_max, current_max, points_per_output_
→˓function, delay_in_seconds):

10 timeout = hightime.timedelta(seconds=(delay_in_seconds + 1.0))
11

12 with nidcpower.Session(resource_name=resource_name, options=options) as session:
13

14 # Configure the session.
15 session.source_mode = nidcpower.SourceMode.SEQUENCE
16 session.voltage_level_autorange = True
17 session.current_limit_autorange = True
18 session.source_delay = hightime.timedelta(seconds=delay_in_seconds)
19 properties_used = ['output_function', 'voltage_level', 'current_level']
20 session.create_advanced_sequence(sequence_name='my_sequence', property_

→˓names=properties_used, set_as_active_sequence=True)
21

22 voltage_per_step = voltage_max / points_per_output_function
23 for i in range(points_per_output_function):
24 session.create_advanced_sequence_step(set_as_active_step=False)
25 session.output_function = nidcpower.OutputFunction.DC_VOLTAGE
26 session.voltage_level = voltage_per_step * i
27

28 current_per_step = current_max / points_per_output_function
29 for i in range(points_per_output_function):
30 session.create_advanced_sequence_step(set_as_active_step=False)
31 session.output_function = nidcpower.OutputFunction.DC_CURRENT
32 session.current_level = current_per_step * i
33

34 with session.initiate():
35 session.wait_for_event(nidcpower.Event.SEQUENCE_ENGINE_DONE)
36 channel_indices = '0-{0}'.format(session.channel_count - 1)
37 channels = session.get_channel_names(channel_indices)
38 measurement_group = [session.channels[name].fetch_multiple(points_per_

→˓output_function * 2, timeout=timeout) for name in channels]
39

40 session.delete_advanced_sequence(sequence_name='my_sequence')
41 line_format = '{:<15} {:<4} {:<10} {:<10} {:<6}'
42 print(line_format.format('Channel', 'Num', 'Voltage', 'Current', 'In

→˓Compliance'))
43 for i, measurements in enumerate(measurement_group):
44 num = 0
45 channel_name = channels[i].strip()
46 for measurement in measurements:
47 print(line_format.format(channel_name, num, measurement.voltage,

→˓measurement.current, str(measurement.in_compliance)))
48 num += 1
49

50

(continues on next page)

162 Chapter 7. License

https://github.com/ni/nimi-python/blob/1.4.1/src/nidcpower/examples/nidcpower_advanced_sequence.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

51 def _main(argsv):
52 parser = argparse.ArgumentParser(description='Output ramping voltage to voltage

→˓max, then ramping current to current max.', formatter_class=argparse.
→˓ArgumentDefaultsHelpFormatter)

53 parser.add_argument('-n', '--resource-name', default='PXI1Slot2/0, PXI1Slot3/0-1',
→˓ help='Resource name of National Instruments SMUs')

54 parser.add_argument('-s', '--number-steps', default=256, help='Number of steps
→˓per output function')

55 parser.add_argument('-v', '--voltage-max', default=1.0, type=float, help='Maximum
→˓voltage (V)')

56 parser.add_argument('-i', '--current-max', default=0.001, type=float, help=
→˓'Maximum Current (I)')

57 parser.add_argument('-d', '--delay', default=0.05, type=float, help='Source delay
→˓(s)')

58 parser.add_argument('-op', '--option-string', default='', type=str, help='Option
→˓string')

59 args = parser.parse_args(argsv)
60 example(args.resource_name, args.option_string, args.voltage_max, args.current_

→˓max, args.number_steps, args.delay)
61

62

63 def main():
64 _main(sys.argv[1:])
65

66

67 def test_main():
68 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe

→˓',]
69 _main(cmd_line)
70

71

72 def test_example():
73 options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe

→˓', }, }
74 example('PXI1Slot2/0, PXI1Slot3/1', options, 1.0, 0.001, 256, 0.05)
75

76

77 if __name__ == '__main__':
78 main()
79

80

nidcpower_measure_record.py

Listing 2: (nidcpower_measure_record.py)

1 #!/usr/bin/python
2

3 import argparse
4 import nidcpower
5 import sys
6

7

8 def example(resource_name, options, voltage, length):

(continues on next page)

7.1. nidcpower module 163

https://github.com/ni/nimi-python/blob/1.4.1/src/nidcpower/examples/nidcpower_measure_record.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

9 with nidcpower.Session(resource_name=resource_name, options=options) as session:
10

11 # Configure the session.
12 session.measure_record_length = length
13 session.measure_record_length_is_finite = True
14 session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_

→˓COMPLETE
15 session.voltage_level = voltage
16

17 session.commit()
18 print('Effective measurement rate: {0} S/s'.format(session.measure_record_

→˓delta_time / 1))
19

20 print('Channel Num Voltage Current In Compliance')
21 row_format = '{0:15} {1:3d} {2:8.6f} {3:8.6f} {4}'
22 with session.initiate():
23 channel_indices = '0-{0}'.format(session.channel_count - 1)
24 channels = session.get_channel_names(channel_indices)
25 for i, channel_name in enumerate(channels):
26 samples_acquired = 0
27 while samples_acquired < length:
28 measurements = session.channels[channel_name].fetch_

→˓multiple(count=session.fetch_backlog)
29 samples_acquired += len(measurements)
30 for i in range(len(measurements)):
31 print(row_format.format(channel_name, i, measurements[i].

→˓voltage, measurements[i].current, measurements[i].in_compliance))
32

33

34 def _main(argsv):
35 parser = argparse.ArgumentParser(description='Outputs the specified voltage, then

→˓takes the specified number of voltage and current readings.', formatter_
→˓class=argparse.ArgumentDefaultsHelpFormatter)

36 parser.add_argument('-n', '--resource-name', default='PXI1Slot2/0, PXI1Slot3/0-1',
→˓ help='Resource names of National Instruments SMUs')

37 parser.add_argument('-l', '--length', default='20', type=int, help='Measure
→˓record length per channel')

38 parser.add_argument('-v', '--voltage', default=5.0, type=float, help='Voltage
→˓level (V)')

39 parser.add_argument('-op', '--option-string', default='', type=str, help='Option
→˓string')

40 args = parser.parse_args(argsv)
41 example(args.resource_name, args.option_string, args.voltage, args.length)
42

43

44 def main():
45 _main(sys.argv[1:])
46

47

48 def test_example():
49 options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe

→˓', }, }
50 example('PXI1Slot2/0, PXI1Slot3/1', options, 5.0, 20)
51

52

53 def test_main():
54 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe

→˓',] (continues on next page)

164 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

55 _main(cmd_line)
56

57

58 if __name__ == '__main__':
59 main()
60

61

nidcpower_source_delay_measure.py

Listing 3: (nidcpower_source_delay_measure.py)

1 #!/usr/bin/python
2

3 import argparse
4 import hightime
5 import nidcpower
6 import sys
7

8

9 def print_fetched_measurements(measurements):
10 print(' Voltage : {:f} V'.format(measurements[0].voltage))
11 print(' Current: {:f} A'.format(measurements[0].current))
12 print(' In compliance: {0}'.format(measurements[0].in_compliance))
13

14

15 def example(resource_name, options, voltage1, voltage2, delay):
16 timeout = hightime.timedelta(seconds=(delay + 1.0))
17

18 with nidcpower.Session(resource_name=resource_name, options=options) as session:
19

20 # Configure the session.
21 session.source_mode = nidcpower.SourceMode.SINGLE_POINT
22 session.output_function = nidcpower.OutputFunction.DC_VOLTAGE
23 session.current_limit = .06
24 session.voltage_level_range = 5.0
25 session.current_limit_range = .06
26 session.source_delay = hightime.timedelta(seconds=delay)
27 session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_

→˓COMPLETE
28 session.voltage_level = voltage1
29

30 with session.initiate():
31 channel_indices = '0-{0}'.format(session.channel_count - 1)
32 channels = session.get_channel_names(channel_indices)
33 for channel_name in channels:
34 print('Channel: {0}'.format(channel_name))
35 print('---------------------------------')
36 print('Voltage 1:')
37 print_fetched_measurements(session.channels[channel_name].fetch_

→˓multiple(count=1, timeout=timeout))
38 session.voltage_level = voltage2 # on-the-fly set
39 print('Voltage 2:')
40 print_fetched_measurements(session.channels[channel_name].fetch_

→˓multiple(count=1, timeout=timeout))
(continues on next page)

7.1. nidcpower module 165

https://github.com/ni/nimi-python/blob/1.4.1/src/nidcpower/examples/nidcpower_source_delay_measure.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

41 session.output_enabled = False
42 print('')
43

44

45 def _main(argsv):
46 parser = argparse.ArgumentParser(description='Outputs voltage 1, waits for source

→˓delay, and then takes a measurement. Then orepeat with voltage 2.', formatter_
→˓class=argparse.ArgumentDefaultsHelpFormatter)

47 parser.add_argument('-n', '--resource-name', default='PXI1Slot2/0, PXI1Slot3/0-1',
→˓ help='Resource name of National Instruments SMUs')

48 parser.add_argument('-v1', '--voltage1', default=1.0, type=float, help='Voltage
→˓level 1 (V)')

49 parser.add_argument('-v2', '--voltage2', default=2.0, type=float, help='Voltage
→˓level 2 (V)')

50 parser.add_argument('-d', '--delay', default=0.05, type=float, help='Source delay
→˓(s)')

51 parser.add_argument('-op', '--option-string', default='', type=str, help='Option
→˓string')

52 args = parser.parse_args(argsv)
53 example(args.resource_name, args.option_string, args.voltage1, args.voltage2,

→˓args.delay)
54

55

56 def main():
57 _main(sys.argv[1:])
58

59

60 def test_main():
61 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe

→˓',]
62 _main(cmd_line)
63

64

65 def test_example():
66 options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe

→˓', }, }
67 example('PXI1Slot2/0, PXI1Slot3/1', options, 1.0, 2.0, 0.05)
68

69

70 if __name__ == '__main__':
71 main()
72

73

7.2 nidigital module

7.2.1 Installation

As a prerequisite to using the nidigital module, you must install the NI-Digital Pattern Driver runtime on your system.
Visit ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-Digital Pattern Driver) can be installed with pip:

166 Chapter 7. License

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip

NI Modular Instruments Python API Documentation, Release 1.4.1

$ python -m pip install nidigital~=1.4.1

Or easy_install from setuptools:

$ python -m easy_install nidigital

7.2.2 Usage

The following is a basic example of using the nidigital module to open a session to a digital pattern instrument, source
current, and measure both voltage and current using the PPMU on selected channels.

import nidigital
import time

with nidigital.Session(resource_name='PXI1Slot2') as session:

channels = 'PXI1Slot2/0,PXI1Slot2/1'

Configure PPMU measurements
session.channels[channels].ppmu_aperture_time = 0.000004
session.channels[channels].ppmu_aperture_time_units = nidigital.

→˓PPMUApertureTimeUnits.SECONDS

session.channels[channels].ppmu_output_function = nidigital.PPMUOutputFunction.
→˓CURRENT

session.channels[channels].ppmu_current_level_range = 0.000002
session.channels[channels].ppmu_current_level = 0.000002
session.channels[channels].ppmu_voltage_limit_high = 3.3
session.channels[channels].ppmu_voltage_limit_low = 0

Sourcing
session.channels[channels].ppmu_source()

Settling time between sourcing and measuring
time.sleep(0.01)

Measuring
current_measurements = session.channels[channels].ppmu_measure(nidigital.

→˓PPMUMeasurementType.CURRENT)
voltage_measurements = session.channels[channels].ppmu_measure(nidigital.

→˓PPMUMeasurementType.VOLTAGE)

print('{:<20} {:<10} {:<10}'.format('Channel Name', 'Current', 'Voltage'))
for channel, current, voltage in zip(channels.split(','), current_measurements,

→˓voltage_measurements):
print('{:<20} {:<10f} {:<10f}'.format(channel, current, voltage))

Disconnect all channels using programmable onboard switching
session.channels[channels].selected_function = nidigital.SelectedFunction.

→˓DISCONNECT

Additional examples for NI-Digital Pattern Driver are located in src/nidigital/examples/ directory.

7.2. nidigital module 167

http://pypi.python.org/pypi/setuptools

NI Modular Instruments Python API Documentation, Release 1.4.1

7.2.3 API Reference

Session

class nidigital.Session(self, resource_name, id_query=False, reset_device=False, options={})
Creates and returns a new session to the specified digital pattern instrument to use in all subsequent method calls.
To place the instrument in a known startup state when creating a new session, set the reset parameter to True,
which is equivalent to calling the nidigital.Session.reset() method immediately after initializing
the session.

Parameters

• resource_name (str) – The specified resource name shown in Measurement & Au-
tomation Explorer (MAX) for a digital pattern instrument, for example, PXI1Slot3, where
PXI1Slot3 is an instrument resource name. resourceName can also be a logical IVI name.
This parameter accepts a comma-delimited list of strings in the form PXI1Slot2,PXI1Slot3,
where PXI1Slot2 is one instrument resource name and PXI1Slot3 is another. When
including more than one digital pattern instrument in the comma-delimited list of strings,
list the instruments in the same order they appear in the pin map.

Note You only can specify multiple instruments of the same model. For example,
you can list two PXIe-6570s but not a PXIe-6570 and PXIe-6571. The instruments
must be in the same chassis.

• id_query (bool) – A Boolean that verifies that the digital pattern instrument you initial-
ize is supported by NI-Digital. NI-Digital automatically performs this query, so setting this
parameter is not necessary.

• reset_device (bool) – A Boolean that specifies whether to reset a digital pattern in-
strument to a known state when the session is initialized. Setting the resetDevice value to
True is equivalent to calling the nidigital.Session.reset() method immediately
after initializing the session.

• options (dict) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status False
cache True
simulate False
record_value_coersions False
driver_setup {}

Methods

168 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

NI Modular Instruments Python API Documentation, Release 1.4.1

abort

nidigital.Session.abort()
Stops bursting the pattern.

abort_keep_alive

nidigital.Session.abort_keep_alive()
Stops the keep alive pattern if it is currently running. If a pattern burst is in progress, the method
aborts the pattern burst. If you start a new pattern burst while a keep alive pattern is running, the
keep alive pattern runs to the last keep alive vector, and the new pattern burst starts on the next cycle.

apply_levels_and_timing

nidigital.Session.apply_levels_and_timing(levels_sheet, timing_sheet, ini-
tial_state_high_pins=None,
initial_state_low_pins=None,
initial_state_tristate_pins=None)

Applies digital levels and timing values defined in previously loaded levels and timing sheets. When
applying a levels sheet, only the levels specified in the sheet are affected. Any levels not specified in
the sheet remain unchanged. When applying a timing sheet, all existing time sets are deleted before
the new time sets are loaded.

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].apply_levels_and_timing()

To call the method on all sites, you can call it directly on the nidigital.Session.

Example: my_session.apply_levels_and_timing()

Parameters

• levels_sheet (str) – Name of the levels sheet to apply. Use the name of
the sheet or pass the absolute file path you use in the nidigital.Session.
load_specifications_levels_and_timing() method. The name of
the levels sheet is the file name without the directory and file extension.

• timing_sheet (str) – Name of the timing sheet to apply. Use the name of the
sheet or pass the absolute file path that you use in the nidigital.Session.
load_specifications_levels_and_timing() method. The name of
the timing sheet is the file name without the directory and file extension.

• initial_state_high_pins (basic sequence types or str) –
Comma-delimited list of pins, pin groups, or channels to initialize to a high state.

• initial_state_low_pins (basic sequence types or str) –
Comma-delimited list of pins, pin groups, or channels to initialize to a low state.

• initial_state_tristate_pins (basic sequence types or str)
– Comma-delimited list of pins, pin groups, or channels to initialize to a non-drive
state (X)

7.2. nidigital module 169

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

apply_tdr_offsets

nidigital.Session.apply_tdr_offsets(offsets)
Applies the correction for propagation delay offsets to a digital pattern instrument. Use this method
to apply TDR offsets that are stored from a past measurement or are measured by means other than
the nidigital.Session.tdr() method. Also use this method to apply correction for offsets
if the applyOffsets input of the nidigital.Session.tdr() method was set to False at the
time of measurement.

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].apply_tdr_offsets()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.apply_tdr_offsets()

Parameters offsets (basic sequence of hightime.timedelta,
datetime.timedelta, or float in seconds) – TDR offsets to ap-
ply, in seconds. Specify an offset for each pin or channel in the repeated capabilities.
If the repeated capabilities contain pin names, you must specify offsets for each site in
the channel map per pin.

burst_pattern

nidigital.Session.burst_pattern(start_label, select_digital_function=True,
wait_until_done=True, time-
out=hightime.timedelta(seconds=10.0))

Uses the start_label you specify to burst the pattern on the sites you specify. If you specify
wait_until_done as True, waits for the burst to complete, and returns comparison results for each
site.

Digital pins retain their state at the end of a pattern burst until the first vector of the pattern burst,
a call to nidigital.Session.write_static(), or a call to nidigital.Session.
apply_levels_and_timing().

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].burst_pattern()

To call the method on all sites, you can call it directly on the nidigital.Session.

Example: my_session.burst_pattern()

Parameters

• start_label (str) – Pattern name or exported pattern label from which to start
bursting the pattern.

170 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

• select_digital_function (bool) – A Boolean that specifies whether to
select the digital method for the pins in the pattern prior to bursting.

• wait_until_done (bool) – A Boolean that indicates whether to wait until the
bursting is complete.

• timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) – Maximum time (in seconds) allowed for this method to
complete. If this method does not complete within this time interval, this method
returns an error.

Return type { int: bool, int: bool, .. }

Returns Dictionary where each key is a site number and value is pass/fail, if
wait_until_done is specified as True. Else, None.

clock_generator_abort

nidigital.Session.clock_generator_abort()
Stops clock generation on the specified channel(s) or pin(s) and pin group(s).

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].clock_generator_abort()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.clock_generator_abort()

clock_generator_generate_clock

nidigital.Session.clock_generator_generate_clock(frequency, se-
lect_digital_function=True)

Configures clock generator frequency and initiates clock generation on the specified channel(s) or
pin(s) and pin group(s).

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].clock_generator_generate_clock()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.clock_generator_generate_clock()

Parameters

• frequency (float) – The frequency of the clock generation, in Hz.

• select_digital_function (bool) – A Boolean that specifies whether to
select the digital method for the pins specified prior to starting clock generation.

7.2. nidigital module 171

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

close

nidigital.Session.close()
Closes the specified instrument session to a digital pattern instrument, aborts pattern execution, and
unloads pattern memory. The channels on a digital pattern instrument remain in their current state.

Note: This method is not needed when using the session context manager

commit

nidigital.Session.commit()
Applies all previously configured pin levels, termination modes, clocks, triggers, and pattern timing
to a digital pattern instrument. If you do not call the nidigital.Session.commit() method,
then the initiate method or the nidigital.Session.burst_pattern() method will im-
plicitly call this method for you. Calling this method moves the session from the Uncommitted state
to the Committed state.

configure_active_load_levels

nidigital.Session.configure_active_load_levels(iol, ioh, vcom)
Configures IOL, IOH, and VCOM levels for the active load on the pins you specify. The DUT sources
or sinks current based on the level values. To enable active load, set the termination mode to
ACTIVE_LOAD. To disable active load, set the termination mode of the instrument to HIGH_Z
or VTERM .

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_active_load_levels()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.configure_active_load_levels()

Parameters

• iol (float) – Maximum current that the DUT sinks while outputting a voltage
below VCOM.

• ioh (float) – Maximum current that the DUT sources while outputting a voltage
above VCOM.

• vcom (float) – Commutating voltage level at which the active load circuit
switches between sourcing current and sinking current.

configure_pattern_burst_sites

nidigital.Session.configure_pattern_burst_sites()
Configures which sites burst the pattern on the next call to the initiate method. The pattern burst

172 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

sites can also be modified through the repeated capabilities for the nidigital.Session.
burst_pattern() method. If a site has been disabled through the nidigital.Session.
disable_sites() method, the site does not burst a pattern even if included in the pattern burst
sites.

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].configure_pattern_burst_sites()

To call the method on all sites, you can call it directly on the nidigital.Session.

Example: my_session.configure_pattern_burst_sites()

configure_time_set_compare_edges_strobe

nidigital.Session.configure_time_set_compare_edges_strobe(time_set_name,
strobe_edge)

Configures the strobe edge time for the specified pins. Use this method to mod-
ify time set values after applying a timing sheet with the nidigital.Session.
apply_levels_and_timing() method, or to create time sets programmatically without the
use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents
that will be used in future calls to nidigital.Session.apply_levels_and_timing();
it only affects the values of the current timing context.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].configure_time_set_compare_edges_strobe()

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.configure_time_set_compare_edges_strobe()

Parameters

• time_set_name (str) – The specified time set name.

• strobe_edge (hightime.timedelta, datetime.timedelta, or
float in seconds) – Time when the comparison happens within a vector
period.

configure_time_set_compare_edges_strobe2x

nidigital.Session.configure_time_set_compare_edges_strobe2x(time_set_name,
strobe_edge,
strobe2_edge)

Configures the compare strobes for the specified pins in the time set, including the 2x strobe. Use this
method to modify time set values after applying a timing sheet with the nidigital.Session.
apply_levels_and_timing() method, or to create time sets programmatically without the
use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents

7.2. nidigital module 173

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

that will be used in future calls to nidigital.Session.apply_levels_and_timing();
it only affects the values of the current timing context.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].configure_time_set_compare_edges_strobe2x()

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.configure_time_set_compare_edges_strobe2x()

Parameters

• time_set_name (str) – The specified time set name.

• strobe_edge (hightime.timedelta, datetime.timedelta, or
float in seconds) – Time when the comparison happens within a vector
period.

• strobe2_edge (hightime.timedelta, datetime.timedelta, or
float in seconds) – Time when the comparison happens for the second DUT
cycle within a vector period.

configure_time_set_drive_edges

nidigital.Session.configure_time_set_drive_edges(time_set_name, for-
mat, drive_on_edge,
drive_data_edge,
drive_return_edge,
drive_off_edge)

Configures the drive format and drive edge placement for the specified pins. Use this method
to modify time set values after applying a timing sheet with the nidigital.Session.
apply_levels_and_timing() method, or to create time sets programmatically without the
use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents
that will be used in future calls to nidigital.Session.apply_levels_and_timing();
it only affects the values of the current timing context.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].configure_time_set_drive_edges()

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.configure_time_set_drive_edges()

Parameters

• time_set_name (str) – The specified time set name.

• format (nidigital.DriveFormat) – Drive format of the time set.

– NR: Non-return.

174 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

– RL: Return to low.

– RH : Return to high.

– SBC: Surround by complement.

• drive_on_edge (hightime.timedelta, datetime.timedelta,
or float in seconds) – Delay, in seconds, from the beginning of the vector
period for turning on the pin driver.This option applies only when the prior vector
left the pin in a non-drive pin state (L, H, X, V, M, E). For the SBC format, this
option specifies the delay from the beginning of the vector period at which the
complement of the pattern value is driven.

• drive_data_edge (hightime.timedelta, datetime.timedelta,
or float in seconds) – Delay, in seconds, from the beginning of the vec-
tor period until the pattern data is driven to the pattern value.The ending state from
the previous vector persists until this point.

• drive_return_edge (hightime.timedelta, datetime.
timedelta, or float in seconds) – Delay, in seconds, from the
beginning of the vector period until the pin changes from the pattern data to the
return value, as specified in the format.

• drive_off_edge (hightime.timedelta, datetime.timedelta,
or float in seconds) – Delay, in seconds, from the beginning of the vector
period to turn off the pin driver when the next vector period uses a non-drive symbol
(L, H, X, V, M, E).

configure_time_set_drive_edges2x

nidigital.Session.configure_time_set_drive_edges2x(time_set_name, for-
mat, drive_on_edge,
drive_data_edge,
drive_return_edge,
drive_off_edge,
drive_data2_edge,
drive_return2_edge)

Configures the drive edges of the pins in the time set, including 2x edges. Use this method
to modify time set values after applying a timing sheet with the nidigital.Session.
apply_levels_and_timing() method, or to create time sets programmatically without the
use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents
that will be used in future calls to nidigital.Session.apply_levels_and_timing();
it only affects the values of the current timing context.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].configure_time_set_drive_edges2x()

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.configure_time_set_drive_edges2x()

Parameters

• time_set_name (str) – The specified time set name.

7.2. nidigital module 175

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

• format (nidigital.DriveFormat) – Drive format of the time set.

– NR: Non-return.

– RL: Return to low.

– RH : Return to high.

– SBC: Surround by complement.

• drive_on_edge (hightime.timedelta, datetime.timedelta,
or float in seconds) – Delay, in seconds, from the beginning of the vector
period for turning on the pin driver.This option applies only when the prior vector
left the pin in a non-drive pin state (L, H, X, V, M, E). For the SBC format, this
option specifies the delay from the beginning of the vector period at which the
complement of the pattern value is driven.

• drive_data_edge (hightime.timedelta, datetime.timedelta,
or float in seconds) – Delay, in seconds, from the beginning of the vec-
tor period until the pattern data is driven to the pattern value.The ending state from
the previous vector persists until this point.

• drive_return_edge (hightime.timedelta, datetime.
timedelta, or float in seconds) – Delay, in seconds, from the
beginning of the vector period until the pin changes from the pattern data to the
return value, as specified in the format.

• drive_off_edge (hightime.timedelta, datetime.timedelta,
or float in seconds) – Delay, in seconds, from the beginning of the vector
period to turn off the pin driver when the next vector period uses a non-drive symbol
(L, H, X, V, M, E).

• drive_data2_edge (hightime.timedelta, datetime.
timedelta, or float in seconds) – Delay, in seconds, from the
beginning of the vector period until the pattern data in the second DUT cycle is
driven to the pattern value.

• drive_return2_edge (hightime.timedelta, datetime.
timedelta, or float in seconds) – Delay, in seconds, from the
beginning of the vector period until the pin changes from the pattern data in the
second DUT cycle to the return value, as specified in the format.

configure_time_set_drive_format

nidigital.Session.configure_time_set_drive_format(time_set_name,
drive_format)

Configures the drive format for the pins specified in the pinList. Use this method to
modify time set values after applying a timing sheet with the nidigital.Session.
apply_levels_and_timing() method, or to create time sets programmatically without the
use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents
that will be used in future calls to nidigital.Session.apply_levels_and_timing();
it only affects the values of the current timing context.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].configure_time_set_drive_format()

176 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.configure_time_set_drive_format()

Parameters

• time_set_name (str) – The specified time set name.

• drive_format (nidigital.DriveFormat) – Drive format of the time set.

– NR: Non-return.

– RL: Return to low.

– RH : Return to high.

– SBC: Surround by complement.

configure_time_set_edge

nidigital.Session.configure_time_set_edge(time_set_name, edge, time)
Configures the edge placement for the pins specified in the pin list. Use this method
to modify time set values after applying a timing sheet with the nidigital.Session.
apply_levels_and_timing() method, or to create time sets programmatically without the
use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents
that will be used in future calls to nidigital.Session.apply_levels_and_timing();
it only affects the values of the current timing context.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].configure_time_set_edge()

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.configure_time_set_edge()

Parameters

• time_set_name (str) – The specified time set name.

• edge (nidigital.TimeSetEdgeType) – Name of the edge.

– DRIVE_ON

– DRIVE_DATA

– DRIVE_RETURN

– DRIVE_OFF

– COMPARE_STROBE

– DRIVE_DATA2

– DRIVE_RETURN2

– COMPARE_STROBE2

7.2. nidigital module 177

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

• time (hightime.timedelta, datetime.timedelta, or float
in seconds) – The time from the beginning of the vector period in which to
place the edge.

configure_time_set_edge_multiplier

nidigital.Session.configure_time_set_edge_multiplier(time_set_name,
edge_multiplier)

Configures the edge multiplier of the pins in the time set. Use this method to mod-
ify time set values after applying a timing sheet with the nidigital.Session.
apply_levels_and_timing() method, or to create time sets programmatically without the
use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents
that will be used in future calls to nidigital.Session.apply_levels_and_timing();
it only affects the values of the current timing context.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].configure_time_set_edge_multiplier()

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.configure_time_set_edge_multiplier()

Parameters

• time_set_name (str) – The specified time set name.

• edge_multiplier (int) – The specified edge multiplier for the pins in the pin
list.

configure_time_set_period

nidigital.Session.configure_time_set_period(time_set_name, period)
Configures the period of a time set. Use this method to modify time set values after applying a
timing sheet with the nidigital.Session.apply_levels_and_timing() method, or
to create time sets programmatically without the use of timing sheets. This method does not modify
the timing sheet file or the timing sheet contents that will be used in future calls to nidigital.
Session.apply_levels_and_timing(); it only affects the values of the current timing
context.

Parameters

• time_set_name (str) – The specified time set name.

• period (hightime.timedelta, datetime.timedelta, or float
in seconds) – Period for this time set, in seconds.

configure_voltage_levels

nidigital.Session.configure_voltage_levels(vil, vih, vol, voh, vterm)
Configures voltage levels for the pins you specify.

178 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_voltage_levels()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.configure_voltage_levels()

Parameters

• vil (float) – Voltage that the instrument will apply to the input of the DUT when
the pin driver drives a logic low (0).

• vih (float) – Voltage that the instrument will apply to the input of the DUT when
the test instrument drives a logic high (1).

• vol (float) – Output voltage below which the comparator on the pin driver inter-
prets a logic low (L).

• voh (float) – Output voltage above which the comparator on the pin driver inter-
prets a logic high (H).

• vterm (float) – Termination voltage the instrument applies during non-drive
cycles when the termination mode is set to Vterm. The instrument applies the termi-
nation voltage through a 50 ohm parallel termination resistance.

create_capture_waveform_from_file_digicapture

nidigital.Session.create_capture_waveform_from_file_digicapture(waveform_name,
wave-
form_file_path)

Creates a capture waveform with the configuration information from a Digicapture file generated by
the Digital Pattern Editor.

Parameters

• waveform_name (str) – Waveform name you want to use. You must specify
waveform_name if the file contains multiple waveforms. Use the waveform_name
with the capture_start opcode in your pattern.

• waveform_file_path (str) – Absolute file path to the capture waveform file
(.digicapture) you want to load.

create_capture_waveform_parallel

nidigital.Session.create_capture_waveform_parallel(waveform_name)
Sets the capture waveform settings for parallel acquisition. Settings apply across all sites if multiple
sites are configured in the pin map. You cannot reconfigure settings after waveforms are created.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].create_capture_waveform_parallel()

7.2. nidigital module 179

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.create_capture_waveform_parallel()

Parameters waveform_name (str) – Waveform name you want to use. Use the wave-
form_name with the capture_start opcode in your pattern.

create_capture_waveform_serial

nidigital.Session.create_capture_waveform_serial(waveform_name, sam-
ple_width, bit_order)

Sets the capture waveform settings for serial acquisition. Settings apply across all sites if multiple
sites are configured in the pin map. You cannot reconfigure settings after waveforms are created.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].create_capture_waveform_serial()

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.create_capture_waveform_serial()

Parameters

• waveform_name (str) – Waveform name you want to use. Use the wave-
form_name with the capture_start opcode in your pattern.

• sample_width (int) – Width in bits of each serial sample. Valid values are
between 1 and 32.

• bit_order (nidigital.BitOrder) – Order in which to shift the bits.

– MSB: Specifies the bit order by most significant bit first.

– LSB: Specifies the bit order by least significant bit first.

create_source_waveform_from_file_tdms

nidigital.Session.create_source_waveform_from_file_tdms(waveform_name,
wave-
form_file_path,
write_waveform_data=True)

Creates a source waveform with configuration information from a TDMS file generated by the Dig-
ital Pattern Editor. It also optionally writes waveform data from the file.

Parameters

• waveform_name (str) – The waveform name you want to use from the file.
You must specify waveform_name if the file contains multiple waveforms. Use the
waveform_name with the source_start opcode in your pattern.

• waveform_file_path (str) – Absolute file path to the load source waveform
file (.tdms).

180 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

• write_waveform_data (bool) – A Boolean that writes waveform data to
source memory if True and the waveform data is in the file.

create_source_waveform_parallel

nidigital.Session.create_source_waveform_parallel(waveform_name,
data_mapping)

Sets the source waveform settings required for parallel sourcing. Settings apply across all sites if
multiple sites are configured in the pin map. You cannot reconfigure settings after waveforms are
created.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].create_source_waveform_parallel()

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.create_source_waveform_parallel()

Parameters

• waveform_name (str) – The name to assign to the waveform. Use the wave-
form_name with source_start opcode in your pattern.

• data_mapping (nidigital.SourceDataMapping) – Parameter that spec-
ifies how to map data on multiple sites.

– BROADCAST: Broadcasts the waveform you specify to all sites.

– SITE_UNIQUE: Sources unique waveform data to each site.

create_source_waveform_serial

nidigital.Session.create_source_waveform_serial(waveform_name,
data_mapping, sam-
ple_width, bit_order)

Sets the source waveform settings required for serial sourcing. Settings apply across all sites if
multiple sites are configured in the pin map. You cannot reconfigure settings after waveforms are
created.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].create_source_waveform_serial()

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.create_source_waveform_serial()

Parameters

7.2. nidigital module 181

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

• waveform_name (str) – The name to assign to the waveform. Use the wave-
form_name with source_start opcode in your pattern.

• data_mapping (nidigital.SourceDataMapping) – Parameter that spec-
ifies how to map data on multiple sites.

– BROADCAST: Broadcasts the waveform you specify to all sites.

– SITE_UNIQUE: Sources unique waveform data to each site.

• sample_width (int) – Width in bits of each serial sample. Valid values are
between 1 and 32.

• bit_order (nidigital.BitOrder) – Order in which to shift the bits.

– MSB: Specifies the bit order by most significant bit first.

– LSB: Specifies the bit order by least significant bit first.

create_time_set

nidigital.Session.create_time_set(name)
Creates a time set with the name that you specify. Use this method when you want to create time
sets programmatically rather than with a timing sheet.

Parameters name (str) – The specified name of the new time set.

delete_all_time_sets

nidigital.Session.delete_all_time_sets()
Deletes all time sets from instrument memory.

disable_sites

nidigital.Session.disable_sites()
Disables specified sites. Disabled sites are not included in pattern bursts initiated
by the initiate method or the nidigital.Session.burst_pattern() method, even
if the site is specified in the list of pattern burst sites in nidigital.Session.
configure_pattern_burst_sites() method or in the repeated capabilities for the
nidigital.Session.burst_pattern() method. Additionally, if you specify a list of pin
or pin group names in repeated capabilities in any NI-Digital method, digital pattern instrument
channels mapped to disabled sites are not affected by the method. The methods that return per-
pin data, such as the nidigital.Session.ppmu_measure() method, do not return data for
channels mapped to disabled sites. The digital pattern instrument channels mapped to the sites spec-
ified are left in their current state. NI TestStand Semiconductor Module requires all sites to always
be enabled, and manages the set of active sites without disabling the sites in the digital instrument
session. Do not use this method with the Semiconductor Module.

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].disable_sites()

To call the method on all sites, you can call it directly on the nidigital.Session.

182 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.disable_sites()

enable_sites

nidigital.Session.enable_sites()
Enables the sites you specify. All sites are enabled by default.

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].enable_sites()

To call the method on all sites, you can call it directly on the nidigital.Session.

Example: my_session.enable_sites()

fetch_capture_waveform

nidigital.Session.fetch_capture_waveform(waveform_name, sam-
ples_to_read, time-
out=hightime.timedelta(seconds=10.0))

Returns dictionary where each key is a site number and value is a collection of digital states repre-
senting capture waveform data

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].fetch_capture_waveform()

To call the method on all sites, you can call it directly on the nidigital.Session.

Example: my_session.fetch_capture_waveform()

Parameters

• waveform_name (str) – Waveform name you create with the create capture
waveform method. Use the waveform_name parameter with capture_start opcode
in your pattern.

• samples_to_read (int) – Number of samples to fetch.

• timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) – Maximum time (in seconds) allowed for this method to
complete. If this method does not complete within this time interval, this method
returns an error.

Return type { int: memoryview of array.array of unsigned int, int: memoryview of ar-
ray.array of unsigned int, .. }

Returns Dictionary where each key is a site number and value is a collection of digital
states representing capture waveform data

7.2. nidigital module 183

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

fetch_history_ram_cycle_information

nidigital.Session.fetch_history_ram_cycle_information(position, sam-
ples_to_read)

Returns the pattern information acquired for the specified cycles.

If the pattern is using the edge multiplier feature, cycle numbers represent tester cycles, each of
which may consist of multiple DUT cycles. When using pins with mixed edge multipliers, pins may
return PIN_STATE_NOT_ACQUIRED for DUT cycles where those pins do not have edges defined.

Site number on which to retrieve pattern information must be specified via sites repeated capability.
The method returns an error if more than one site is specified.

Pins for which to retrieve pattern information must be specified via pins repeated capability. If
pins are not specified, pin list from the pattern containing the start label is used. Call nidigital.
Session.get_pattern_pin_names()with the start label to retrieve the pins associated with
the pattern burst:

session.sites[0].pins['PinA', 'PinB'].fetch_history_ram_cycle_
→˓information(0, -1)

Note: Before bursting a pattern, you must configure the History RAM trigger and specify which
cycles to acquire.

nidigital.Session.history_ram_trigger_type should be used to specify the trigger
condition on which History RAM starts acquiring pattern information.

If History RAM trigger is configured as CYCLE_NUMBER, nidigital.Session.
cycle_number_history_ram_trigger_cycle_number should be used to specify the
cycle number on which History RAM starts acquiring pattern information.

If History RAM trigger is configured as PATTERN_LABEL, nidigital.Session.
pattern_label_history_ram_trigger_label should be used to specify
the pattern label from which to start acquiring pattern information. nidigital.
Session.pattern_label_history_ram_trigger_vector_offset should
be used to specify the number of vectors following the specified pattern la-
bel from which to start acquiring pattern information. nidigital.Session.
pattern_label_history_ram_trigger_cycle_offset should be used to specify
the number of cycles following the specified pattern label and vector offset from which to start
acquiring pattern information.

For all History RAM trigger conditions, nidigital.Session.
history_ram_pretrigger_samples should be used to specify the number of samples to
acquire before the trigger conditions are met. If you configure History RAM to only acquire failed
cycles, you must set nidigital.Session.history_ram_pretrigger_samples to 0.

nidigital.Session.history_ram_cycles_to_acquire should be used to specify
which cycles History RAM acquires after the trigger conditions are met.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].fetch_history_ram_cycle_information()

To call the method on all pins, you can call it directly on the nidigital.Session.

184 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.fetch_history_ram_cycle_information()

Parameters

• position (int) – Sample index from which to start fetching pattern information.

• samples_to_read (int) – Number of samples to fetch. A value of -1 specifies
to fetch all available samples.

Return type list of HistoryRAMCycleInformation

Returns

Returns a list of class instances with the following information about each pattern
cycle:

• pattern_name (str) Name of the pattern for the acquired cycle.

• time_set_name (str) Time set for the acquired cycle.

• vector_number (int) Vector number within the pattern for the acquired cycle. Vec-
tor numbers start at 0 from the beginning of the pattern.

• cycle_number (int) Cycle number acquired by this History RAM sample. Cycle
numbers start at 0 from the beginning of the pattern burst.

• scan_cycle_number (int) Scan cycle number acquired by this History RAM sam-
ple. Scan cycle numbers start at 0 from the first cycle of the scan vector. Scan cycle
numbers are -1 for cycles that do not have a scan opcode.

• expected_pin_states (list of list of enums.PinState) Pin states as expected by the
loaded pattern in the order specified in the pin list. Pins without defined edges in the
specified DUT cycle will have a value of PIN_STATE_NOT_ACQUIRED. Length
of the outer list will be equal to the value of edge multiplier for the given vector.
Length of the inner list will be equal to the number of pins requested.

• actual_pin_states (list of list of enums.PinState) Pin states acquired by History
RAM in the order specified in the pin list. Pins without defined edges in the specified
DUT cycle will have a value of PIN_STATE_NOT_ACQUIRED. Length of the
outer list will be equal to the value of edge multiplier for the given vector. Length
of the inner list will be equal to the number of pins requested.

• per_pin_pass_fail (list of list of bool) Pass fail information for pins in the order
specified in the pin list. Pins without defined edges in the specified DUT cycle will
have a value of pass (True). Length of the outer list will be equal to the value of edge
multiplier for the given vector. Length of the inner list will be equal to the number
of pins requested.

frequency_counter_measure_frequency

nidigital.Session.frequency_counter_measure_frequency()
Measures the frequency on the specified channel(s) over the specified measurement time. All chan-
nels in the repeated capabilities should have the same measurement time.

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

7.2. nidigital module 185

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.channels[...].frequency_counter_measure_frequency()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.frequency_counter_measure_frequency()

Return type list of float

Returns The returned frequency counter measurement, in Hz.This method returns -1 if
the measurement is invalid for the channel.

get_channel_names

nidigital.Session.get_channel_names(indices)
Returns a list of channel names for given channel indices.

Parameters indices (basic sequence types or str or int) – Index list
for the channels in the session. Valid values are from zero to the total number of chan-
nels in the session minus one. The index string can be one of the following formats:

• A comma-separated list—for example, “0,2,3,1”

• A range using a hyphen—for example, “0-3”

• A range using a colon—for example, “0:3 “

You can combine comma-separated lists and ranges that use a hyphen or colon. Both
out-of-order and repeated indices are supported (“2,3,0,” “1,2,2,3”). White space char-
acters, including spaces, tabs, feeds, and carriage returns, are allowed between charac-
ters. Ranges can be incrementing or decrementing.

Return type list of str

Returns The channel name(s) at the specified indices.

get_fail_count

nidigital.Session.get_fail_count()
Returns the comparison fail count for pins in the repeated capabilities.

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].get_fail_count()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.get_fail_count()

Return type list of int

Returns Number of failures in an array. If a site is disabled or not enabled for
burst, the method does not return data for that site. You can also use the
nidigital.Session.get_pin_results_pin_information() method
to obtain a sorted list of returned sites and channels.

186 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python API Documentation, Release 1.4.1

get_history_ram_sample_count

nidigital.Session.get_history_ram_sample_count()
Returns the number of samples History RAM acquired on the last pattern burst.

Note: Before bursting a pattern, you must configure the History RAM trigger and specify which
cycles to acquire.

nidigital.Session.history_ram_trigger_type should be used to specify the trigger
condition on which History RAM starts acquiring pattern information.

If History RAM trigger is configured as CYCLE_NUMBER, nidigital.Session.
cycle_number_history_ram_trigger_cycle_number should be used to specify the
cycle number on which History RAM starts acquiring pattern information.

If History RAM trigger is configured as PATTERN_LABEL, nidigital.Session.
pattern_label_history_ram_trigger_label should be used to specify
the pattern label from which to start acquiring pattern information. nidigital.
Session.pattern_label_history_ram_trigger_vector_offset should
be used to specify the number of vectors following the specified pattern la-
bel from which to start acquiring pattern information. nidigital.Session.
pattern_label_history_ram_trigger_cycle_offset should be used to specify
the number of cycles following the specified pattern label and vector offset from which to start
acquiring pattern information.

For all History RAM trigger conditions, nidigital.Session.
history_ram_pretrigger_samples should be used to specify the number of samples to
acquire before the trigger conditions are met. If you configure History RAM to only acquire failed
cycles, you must set nidigital.Session.history_ram_pretrigger_samples to 0.

nidigital.Session.history_ram_cycles_to_acquire should be used to specify
which cycles History RAM acquires after the trigger conditions are met.

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].get_history_ram_sample_count()

To call the method on all sites, you can call it directly on the nidigital.Session.

Example: my_session.get_history_ram_sample_count()

Return type int

Returns The returned number of samples that History RAM acquired.

get_pattern_pin_names

nidigital.Session.get_pattern_pin_names(start_label)
Returns the pattern pin list.

Parameters start_label (str) – Pattern name or exported pattern label from which
to get the pin names that the pattern references.

7.2. nidigital module 187

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

Return type list of str

Returns List of pins referenced by the pattern with the startLabel.

get_pin_results_pin_information

nidigital.Session.get_pin_results_pin_information()
Returns the pin names, site numbers, and channel names that correspond to per-pin data read from
the digital pattern instrument. The method returns pin information in the same order as values
read using the nidigital.Session.read_static() method, nidigital.Session.
ppmu_measure() method, and nidigital.Session.get_fail_count() method. Use
this method to match values the previously listed methods return with pins, sites, and instrument
channels.

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].get_pin_results_pin_information()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.get_pin_results_pin_information()

Return type list of PinInfo

Returns

List of named tuples with fields:

• pin_name (str)

• site_number (int)

• channel_name (str)

get_site_pass_fail

nidigital.Session.get_site_pass_fail()
Returns dictionary where each key is a site number and value is pass/fail

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].get_site_pass_fail()

To call the method on all sites, you can call it directly on the nidigital.Session.

Example: my_session.get_site_pass_fail()

Return type { int: bool, int: bool, .. }

Returns Dictionary where each key is a site number and value is pass/fail

188 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

get_time_set_drive_format

nidigital.Session.get_time_set_drive_format(time_set_name)
Returns the drive format of a pin in the specified time set.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].get_time_set_drive_format()

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.get_time_set_drive_format()

Parameters time_set_name (str) – The specified time set name.

Return type nidigital.DriveFormat

Returns Returned drive format of the time set for the specified pin.

get_time_set_edge

nidigital.Session.get_time_set_edge(time_set_name, edge)
Returns the edge time of a pin in the specified time set.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].get_time_set_edge()

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.get_time_set_edge()

Parameters

• time_set_name (str) – The specified time set name.

• edge (nidigital.TimeSetEdgeType) – Name of the edge.

– DRIVE_ON

– DRIVE_DATA

– DRIVE_RETURN

– DRIVE_OFF

– COMPARE_STROBE

– DRIVE_DATA2

– DRIVE_RETURN2

– COMPARE_STROBE2

Return type hightime.timedelta

7.2. nidigital module 189

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

Returns Time from the beginning of the vector period in which to place the edge.

get_time_set_edge_multiplier

nidigital.Session.get_time_set_edge_multiplier(time_set_name)
Returns the edge multiplier of the specified time set.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].get_time_set_edge_multiplier()

To call the method on all pins, you can call it directly on the nidigital.Session.

Example: my_session.get_time_set_edge_multiplier()

Parameters time_set_name (str) – The specified time set name.

Return type int

Returns Returned edge multiplier of the time set for the specified pin.

get_time_set_period

nidigital.Session.get_time_set_period(time_set_name)
Returns the period of the specified time set.

Parameters time_set_name (str) – The specified time set name.

Return type hightime.timedelta

Returns Returned period, in seconds, that the edge is configured to.

initiate

nidigital.Session.initiate()
Starts bursting the pattern configured by nidigital.Session.start_label, causing the
NI-Digital session to be committed. To stop the pattern burst, call nidigital.Session.
abort(). If keep alive pattern is bursting when nidigital.Session.abort() is called
or upon exiting the context manager, keep alive pattern will not be stopped. To stop the keep alive
pattern, call nidigital.Session.abort_keep_alive().

Note: This method will return a Python context manager that will initiate on entering and abort on
exit.

is_done

nidigital.Session.is_done()
Checks the hardware to determine if the pattern burst has completed or if any errors have occurred.

190 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

Return type bool

Returns A Boolean that indicates whether the pattern burst completed.

is_site_enabled

nidigital.Session.is_site_enabled()
Checks if a specified site is enabled.

Note: The method returns an error if more than one site is specified.

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].is_site_enabled()

To call the method on all sites, you can call it directly on the nidigital.Session.

Example: my_session.is_site_enabled()

Return type bool

Returns Boolean value that returns whether the site is enabled or disabled.

load_pattern

nidigital.Session.load_pattern(file_path)
Loads the specified pattern file.

Parameters file_path (str) – Absolute file path of the binary .digipat pattern file
to load. Specify the pattern to burst using nidigital.Session.start_label
or the start_label parameter of the nidigital.Session.burst_pattern()
method.

load_pin_map

nidigital.Session.load_pin_map(file_path)
Loads a pin map file. You can load only a single pin and channel map file during an NI-Digital Pat-
tern Driver session. To switch pin maps, create a new session or call the nidigital.Session.
reset() method.

Parameters file_path (str) – Absolute file path to a pin map file created with the
Digital Pattern Editor or the NI TestStand Semiconductor Module.

7.2. nidigital module 191

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

load_specifications_levels_and_timing

nidigital.Session.load_specifications_levels_and_timing(specifications_file_paths=None,
lev-
els_file_paths=None,
tim-
ing_file_paths=None)

Loads settings in specifications, levels, and timing sheets. These settings are not applied to the digital
pattern instrument until nidigital.Session.apply_levels_and_timing() is called.

If the levels and timing sheets contains formulas, they are evaluated at load time. If the formulas
refer to variables, the specifications sheets that define those variables must be loaded either first, or
at the same time as the levels and timing sheets.

Parameters

• specifications_file_paths (str or basic sequence of str)
– Absolute file path of one or more specifications files.

• levels_file_paths (str or basic sequence of str) – Absolute
file path of one or more levels sheet files.

• timing_file_paths (str or basic sequence of str) – Absolute
file path of one or more timing sheet files.

lock

nidigital.Session.lock()
Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:

• The application called the nidigital.Session.lock() method.

• A call to NI-Digital Pattern Driver locked the session.

• After a call to the nidigital.Session.lock() method returns successfully, no other threads can
access the device session until you call the nidigital.Session.unlock() method or exit out of
the with block when using lock context manager.

• Use the nidigital.Session.lock() method and the nidigital.Session.unlock()
method around a sequence of calls to instrument driver methods if you require that the device retain its
settings through the end of the sequence.

You can safely make nested calls to the nidigital.Session.lock() method within the same thread. To
completely unlock the session, you must balance each call to the nidigital.Session.lock() method
with a call to the nidigital.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

with nidigital.Session('dev1') as session:
with session.lock():

Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

192 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

Return type context manager

Returns When used in a with statement, nidigital.Session.lock() acts as a context man-
ager and unlock will be called when the with block is exited

ppmu_measure

nidigital.Session.ppmu_measure(measurement_type)
Instructs the PPMU to measure voltage or current. This method can be called to take a voltage
measurement even if the pin method is not set to PPMU.

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].ppmu_measure()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.ppmu_measure()

Parameters measurement_type (nidigital.PPMUMeasurementType) – Pa-
rameter that specifies whether the PPMU measures voltage or current from the DUT.

• CURRENT: The PPMU measures current from the DUT.

• VOLTAGE: The PPMU measures voltage from the DUT.

Return type list of float

Returns The returned array of measurements in the order you specify in the repeated capa-
bilities. If a site is disabled, the method does not return data for that site. You can also
use the nidigital.Session.get_pin_results_pin_information()
method to obtain a sorted list of returned sites and channels.

ppmu_source

nidigital.Session.ppmu_source()
Starts sourcing voltage or current from the PPMU. This method automatically selects the PPMU
method. Changes to PPMU source settings do not take effect until you call this method. If you
modify source settings after you call this method, you must call this method again for changes in the
configuration to take effect.

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].ppmu_source()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.ppmu_source()

7.2. nidigital module 193

NI Modular Instruments Python API Documentation, Release 1.4.1

read_sequencer_flag

nidigital.Session.read_sequencer_flag(flag)
Reads the state of a pattern sequencer flag. Use pattern sequencer flags to coordinate execution
between the pattern sequencer and a runtime test program.

Parameters flag (nidigital.SequencerFlag) – The pattern sequencer flag you
want to read.

• FLAG0 (“seqflag0”): Reads pattern sequencer flag 0.

• FLAG1 (“seqflag1”): Reads pattern sequencer flag 1.

• FLAG2 (“seqflag2”): Reads pattern sequencer flag 2.

• FLAG3 (“seqflag3”): Reads pattern sequencer flag 3.

Return type bool

Returns A Boolean that indicates the state of the pattern sequencer flag you specify.

read_sequencer_register

nidigital.Session.read_sequencer_register(reg)
Reads the value of a pattern sequencer register. Use pattern sequencer registers to pass numeric
values between the pattern sequencer and a runtime test program. For example, you can use this
method to read a register modified by the write_reg opcode during a pattern burst.

Parameters reg (nidigital.SequencerRegister) – The sequencer register to
read from.

• REGISTER0 (“reg0”): Reads sequencer register 0.

• REGISTER1 (“reg1”): Reads sequencer register 1.

• REGISTER2 (“reg2”): Reads sequencer register 2.

• REGISTER3 (“reg3”): Reads sequencer register 3.

• REGISTER4 (“reg4”): Reads sequencer register 4.

• REGISTER5 (“reg5”): Reads sequencer register 5.

• REGISTER6 (“reg6”): Reads sequencer register 6.

• REGISTER7 (“reg7”): Reads sequencer register 7.

• REGISTER8 (“reg8”): Reads sequencer register 8.

• REGISTER9 (“reg9”): Reads sequencer register 9.

• REGISTER10 (“reg10”): Reads sequencer register 10.

• REGISTER11 (“reg11”): Reads sequencer register 11.

• REGISTER12 (“reg12”): Reads sequencer register 12.

• REGISTER13 (“reg13”): Reads sequencer register 13.

• REGISTER14 (“reg14”): Reads sequencer register 14.

• REGISTER15 (“reg15”): Reads sequencer register 15.

Return type int

Returns Value read from the sequencer register.

194 Chapter 7. License

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python API Documentation, Release 1.4.1

read_static

nidigital.Session.read_static()
Reads the current state of comparators for pins you specify in the repeated capabilities. If there are
uncommitted changes to levels or the termination mode, this method commits the changes to the
pins.

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].read_static()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.read_static()

Return type list of nidigital.PinState

Returns

The returned array of pin states read from the channels in the repeated capabil-
ities. Data is returned in the order you specify in the repeated capabilities. If
a site is disabled, the method does not return data for that site. You can also
use the nidigital.Session.get_pin_results_pin_information()
method to obtain a sorted list of returned sites and channels.

• L: The comparators read a logic low pin state.

• H : The comparators read a logic high pin state.

• M : The comparators read a midband pin state.

• V : The comparators read a value that is above VOH and below VOL, which can
occur when you set VOL higher than VOH.

reset

nidigital.Session.reset()
Returns a digital pattern instrument to a known state. This method performs the following actions:

• Aborts pattern execution.

• Clears pin maps, time sets, source and capture waveforms, and patterns.

• Resets all properties to default values, including the nidigital.Session.
selected_function property that is set to DISCONNECT, causing the I/O switches
to open.

• Stops exporting all external signals and events.

reset_device

nidigital.Session.reset_device()
Returns a digital pattern instrument to a known state. This method performs the following actions:

• Aborts pattern execution.

7.2. nidigital module 195

NI Modular Instruments Python API Documentation, Release 1.4.1

• Clears pin maps, time sets, source and capture waveforms, and patterns.

• Resets all properties to default values, including the nidigital.Session.
selected_function property that is set to DISCONNECT, causing the I/O switches
to open.

• Stops export of all external signals and events.

• Clears over-temperature and over-power conditions.

self_calibrate

nidigital.Session.self_calibrate()
Performs self-calibration on a digital pattern instrument.

self_test

nidigital.Session.self_test()
Returns self test results from a digital pattern instrument. This test requires several minutes to
execute.

Raises SelfTestError on self test failure. Properties on exception object:

• code - failure code from driver

• message - status message from driver

Self-Test Code Description
0 Self test passed.
1 Self test failed.

send_software_edge_trigger

nidigital.Session.send_software_edge_trigger(trigger, trigger_identifier)
Forces a particular edge-based trigger to occur regardless of how the specified trigger is configured.
You can use this method as a software override.

Parameters

• trigger (nidigital.SoftwareTrigger) – Trigger specifies the trigger
you want to override.

Defined
Values
START Overrides the Start trigger. You must specify an empty string in

the trigger_identifier parameter.
CONDITIONAL_JUMPSpecifies to route a conditional jump trigger. You must specify a

conditional jump trigger in the trigger_identifier parameter.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

196 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• trigger_identifier (str) – Trigger Identifier specifies the in-
stance of the trigger you want to override. If trigger is specified as
NIDIGITAL_VAL_START_TRIGGER, this parameter must be an empty string.
If trigger is specified as NIDIGITAL_VAL_CONDITIONAL_JUMP_TRIGGER,
allowed values are conditionalJumpTrigger0, conditionalJumpTrigger1, condition-
alJumpTrigger2, and conditionalJumpTrigger3.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

tdr

nidigital.Session.tdr(apply_offsets=True)
Measures propagation delays through cables, connectors, and load boards using Time-Domain Re-
flectometry (TDR). Ensure that the channels and pins you select are connected to an open circuit.

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].tdr()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.tdr()

Parameters apply_offsets (bool) – A Boolean that specifies whether to apply the
measured TDR offsets. If you need to adjust the measured offsets prior to applying, set
this input to False, and call the nidigital.Session.apply_tdr_offsets()
method to specify the adjusted TDR offsets values.

Return type list of hightime.timedelta

Returns Measured TDR offsets specified in seconds.

unload_all_patterns

nidigital.Session.unload_all_patterns(unload_keep_alive_pattern=False)
Unloads all patterns, source waveforms, and capture waveforms from a digital pattern instrument.

Parameters unload_keep_alive_pattern (bool) – A Boolean that specifies
whether to keep or unload the keep alive pattern.

unload_specifications

nidigital.Session.unload_specifications(file_paths)
Unloads the given specifications sheets present in the previously loaded specifications files that you
select.

7.2. nidigital module 197

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

You must call nidigital.Session.load_specifications_levels_and_timing()
to reload the files with updated specifications values. You must then call nidigital.Session.
apply_levels_and_timing() in order to apply the levels and timing values that reference
the updated specifications values.

Parameters file_paths (str or basic sequence of str) – Absolute file
path of one or more loaded specifications files.

unlock

nidigital.Session.unlock()
Releases a lock that you acquired on an device session using nidigital.Session.lock(). Refer to
nidigital.Session.unlock() for additional information on session locks.

wait_until_done

nidigital.Session.wait_until_done(timeout=hightime.timedelta(seconds=10.0))
Waits until the pattern burst has completed or the timeout has expired.

Parameters timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) – Maximum time (in seconds) allowed for this method to
complete. If this method does not complete within this time interval, this method re-
turns an error.

write_sequencer_flag

nidigital.Session.write_sequencer_flag(flag, value)
Writes the state of a pattern sequencer flag. Use pattern sequencer flags to coordinate execution
between the pattern sequencer and a runtime test program.

Parameters

• flag (nidigital.SequencerFlag) – The pattern sequencer flag to write.

– FLAG0 (“seqflag0”): Writes pattern sequencer flag 0.

– FLAG1 (“seqflag1”): Writes pattern sequencer flag 1.

– FLAG2 (“seqflag2”): Writes pattern sequencer flag 2.

– FLAG3 (“seqflag3”): Writes pattern sequencer flag 3.

• value (bool) – A Boolean that assigns a state to the pattern sequencer flag you
specify.

write_sequencer_register

nidigital.Session.write_sequencer_register(reg, value)
Writes a value to a pattern sequencer register. Use pattern sequencer registers to pass numeric values
between the pattern sequencer and a runtime test program.

Parameters

• reg (nidigital.SequencerRegister) – The sequencer register you want
to write to.

198 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

– REGISTER0 (“reg0”): Writes sequencer register 0.

– REGISTER1 (“reg1”): Writes sequencer register 1.

– REGISTER2 (“reg2”): Writes sequencer register 2.

– REGISTER3 (“reg3”): Writes sequencer register 3.

– REGISTER4 (“reg4”): Writes sequencer register 4.

– REGISTER5 (“reg5”): Writes sequencer register 5.

– REGISTER6 (“reg6”): Writes sequencer register 6.

– REGISTER7 (“reg7”): Writes sequencer register 7.

– REGISTER8 (“reg8”): Writes sequencer register 8.

– REGISTER9 (“reg9”): Writes sequencer register 9.

– REGISTER10 (“reg10”): Writes sequencer register 10.

– REGISTER11 (“reg11”): Writes sequencer register 11.

– REGISTER12 (“reg12”): Writes sequencer register 12.

– REGISTER13 (“reg13”): Writes sequencer register 13.

– REGISTER14 (“reg14”): Writes sequencer register 14.

– REGISTER15 (“reg15”): Writes sequencer register 15.

• value (int) – The value you want to write to the register.

write_source_waveform_broadcast

nidigital.Session.write_source_waveform_broadcast(waveform_name, wave-
form_data)

Writes the same waveform data to all sites. Use this write method if you set the data_mapping
parameter of the create source waveform method to BROADCAST.

Parameters

• waveform_name (str) – The name to assign to the waveform. Use the wave-
form_name with source_start opcode in your pattern.

• waveform_data (list of int) – 1D array of samples to use as source data
to apply to all sites.

write_source_waveform_data_from_file_tdms

nidigital.Session.write_source_waveform_data_from_file_tdms(waveform_name,
wave-
form_file_path)

Writes a source waveform based on the waveform data and configuration information the file con-
tains.

Parameters

• waveform_name (str) – The name to assign to the waveform. Use the wave-
form_name with source_start opcode in your pattern.

7.2. nidigital module 199

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

• waveform_file_path (str) – Absolute file path to the load source waveform
file (.tdms).

write_source_waveform_site_unique

nidigital.Session.write_source_waveform_site_unique(waveform_name,
waveform_data)

Writes one waveform per site. Use this write method if you set the parameter of the create source
waveform method to Site Unique.

Parameters

• waveform_name (str) – The name to assign to the waveform. Use the wave-
form_name with source_start opcode in your pattern.

• waveform_data ({ int: basic sequence of unsigned int,
int: basic sequence of unsigned int, .. }) – Dictionary
where each key is a site number and value is a collection of samples to use as source
data

write_static

nidigital.Session.write_static(state)
Writes a static state to the specified pins. The selected pins remain in the specified state until the next
pattern burst or call to this method. If there are uncommitted changes to levels or the termination
mode, this method commits the changes to the pins. This method does not change the selected pin
method. If you write a static state to a pin that does not have the Digital method selected, the new
static state is stored by the instrument, and affects the state of the pin the next time you change the
selected method to Digital.

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].write_static()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.write_static()

Parameters state (nidigital.WriteStaticPinState) – Parameter that spec-
ifies one of the following digital states to assign to the pin.

• ZERO: Specifies to drive low.

• ONE: Specifies to drive high.

• X: Specifies to not drive.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

200 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

Properties

active_load_ioh

nidigital.Session.active_load_ioh
Specifies the current that the DUT sources to the active load while outputting a voltage above
VCOM.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].active_load_ioh

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.active_load_ioh

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_ACTIVE_LOAD_IOH

active_load_iol

nidigital.Session.active_load_iol
Specifies the current that the DUT sinks from the active load while outputting a voltage below
VCOM.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].active_load_iol

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.active_load_iol

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

7.2. nidigital module 201

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_ACTIVE_LOAD_IOL

active_load_vcom

nidigital.Session.active_load_vcom
Specifies the voltage level at which the active load circuit switches between sourcing current and
sinking current.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].active_load_vcom

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.active_load_vcom

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_ACTIVE_LOAD_VCOM

cache

nidigital.Session.cache
Specifies whether to cache the value of properties. When caching is enabled, the instrument driver
keeps track of the current instrument settings and avoids sending redundant commands to the in-
strument. This significantly increases execution speed. Caching is always enabled in the driver,
regardless of the value of this property.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

202 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NIDIGITAL_ATTR_CACHE

channel_count

nidigital.Session.channel_count
Returns the number of channels that the specific digital pattern instrument driver supports.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_CHANNEL_COUNT

clock_generator_frequency

nidigital.Session.clock_generator_frequency
Specifies the frequency for the clock generator.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].clock_generator_frequency

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.clock_generator_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_CLOCK_GENERATOR_FREQUENCY

7.2. nidigital module 203

NI Modular Instruments Python API Documentation, Release 1.4.1

clock_generator_is_running

nidigital.Session.clock_generator_is_running
Indicates whether the clock generator is running.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].clock_generator_is_running

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.clock_generator_is_running

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_CLOCK_GENERATOR_IS_RUNNING

conditional_jump_trigger_terminal_name

nidigital.Session.conditional_jump_trigger_terminal_name
Specifies the terminal name from which the exported conditional jump trigger signal may be routed
to other instruments through the PXI trigger bus. You can use this signal to trigger other instruments
when the conditional jump trigger instance asserts on the digital pattern instrument.

Tip: This property can be set/get on specific conditional_jump_triggers within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container condi-
tional_jump_triggers to specify a subset.

Example: my_session.conditional_jump_triggers[...].
conditional_jump_trigger_terminal_name

To set/get on all conditional_jump_triggers, you can call the property directly on the nidigital.
Session.

Example: my_session.conditional_jump_trigger_terminal_name

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities conditional_jump_triggers

204 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_CONDITIONAL_JUMP_TRIGGER_TERMINAL_NAME

conditional_jump_trigger_type

nidigital.Session.conditional_jump_trigger_type
Disables the conditional jump trigger or configures it for either hardware triggering or software
triggering. The default value is NONE.

Valid Values:
NONE Disables the conditional jump trigger.
DIGITAL_EDGE Configures the conditional jump trigger for hardware triggering.
SOFTWARE Configures the conditional jump trigger for software triggering.

Tip: This property can be set/get on specific conditional_jump_triggers within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container condi-
tional_jump_triggers to specify a subset.

Example: my_session.conditional_jump_triggers[...].
conditional_jump_trigger_type

To set/get on all conditional_jump_triggers, you can call the property directly on the nidigital.
Session.

Example: my_session.conditional_jump_trigger_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities conditional_jump_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_CONDITIONAL_JUMP_TRIGGER_TYPE

cycle_number_history_ram_trigger_cycle_number

nidigital.Session.cycle_number_history_ram_trigger_cycle_number
Specifies the cycle number on which History RAM starts acquiring pattern information when con-
figured for a cycle number trigger.

The following table lists the characteristics of this property.

7.2. nidigital module 205

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_CYCLE_NUMBER_HISTORY_RAM_TRIGGER_CYCLE_NUMBER

digital_edge_conditional_jump_trigger_edge

nidigital.Session.digital_edge_conditional_jump_trigger_edge
Configures the active edge of the incoming trigger signal for the conditional jump trigger instance.
The default value is RISING.

Valid Values:
RISING Specifies the signal transition from low level to high level.
FALLING Specifies the signal transition from high level to low level.

Tip: This property can be set/get on specific conditional_jump_triggers within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container condi-
tional_jump_triggers to specify a subset.

Example: my_session.conditional_jump_triggers[...].
digital_edge_conditional_jump_trigger_edge

To set/get on all conditional_jump_triggers, you can call the property directly on the nidigital.
Session.

Example: my_session.digital_edge_conditional_jump_trigger_edge

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.DigitalEdge
Permissions read-write
Repeated Capabilities conditional_jump_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_CONDITIONAL_JUMP_TRIGGER_EDGE

digital_edge_conditional_jump_trigger_source

nidigital.Session.digital_edge_conditional_jump_trigger_source
Configures the digital trigger source terminal for a conditional jump trigger instance. The PXIe-
6570/6571 supports triggering through the PXI trigger bus. You can specify source terminals in one

206 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

of two ways. If the digital pattern instrument is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0. The source terminal can also be a terminal from another device, in which
case the NI-Digital Pattern Driver automatically finds a route (if one is available) from that terminal
to the input terminal (going through a physical PXI backplane trigger line). For example, you can set
the source terminal on Dev1 to be /Dev2/ConditionalJumpTrigger0. The default value is VI_NULL.

Valid Values:
String identifier to any valid terminal name

Tip: This property can be set/get on specific conditional_jump_triggers within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container condi-
tional_jump_triggers to specify a subset.

Example: my_session.conditional_jump_triggers[...].
digital_edge_conditional_jump_trigger_source

To set/get on all conditional_jump_triggers, you can call the property directly on the nidigital.
Session.

Example: my_session.digital_edge_conditional_jump_trigger_source

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities conditional_jump_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_CONDITIONAL_JUMP_TRIGGER_SOURCE

digital_edge_rio_trigger_edge

nidigital.Session.digital_edge_rio_trigger_edge
Configures the active edge of the incoming trigger signal for the RIO trigger instance. The default
value is RISING.

Valid Values:
RISING Specifies the signal transition from low level to high level.
FALLING Specifies the signal transition from high level to low level.

Tip: This property can be set/get on specific rio_triggers within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container rio_triggers to specify a
subset.

Example: my_session.rio_triggers[...].digital_edge_rio_trigger_edge

To set/get on all rio_triggers, you can call the property directly on the nidigital.Session.

7.2. nidigital module 207

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.digital_edge_rio_trigger_edge

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.DigitalEdge
Permissions read-write
Repeated Capabilities rio_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_RIO_TRIGGER_EDGE

digital_edge_rio_trigger_source

nidigital.Session.digital_edge_rio_trigger_source
Configures the digital trigger source terminal for a RIO trigger instance. The PXIe-6570/6571 sup-
ports triggering through the PXI trigger bus. You can specify source terminals in one of two ways.
If the digital pattern instrument is named Dev1 and your terminal is PXI_Trig0, you can specify the
terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal
name, PXI_Trig0. The source terminal can also be a terminal from another device, in which case
the NI-Digital Pattern Driver automatically finds a route (if one is available) from that terminal to
the input terminal (going through a physical PXI backplane trigger line). For example, you can set
the source terminal on Dev1 to be /Dev2/RIOTrigger0. The default value is VI_NULL.

Valid Values:
String identifier to any valid terminal name

Tip: This property can be set/get on specific rio_triggers within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container rio_triggers to specify a
subset.

Example: my_session.rio_triggers[...].digital_edge_rio_trigger_source

To set/get on all rio_triggers, you can call the property directly on the nidigital.Session.

Example: my_session.digital_edge_rio_trigger_source

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities rio_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_RIO_TRIGGER_SOURCE

208 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

digital_edge_start_trigger_edge

nidigital.Session.digital_edge_start_trigger_edge
Specifies the active edge for the Start trigger. This property is used when the nidigital.
Session.start_trigger_type property is set to Digital Edge.

Defined Values:
RISING Asserts the trigger when the signal transitions from low level to high level.
FALLING Asserts the trigger when the signal transitions from high level to low level.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.DigitalEdge
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_START_TRIGGER_EDGE

digital_edge_start_trigger_source

nidigital.Session.digital_edge_start_trigger_source
Specifies the source terminal for the Start trigger. This property is used when the nidigital.
Session.start_trigger_type property is set to Digital Edge. You can specify source ter-
minals in one of two ways. If the digital pattern instrument is named Dev1 and your terminal is
PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0. The source terminal can also be a terminal from
another device, in which case the NI-Digital Pattern Driver automatically finds a route (if one is
available) from that terminal to the input terminal (going through a physical PXI backplane trigger
line). For example, you can set the source terminal on Dev1 to be /Dev2/StartTrigger.

Defined Values:
PXI_Trig0 PXI trigger line 0
PXI_Trig1 PXI trigger line 1
PXI_Trig2 PXI trigger line 2
PXI_Trig3 PXI trigger line 3
PXI_Trig4 PXI trigger line 4
PXI_Trig5 PXI trigger line 5
PXI_Trig6 PXI trigger line 6
PXI_Trig7 PXI trigger line 7

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

7.2. nidigital module 209

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_START_TRIGGER_SOURCE

driver_setup

nidigital.Session.driver_setup
This property returns initial values for NI-Digital Pattern Driver properties as a string.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_DRIVER_SETUP

exported_conditional_jump_trigger_output_terminal

nidigital.Session.exported_conditional_jump_trigger_output_terminal
Specifies the terminal to output the exported signal of the specified instance of the conditional jump
trigger. The default value is VI_NULL.

Valid Values:
VI_NULL (“”) Returns an empty string
PXI_Trig0 PXI trigger line 0
PXI_Trig1 PXI trigger line 1
PXI_Trig2 PXI trigger line 2
PXI_Trig3 PXI trigger line 3
PXI_Trig4 PXI trigger line 4
PXI_Trig5 PXI trigger line 5
PXI_Trig6 PXI trigger line 6
PXI_Trig7 PXI trigger line 7

Tip: This property can be set/get on specific conditional_jump_triggers within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container condi-
tional_jump_triggers to specify a subset.

Example: my_session.conditional_jump_triggers[...].
exported_conditional_jump_trigger_output_terminal

To set/get on all conditional_jump_triggers, you can call the property directly on the nidigital.
Session.

Example: my_session.exported_conditional_jump_trigger_output_terminal

210 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities conditional_jump_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_EXPORTED_CONDITIONAL_JUMP_TRIGGER_OUTPUT_TERMINAL

exported_pattern_opcode_event_output_terminal

nidigital.Session.exported_pattern_opcode_event_output_terminal
Specifies the destination terminal for exporting the Pattern Opcode Event. Terminals can be specified
in one of two ways. If the digital pattern instrument is named Dev1 and your terminal is PXI_Trig0,
you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the
shortened terminal name, PXI_Trig0.

Defined Values:
PXI_Trig0 PXI trigger line 0
PXI_Trig1 PXI trigger line 1
PXI_Trig2 PXI trigger line 2
PXI_Trig3 PXI trigger line 3
PXI_Trig4 PXI trigger line 4
PXI_Trig5 PXI trigger line 5
PXI_Trig6 PXI trigger line 6
PXI_Trig7 PXI trigger line 7

Tip: This property can be set/get on specific pattern_opcode_events within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container pat-
tern_opcode_events to specify a subset.

Example: my_session.pattern_opcode_events[...].
exported_pattern_opcode_event_output_terminal

To set/get on all pattern_opcode_events, you can call the property directly on the nidigital.
Session.

Example: my_session.exported_pattern_opcode_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities pattern_opcode_events

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.2. nidigital module 211

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NIDIGITAL_ATTR_EXPORTED_PATTERN_OPCODE_EVENT_OUTPUT_TERMINAL

exported_rio_event_output_terminal

nidigital.Session.exported_rio_event_output_terminal
Specifies the destination terminal for exporting the RIO Event. Terminals can be specified in one of
two ways. If the digital pattern instrument is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0.

Defined Values:
PXI_Trig0 PXI trigger line 0
PXI_Trig1 PXI trigger line 1
PXI_Trig2 PXI trigger line 2
PXI_Trig3 PXI trigger line 3
PXI_Trig4 PXI trigger line 4
PXI_Trig5 PXI trigger line 5
PXI_Trig6 PXI trigger line 6
PXI_Trig7 PXI trigger line 7

Tip: This property can be set/get on specific rio_events within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container rio_events to specify a
subset.

Example: my_session.rio_events[...].exported_rio_event_output_terminal

To set/get on all rio_events, you can call the property directly on the nidigital.Session.

Example: my_session.exported_rio_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities rio_events

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_EXPORTED_RIO_EVENT_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

nidigital.Session.exported_start_trigger_output_terminal
Specifies the destination terminal for exporting the Start trigger. Terminals can be specified in one of
two ways. If the digital pattern instrument is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0.

212 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Defined Values:
Do not export signal The signal is not exported.
PXI_Trig0 PXI trigger line 0
PXI_Trig1 PXI trigger line 1
PXI_Trig2 PXI trigger line 2
PXI_Trig3 PXI trigger line 3
PXI_Trig4 PXI trigger line 4
PXI_Trig5 PXI trigger line 5
PXI_Trig6 PXI trigger line 6
PXI_Trig7 PXI trigger line 7

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

frequency_counter_hysteresis_enabled

nidigital.Session.frequency_counter_hysteresis_enabled
Specifies whether hysteresis is enabled for the frequency counters of the digital pattern instrument.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_FREQUENCY_COUNTER_HYSTERESIS_ENABLED

frequency_counter_measurement_mode

nidigital.Session.frequency_counter_measurement_mode
Determines how the frequency counters of the digital pattern instrument make measurements.

7.2. nidigital module 213

NI Modular Instruments Python API Documentation, Release 1.4.1

Valid
Val-
ues:
BANKEDEach discrete frequency counter is mapped to specific channels and makes frequency mea-

surements from only those channels. Use banked mode when you need access to the full
measure frequency range of the instrument. Note: If you request frequency measurements
from multiple channels within the same bank, the measurements are made in series for the
channels in that bank.

PARALLELAll discrete frequency counters make frequency measurements from all channels
in parallel with one another. Use parallel mode to increase the speed of fre-
quency measurements if you do not need access to the full measure frequency range
of the instrument; in parallel mode, you can also add nidigital.Session.
frequency_counter_hysteresis_enabled to reduce measurement noise.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.FrequencyMeasurementMode
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_FREQUENCY_COUNTER_MEASUREMENT_MODE

frequency_counter_measurement_time

nidigital.Session.frequency_counter_measurement_time
Specifies the measurement time for the frequency counter.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].frequency_counter_measurement_time

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.frequency_counter_measurement_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float in seconds or datetime.timedelta
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

214 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NIDIGITAL_ATTR_FREQUENCY_COUNTER_MEASUREMENT_TIME

group_capabilities

nidigital.Session.group_capabilities
Returns a string that contains a comma-separated list of class-extension groups that the driver im-
plements.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_GROUP_CAPABILITIES

halt_on_keep_alive_opcode

nidigital.Session.halt_on_keep_alive_opcode
Specifies whether keep_alive opcodes should behave like halt opcodes.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_HALT_ON_KEEP_ALIVE_OPCODE

history_ram_buffer_size_per_site

nidigital.Session.history_ram_buffer_size_per_site
Specifies the size, in samples, of the host memory buffer. The default value is 32000.

Valid Values:
0-INT64_MAX

The following table lists the characteristics of this property.

7.2. nidigital module 215

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_BUFFER_SIZE_PER_SITE

history_ram_cycles_to_acquire

nidigital.Session.history_ram_cycles_to_acquire
Configures which cycles History RAM acquires after the trigger conditions are met. If you configure
History RAM to only acquire failed cycles, you must set the pretrigger samples for History RAM to
0.

Defined Val-
ues:
FAILED Only acquires cycles that fail a compare after the triggering conditions are

met.
ALL Acquires all cycles after the triggering conditions are met.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.HistoryRAMCyclesToAcquire
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_CYCLES_TO_ACQUIRE

history_ram_max_samples_to_acquire_per_site

nidigital.Session.history_ram_max_samples_to_acquire_per_site
Specifies the maximum number of History RAM samples to acquire per site. If the property is set to
-1, it will acquire until the History RAM buffer is full.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

216 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_MAX_SAMPLES_TO_ACQUIRE_PER_SITE

history_ram_number_of_samples_is_finite

nidigital.Session.history_ram_number_of_samples_is_finite
Specifies whether the instrument acquires a finite number of History Ram samples or acquires con-
tinuously. The maximum number of samples that will be acquired when this property is set to True is
determined by the instrument History RAM depth specification and the History RAM Max Samples
to Acquire Per Site property. The default value is True.

Valid
Values:
True Specifies that History RAM results will not stream into the host buffer until a History

RAM fetch API is called.
False Specifies that History RAM results will automatically start streaming into a host

buffer after a pattern is burst and the History RAM has triggered.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_NUMBER_OF_SAMPLES_IS_FINITE

history_ram_pretrigger_samples

nidigital.Session.history_ram_pretrigger_samples
Specifies the number of samples to acquire before the trigger conditions are met. If you configure
History RAM to only acquire failed cycles, you must set the pretrigger samples for History RAM to
0.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_PRETRIGGER_SAMPLES

7.2. nidigital module 217

NI Modular Instruments Python API Documentation, Release 1.4.1

history_ram_trigger_type

nidigital.Session.history_ram_trigger_type
Specifies the type of trigger condition on which History RAM starts acquiring pattern information.

Defined
Values:
FIRST_FAILUREStarts acquiring pattern information in History RAM on the first failed cycle in a

pattern burst.
CYCLE_NUMBERStarts acquiring pattern information in History RAM starting from a specified

cycle number.
PATTERN_LABELStarts acquiring pattern information in History RAM starting from a specified

pattern label, augmented by vector and cycle offsets.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.HistoryRAMTriggerType
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_TRIGGER_TYPE

instrument_firmware_revision

nidigital.Session.instrument_firmware_revision
Returns a string that contains the firmware revision information for the digital pattern instrument.

Tip: This property can be set/get on specific instruments within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].instrument_firmware_revision

To set/get on all instruments, you can call the property directly on the nidigital.Session.

Example: my_session.instrument_firmware_revision

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

218 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NIDIGITAL_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

nidigital.Session.instrument_manufacturer
Returns a string (“National Instruments”) that contains the name of the manufacturer of the digital
pattern instrument.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

nidigital.Session.instrument_model
Returns a string that contains the model number or name of the digital pattern instrument.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_INSTRUMENT_MODEL

interchange_check

nidigital.Session.interchange_check
This property is not supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

7.2. nidigital module 219

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_INTERCHANGE_CHECK

io_resource_descriptor

nidigital.Session.io_resource_descriptor
Returns a string that contains the resource descriptor that the NI-Digital Pattern Driver uses to iden-
tify the digital pattern instrument.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_IO_RESOURCE_DESCRIPTOR

is_keep_alive_active

nidigital.Session.is_keep_alive_active
Returns True if the digital pattern instrument is driving the keep alive pattern.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_IS_KEEP_ALIVE_ACTIVE

logical_name

nidigital.Session.logical_name
Returns a string containing the logical name that you specified when opening the current IVI session.
This property is not supported.

The following table lists the characteristics of this property.

220 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_LOGICAL_NAME

mask_compare

nidigital.Session.mask_compare
Specifies whether the pattern comparisons are masked or not. When set to True for a specified pin,
failures on that pin will be masked.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].mask_compare

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.mask_compare

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_MASK_COMPARE

pattern_label_history_ram_trigger_cycle_offset

nidigital.Session.pattern_label_history_ram_trigger_cycle_offset
Specifies the number of cycles that follow the specified pattern label and vector offset, after which
History RAM will start acquiring pattern information when configured for a pattern label trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

7.2. nidigital module 221

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PATTERN_LABEL_HISTORY_RAM_TRIGGER_CYCLE_OFFSET

pattern_label_history_ram_trigger_label

nidigital.Session.pattern_label_history_ram_trigger_label
Specifies the pattern label, augmented by the vector and cycle offset, to determine the point where
History RAM will start acquiring pattern information when configured for a pattern label trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PATTERN_LABEL_HISTORY_RAM_TRIGGER_LABEL

pattern_label_history_ram_trigger_vector_offset

nidigital.Session.pattern_label_history_ram_trigger_vector_offset
Specifies the number of vectors that follow the specified pattern label, after which History RAM will
start acquiring pattern information when configured for a pattern label trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PATTERN_LABEL_HISTORY_RAM_TRIGGER_VECTOR_OFFSET

pattern_opcode_event_terminal_name

nidigital.Session.pattern_opcode_event_terminal_name
Specifies the terminal name for the output trigger signal of the specified instance of a Pattern Opcode
Event. You can use this terminal name as an input signal source for another trigger.

222 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific pattern_opcode_events within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container pat-
tern_opcode_events to specify a subset.

Example: my_session.pattern_opcode_events[...].
pattern_opcode_event_terminal_name

To set/get on all pattern_opcode_events, you can call the property directly on the nidigital.
Session.

Example: my_session.pattern_opcode_event_terminal_name

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities pattern_opcode_events

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PATTERN_OPCODE_EVENT_TERMINAL_NAME

ppmu_allow_extended_voltage_range

nidigital.Session.ppmu_allow_extended_voltage_range
Enables the instrument to operate in additional voltage ranges where instrument specifications may
differ from standard ranges. When set to True, this property enables extended voltage range op-
eration. Review specification deviations for application suitability before using this property. NI
recommends setting this property to False when not using the extended voltage range to avoid un-
intentional use of this range. The extended voltage range is supported only for PPMU, with the
output method set to DC Voltage. A voltage glitch may occur when you change the PPMU output
voltage from a standard range to the extended voltage range, or vice-versa, while the PPMU is sourc-
ing. NI recommends temporarily changing the nidigital.Session.selected_function
property to Off before sourcing a voltage level that requires a range change.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_allow_extended_voltage_range

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.ppmu_allow_extended_voltage_range

The following table lists the characteristics of this property.

7.2. nidigital module 223

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PPMU_ALLOW_EXTENDED_VOLTAGE_RANGE

ppmu_aperture_time

nidigital.Session.ppmu_aperture_time
Specifies the measurement aperture time for the PPMU. The nidigital.Session.
ppmu_aperture_time_units property sets the units of the PPMU aperture time.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_aperture_time

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.ppmu_aperture_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PPMU_APERTURE_TIME

ppmu_aperture_time_units

nidigital.Session.ppmu_aperture_time_units
Specifies the units of the measurement aperture time for the PPMU.

Defined Values:
SECONDS Specifies the aperture time in seconds.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

224 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.channels[...].ppmu_aperture_time_units

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.ppmu_aperture_time_units

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.PPMUApertureTimeUnits
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PPMU_APERTURE_TIME_UNITS

ppmu_current_level

nidigital.Session.ppmu_current_level
Specifies the current level, in amps, that the PPMU forces to the DUT. This property is ap-
plicable only when you set the nidigital.Session.ppmu_output_function property
to DC Current. Specify valid values for the current level using the nidigital.Session.
PPMU_ConfigureCurrentLevelRange() method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_current_level

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.ppmu_current_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LEVEL

7.2. nidigital module 225

NI Modular Instruments Python API Documentation, Release 1.4.1

ppmu_current_level_range

nidigital.Session.ppmu_current_level_range
Specifies the range of valid values for the current level, in amps, that the PPMU forces
to the DUT. This property is applicable only when you set the nidigital.Session.
ppmu_output_function property to DC Current.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_current_level_range

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.ppmu_current_level_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LEVEL_RANGE

ppmu_current_limit

nidigital.Session.ppmu_current_limit
Specifies the current limit, in amps, that the output cannot exceed while the PPMU forces volt-
age to the DUT. This property is applicable only when you set the nidigital.Session.
ppmu_output_function property to DC Voltage. The PXIe-6570/6571 does not support the
nidigital.Session.ppmu_current_limit property and only allows configuration of the
nidigital.Session.ppmu_current_limit_range property.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_current_limit

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.ppmu_current_limit

The following table lists the characteristics of this property.

226 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LIMIT

ppmu_current_limit_behavior

nidigital.Session.ppmu_current_limit_behavior
Specifies how the output should behave when the current limit is reached.

Defined
Values:
REGULATE Controls output current so that it does not exceed the current limit. Power continues

to generate even if the current limit is reached.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_current_limit_behavior

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.ppmu_current_limit_behavior

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.PPMUCurrentLimitBehavior
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LIMIT_BEHAVIOR

ppmu_current_limit_range

nidigital.Session.ppmu_current_limit_range
Specifies the valid range, in amps, to which the current limit can be set while the PPMU forces
voltage to the DUT. This property is applicable only when you set the nidigital.Session.
ppmu_output_function property to DC Voltage.

7.2. nidigital module 227

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_current_limit_range

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.ppmu_current_limit_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LIMIT_RANGE

ppmu_current_limit_supported

nidigital.Session.ppmu_current_limit_supported
Returns whether the device supports configuration of a current limit when you set the nidigital.
Session.ppmu_output_function property to DC Voltage.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_current_limit_supported

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.ppmu_current_limit_supported

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LIMIT_SUPPORTED

228 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

ppmu_output_function

nidigital.Session.ppmu_output_function
Specifies whether the PPMU forces voltage or current to the DUT.

Defined Values:
VOLTAGE Specifies the output method to DC Voltage.
CURRENT Specifies the output method to DC Current.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_output_function

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.ppmu_output_function

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.PPMUOutputFunction
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PPMU_OUTPUT_FUNCTION

ppmu_voltage_level

nidigital.Session.ppmu_voltage_level
Specifies the voltage level, in volts, that the PPMU forces to the DUT. This property is applica-
ble only when you set the nidigital.Session.ppmu_output_function property to DC
Voltage.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_voltage_level

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.ppmu_voltage_level

The following table lists the characteristics of this property.

7.2. nidigital module 229

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PPMU_VOLTAGE_LEVEL

ppmu_voltage_limit_high

nidigital.Session.ppmu_voltage_limit_high
Specifies the maximum voltage limit, or high clamp voltage (V CH), in volts, at the pin when the
PPMU forces current to the DUT. This property is applicable only when you set the nidigital.
Session.ppmu_output_function property to DC Current.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_voltage_limit_high

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.ppmu_voltage_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PPMU_VOLTAGE_LIMIT_HIGH

ppmu_voltage_limit_low

nidigital.Session.ppmu_voltage_limit_low
Specifies the minimum voltage limit, or low clamp voltage (V CL), in volts, at the pin when the
PPMU forces current to the DUT. This property is applicable only when you set the nidigital.
Session.ppmu_output_function property to DC Current.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

230 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.channels[...].ppmu_voltage_limit_low

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.ppmu_voltage_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_PPMU_VOLTAGE_LIMIT_LOW

query_instrument_status

nidigital.Session.query_instrument_status
Specifies whether the NI-Digital Pattern Driver queries the digital pattern instrument status after
each operation. The instrument status is always queried, regardless of the property setting.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_QUERY_INSTRUMENT_STATUS

range_check

nidigital.Session.range_check
Checks the range and validates parameter and property values you pass to NI-Digital Pattern Driver
methods. Ranges are always checked, regardless of the property setting.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.2. nidigital module 231

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NIDIGITAL_ATTR_RANGE_CHECK

record_coercions

nidigital.Session.record_coercions
Specifies whether the IVI engine keeps a list of the value coercions it makes for integer and real type
properties. Enabling record value coercions is not supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_RECORD_COERCIONS

rio_event_terminal_name

nidigital.Session.rio_event_terminal_name
Specifies the terminal name for the output signal of the specified instance of a RIO Event. You can
use this terminal name as an input signal source for another trigger.

Tip: This property can be set/get on specific rio_events within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container rio_events to specify a
subset.

Example: my_session.rio_events[...].rio_event_terminal_name

To set/get on all rio_events, you can call the property directly on the nidigital.Session.

Example: my_session.rio_event_terminal_name

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities rio_events

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_RIO_EVENT_TERMINAL_NAME

232 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

rio_trigger_terminal_name

nidigital.Session.rio_trigger_terminal_name
Specifies the terminal name from which the exported RIO trigger signal may be routed to other
instruments through the PXI trigger bus. You can use this signal to trigger other instruments when
the RIO trigger instance asserts on the digital pattern instrument.

Tip: This property can be set/get on specific rio_triggers within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container rio_triggers to specify a
subset.

Example: my_session.rio_triggers[...].rio_trigger_terminal_name

To set/get on all rio_triggers, you can call the property directly on the nidigital.Session.

Example: my_session.rio_trigger_terminal_name

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities rio_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_RIO_TRIGGER_TERMINAL_NAME

rio_trigger_type

nidigital.Session.rio_trigger_type
Disables the rio trigger or configures it for hardware triggering. The default value is NONE.

Valid Values:
NONE Disables the conditional jump trigger.
DIGITAL_EDGE Configures the conditional jump trigger for hardware triggering.

Tip: This property can be set/get on specific rio_triggers within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container rio_triggers to specify a
subset.

Example: my_session.rio_triggers[...].rio_trigger_type

To set/get on all rio_triggers, you can call the property directly on the nidigital.Session.

Example: my_session.rio_trigger_type

The following table lists the characteristics of this property.

7.2. nidigital module 233

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities rio_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_RIO_TRIGGER_TYPE

selected_function

nidigital.Session.selected_function

Caution: In the Disconnect state, some I/O protection and sensing circuitry remains exposed.
Do not subject the instrument to voltage beyond its operating range.

Specifies whether digital pattern instrument channels are controlled by the pattern sequencer or
PPMU, disconnected, or off.

De-
fined
Val-
ues:
DIGITALThe pin is connected to the driver, comparator, and active load methods. The PPMU is not

sourcing, but can make voltage measurements. The state of the digital pin driver when you
change the nidigital.Session.selected_function to Digital is determined
by the most recent call to the nidigital.Session.write_static() method or
the last vector of the most recently executed pattern burst, whichever happened last. Use
the nidigital.Session.write_static() method to control the state of the dig-
ital pin driver through software. Use the nidigital.Session.burst_pattern()
method to control the state of the digital pin driver through a pattern. Set the selectDig-
italFunction parameter of the nidigital.Session.burst_pattern() method
to True to automatically switch the nidigital.Session.selected_function
of the pins in the pattern burst to DIGITAL.

PPMU The pin is connected to the PPMU. The driver, comparator, and active load are off while
this method is selected. Call the nidigital.Session.ppmu_source() method to
source a voltage or current. The nidigital.Session.ppmu_source() method
automatically switches the nidigital.Session.selected_function to the
PPMU state and starts sourcing from the PPMU. Changing the nidigital.Session.
selected_function to DISCONNECT, OFF, or DIGITAL causes the PPMU to stop
sourcing. If you set the nidigital.Session.selected_function property to
PPMU, the PPMU is initially not sourcing.

OFF The pin is electrically connected, and the PPMU and digital pin driver are off while this
method is selected.

DISCONNECTThe pin is electrically disconnected from instrument methods. Selecting this method
causes the PPMU to stop sourcing prior to disconnecting the pin.

234 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: You can make PPMU voltage measurements using the nidigital.Session.
ppmu_measure() method from within any nidigital.Session.selected_function.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].selected_function

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.selected_function

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.SelectedFunction
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_SELECTED_FUNCTION

sequencer_flag_terminal_name

nidigital.Session.sequencer_flag_terminal_name
Specifies the terminal name for the output trigger signal of the Sequencer Flags trigger. You can use
this terminal name as an input signal source for another trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_SEQUENCER_FLAG_TERMINAL_NAME

serial_number

nidigital.Session.serial_number
Returns the serial number of the device.

7.2. nidigital module 235

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific instruments within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].serial_number

To set/get on all instruments, you can call the property directly on the nidigital.Session.

Example: my_session.serial_number

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_SERIAL_NUMBER

simulate

nidigital.Session.simulate
Simulates I/O operations. After you open a session, you cannot change the simulation state. Use the
nidigital.Session.__init__() method to enable simulation.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_SIMULATE

specific_driver_class_spec_major_version

nidigital.Session.specific_driver_class_spec_major_version
Returns the major version number of the class specification with which NI-Digital is compliant. This
property is not supported.

The following table lists the characteristics of this property.

236 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MAJOR_VERSION

specific_driver_class_spec_minor_version

nidigital.Session.specific_driver_class_spec_minor_version
Returns the minor version number of the class specification with which NI-Digital is compliant.
This property is not supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MINOR_VERSION

specific_driver_description

nidigital.Session.specific_driver_description
Returns a string that contains a brief description of the NI-Digital Pattern driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_prefix

nidigital.Session.specific_driver_prefix
Returns a string that contains the prefix for the NI-Digital Pattern driver.

7.2. nidigital module 237

NI Modular Instruments Python API Documentation, Release 1.4.1

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_PREFIX

specific_driver_revision

nidigital.Session.specific_driver_revision
Returns a string that contains additional version information about the NI-Digital Pattern Driver. For
example, the driver can return Driver: NI-Digital 16.0 as the value of this property.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

nidigital.Session.specific_driver_vendor
Returns a string (“National Instruments”) that contains the name of the vendor that supplies the
NI-Digital Pattern Driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_VENDOR

238 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

start_label

nidigital.Session.start_label
Specifies the pattern name or exported pattern label from which to start bursting the pattern.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_START_LABEL

start_trigger_terminal_name

nidigital.Session.start_trigger_terminal_name
Specifies the terminal name for the output trigger signal of the Start trigger. You can use this terminal
name as an input signal source for another trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_START_TRIGGER_TERMINAL_NAME

start_trigger_type

nidigital.Session.start_trigger_type
Specifies the Start trigger type. The digital pattern instrument waits for this trigger af-
ter you call the nidigital.Session.init() method or the nidigital.Session.
burst_pattern() method, and does not burst a pattern until this trigger is received.

7.2. nidigital module 239

NI Modular Instruments Python API Documentation, Release 1.4.1

De-
fined
Val-
ues:
NONE Disables the Start trigger. Pattern bursting starts immediately after you call

the nidigital.Session.init() method or the nidigital.Session.
burst_pattern() method.

DIGITAL_EDGEPattern bursting does not start until the digital pattern instrument detects a digital edge.
SOFTWAREPattern bursting does not start until the digital pattern instrument receives a software

Start trigger. Create a software Start trigger by calling the nidigital.Session.
send_software_edge_trigger() method and selecting start trigger in the trig-
ger parameter.Related information: SendSoftwareEdgeTrigger method.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_START_TRIGGER_TYPE

supported_instrument_models

nidigital.Session.supported_instrument_models
Returns a comma delimited string that contains the supported digital pattern instrument models for
the specific driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_SUPPORTED_INSTRUMENT_MODELS

240 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

tdr_endpoint_termination

nidigital.Session.tdr_endpoint_termination
Specifies whether TDR Channels are connected to an open circuit or a short to ground.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TDREndpointTermination
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_TDR_ENDPOINT_TERMINATION

tdr_offset

nidigital.Session.tdr_offset
Specifies the TDR Offset.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].tdr_offset

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.tdr_offset

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_TDR_OFFSET

termination_mode

nidigital.Session.termination_mode
Specifies the behavior of the pin during non-drive cycles.

7.2. nidigital module 241

NI Modular Instruments Python API Documentation, Release 1.4.1

De-
fined
Val-
ues:
ACTIVE_LOADSpecifies that, for non-drive pin states (L, H, X, V, M, E), the active load is connected

and the instrument sources or sinks a defined amount of current to load the DUT. The
amount of current sourced by the instrument and therefore sunk by the DUT is specified
by IOL. The amount of current sunk by the instrument and therefore sourced by the DUT
is specified by IOH. The voltage at which the instrument changes between sourcing and
sinking is specified by VCOM.

VTERMSpecifies that, for non-drive pin states (L, H, X, V, M, E), the pin driver terminates the
pin to the configured VTERM voltage through a 50 Ω impedance. VTERM is adjustable
to allow for the pin to terminate at a set level. This is useful for instruments that might
operate incorrectly if an instrument pin is unterminated and is allowed to float to any
voltage level within the instrument voltage range. To address this issue, enable VTERM
by configuring the VTERM pin level to the desired voltage and selecting the VTERM
termination mode. Setting VTERM to 0 V and selecting the VTERM termination mode
has the effect of connecting a 50 Ω termination to ground, which provides an effective
50 Ω impedance for the pin. This can be useful for improving signal integrity of certain
DUTs by reducing reflections while the DUT drives the pin.

HIGH_ZSpecifies that, for non-drive pin states (L, H, X, V, M, E), the pin driver is put in a high-
impedance state and the active load is disabled.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].termination_mode

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.termination_mode

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TerminationMode
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_TERMINATION_MODE

timing_absolute_delay

nidigital.Session.timing_absolute_delay
Specifies a timing delay, measured in seconds, and applies the delay to the digital pattern in-
strument in addition to TDR and calibration adjustments. If the nidigital.Session.
timing_absolute_delay_enabled property is set to True, this value is the intermod-

242 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

ule skew measured by NI-TClk. You can modify this value to override the timing de-
lay and align the I/O timing of this instrument with another instrument that shares the
same reference clock. If the nidigital.Session.timing_absolute_delay_enabled
property is False, this property will return 0.0. Changing the nidigital.Session.
timing_absolute_delay_enabled property from False to True will set the nidigital.
Session.timing_absolute_delay value back to your previously set value.

Tip: This property can be set/get on specific instruments within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].timing_absolute_delay

To set/get on all instruments, you can call the property directly on the nidigital.Session.

Example: my_session.timing_absolute_delay

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_TIMING_ABSOLUTE_DELAY

timing_absolute_delay_enabled

nidigital.Session.timing_absolute_delay_enabled
Specifies whether the nidigital.Session.timing_absolute_delay property should be
applied to adjust the digital pattern instrument timing reference relative to other instruments in the
system. Do not use this feature with digital pattern instruments in a Semiconductor Test System
(STS). Timing absolute delay conflicts with the adjustment performed during STS timing calibration.
When set to True, the digital pattern instrument automatically adjusts the timing absolute delay to
correct the instrument timing reference relative to other instruments in the system for better timing
alignment among synchronized instruments.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_TIMING_ABSOLUTE_DELAY_ENABLED

7.2. nidigital module 243

NI Modular Instruments Python API Documentation, Release 1.4.1

vih

nidigital.Session.vih
Specifies the voltage that the digital pattern instrument will apply to the input of the DUT when the
test instrument drives a logic high (1).

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].vih

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.vih

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_VIH

vil

nidigital.Session.vil
Specifies the voltage that the digital pattern instrument will apply to the input of the DUT when the
test instrument drives a logic low (0).

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].vil

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.vil

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

244 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_VIL

voh

nidigital.Session.voh
Specifies the output voltage from the DUT above which the comparator on the digital pattern test
instrument interprets a logic high (H).

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].voh

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.voh

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_VOH

vol

nidigital.Session.vol
Specifies the output voltage from the DUT below which the comparator on the digital pattern test
instrument interprets a logic low (L).

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].vol

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.vol

The following table lists the characteristics of this property.

7.2. nidigital module 245

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_VOL

vterm

nidigital.Session.vterm
Specifies the termination voltage the digital pattern instrument applies during non-drive cycles when
the termination mode is set to V term. The instrument applies the termination voltage through a 50 Ω
parallel termination resistance.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].vterm

To set/get on all channels or pins, you can call the property directly on the nidigital.Session.

Example: my_session.vterm

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDIGITAL_ATTR_VTERM

NI-TClk Support

nidigital.Session.tclk
This is used to get and set NI-TClk attributes on the session.

See also:

See nitclk.SessionReference for a complete list of attributes.

Session

246 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• Session

• Methods

– abort

– abort_keep_alive

– apply_levels_and_timing

– apply_tdr_offsets

– burst_pattern

– clock_generator_abort

– clock_generator_generate_clock

– close

– commit

– configure_active_load_levels

– configure_pattern_burst_sites

– configure_time_set_compare_edges_strobe

– configure_time_set_compare_edges_strobe2x

– configure_time_set_drive_edges

– configure_time_set_drive_edges2x

– configure_time_set_drive_format

– configure_time_set_edge

– configure_time_set_edge_multiplier

– configure_time_set_period

– configure_voltage_levels

– create_capture_waveform_from_file_digicapture

– create_capture_waveform_parallel

– create_capture_waveform_serial

– create_source_waveform_from_file_tdms

– create_source_waveform_parallel

– create_source_waveform_serial

– create_time_set

– delete_all_time_sets

– disable_sites

– enable_sites

– fetch_capture_waveform

– fetch_history_ram_cycle_information

– frequency_counter_measure_frequency

7.2. nidigital module 247

NI Modular Instruments Python API Documentation, Release 1.4.1

– get_channel_names

– get_fail_count

– get_history_ram_sample_count

– get_pattern_pin_names

– get_pin_results_pin_information

– get_site_pass_fail

– get_time_set_drive_format

– get_time_set_edge

– get_time_set_edge_multiplier

– get_time_set_period

– initiate

– is_done

– is_site_enabled

– load_pattern

– load_pin_map

– load_specifications_levels_and_timing

– lock

– ppmu_measure

– ppmu_source

– read_sequencer_flag

– read_sequencer_register

– read_static

– reset

– reset_device

– self_calibrate

– self_test

– send_software_edge_trigger

– tdr

– unload_all_patterns

– unload_specifications

– unlock

– wait_until_done

– write_sequencer_flag

– write_sequencer_register

– write_source_waveform_broadcast

248 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– write_source_waveform_data_from_file_tdms

– write_source_waveform_site_unique

– write_static

• Properties

– active_load_ioh

– active_load_iol

– active_load_vcom

– cache

– channel_count

– clock_generator_frequency

– clock_generator_is_running

– conditional_jump_trigger_terminal_name

– conditional_jump_trigger_type

– cycle_number_history_ram_trigger_cycle_number

– digital_edge_conditional_jump_trigger_edge

– digital_edge_conditional_jump_trigger_source

– digital_edge_rio_trigger_edge

– digital_edge_rio_trigger_source

– digital_edge_start_trigger_edge

– digital_edge_start_trigger_source

– driver_setup

– exported_conditional_jump_trigger_output_terminal

– exported_pattern_opcode_event_output_terminal

– exported_rio_event_output_terminal

– exported_start_trigger_output_terminal

– frequency_counter_hysteresis_enabled

– frequency_counter_measurement_mode

– frequency_counter_measurement_time

– group_capabilities

– halt_on_keep_alive_opcode

– history_ram_buffer_size_per_site

– history_ram_cycles_to_acquire

– history_ram_max_samples_to_acquire_per_site

– history_ram_number_of_samples_is_finite

– history_ram_pretrigger_samples

7.2. nidigital module 249

NI Modular Instruments Python API Documentation, Release 1.4.1

– history_ram_trigger_type

– instrument_firmware_revision

– instrument_manufacturer

– instrument_model

– interchange_check

– io_resource_descriptor

– is_keep_alive_active

– logical_name

– mask_compare

– pattern_label_history_ram_trigger_cycle_offset

– pattern_label_history_ram_trigger_label

– pattern_label_history_ram_trigger_vector_offset

– pattern_opcode_event_terminal_name

– ppmu_allow_extended_voltage_range

– ppmu_aperture_time

– ppmu_aperture_time_units

– ppmu_current_level

– ppmu_current_level_range

– ppmu_current_limit

– ppmu_current_limit_behavior

– ppmu_current_limit_range

– ppmu_current_limit_supported

– ppmu_output_function

– ppmu_voltage_level

– ppmu_voltage_limit_high

– ppmu_voltage_limit_low

– query_instrument_status

– range_check

– record_coercions

– rio_event_terminal_name

– rio_trigger_terminal_name

– rio_trigger_type

– selected_function

– sequencer_flag_terminal_name

– serial_number

250 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– simulate

– specific_driver_class_spec_major_version

– specific_driver_class_spec_minor_version

– specific_driver_description

– specific_driver_prefix

– specific_driver_revision

– specific_driver_vendor

– start_label

– start_trigger_terminal_name

– start_trigger_type

– supported_instrument_models

– tdr_endpoint_termination

– tdr_offset

– termination_mode

– timing_absolute_delay

– timing_absolute_delay_enabled

– vih

– vil

– voh

– vol

– vterm

• NI-TClk Support

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the underlying driver
function call. This can be the actual function based on the Session method being called, or it can be
the appropriate Get/Set Attribute function, such as niDigital_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities. The
parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or an integer.
If it is a string, you can indicate a range using the same format as the driver: ‘0-2’ or ‘0:2’

Some repeated capabilities use a prefix before the number and this is optional

channels

nidigital.Session.channels[]

session.channels['0-2'].channel_enabled = True

7.2. nidigital module 251

NI Modular Instruments Python API Documentation, Release 1.4.1

passes a string of ‘0, 1, 2’ to the set attribute function.

pins

nidigital.Session.pins[]

session.pins['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

instruments

nidigital.Session.instruments[]

session.instruments['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

pattern_opcode_events

nidigital.Session.pattern_opcode_events[]
If no prefix is added to the items in the parameter, the correct prefix will be added when the driver
function call is made.

session.pattern_opcode_events['0-2'].channel_enabled = True

passes a string of ‘patternOpcodeEvent0, patternOpcodeEvent1,
patternOpcodeEvent2’ to the set attribute function.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix for
the specific repeated capability.

session.pattern_opcode_events['patternOpcodeEvent0-patternOpcodeEvent2'].
→˓channel_enabled = True

passes a string of ‘patternOpcodeEvent0, patternOpcodeEvent1,
patternOpcodeEvent2’ to the set attribute function.

conditional_jump_triggers

nidigital.Session.conditional_jump_triggers[]
If no prefix is added to the items in the parameter, the correct prefix will be added when the driver
function call is made.

session.conditional_jump_triggers['0-2'].channel_enabled = True

252 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

passes a string of ‘conditionalJumpTrigger0, conditionalJumpTrigger1,
conditionalJumpTrigger2’ to the set attribute function.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix for
the specific repeated capability.

session.conditional_jump_triggers['conditionalJumpTrigger0-
→˓conditionalJumpTrigger2'].channel_enabled = True

passes a string of ‘conditionalJumpTrigger0, conditionalJumpTrigger1,
conditionalJumpTrigger2’ to the set attribute function.

sites

nidigital.Session.sites[]
If no prefix is added to the items in the parameter, the correct prefix will be added when the driver
function call is made.

session.sites['0-2'].channel_enabled = True

passes a string of ‘site0, site1, site2’ to the set attribute function.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix for
the specific repeated capability.

session.sites['site0-site2'].channel_enabled = True

passes a string of ‘site0, site1, site2’ to the set attribute function.

rio_events

nidigital.Session.rio_events[]
If no prefix is added to the items in the parameter, the correct prefix will be added when the driver
function call is made.

session.rio_events['0-2'].channel_enabled = True

passes a string of ‘RIOEvent0, RIOEvent1, RIOEvent2’ to the set attribute function.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix for
the specific repeated capability.

session.rio_events['RIOEvent0-RIOEvent2'].channel_enabled = True

passes a string of ‘RIOEvent0, RIOEvent1, RIOEvent2’ to the set attribute function.

7.2. nidigital module 253

NI Modular Instruments Python API Documentation, Release 1.4.1

rio_triggers

nidigital.Session.rio_triggers[]
If no prefix is added to the items in the parameter, the correct prefix will be added when the driver
function call is made.

session.rio_triggers['0-2'].channel_enabled = True

passes a string of ‘RIOTrigger0, RIOTrigger1, RIOTrigger2’ to the set attribute func-
tion.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix for
the specific repeated capability.

session.rio_triggers['RIOTrigger0-RIOTrigger2'].channel_enabled = True

passes a string of ‘RIOTrigger0, RIOTrigger1, RIOTrigger2’ to the set attribute func-
tion.

Enums

Enums used in NI-Digital Pattern Driver

BitOrder

class nidigital.BitOrder

MSB
The most significant bit is first. The first bit is in the 2^n place, where n is the number of bits.

LSB
The least significant bit is first. The first bit is in the 2^0 place.

DigitalEdge

class nidigital.DigitalEdge

RISING
Asserts the trigger when the signal transitions from low level to high level.

FALLING
Asserts the trigger when the signal transitions from high level to low level.

DriveFormat

class nidigital.DriveFormat

NR
Drive format remains at logic level after each bit.

254 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

RL
Drive format returns to a logic level low after each bit.

RH
Drive format returns to a logic level high after each bit.

SBC
Drive format returns to the complement logic level of the bit after each bit.

FrequencyMeasurementMode

class nidigital.FrequencyMeasurementMode

BANKED
Frequency measurements are made serially for groups of channels associated with a single frequency
counter for each group.

Maximum frequency measured: 200 MHz.

PARALLEL
Frequency measurements are made by multiple frequency counters in parallel.

Maximum frequency measured: 100 MHz.

HistoryRAMCyclesToAcquire

class nidigital.HistoryRAMCyclesToAcquire

FAILED
Acquires failed cycles.

ALL
Acquires all cycles.

HistoryRAMTriggerType

class nidigital.HistoryRAMTriggerType

FIRST_FAILURE
First Failure History RAM trigger

CYCLE_NUMBER
Cycle Number History RAM trigger.

PATTERN_LABEL
Pattern Label History RAM trigger

PPMUApertureTimeUnits

class nidigital.PPMUApertureTimeUnits

7.2. nidigital module 255

NI Modular Instruments Python API Documentation, Release 1.4.1

SECONDS
Unit in seconds.

PPMUCurrentLimitBehavior

class nidigital.PPMUCurrentLimitBehavior

REGULATE
Controls output current so that it does not exceed the current limit. Power continues to generate even if the
current limit is reached.

PPMUMeasurementType

class nidigital.PPMUMeasurementType

CURRENT
The PPMU measures current.

VOLTAGE
The PPMU measures voltage.

PPMUOutputFunction

class nidigital.PPMUOutputFunction

VOLTAGE
The PPMU forces voltage to the DUT.

CURRENT
The PPMU forces current to the DUT.

PinState

class nidigital.PinState

ZERO
A digital state of 0.

ONE
A digital state of 1.

L
A digital state of L (low).

H
A digital state of H (high).

X
A digital state of X (non-drive state).

M
A digital state of M (midband).

256 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

V
A digital state of V (compare high or low, not midband; store results from capture functionality if config-
ured).

D
A digital state of D (drive data from source functionality if configured).

E
A digital state of E (compare data from source functionality if configured).

NOT_A_PIN_STATE
Not a pin state is used for non-existent DUT cycles.

PIN_STATE_NOT_ACQUIRED
Pin state could not be acquired because none of the pins mapped to the instrument in a multi-instrument
session had any failures.

SelectedFunction

class nidigital.SelectedFunction

DIGITAL
The pattern sequencer controls the specified pin(s). If a pattern is currently bursting, the pin immediately
switches to bursting the pattern. This option disconnects the PPMU.

PPMU
The PPMU controls the specified pin(s) and connects the PPMU. The pin driver is in a non-drive state,
and the active load is disabled. The PPMU does not start sourcing or measuring until Source or Mea-
sure(PpmuMeasurementType) is called.

OFF
Puts the digital driver in a non-drive state, disables the active load, disconnects the PPMU, and closes the
I/O switch connecting the instrument channel.

DISCONNECT
The I/O switch connecting the instrument channel is open to the I/O connector. If the PPMU is sourcing,
it is stopped prior to opening the I/O switch.

RIO
Yields control of the specified pin(s) to LabVIEW FPGA.

SequencerFlag

class nidigital.SequencerFlag

FLAG0

FLAG1

FLAG2

FLAG3

7.2. nidigital module 257

NI Modular Instruments Python API Documentation, Release 1.4.1

SequencerRegister

class nidigital.SequencerRegister

REGISTER0

REGISTER1

REGISTER2

REGISTER3

REGISTER4

REGISTER5

REGISTER6

REGISTER7

REGISTER8

REGISTER9

REGISTER10

REGISTER11

REGISTER12

REGISTER13

REGISTER14

REGISTER15

SoftwareTrigger

class nidigital.SoftwareTrigger

START
Overrides the start trigger.

CONDITIONAL_JUMP
Specifies to route a pattern opcode event signal.

SourceDataMapping

class nidigital.SourceDataMapping

BROADCAST
Broadcasts the waveform you specify to all sites.

SITE_UNIQUE
Sources unique waveform data to each site.

258 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

TDREndpointTermination

class nidigital.TDREndpointTermination

OPEN
TDR channels are connected to an open circuit.

SHORT_TO_GROUND
TDR channels are connected to a short to ground.

TerminationMode

class nidigital.TerminationMode

ACTIVE_LOAD
The active load provides a constant current to a commutating voltage (Vcom).

VTERM
The pin driver drives Vterm.

HIGH_Z
The pin driver is in a non-drive state (in a high-impedance state) and the active load is disabled.

TimeSetEdgeType

class nidigital.TimeSetEdgeType

DRIVE_ON
Specifies the drive on edge of the time set.

DRIVE_DATA
Specifies the drive data edge of the time set.

DRIVE_RETURN
Specifies the drive return edge of the time set.

DRIVE_OFF
Specifies the drive off edge of the time set.

COMPARE_STROBE
Specifies the compare strobe of the time set.

DRIVE_DATA2
Specifies the drive data 2 edge of the time set.

DRIVE_RETURN2
Specifies the drive return 2 edge of the time set.

COMPARE_STROBE2
Specifies the compare strobe 2 of the time set.

7.2. nidigital module 259

NI Modular Instruments Python API Documentation, Release 1.4.1

TriggerType

class nidigital.TriggerType

NONE
Disables the start trigger.

DIGITAL_EDGE
Digital edge trigger.

SOFTWARE
Software start trigger.

WriteStaticPinState

class nidigital.WriteStaticPinState

ZERO
Specifies to drive low.

ONE
Specifies to drive high.

X
Specifies to not drive.

Exceptions and Warnings

Error

exception nidigital.errors.Error
Base exception type that all NI-Digital Pattern Driver exceptions derive from

DriverError

exception nidigital.errors.DriverError
An error originating from the NI-Digital Pattern Driver driver

UnsupportedConfigurationError

exception nidigital.errors.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

DriverNotInstalledError

exception nidigital.errors.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

260 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

InvalidRepeatedCapabilityError

exception nidigital.errors.InvalidRepeatedCapabilityError
An error due to an invalid character in a repeated capability

SelfTestError

exception nidigital.errors.SelfTestError
An error due to a failed self-test

DriverWarning

exception nidigital.errors.DriverWarning
A warning originating from the NI-Digital Pattern Driver driver

Examples

You can download all nidigital examples here

nidigital_burst_with_start_trigger.py

Listing 4: (nidigital_burst_with_start_trigger.py)

1 #!/usr/bin/python
2

3 import argparse
4 import nidigital
5 import os
6 import sys
7

8

9 def example(resource_name, options, trigger_source=None, trigger_edge=None):
10

11 with nidigital.Session(resource_name=resource_name, options=options) as session:
12

13 dir = os.path.join(os.path.dirname(__file__))
14

15 # Load the pin map (.pinmap) created using the Digital Pattern Editor
16 pin_map_filename = os.path.join(dir, 'PinMap.pinmap')
17 session.load_pin_map(pin_map_filename)
18

19 # Load the specifications (.specs), levels (.digilevels), and timing (.
→˓digitiming) sheets created using the Digital Pattern Editor

20 spec_filename = os.path.join(dir, 'Specifications.specs')
21 levels_filename = os.path.join(dir, 'PinLevels.digilevels')
22 timing_filename = os.path.join(dir, 'Timing.digitiming')
23 session.load_specifications_levels_and_timing(spec_filename, levels_filename,

→˓timing_filename)
24

25 # Apply the settings from the levels and timing sheets we just loaded to the
→˓session

(continues on next page)

7.2. nidigital module 261

https://github.com/ni/nimi-python/releases/download/1.4.1/nidigital_examples.zip
https://github.com/ni/nimi-python/blob/1.4.1/src/nidigital/examples/burst_with_start_trigger/nidigital_burst_with_start_trigger.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

26 session.apply_levels_and_timing(levels_filename, timing_filename)
27

28 # Loading the pattern file (.digipat) created using the Digital Pattern Editor
29 pattern_filename = os.path.join(dir, 'Pattern.digipat')
30 session.load_pattern(pattern_filename)
31

32 if trigger_source is None:
33 print('Start bursting pattern')
34 else:
35 # Specify a source and edge for the external start trigger
36 session.start_trigger_type = nidigital.TriggerType.DIGITAL_EDGE
37 session.digital_edge_start_trigger_source = trigger_source
38 session.digital_edge_start_trigger_edge = nidigital.DigitalEdge.RISING if

→˓trigger_edge == 'Rising' else nidigital.DigitalEdge.FALLING
39 print('Wait for start trigger and then start bursting pattern')
40

41 # If start trigger is configured, waiting for the trigger to start bursting
→˓and then blocks until the pattern is done bursting

42 # Else just start bursting and block until the pattern is done bursting
43 session.burst_pattern(start_label='new_pattern')
44

45 # Disconnect all channels using programmable onboard switching
46 session.selected_function = nidigital.SelectedFunction.DISCONNECT
47 print('Done bursting pattern')
48

49

50 def _main(argsv):
51 parser = argparse.ArgumentParser(description='Demonstrates how to create and

→˓configure a session that bursts a pattern on the digital pattern instrument using a
→˓start trigger', formatter_class=argparse.ArgumentDefaultsHelpFormatter)

52 parser.add_argument('-n', '--resource-name', default='PXI1Slot2,PXI1Slot3', help=
→˓'Resource name of a NI digital pattern instrument. Ensure the resource name matches
→˓the instrument name in the pinmap file.')

53 parser.add_argument('-s', '--simulate', default='True', choices=['True', 'False'],
→˓ help='Whether to run on simulated hardware or real hardware')

54 subparser = parser.add_subparsers(dest='command', help='Sub-command help')
55 start_trigger = subparser.add_parser('start-trigger', help='Configure start

→˓trigger')
56 start_trigger.add_argument('-ts', '--trigger-source', default='/PXI1Slot2/PXI_

→˓Trig0', help='Source terminal for the start trigger')
57 start_trigger.add_argument('-te', '--trigger-edge', default='Rising', choices=[

→˓'Rising', 'Falling'], help='Trigger on rising edge or falling edge of start trigger
→˓')

58 args = parser.parse_args(argsv)
59

60 example(args.resource_name,
61 'Simulate=1, DriverSetup=Model:6571' if args.simulate == 'True' else '',
62 args.trigger_source if args.command == 'start-trigger' else None,
63 args.trigger_edge if args.command == 'start-trigger' else None)
64

65

66 def main():
67 _main(sys.argv[1:])
68

69

70 def test_main():
71 _main([])

(continues on next page)

262 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

72 _main(['start-trigger'])
73

74

75 def test_example():
76 resource_name = 'PXI1Slot2,PXI1Slot3'
77 options = {'simulate': True, 'driver_setup': {'Model': '6571'}, }
78 example(resource_name, options)
79

80 trigger_source = '/PXI1Slot2/PXI_Trig0'
81 trigger_edge = 'Rising'
82 example(resource_name, options, trigger_source, trigger_edge)
83

84

85 if __name__ == '__main__':
86 main()

nidigital_configure_time_set_and_voltage_levels.py

Listing 5: (nidigital_configure_time_set_and_voltage_levels.py)

1 #!/usr/bin/python
2

3 import argparse
4 import nidigital
5 import os
6 import sys
7

8

9 class VoltageLevelsAndTerminationConfig():
10 def __init__(self, vil, vih, vol, voh, vterm, termination_mode, iol, ioh, vcom):
11 self.vil = vil
12 self.vih = vih
13 self.vol = vol
14 self.voh = voh
15 self.vterm = vterm
16 self.termination_mode = termination_mode
17 self.iol = iol
18 self.ioh = ioh
19 self.vcom = vcom
20

21

22 class TimeSetConfig():
23 def __init__(self, time_set_name, period, drive_format, drive_on, drive_data,

→˓drive_return, drive_off, strobe_edge):
24 self.time_set_name = time_set_name
25 self.period = period
26 self.drive_format = drive_format
27 self.drive_on = drive_on
28 self.drive_data = drive_data
29 self.drive_return = drive_return
30 self.drive_off = drive_off
31 self.strobe_edge = strobe_edge
32

33

(continues on next page)

7.2. nidigital module 263

https://github.com/ni/nimi-python/blob/1.4.1/src/nidigital/examples/configure_time_set_and_voltage_levels/nidigital_configure_time_set_and_voltage_levels.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

34 def convert_drive_format(drive_format):
35 converter = {'NR': nidigital.DriveFormat.NR,
36 'RL': nidigital.DriveFormat.RL,
37 'RH': nidigital.DriveFormat.RH,
38 'SBC': nidigital.DriveFormat.SBC}
39 return converter.get(drive_format, None)
40

41

42 def example(resource_name,
43 options,
44 channels,
45 voltage_config,
46 time_set_config):
47

48 with nidigital.Session(resource_name=resource_name, options=options) as session:
49

50 dir = os.path.dirname(__file__)
51

52 # Load pin map (.pinmap) created using Digital Pattern Editor
53 pin_map_filename = os.path.join(dir, 'PinMap.pinmap')
54 session.load_pin_map(pin_map_filename)
55

56 # Configure voltage levels and terminal voltage through driver API
57 session.channels[channels].configure_voltage_levels(voltage_config.vil,

→˓voltage_config.vih, voltage_config.vol, voltage_config.voh, voltage_config.vterm)
58 if voltage_config.termination_mode == 'High_Z':
59 session.channels[channels].termination_mode = nidigital.TerminationMode.

→˓HIGH_Z
60 elif voltage_config.termination_mode == 'Active_Load':
61 session.channels[channels].termination_mode = nidigital.TerminationMode.

→˓ACTIVE_LOAD
62 session.channels[channels].configure_active_load_levels(voltage_config.

→˓iol, voltage_config.ioh, voltage_config.vcom)
63 else:
64 session.channels[channels].termination_mode = nidigital.TerminationMode.

→˓VTERM
65

66 # Configure time set through driver API
67 session.create_time_set(time_set_config.time_set_name) # Must match time set

→˓name in pattern file
68 session.configure_time_set_period(time_set_config.time_set_name, time_set_

→˓config.period)
69 session.channels[channels].configure_time_set_drive_edges(time_set_config.

→˓time_set_name, convert_drive_format(time_set_config.drive_format),
70 time_set_config.

→˓drive_on, time_set_config.drive_data,
71 time_set_config.

→˓drive_return, time_set_config.drive_off)
72 session.channels[channels].configure_time_set_compare_edges_strobe(time_set_

→˓config.time_set_name, time_set_config.strobe_edge)
73

74 # Load the pattern file (.digipat) created using Digital Pattern Editor
75 pattern_filename = os.path.join(dir, 'Pattern.digipat')
76 session.load_pattern(pattern_filename)
77

78 # Burst pattern, blocks until the pattern is done bursting
79 session.burst_pattern(start_label='new_pattern')

(continues on next page)

264 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

80 print('Start bursting pattern')
81

82 # Disconnect all channels using programmable onboard switching
83 session.selected_function = nidigital.SelectedFunction.DISCONNECT
84 print('Done bursting pattern')
85

86

87 def _main(argsv):
88 parser = argparse.ArgumentParser(description='Demonstrates how to create an

→˓instrument session, configure time set and voltage levels, and burst a pattern on
→˓the digital pattern instrument.', formatter_class=argparse.
→˓ArgumentDefaultsHelpFormatter)

89 parser.add_argument('-n', '--resource-name', default='PXI1Slot2,PXI1Slot3', help=
→˓'Resource name of a NI digital pattern instrument, ensure the resource name matches
→˓the instrument name in the pinmap file.')

90 parser.add_argument('-s', '--simulate', default='True', choices=['True', 'False'],
→˓ help='Whether to run on simulated hardware or on real hardware')

91 parser.add_argument('-c', '--channels', default='PinGroup1', help='Channel(s)/
→˓Pin(s) to configure')

92

93 # Parameters to configure voltage
94 parser.add_argument('--vil', default=0, type=float, help='The voltage that the

→˓instrument will apply to the input of the DUT when the pin driver drives a logic
→˓low (0)')

95 parser.add_argument('--vih', default=3.3, type=float, help='The voltage that the
→˓instrument will apply to the input of the DUT when the test instrument drives a
→˓logic high (1)')

96 parser.add_argument('--vol', default=1.6, type=float, help='The output voltage
→˓below which the comparator on the pin driver interprets a logic low (L)')

97 parser.add_argument('--voh', default=1.7, type=float, help='The output voltage
→˓above which the comparator on the pin driver interprets a logic high (H)')

98 parser.add_argument('--vterm', default=2, type=float, help='The termination
→˓voltage the instrument applies during non-drive cycles when the termination mode is
→˓set to Vterm')

99 parser.add_argument('-term-mode', '--termination-mode', default='High_Z',
→˓choices=['High_Z', 'Active_Load', 'Three_Level_Drive'])

100 parser.add_argument('--iol', default=0.002, type=float, help='The maximum current
→˓that the DUT sinks while outputting a voltage below VCOM')

101 parser.add_argument('--ioh', default=-0.002, type=float, help='The maximum
→˓current that the DUT sources while outputting a voltage above VCOM')

102 parser.add_argument('--vcom', default=0.0, type=float, help='The commutating
→˓voltage level at which the active load circuit switches between sourcing current
→˓and sinking current')

103

104 # Parameters to configure timeset
105 parser.add_argument('--period', default=0.00000002, type=float, help='Period in

→˓second')
106 parser.add_argument('-format', '--drive-format', default='NR', choices=['NR', 'RL

→˓', 'RH', 'SBC'], help='Non-return | Return to low | Return to high | Surround by
→˓complement')

107 parser.add_argument('--drive-on', default=0, type=float, help='The delay in
→˓seconds from the beginning of the vector period for turning on the pin driver')

108 parser.add_argument('--drive-data', default=0, type=float, help='The delay in
→˓seconds from the beginning of the vector period until the pattern data is driven to
→˓the pattern value')

109 parser.add_argument('--drive-return', default=0.000000015, type=float, help='The
→˓delay in seconds from the beginning of the vector period until the pin changes from
→˓the pattern data to the return value, as specified in the format.') (continues on next page)

7.2. nidigital module 265

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

110 parser.add_argument('--drive-off', default=0.00000002, type=float, help='The
→˓delay in seconds from the beginning of the vector period to turn off the pin driver
→˓when the next vector period uses a non-drive symbol (L, H, X, V, M, E).')

111 parser.add_argument('--strobe-edge', default=0.00000001, type=float, help='The
→˓time in second when the comparison happens within a vector period')

112

113 args = parser.parse_args(argsv)
114 voltage_config = VoltageLevelsAndTerminationConfig(args.vil, args.vih, args.vol,

→˓args.voh, args.vterm, args.termination_mode, args.iol, args.ioh, args.vcom)
115 time_set_config = TimeSetConfig("tset0", args.period, args.drive_format, args.

→˓drive_on, args.drive_data, args.drive_return, args.drive_off, args.strobe_edge)
116 example(args.resource_name,
117 'Simulate=1, DriverSetup=Model:6571' if args.simulate == 'True' else '',
118 args.channels,
119 voltage_config,
120 time_set_config)
121

122

123 def main():
124 _main(sys.argv[1:])
125

126

127 def test_main():
128 _main([])
129

130

131 def test_example():
132 resource_name = 'PXI1Slot2,PXI1Slot3'
133 options = {'simulate': True, 'driver_setup': {'Model': '6571'}, }
134 channels = 'PinGroup1'
135 voltage_config = VoltageLevelsAndTerminationConfig(vil=0, vih=3.3, vol=1.6, voh=1.

→˓7, vterm=2,
136 termination_mode='Active_Load',

→˓ iol=0.002, ioh=-0.002, vcom=0)
137 time_set_config = TimeSetConfig(time_set_name="tset0",
138 period=0.00000002,
139 drive_format='NR',
140 drive_on=0, drive_data=0, drive_return=0.

→˓000000015, drive_off=0.00000002, strobe_edge=0.00000001)
141 example(resource_name, options, channels, voltage_config, time_set_config)
142

143

144 if __name__ == '__main__':
145 main()

nidigital_ppmu_source_and_measure.py

Listing 6: (nidigital_ppmu_source_and_measure.py)

1 #!/usr/bin/python
2

3 import argparse
4 import nidigital
5 import os

(continues on next page)

266 Chapter 7. License

https://github.com/ni/nimi-python/blob/1.4.1/src/nidigital/examples/ppmu_source_and_measure/nidigital_ppmu_source_and_measure.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

6 import pytest
7 import sys
8 import time
9

10

11 def example(resource_name, options, channels, measure, aperture_time,
12 source=None, settling_time=None, current_level_range=None, current_

→˓level=None,
13 voltage_limit_high=None, voltage_limit_low=None, current_limit_range=None,

→˓ voltage_level=None):
14

15 with nidigital.Session(resource_name=resource_name, options=options) as session:
16

17 dir = os.path.join(os.path.dirname(__file__))
18

19 # Load pin map (.pinmap) created using Digital Pattern Editor
20 pin_map_filename = os.path.join(dir, 'PinMap.pinmap')
21 session.load_pin_map(pin_map_filename)
22

23 # Configure the PPMU measurement aperture time
24 session.channels[channels].ppmu_aperture_time = aperture_time
25 session.channels[channels].ppmu_aperture_time_units = nidigital.

→˓PPMUApertureTimeUnits.SECONDS
26

27 # Configure and source
28 if source == 'source-current':
29 session.channels[channels].ppmu_output_function = nidigital.

→˓PPMUOutputFunction.CURRENT
30

31 session.channels[channels].ppmu_current_level_range = current_level_range
32 session.channels[channels].ppmu_current_level = current_level
33 session.channels[channels].ppmu_voltage_limit_high = voltage_limit_high
34 session.channels[channels].ppmu_voltage_limit_low = voltage_limit_low
35

36 session.channels[channels].ppmu_source()
37

38 # Settling time between sourcing and measuring
39 time.sleep(settling_time)
40

41 elif source == 'source-voltage':
42 session.channels[channels].ppmu_output_function = nidigital.

→˓PPMUOutputFunction.VOLTAGE
43

44 session.channels[channels].ppmu_current_limit_range = current_limit_range
45 session.channels[channels].ppmu_voltage_level = voltage_level
46

47 session.channels[channels].ppmu_source()
48

49 # Settling time between sourcing and measuring
50 time.sleep(settling_time)
51

52 pin_info = session.channels[channels].get_pin_results_pin_information()
53

54 # Measure
55 if measure == 'current':
56 current_measurements = session.channels[channels].ppmu_measure(nidigital.

→˓PPMUMeasurementType.CURRENT)
(continues on next page)

7.2. nidigital module 267

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

57

58 print('{:<6} {:<20} {:<10}'.format('Site', 'Pin Name', 'Current'))
59

60 for pin, current in zip(pin_info, current_measurements):
61 print('{:<6d} {:<20} {:<10f}'.format(pin.site_number, pin.pin_name,

→˓current))
62 else:
63 voltage_measurements = session.channels[channels].ppmu_measure(nidigital.

→˓PPMUMeasurementType.VOLTAGE)
64

65 print('{:<6} {:<20} {:<10}'.format('Site', 'Pin Name', 'Voltage'))
66

67 for pin, voltage in zip(pin_info, voltage_measurements):
68 print('{:<6d} {:<20} {:<10f}'.format(pin.site_number, pin.pin_name,

→˓voltage))
69

70 # Disconnect all channels using programmable onboard switching
71 session.channels[channels].selected_function = nidigital.SelectedFunction.

→˓DISCONNECT
72

73

74 def _main(argsv):
75 parser = argparse.ArgumentParser(description='Demonstrates how to source/measure

→˓voltage/current using the PPMU on selected channels/pins of the digital pattern
→˓instrument',

76 formatter_class=argparse.
→˓ArgumentDefaultsHelpFormatter)

77 parser.add_argument('-n', '--resource-name', default='PXI1Slot2,PXI1Slot3', help=
→˓'Resource name of a NI digital pattern instrument, ensure the resource name matches
→˓the instrument name in the pinmap file.')

78 parser.add_argument('-s', '--simulate', default='True', choices=['True', 'False'],
→˓ help='Whether to run on simulated hardware or on real hardware')

79 parser.add_argument('-c', '--channels', default='DUTPin1, SystemPin1', help=
→˓'Channel(s)/Pin(s) to use')

80 parser.add_argument('-m', '--measure', default='voltage', choices=['voltage',
→˓'current'], help='Measure voltage or measure current')

81 parser.add_argument('-at', '--aperture-time', default=0.000004, type=float, help=
→˓'Aperture time in seconds')

82 subparser = parser.add_subparsers(dest='source', help='Sub-command help, by
→˓default it measures voltage and does not source')

83

84 source_current = subparser.add_parser('source-current', help='Source current')
85 source_current.add_argument('-clr', '--current-level-range', default=0.000002,

→˓type=float, help='Current level range in amps')
86 source_current.add_argument('-cl', '--current-level', default=0.000002,

→˓type=float, help='Current level in amps')
87 source_current.add_argument('-vlh', '--voltage-limit-high', default=3.3,

→˓type=float, help='Voltage limit high in volts')
88 source_current.add_argument('-vll', '--voltage-limit-low', default=0, type=float,

→˓help='Voltage limit low in volts')
89 source_current.add_argument('-st', '--settling-time', default=0.01, type=float,

→˓help='Settling time in seconds')
90

91 source_voltage = subparser.add_parser('source-voltage', help='Source voltage')
92 source_voltage.add_argument('-clr', '--current-limit-range', default=0.000002,

→˓type=float, help='Current limit range in amps')
93 source_voltage.add_argument('-vl', '--voltage-level', default=3.3, type=float,

→˓help='Voltage level in volts') (continues on next page)

268 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

94 source_voltage.add_argument('-st', '--settling-time', default=0.01, type=float,
→˓help='Settling time in seconds')

95

96 args = parser.parse_args(argsv)
97

98 if args.source == 'source-current':
99 example(

100 args.resource_name,
101 'Simulate=1, DriverSetup=Model:6571' if args.simulate == 'True' else '',
102 args.channels,
103 args.measure,
104 args.aperture_time,
105 args.source,
106 args.settling_time,
107 args.current_level_range,
108 args.current_level,
109 args.voltage_limit_high,
110 args.voltage_limit_low)
111 elif args.source == 'source-voltage':
112 example(
113 args.resource_name,
114 'Simulate=1, DriverSetup=Model:6571' if args.simulate == 'True' else '',
115 args.channels,
116 args.measure,
117 args.aperture_time,
118 args.source,
119 args.settling_time,
120 current_limit_range=args.current_limit_range,
121 voltage_level=args.voltage_level)
122 else:
123 if args.measure == 'current':
124 raise ValueError('Cannot measure current on a channel that is not

→˓sourcing voltage or current')
125 example(
126 args.resource_name,
127 'Simulate=1, DriverSetup=Model:6571' if args.simulate == 'True' else '',
128 args.channels,
129 args.measure,
130 args.aperture_time)
131

132

133 def main():
134 _main(sys.argv[1:])
135

136

137 def test_main():
138 _main([])
139 _main(['-m', 'voltage'])
140 with pytest.raises(Exception):
141 _main(['-m', 'current'])
142 _main(['-m', 'voltage', 'source-current'])
143 _main(['-m', 'current', 'source-current'])
144 _main(['-m', 'voltage', 'source-voltage'])
145 _main(['-m', 'current', 'source-voltage'])
146

147

148 def test_example():
(continues on next page)

7.2. nidigital module 269

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

149 resource_name = 'PXI1Slot2,PXI1Slot3'
150 options = {'simulate': True, 'driver_setup': {'Model': '6571'}, }
151 channels = 'DUTPin1, SystemPin1'
152 aperture_time = 0.000004
153

154 example(resource_name, options, channels, 'voltage',
155 aperture_time)
156 with pytest.raises(Exception):
157 example(resource_name, options, channels, 'current',
158 aperture_time)
159

160 settling_time = 0.01
161 current_level_range = 0.000002
162 current_level = 0.000002
163 voltage_limit_high = 3.3
164 voltage_limit_low = 0
165 example(resource_name, options, channels, 'voltage',
166 aperture_time, 'source-current', settling_time,
167 current_level_range, current_level,
168 voltage_limit_high, voltage_limit_low)
169 example(resource_name, options, channels, 'current',
170 aperture_time, 'source-current', settling_time,
171 current_level_range, current_level,
172 voltage_limit_high, voltage_limit_low)
173

174 current_limit_range = 0.000002
175 voltage_level = 3.3
176 example(resource_name, options, channels, 'voltage',
177 aperture_time, 'source-voltage', settling_time,
178 current_limit_range=current_limit_range,
179 voltage_level=voltage_level)
180 example(resource_name, options, channels, 'current',
181 aperture_time, 'source-voltage', settling_time,
182 current_limit_range=current_limit_range,
183 voltage_level=voltage_level)
184

185

186 if __name__ == '__main__':
187 main()

7.3 nidmm module

7.3.1 Installation

As a prerequisite to using the nidmm module, you must install the NI-DMM runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-DMM) can be installed with pip:

$ python -m pip install nidmm~=1.4.1

Or easy_install from setuptools:

270 Chapter 7. License

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

NI Modular Instruments Python API Documentation, Release 1.4.1

$ python -m easy_install nidmm

7.3.2 Usage

The following is a basic example of using the nidmm module to open a session to a DMM and perform a 5.5 digits of
resolution voltage measurement in the 10 V range.

import nidmm
with nidmm.Session("Dev1") as session:

session.configureMeasurementDigits(nidmm.Function.DC_VOLTS, 10, 5.5)
print("Measurement: " + str(session.read()))

Additional examples for NI-DMM are located in src/nidmm/examples/ directory.

7.3.3 API Reference

Session

class nidmm.Session(self, resource_name, id_query=False, reset_device=False, options={})
This method completes the following tasks:

• Creates a new IVI instrument driver session and, optionally, sets the initial state of the
following session properties: nidmm.Session.RANGE_CHECK, nidmm.Session.
QUERY_INSTR_STATUS, nidmm.Session.CACHE, nidmm.Session.simulate, nidmm.
Session.RECORD_COERCIONS.

• Opens a session to the device you specify for the Resource_Name parameter. If the ID_Query parameter
is set to True, this method queries the instrument ID and checks that it is valid for this instrument driver.

• If the Reset_Device parameter is set to True, this method resets the instrument to a known state. Sends
initialization commands to set the instrument to the state necessary for the operation of the instrument
driver.

• Returns a ViSession handle that you use to identify the instrument in all subsequent instrument driver
method calls.

Note: One or more of the referenced properties are not in the Python API for this driver.

Parameters

• resource_name (str) –

Caution: All IVI names for the Resource_Name, such as logical names or virtual
names, are case-sensitive. If you use logical names, driver session names, or virtual
names in your program, you must make sure that the name you use matches the name
in the IVI Configuration Store file exactly, without any variations in the case of the
characters in the name.

Contains the resource_name of the device to initialize. The resource_name is assigned in
Measurement & Automation Explorer (MAX). Refer to Related Documentation for the NI

7.3. nidmm module 271

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

Digital Multimeters Getting Started Guide for more information about configuring and
testing the DMM in MAX.
Valid Syntax:

– NI-DAQmx name

– DAQ::NI-DAQmx name[::INSTR]

– DAQ::Traditional NI-DAQ device number[::INSTR]

– IVI logical name

• id_query (bool) – Verifies that the device you initialize is one that the driver supports.
NI-DMM automatically performs this query, so setting this parameter is not necessary. De-
fined Values:

True (default) 1 Perform ID Query
False 0 Skip ID Query

• reset_device (bool) – Specifies whether to reset the instrument during the initializa-
tion procedure. Defined Values:

True (default) 1 Reset Device
False 0 Don’t Reset

• options (dict) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status False
cache True
simulate False
record_value_coersions False
driver_setup {}

Methods

abort

nidmm.Session.abort()
Aborts a previously initiated measurement and returns the DMM to the Idle state.

272 Chapter 7. License

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

NI Modular Instruments Python API Documentation, Release 1.4.1

close

nidmm.Session.close()
Closes the specified session and deallocates resources that it reserved.

Note: This method is not needed when using the session context manager

configure_measurement_absolute

nidmm.Session.configure_measurement_absolute(measurement_function, range,
resolution_absolute)

Configures the common properties of the measurement. These properties include
nidmm.Session.method, nidmm.Session.range, and nidmm.Session.
resolution_absolute.

Parameters

• measurement_function (nidmm.Function) – Specifies the measure-
ment_function used to acquire the measurement. The driver sets nidmm.
Session.method to this value.

• range (float) – Specifies the range for the method specified in the Mea-
surement_Function parameter. When frequency is specified in the Measure-
ment_Function parameter, you must supply the minimum frequency expected in
the range parameter. For example, you must type in 100 Hz if you are measuring
101 Hz or higher. For all other methods, you must supply a range that exceeds the
value that you are measuring. For example, you must type in 10 V if you are measur-
ing 9 V. range values are coerced up to the closest input range. Refer to the Devices
Overview for a list of valid ranges. The driver sets nidmm.Session.range to
this value. The default is 0.02 V.

NIDMM_VAL_AUTO_RANGE_ON-
1.0

NI-DMM performs an Auto Range before acquiring the
measurement.

NIDMM_VAL_AUTO_RANGE_OFF-
2.0

NI-DMM sets the Range to the current nidmm.Session.
auto_range_value and uses this range for all subse-
quent measurements until the measurement configuration is
changed.

NIDMM_VAL_AUTO_RANGE_ONCE-
3.0

NI-DMM performs an Auto Range before acquir-
ing the measurement. The nidmm.Session.
auto_range_value is stored and used for all sub-
sequent measurements until the measurement configuration
is changed.

Note: The NI 4050, NI 4060, and NI 4065 only support Auto Range when the
trigger and sample trigger are set to IMMEDIATE.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

7.3. nidmm module 273

https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

• resolution_absolute (float) – Specifies the absolute resolution for the
measurement. NI-DMM sets nidmm.Session.resolution_absolute to
this value. The PXIe-4080/4081/4082 uses the resolution you specify. The NI 4065
and NI 4070/4071/4072 ignore this parameter when the Range parameter is set to
NIDMM_VAL_AUTO_RANGE_ON (-1.0) or NIDMM_VAL_AUTO_RANGE_ONCE (-
3.0). The default is 0.001 V.

Note: NI-DMM ignores this parameter for capacitance and inductance measure-
ments on the NI 4072. To achieve better resolution for such measurements, use the
nidmm.Session.lc_number_meas_to_average property.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

configure_measurement_digits

nidmm.Session.configure_measurement_digits(measurement_function, range, res-
olution_digits)

Configures the common properties of the measurement. These properties include
nidmm.Session.method, nidmm.Session.range, and nidmm.Session.
resolution_digits.

Parameters

• measurement_function (nidmm.Function) – Specifies the measure-
ment_function used to acquire the measurement. The driver sets nidmm.
Session.method to this value.

• range (float) – Specifies the range for the method specified in the Mea-
surement_Function parameter. When frequency is specified in the Measure-
ment_Function parameter, you must supply the minimum frequency expected in
the range parameter. For example, you must type in 100 Hz if you are measuring
101 Hz or higher. For all other methods, you must supply a range that exceeds the
value that you are measuring. For example, you must type in 10 V if you are measur-
ing 9 V. range values are coerced up to the closest input range. Refer to the Devices
Overview for a list of valid ranges. The driver sets nidmm.Session.range to
this value. The default is 0.02 V.

NIDMM_VAL_AUTO_RANGE_ON-
1.0

NI-DMM performs an Auto Range before acquiring the
measurement.

NIDMM_VAL_AUTO_RANGE_OFF-
2.0

NI-DMM sets the Range to the current nidmm.Session.
auto_range_value and uses this range for all subse-
quent measurements until the measurement configuration is
changed.

NIDMM_VAL_AUTO_RANGE_ONCE-
3.0

NI-DMM performs an Auto Range before acquir-
ing the measurement. The nidmm.Session.
auto_range_value is stored and used for all sub-
sequent measurements until the measurement configuration
is changed.

274 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: The NI 4050, NI 4060, and NI 4065 only support Auto Range when the
trigger and sample trigger are set to IMMEDIATE.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

• resolution_digits (float) – Specifies the resolution of the measurement
in digits. The driver sets the Devices Overview for a list of valid ranges. The
driver sets nidmm.Session.resolution_digits property to this value.
The PXIe-4080/4081/4082 uses the resolution you specify. The NI 4065 and
NI 4070/4071/4072 ignore this parameter when the Range parameter is set to
NIDMM_VAL_AUTO_RANGE_ON (-1.0) or NIDMM_VAL_AUTO_RANGE_ONCE (-
3.0). The default is 5½.

Note: NI-DMM ignores this parameter for capacitance and inductance measure-
ments on the NI 4072. To achieve better resolution for such measurements, use the
nidmm.Session.lc_number_meas_to_average property.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

configure_multi_point

nidmm.Session.configure_multi_point(trigger_count, sample_count, sam-
ple_trigger=nidmm.SampleTrigger.IMMEDIATE,
sample_interval=hightime.timedelta(seconds=-
1))

Configures the properties for multipoint measurements. These properties include nidmm.
Session.trigger_count, nidmm.Session.sample_count, nidmm.Session.
sample_trigger, and nidmm.Session.sample_interval.

For continuous acquisitions, set nidmm.Session.trigger_count or nidmm.Session.
sample_count to zero. For more information, refer to Multiple Point Acquisitions, Triggering,
and Using Switches.

Parameters

• trigger_count (int) – Sets the number of triggers you want the DMM to
receive before returning to the Idle state. The driver sets nidmm.Session.
trigger_count to this value. The default value is 1.

• sample_count (int) – Sets the number of measurements the DMM makes
in each measurement sequence initiated by a trigger. The driver sets nidmm.
Session.sample_count to this value. The default value is 1.

• sample_trigger (nidmm.SampleTrigger) – Specifies the sample_trigger
source you want to use. The driver sets nidmm.Session.sample_trigger
to this value. The default is Immediate.

7.3. nidmm module 275

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: To determine which values are supported by each device, refer to the Lab-
Windows/CVI Trigger Routing section.

• sample_interval (hightime.timedelta, datetime.timedelta,
or float in seconds) – Sets the amount of time in seconds the DMM
waits between measurement cycles. The driver sets nidmm.Session.
sample_interval to this value. Specify a sample interval to add settling time
between measurement cycles or to decrease the measurement rate. sample_interval
only applies when the Sample_Trigger is set to INTERVAL.

On the NI 4060, the sample_interval value is used as the settling time. When sam-
ple interval is set to 0, the DMM does not settle between measurement cycles. The
NI 4065 and NI 4070/4071/4072 use the value specified in sample_interval as addi-
tional delay. The default value (-1) ensures that the DMM settles for a recommended
time. This is the same as using an Immediate trigger.

Note: This property is not used on the NI 4080/4081/4082 and the NI 4050.

configure_rtd_custom

nidmm.Session.configure_rtd_custom(rtd_a, rtd_b, rtd_c)
Configures the A, B, and C parameters for a custom RTD.

Parameters

• rtd_a (float) – Specifies the Callendar-Van Dusen A coefficient for RTD
scaling when RTD Type parameter is set to Custom in the nidmm.Session.
configure_rtd_type() method. The default is 3.9083e-3 (Pt3851)

• rtd_b (float) – Specifies the Callendar-Van Dusen B coefficient for RTD
scaling when RTD Type parameter is set to Custom in the nidmm.Session.
configure_rtd_type() method. The default is -5.775e-7 (Pt3851).

• rtd_c (float) – Specifies the Callendar-Van Dusen C coefficient for RTD
scaling when RTD Type parameter is set to Custom in the nidmm.Session.
configure_rtd_type() method. The default is -4.183e-12 (Pt3851).

configure_rtd_type

nidmm.Session.configure_rtd_type(rtd_type, rtd_resistance)
Configures the RTD Type and RTD Resistance parameters for an RTD.

Parameters

• rtd_type (nidmm.RTDType) – Specifies the type of RTD used to measure the
temperature resistance. NI-DMM uses this value to set the RTD Type property. The
default is PT3851.

276 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

Enum Standards Ma-
te-
rial

TCR
(𝛼)

Typ-
ical
R0
(Ω)

Notes

Callendar-
Van
Dusen
Coeffi-
cient
PT3851 IEC-751

DIN 43760
BS 1904
ASTM-E1137
EN-60751

Plat-
inum

.003851100
Ω
1000
Ω

A = 3.9083
× 10–3 B =
–5.775×10:sup:–7
C =
–4.183×10:sup:–12

Most
com-
mon
RTDs

PT3750 Low-cost ven-
dor compliant
RTD*

Plat-
inum

.0037501000
Ω

A = 3.81
× 10–3 B =
–6.02×10:sup:–7
C =
–6.0×10:sup:–12

Low-
cost
RTD

PT3916 JISC 1604 Plat-
inum

.003916100
Ω

A = 3.9739
× 10–3 B =
–5.870×10:sup:–7
C = –4.4 ×10–12

Used in
primar-
ily in
Japan

PT3920 US Industrial
Standard D-
100 American

Plat-
inum

.003920100
Ω

A = 3.9787
× 10–3 B =
–5.8686×10:sup:–7
C = –4.167
×10–12

Low-
cost
RTD

PT3911 US Indus-
trial Standard
American

Plat-
inum

.003911100
Ω

A = 3.9692
× 10–3 B =
–5.8495×10:sup:–7
C = –4.233
×10–12

Low-
cost
RTD

PT3928 ITS-90 Plat-
inum

.003928100
Ω

A = 3.9888
× 10–3 B =
–5.915×10:sup:–7
C = –3.85 ×10–12

The
defini-
tion of
temper-
ature

*No
stan-
dard.
Check
the
TCR.

• rtd_resistance (float) – Specifies the RTD resistance in ohms at 0 °C. NI-
DMM uses this value to set the RTD Resistance property. The default is 100 (Ω).

7.3. nidmm module 277

https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

configure_thermistor_custom

nidmm.Session.configure_thermistor_custom(thermistor_a, thermistor_b, thermis-
tor_c)

Configures the A, B, and C parameters for a custom thermistor.

Parameters

• thermistor_a (float) – Specifies the Steinhart-Hart A coefficient for ther-
mistor scaling when Thermistor Type is set to Custom in the nidmm.Session.
ConfigureThermistorType() method. The default is 1.0295e-3 (44006).

Note: One or more of the referenced methods are not in the Python API for this
driver.

• thermistor_b (float) – Specifies the Steinhart-Hart B coefficient for ther-
mistor scaling when Thermistor Type is set to Custom in the nidmm.Session.
ConfigureThermistorType() method. The default is 2.391e-4 (44006).

Note: One or more of the referenced methods are not in the Python API for this
driver.

• thermistor_c (float) – Specifies the Steinhart-Hart C coefficient for ther-
mistor scaling when Thermistor Type is set to Custom in the nidmm.Session.
ConfigureThermistorType() method. The default is 1.568e-7 (44006).

Note: One or more of the referenced methods are not in the Python API for this
driver.

configure_thermocouple

nidmm.Session.configure_thermocouple(thermocouple_type, refer-
ence_junction_type=nidmm.ThermocoupleReferenceJunctionType.FIXED)

Configures the thermocouple type and reference junction type for a chosen thermocouple.

Parameters

• thermocouple_type (nidmm.ThermocoupleType) – Specifies the type of
thermocouple used to measure the temperature. NI-DMM uses this value to set the
Thermocouple Type property. The default is J .

B Thermocouple type B
E Thermocouple type E
J Thermocouple type J
K Thermocouple type K
N Thermocouple type N
R Thermocouple type R
S Thermocouple type S
T Thermocouple type T

278 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

• reference_junction_type (nidmm.ThermocoupleReferenceJunctionType)
– Specifies the type of reference junction to be used in the reference junc-
tion compensation of a thermocouple measurement. NI-DMM uses this value
to set the Reference Junction Type property. The only supported value is
NIDMM_VAL_TEMP_REF_JUNC_FIXED.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

configure_trigger

nidmm.Session.configure_trigger(trigger_source, trigger_delay=hightime.timedelta(seconds=-
1))

Configures the DMM Trigger_Source and Trigger_Delay. Refer to Triggering and Using Switches
for more information.

Parameters

• trigger_source (nidmm.TriggerSource) – Specifies the trig-
ger_source that initiates the acquisition. The driver sets nidmm.Session.
trigger_source to this value. Software configures the DMM to wait until
nidmm.Session.send_software_trigger() is called before triggering
the DMM.

Note: To determine which values are supported by each device, refer to the Lab-
Windows/CVI Trigger Routing section.

• trigger_delay (hightime.timedelta, datetime.timedelta,
or float in seconds) – Specifies the time that the DMM waits after it
has received a trigger before taking a measurement. The driver sets the nidmm.
Session.trigger_delay property to this value. By default, trigger_delay
is NIDMM_VAL_AUTO_DELAY (-1), which means the DMM waits an appropriate
settling time before taking the measurement. On the NI 4060, if you set trig-
ger_delay to 0, the DMM does not settle before taking the measurement. The NI
4065 and NI 4070/4071/4072 use the value specified in trigger_delay as additional
settling time.

Note: When using the NI 4050, Trigger_Delay must be set to
NIDMM_VAL_AUTO_DELAY (-1).

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

configure_waveform_acquisition

nidmm.Session.configure_waveform_acquisition(measurement_function, range,
rate, waveform_points)

Configures the DMM for waveform acquisitions. This feature is supported on the NI

7.3. nidmm module 279

https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

4080/4081/4082 and the NI 4070/4071/4072.

Parameters

• measurement_function (nidmm.Function) – Specifies the measure-
ment_function used in a waveform acquisition. The driver sets nidmm.
Session.method to this value.

WAVEFORM_VOLTAGE (default) 1003 Voltage Waveform
WAVEFORM_CURRENT 1004 Current Waveform

• range (float) – Specifies the expected maximum amplitude of the input sig-
nal and sets the range for the Measurement_Function. NI-DMM sets nidmm.
Session.range to this value. range values are coerced up to the closest input
range. The default is 10.0.

For valid ranges refer to the topics in Devices.

Auto-ranging is not supported during waveform acquisitions.

• rate (float) – Specifies the rate of the acquisition in samples per second. NI-
DMM sets nidmm.Session.waveform_rate to this value.

The valid Range is 10.0–1,800,000 S/s. rate values are coerced to the closest integer
divisor of 1,800,000. The default value is 1,800,000.

• waveform_points (int) – Specifies the number of points to acquire be-
fore the waveform acquisition completes. NI-DMM sets nidmm.Session.
waveform_points to this value.

To calculate the maximum and minimum number of waveform points that you can
acquire in one acquisition, refer to the Waveform Acquisition Measurement Cycle.

The default value is 500.

disable

nidmm.Session.disable()
Places the instrument in a quiescent state where it has minimal or no impact on the system to which
it is connected. If a measurement is in progress when this method is called, the measurement is
aborted.

export_attribute_configuration_buffer

nidmm.Session.export_attribute_configuration_buffer()
Exports the property configuration of the session to the specified configuration buffer.

You can export and import session property configurations only between devices with identical
model numbers.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-DMM returns an error.

Coercion Behavior for Certain Devices

Imported and exported property configurations contain coerced values for the following NI-DMM
devices:

280 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python API Documentation, Release 1.4.1

• PXI/PCI/PCIe/USB-4065

• PXI/PCI-4070

• PXI-4071

• PXI-4072

NI-DMM coerces property values when the value you set is within the allowed range for the property
but is not one of the discrete valid values the property supports. For example, for a property that
coerces values up, if you choose a value of 4 when the adjacent valid values are 1 and 10, the
property coerces the value to 10.

Related Topics:

Using Properties and Properties with NI-DMM

Setting Properties Before Reading Properties

Note: Not supported on the PCMCIA-4050 or the PXI/PCI-4060.

Return type bytes

Returns Specifies the byte array buffer to be populated with the exported property config-
uration.

export_attribute_configuration_file

nidmm.Session.export_attribute_configuration_file(file_path)
Exports the property configuration of the session to the specified file.

You can export and import session property configurations only between devices with identical
model numbers.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-DMM returns an error.

Coercion Behavior for Certain Devices

Imported and exported property configurations contain coerced values for the following NI-DMM
devices:

• PXI/PCI/PCIe/USB-4065

• PXI/PCI-4070

• PXI-4071

• PXI-4072

NI-DMM coerces property values when the value you set is within the allowed range for the property
but is not one of the discrete valid values the property supports. For example, for a property that
coerces values up, if you choose a value of 4 when the adjacent valid values are 1 and 10, the
property coerces the value to 10.

Related Topics:

Using Properties and Properties with NI-DMM

Setting Properties Before Reading Properties

7.3. nidmm module 281

https://docs.python.org/3/library/stdtypes.html#bytes

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: Not supported on the PCMCIA-4050 or the PXI/PCI-4060.

Parameters file_path (str) – Specifies the absolute path to the file to contain the
exported property configuration. If you specify an empty or relative path, this method
returns an error. Default file extension: .nidmmconfig

fetch

nidmm.Session.fetch(maximum_time=hightime.timedelta(milliseconds=-1))
Returns the value from a previously initiated measurement. You must call nidmm.Session.
_initiate() before calling this method.

Parameters maximum_time (hightime.timedelta, datetime.
timedelta, or int in milliseconds) – Specifies the maxi-
mum_time allowed for this method to complete in milliseconds. If the
method does not complete within this time interval, the method returns the
NIDMM_ERROR_MAX_TIME_EXCEEDED error code. This may happen if an
external trigger has not been received, or if the specified timeout is not long enough
for the acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

Return type float

Returns The measured value returned from the DMM.

fetch_multi_point

nidmm.Session.fetch_multi_point(array_size, maximum_time=hightime.timedelta(milliseconds=-
1))

Returns an array of values from a previously initiated multipoint measurement. The number of
measurements the DMM makes is determined by the values you specify for the Trigger_Count and
Sample_Count parameters of nidmm.Session.configure_multi_point(). You must
first call nidmm.Session._initiate() to initiate a measurement before calling this method.

Parameters

• array_size (int) – Specifies the number of measurements to acquire. The max-
imum number of measurements for a finite acquisition is the (Trigger Count x Sam-
ple Count) parameters in nidmm.Session.configure_multi_point().

For continuous acquisitions, up to 100,000 points can be returned at once. The
number of measurements can be a subset. The valid range is any positive ViInt32.
The default value is 1.

• maximum_time (hightime.timedelta, datetime.timedelta, or
int in milliseconds) – Specifies the maximum_time allowed for this
method to complete in milliseconds. If the method does not complete within this

282 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

time interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been received, or if the
specified timeout is not long enough for the acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type

tuple (reading_array, actual_number_of_points)

WHERE

reading_array (array.array(“d”)):

An array of measurement values.

Note: The size of the Reading_Array must be at least the size that you specify
for the Array_Size parameter.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

fetch_waveform

nidmm.Session.fetch_waveform(array_size, maximum_time=hightime.timedelta(milliseconds=-
1))

For the NI 4080/4081/4082 and the NI 4070/4071/4072, returns an array of values from a previously
initiated waveform acquisition. You must call nidmm.Session._initiate() before calling
this method.

Parameters

• array_size (int) – Specifies the number of waveform points to return. You
specify the total number of points that the DMM acquires in the Waveform Points
parameter of nidmm.Session.configure_waveform_acquisition().
The default value is 1.

• maximum_time (hightime.timedelta, datetime.timedelta, or
int in milliseconds) – Specifies the maximum_time allowed for this
method to complete in milliseconds. If the method does not complete within this
time interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been received, or if the
specified timeout is not long enough for the acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

7.3. nidmm module 283

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type

tuple (waveform_array, actual_number_of_points)

WHERE

waveform_array (array.array(“d”)):

Waveform Array is an array of measurement values stored in waveform data
type.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

fetch_waveform_into

nidmm.Session.fetch_waveform_into(array_size, maximum_time=hightime.timedelta(milliseconds=-
1))

For the NI 4080/4081/4082 and the NI 4070/4071/4072, returns an array of values from a previously
initiated waveform acquisition. You must call nidmm.Session._initiate() before calling
this method.

Parameters

• waveform_array (numpy.array(dtype=numpy.float64)) – Wave-
form Array is an array of measurement values stored in waveform data type.

• maximum_time (hightime.timedelta, datetime.timedelta, or
int in milliseconds) – Specifies the maximum_time allowed for this
method to complete in milliseconds. If the method does not complete within this
time interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been received, or if the
specified timeout is not long enough for the acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type

tuple (waveform_array, actual_number_of_points)

WHERE

waveform_array (numpy.array(dtype=numpy.float64)):

Waveform Array is an array of measurement values stored in waveform data
type.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

284 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

get_cal_date_and_time

nidmm.Session.get_cal_date_and_time(cal_type)
Returns the date and time of the last calibration performed.

Note: The NI 4050 and NI 4060 are not supported.

Parameters cal_type (int) – Specifies the type of calibration performed (external or
self-calibration).

NIDMM_VAL_INTERNAL_AREA (default) 0 Self-Calibration
NIDMM_VAL_EXTERNAL_AREA 1 External Calibration

Note: The NI 4065 does not support self-calibration.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

Return type hightime.datetime

Returns Indicates date and time of the last calibration.

get_dev_temp

nidmm.Session.get_dev_temp(options="")
Returns the current Temperature of the device.

Note: The NI 4050 and NI 4060 are not supported.

Parameters options (str) – Reserved.

Return type float

Returns Returns the current temperature of the device.

get_ext_cal_recommended_interval

nidmm.Session.get_ext_cal_recommended_interval()
Returns the recommended interval between external recalibration in Months.

Note: The NI 4050 and NI 4060 are not supported.

Return type hightime.timedelta

Returns Returns the recommended number of months between external calibrations.

7.3. nidmm module 285

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

get_last_cal_temp

nidmm.Session.get_last_cal_temp(cal_type)
Returns the Temperature during the last calibration procedure.

Note: The NI 4050 and NI 4060 are not supported.

Parameters cal_type (int) – Specifies the type of calibration performed (external or
self-calibration).

NIDMM_VAL_INTERNAL_AREA (default) 0 Self-Calibration
NIDMM_VAL_EXTERNAL_AREA 1 External Calibration

Note: The NI 4065 does not support self-calibration.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

Return type float

Returns Returns the temperature during the last calibration.

get_self_cal_supported

nidmm.Session.get_self_cal_supported()
Returns a Boolean value that expresses whether or not the DMM that you are using can perform
self-calibration.

Return type bool

Returns

Returns whether Self Cal is supported for the device specified by the given session.

True 1 The DMM that you are using can perform self-calibration.
False 0 The DMM that you are using cannot perform self-calibration.

import_attribute_configuration_buffer

nidmm.Session.import_attribute_configuration_buffer(configuration)
Imports a property configuration to the session from the specified configuration buffer.

You can export and import session property configurations only between devices with identical
model numbers.

Coercion Behavior for Certain Devices

Imported and exported property configurations contain coerced values for the following NI-DMM
devices:

286 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

• PXI/PCI/PCIe/USB-4065

• PXI/PCI-4070

• PXI-4071

• PXI-4072

NI-DMM coerces property values when the value you set is within the allowed range for the property
but is not one of the discrete valid values the property supports. For example, for a property that
coerces values up, if you choose a value of 4 when the adjacent valid values are 1 and 10, the
property coerces the value to 10.

Related Topics:

Using Properties and Properties with NI-DMM

Setting Properties Before Reading Properties

Note: Not supported on the PCMCIA-4050 or the PXI/PCI-4060.

Parameters configuration (bytes) – Specifies the byte array buffer that contains
the property configuration to import.

import_attribute_configuration_file

nidmm.Session.import_attribute_configuration_file(file_path)
Imports a property configuration to the session from the specified file.

You can export and import session property configurations only between devices with identical
model numbers.

Coercion Behavior for Certain Devices

Imported and exported property configurations contain coerced values for the following NI-DMM
devices:

• PXI/PCI/PCIe/USB-4065

• PXI/PCI-4070

• PXI-4071

• PXI-4072

NI-DMM coerces property values when the value you set is within the allowed range for the property
but is not one of the discrete valid values the property supports. For example, for a property that
coerces values up, if you choose a value of 4 when the adjacent valid values are 1 and 10, the
property coerces the value to 10.

Related Topics:

Using Properties and Properties with NI-DMM

Setting Properties Before Reading Properties

Note: Not supported on the PCMCIA-4050 or the PXI/PCI-4060.

7.3. nidmm module 287

https://docs.python.org/3/library/stdtypes.html#bytes
javascript:LaunchHelp('DMM.chm::/setting_before_reading_attributes')

NI Modular Instruments Python API Documentation, Release 1.4.1

Parameters file_path (str) – Specifies the absolute path to the file containing the
property configuration to import. If you specify an empty or relative path, this method
returns an error. Default File Extension: .nidmmconfig

initiate

nidmm.Session.initiate()
Initiates an acquisition. After you call this method, the DMM leaves the Idle state and enters the
Wait-for-Trigger state. If trigger is set to Immediate mode, the DMM begins acquiring measure-
ment data. Use nidmm.Session.fetch(), nidmm.Session.fetch_multi_point(),
or nidmm.Session.fetch_waveform() to retrieve the measurement data.

Note: This method will return a Python context manager that will initiate on entering and abort on
exit.

lock

nidmm.Session.lock()
Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:

• The application called the nidmm.Session.lock() method.

• A call to NI-DMM locked the session.

• After a call to the nidmm.Session.lock() method returns successfully, no other threads can access
the device session until you call the nidmm.Session.unlock() method or exit out of the with block
when using lock context manager.

• Use the nidmm.Session.lock() method and the nidmm.Session.unlock() method around a
sequence of calls to instrument driver methods if you require that the device retain its settings through the
end of the sequence.

You can safely make nested calls to the nidmm.Session.lock() method within the same thread. To
completely unlock the session, you must balance each call to the nidmm.Session.lock() method with a
call to the nidmm.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

with nidmm.Session('dev1') as session:
with session.lock():

Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type context manager

Returns When used in a with statement, nidmm.Session.lock() acts as a context manager
and unlock will be called when the with block is exited

288 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

perform_open_cable_comp

nidmm.Session.perform_open_cable_comp()
For the NI 4082 and NI 4072 only, performs the open cable compensation measurements for the
current capacitance/inductance range, and returns open cable compensation Conductance and Sus-
ceptance values. You can use the return values of this method as inputs to nidmm.Session.
ConfigureOpenCableCompValues().

This method returns an error if the value of the nidmm.Session.method property is not set to
CAPACITANCE (1005) or INDUCTANCE (1006).

Note: One or more of the referenced methods are not in the Python API for this driver.

Return type

tuple (conductance, susceptance)

WHERE

conductance (float):

conductance is the measured value of open cable compensation conductance.

susceptance (float):

susceptance is the measured value of open cable compensation susceptance.

perform_short_cable_comp

nidmm.Session.perform_short_cable_comp()
Performs the short cable compensation measurements for the current capacitance/inductance range,
and returns short cable compensation Resistance and Reactance values. You can use the return val-
ues of this method as inputs to nidmm.Session.ConfigureShortCableCompValues().

This method returns an error if the value of the nidmm.Session.method property is not set to
CAPACITANCE (1005) or INDUCTANCE (1006).

Note: One or more of the referenced methods are not in the Python API for this driver.

Return type

tuple (resistance, reactance)

WHERE

resistance (float):

resistance is the measured value of short cable compensation resistance.

reactance (float):

reactance is the measured value of short cable compensation reactance.

7.3. nidmm module 289

NI Modular Instruments Python API Documentation, Release 1.4.1

read

nidmm.Session.read(maximum_time=hightime.timedelta(milliseconds=-1))
Acquires a single measurement and returns the measured value.

Parameters maximum_time (hightime.timedelta, datetime.
timedelta, or int in milliseconds) – Specifies the maxi-
mum_time allowed for this method to complete in milliseconds. If the
method does not complete within this time interval, the method returns the
NIDMM_ERROR_MAX_TIME_EXCEEDED error code. This may happen if an
external trigger has not been received, or if the specified timeout is not long enough
for the acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

Return type float

Returns The measured value returned from the DMM.

read_multi_point

nidmm.Session.read_multi_point(array_size, maximum_time=hightime.timedelta(milliseconds=-
1))

Acquires multiple measurements and returns an array of measured values. The number of mea-
surements the DMM makes is determined by the values you specify for the Trigger_Count and
Sample_Count parameters in nidmm.Session.configure_multi_point().

Parameters

• array_size (int) – Specifies the number of measurements to acquire. The max-
imum number of measurements for a finite acquisition is the (Trigger Count x Sam-
ple Count) parameters in nidmm.Session.configure_multi_point().

For continuous acquisitions, up to 100,000 points can be returned at once. The
number of measurements can be a subset. The valid range is any positive ViInt32.
The default value is 1.

• maximum_time (hightime.timedelta, datetime.timedelta, or
int in milliseconds) – Specifies the maximum_time allowed for this
method to complete in milliseconds. If the method does not complete within this
time interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been received, or if the
specified timeout is not long enough for the acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this

290 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

driver. Enums that only define values, or represent True/False, have been removed.

Return type

tuple (reading_array, actual_number_of_points)

WHERE

reading_array (array.array(“d”)):

An array of measurement values.

Note: The size of the Reading_Array must be at least the size that you specify
for the Array_Size parameter.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

read_status

nidmm.Session.read_status()
Returns measurement backlog and acquisition status. Use this method to determine how many
measurements are available before calling nidmm.Session.fetch(), nidmm.Session.
fetch_multi_point(), or nidmm.Session.fetch_waveform().

Note: The NI 4050 is not supported.

Return type

tuple (acquisition_backlog, acquisition_status)

WHERE

acquisition_backlog (int):

The number of measurements available to be read. If the backlog continues to
increase, data is eventually overwritten, resulting in an error.

Note: On the NI 4060, the Backlog does not increase when autoranging. On
the NI 4065, the Backlog does not increase when Range is set to AUTO RANGE
ON (-1), or before the first point is fetched when Range is set to AUTO RANGE
ONCE (-3). These behaviors are due to the autorange model of the devices.

acquisition_status (nidmm.AcquisitionStatus):

Indicates status of the acquisition. The following table shows the acquisition
states:

0 Running
1 Finished with backlog
2 Finished with no backlog
3 Paused
4 No acquisition in progress

7.3. nidmm module 291

NI Modular Instruments Python API Documentation, Release 1.4.1

read_waveform

nidmm.Session.read_waveform(array_size, maximum_time=hightime.timedelta(milliseconds=-
1))

For the NI 4080/4081/4082 and the NI 4070/4071/4072, acquires a waveform and returns data as
an array of values or as a waveform data type. The number of elements in the Waveform_Array is
determined by the values you specify for the Waveform_Points parameter in nidmm.Session.
configure_waveform_acquisition().

Parameters

• array_size (int) – Specifies the number of waveform points to return. You
specify the total number of points that the DMM acquires in the Waveform Points
parameter of nidmm.Session.configure_waveform_acquisition().
The default value is 1.

• maximum_time (hightime.timedelta, datetime.timedelta, or
int in milliseconds) – Specifies the maximum_time allowed for this
method to complete in milliseconds. If the method does not complete within this
time interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been received, or if the
specified timeout is not long enough for the acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type

tuple (waveform_array, actual_number_of_points)

WHERE

waveform_array (array.array(“d”)):

An array of measurement values.

Note: The size of the Waveform_Array must be at least the size that you specify
for the Array_Size parameter.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

reset

nidmm.Session.reset()
Resets the instrument to a known state and sends initialization commands to the instrument. The
initialization commands set instrument settings to the state necessary for the operation of the instru-
ment driver.

292 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

reset_with_defaults

nidmm.Session.reset_with_defaults()
Resets the instrument to a known state and sends initialization commands to the DMM. The initial-
ization commands set the DMM settings to the state necessary for the operation of NI-DMM. All
user-defined default values associated with a logical name are applied after setting the DMM.

self_cal

nidmm.Session.self_cal()
For the NI 4080/4081/4082 and the NI 4070/4071/4072, executes the self-calibration routine to
maintain measurement accuracy.

Note: This method calls nidmm.Session.reset(), and any configurations previous to the
call will be lost. All properties will be set to their default values after the call returns.

self_test

nidmm.Session.self_test()
Performs a self-test on the DMM to ensure that the DMM is functioning properly. Self-test does not
calibrate the DMM. Zero indicates success.

On the NI 4080/4082 and NI 4070/4072, the error code 1013 indicates that you should check the
fuse and replace it, if necessary.

Raises SelfTestError on self test failure. Properties on exception object:

• code - failure code from driver

• message - status message from driver

Note: Self-test does not check the fuse on the NI 4065, NI 4071, and NI 4081. Hence, even if the
fuse is blown on the device, self-test does not return error code 1013.

Note: This method calls nidmm.Session.reset(), and any configurations previous to the
call will be lost. All properties will be set to their default values after the call returns.

send_software_trigger

nidmm.Session.send_software_trigger()
Sends a command to trigger the DMM. Call this method if you have configured either the nidmm.
Session.trigger_source or nidmm.Session.sample_trigger properties. If the
nidmm.Session.trigger_source and/or nidmm.Session.sample_trigger proper-
ties are set to NIDMM_VAL_EXTERNAL or NIDMM_VAL_TTLn, you can use this method to over-
ride the trigger source that you configured and trigger the device. The NI 4050 and NI 4060 are not
supported.

7.3. nidmm module 293

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

unlock

nidmm.Session.unlock()
Releases a lock that you acquired on an device session using nidmm.Session.lock(). Refer to nidmm.
Session.unlock() for additional information on session locks.

Properties

ac_max_freq

nidmm.Session.ac_max_freq
Specifies the maximum frequency component of the input signal for AC measurements. This prop-
erty is used only for error checking and verifies that the value of this parameter is less than the
maximum frequency of the device. This property affects the DMM only when you set the nidmm.
Session.method property to AC measurements. The valid range is 1 Hz-300 kHz for the NI
4070/4071/4072, 10 Hz-100 kHz for the NI 4065, and 20 Hz-25 kHz for the NI 4050 and NI 4060.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Max Frequency

• C Attribute: NIDMM_ATTR_AC_MAX_FREQ

ac_min_freq

nidmm.Session.ac_min_freq
Specifies the minimum frequency component of the input signal for AC measurements. This prop-
erty affects the DMM only when you set the nidmm.Session.method property to AC measure-
ments. The valid range is 1 Hz-300 kHz for the NI 4070/4071/4072, 10 Hz-100 kHz for the NI 4065,
and 20 Hz-25 kHz for the NI 4050 and NI 4060.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

294 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Configuration:Measurement Options:Min Frequency

• C Attribute: NIDMM_ATTR_AC_MIN_FREQ

adc_calibration

nidmm.Session.adc_calibration
For the NI 4070/4071/4072 only, specifies the ADC calibration mode.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ADCCalibration
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:ADC Calibration

• C Attribute: NIDMM_ATTR_ADC_CALIBRATION

aperture_time

nidmm.Session.aperture_time
Specifies the measurement aperture time for the current configuration. Aperture time
is specified in units set by nidmm.Session.aperture_time_units. To override
the default aperture, set this property to the desired aperture time after calling nidmm.
Session.ConfigureMeasurement(). To return to the default, set this property to
NIDMM_VAL_APERTURE_TIME_AUTO (-1). On the NI 4070/4071/4072, the minimum aperture
time is 8.89 usec, and the maximum aperture time is 149 sec. Any number of powerline cycles
(PLCs) within the minimum and maximum ranges is allowed on the NI 4070/4071/4072. On the NI
4065 the minimum aperture time is 333 µs, and the maximum aperture time is 78.2 s. If setting the
number of averages directly, the total measurement time is aperture time X the number of averages,
which must be less than 72.8 s. The aperture times allowed are 333 µs, 667 µs, or multiples of 1.11
ms-for example 1.11 ms, 2.22 ms, 3.33 ms, and so on. If you set an aperture time other than 333
µs, 667 µs, or multiples of 1.11 ms, the value will be coerced up to the next supported aperture time.
On the NI 4060, when the powerline frequency is 60 Hz, the PLCs allowed are 1 PLC, 6 PLC, 12
PLC, and 120 PLC. When the powerline frequency is 50 Hz, the PLCs allowed are 1 PLC, 5 PLC,
10 PLC, and 100 PLC.

Note: One or more of the referenced methods are not in the Python API for this driver.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

7.3. nidmm module 295

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Advanced:Aperture Time

• C Attribute: NIDMM_ATTR_APERTURE_TIME

aperture_time_units

nidmm.Session.aperture_time_units
Specifies the units of aperture time for the current configuration. The NI 4060 does not support an
aperture time set in seconds.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ApertureTimeUnits
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Advanced:Aperture Time Units

• C Attribute: NIDMM_ATTR_APERTURE_TIME_UNITS

auto_range_value

nidmm.Session.auto_range_value
Specifies the value of the range. If auto ranging, shows the actual value of the active range. The
value of this property is set during a read operation.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Auto Range Value

• C Attribute: NIDMM_ATTR_AUTO_RANGE_VALUE

296 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

auto_zero

nidmm.Session.auto_zero
Specifies the AutoZero mode. The NI 4050 is not supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.AutoZero
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Auto Zero

• C Attribute: NIDMM_ATTR_AUTO_ZERO

buffer_size

nidmm.Session.buffer_size
Size in samples of the internal data buffer. Maximum is 134,217,727 (OX7FFFFFF) samples. When
set to NIDMM_VAL_BUFFER_SIZE_AUTO (-1), NI-DMM chooses the buffer size.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Multi Point Acquisition:Advanced:Buffer Size

• C Attribute: NIDMM_ATTR_BUFFER_SIZE

cable_comp_type

nidmm.Session.cable_comp_type
For the NI 4072 only, the type of cable compensation that is applied to the current capacitance or
inductance measurement for the current range. Changing the method or the range through this prop-
erty or through nidmm.Session.configure_measurement_digits() resets the value of
this property to the default value.

The following table lists the characteristics of this property.

7.3. nidmm module 297

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype enums.CableCompensationType
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Cable Compensation Type

• C Attribute: NIDMM_ATTR_CABLE_COMP_TYPE

channel_count

nidmm.Session.channel_count
Indicates the number of channels that the specific instrument driver supports. For each property for
which the IVI_VAL_MULTI_CHANNEL flag property is set, the IVI engine maintains a separate
cache value for each channel.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Capabilities:Channel Count

• C Attribute: NIDMM_ATTR_CHANNEL_COUNT

current_source

nidmm.Session.current_source
Specifies the current source provided during diode measurements. The NI 4050 and NI 4060 are not
supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Current Source

• C Attribute: NIDMM_ATTR_CURRENT_SOURCE

298 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

dc_bias

nidmm.Session.dc_bias
For the NI 4072 only, controls the available DC bias for capacitance measurements.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Advanced:DC Bias

• C Attribute: NIDMM_ATTR_DC_BIAS

dc_noise_rejection

nidmm.Session.dc_noise_rejection
Specifies the DC noise rejection mode. The NI 4050 and NI 4060 are not supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.DCNoiseRejection
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:DC Noise Rejection

• C Attribute: NIDMM_ATTR_DC_NOISE_REJECTION

driver_setup

nidmm.Session.driver_setup
This property indicates the Driver Setup string that the user specified when initializing the driver.
Some cases exist where the end-user must specify instrument driver options at initialization time. An
example of this is specifying a particular instrument model from among a family of instruments that
the driver supports. This is useful when using simulation. The end-user can specify driver-specific
options through the DriverSetup keyword in the optionsString parameter to the niDMM Init With
Options.vi. If the user does not specify a Driver Setup string, this property returns an empty string.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

7.3. nidmm module 299

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:User Options:Driver Setup

• C Attribute: NIDMM_ATTR_DRIVER_SETUP

freq_voltage_auto_range

nidmm.Session.freq_voltage_auto_range
For the NI 4070/4071/4072 only, specifies the value of the frequency voltage range. If Auto Ranging,
shows the actual value of the active frequency voltage range. If not Auto Ranging, the value of this
property is the same as that of nidmm.Session.freq_voltage_range.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Frequency Voltage Auto Range
Value

• C Attribute: NIDMM_ATTR_FREQ_VOLTAGE_AUTO_RANGE

freq_voltage_range

nidmm.Session.freq_voltage_range
Specifies the maximum amplitude of the input signal for frequency measurements.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Frequency Voltage Range

• C Attribute: NIDMM_ATTR_FREQ_VOLTAGE_RANGE

function

nidmm.Session.function
Specifies the measurement method. Refer to the nidmm.Session.method topic in the NI Dig-
ital Multimeters Help for device-specific information. If you are setting this property directly,

300 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

you must also set the nidmm.Session.operation_mode property, which controls whether
the DMM takes standard single or multipoint measurements, or acquires a waveform. If you are
programming properties directly, you must set the nidmm.Session.operation_mode prop-
erty before setting other configuration properties. If the nidmm.Session.operation_mode
property is set to WAVEFORM , the only valid method types are WAVEFORM_VOLTAGE and
WAVEFORM_CURRENT. Set the nidmm.Session.operation_mode property to IVIDMM to
set all other method values.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Function
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Function

• C Attribute: NIDMM_ATTR_FUNCTION

input_resistance

nidmm.Session.input_resistance
Specifies the input resistance of the instrument. The NI 4050 and NI 4060 are not supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Input Resistance

• C Attribute: NIDMM_ATTR_INPUT_RESISTANCE

instrument_firmware_revision

nidmm.Session.instrument_firmware_revision
A string containing the instrument firmware revision number.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.3. nidmm module 301

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument
Firmware Revision

• C Attribute: NIDMM_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

nidmm.Session.instrument_manufacturer
A string containing the manufacturer of the instrument.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Manu-
facturer

• C Attribute: NIDMM_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

nidmm.Session.instrument_model
A string containing the instrument model.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Model

• C Attribute: NIDMM_ATTR_INSTRUMENT_MODEL

instrument_product_id

nidmm.Session.instrument_product_id
The PCI product ID.

The following table lists the characteristics of this property.

302 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Prod-
uct ID

• C Attribute: NIDMM_ATTR_INSTRUMENT_PRODUCT_ID

io_resource_descriptor

nidmm.Session.io_resource_descriptor
A string containing the resource descriptor of the instrument.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:I/O Resource
Descriptor

• C Attribute: NIDMM_ATTR_IO_RESOURCE_DESCRIPTOR

lc_calculation_model

nidmm.Session.lc_calculation_model
For the NI 4072 only, specifies the type of algorithm that the measurement processing uses for
capacitance and inductance measurements.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.LCCalculationModel
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Advanced:Calculation Model

• C Attribute: NIDMM_ATTR_LC_CALCULATION_MODEL

7.3. nidmm module 303

NI Modular Instruments Python API Documentation, Release 1.4.1

lc_number_meas_to_average

nidmm.Session.lc_number_meas_to_average
For the NI 4072 only, specifies the number of LC measurements that are averaged to produce one
reading.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Number of LC Measurements To Average

• C Attribute: NIDMM_ATTR_LC_NUMBER_MEAS_TO_AVERAGE

logical_name

nidmm.Session.logical_name
A string containing the logical name of the instrument.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name

• C Attribute: NIDMM_ATTR_LOGICAL_NAME

meas_complete_dest

nidmm.Session.meas_complete_dest
Specifies the destination of the measurement complete (MC) signal. The NI 4050 is not supported.
To determine which values are supported by each device, refer to the LabWindows/CVI Trigger
Routing section in the NI Digital Multimeters Help.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.MeasurementCompleteDest
Permissions read-write

304 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Trigger:Measurement Complete Dest

• C Attribute: NIDMM_ATTR_MEAS_COMPLETE_DEST

number_of_averages

nidmm.Session.number_of_averages
Specifies the number of averages to perform in a measurement. For the NI 4070/4071/4072, applies
only when the aperture time is not set to AUTO and Auto Zero is ON. The default is 1. The NI 4050
and NI 4060 are not supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Advanced:Number Of Averages

• C Attribute: NIDMM_ATTR_NUMBER_OF_AVERAGES

offset_comp_ohms

nidmm.Session.offset_comp_ohms
For the NI 4070/4071/4072 only, enables or disables offset compensated ohms.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Offset Compensated Ohms

• C Attribute: NIDMM_ATTR_OFFSET_COMP_OHMS

open_cable_comp_conductance

nidmm.Session.open_cable_comp_conductance
For the NI 4072 only, specifies the active part (conductance) of the open cable compensation. The
valid range is any real number greater than 0. The default value (-1.0) indicates that compensation

7.3. nidmm module 305

NI Modular Instruments Python API Documentation, Release 1.4.1

has not taken place. Changing the method or the range through this property or through nidmm.
Session.configure_measurement_digits() resets the value of this property to the de-
fault value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Open Cable Compensation Values:Conductance

• C Attribute: NIDMM_ATTR_OPEN_CABLE_COMP_CONDUCTANCE

open_cable_comp_susceptance

nidmm.Session.open_cable_comp_susceptance
For the NI 4072 only, specifies the reactive part (susceptance) of the open cable compensation.
The valid range is any real number greater than 0. The default value (-1.0) indicates that com-
pensation has not taken place. Changing the method or the range through this property or through
nidmm.Session.configure_measurement_digits() resets the value of this property
to the default value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Open Cable Compensation Values:Susceptance

• C Attribute: NIDMM_ATTR_OPEN_CABLE_COMP_SUSCEPTANCE

operation_mode

nidmm.Session.operation_mode
Specifies how the NI 4065 and NI 4070/4071/4072 acquire data. When you call nidmm.
Session.configure_measurement_digits(), NI-DMM sets this property to IVIDMM .
When you call nidmm.Session.configure_waveform_acquisition(), NI-DMM sets
this property to WAVEFORM . If you are programming properties directly, you must set this property
before setting other configuration properties.

The following table lists the characteristics of this property.

306 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype enums.OperationMode
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Advanced:Operation Mode

• C Attribute: NIDMM_ATTR_OPERATION_MODE

powerline_freq

nidmm.Session.powerline_freq
Specifies the powerline frequency. The NI 4050 and NI 4060 use this value to select an aperture
time to reject powerline noise by selecting the appropriate internal sample clock and filter. The NI
4065 and NI 4070/4071/4072 use this value to select a timebase for setting the nidmm.Session.
aperture_time property in powerline cycles (PLCs). After configuring powerline frequency, set
the nidmm.Session.aperture_time_units property to PLCs. When setting the nidmm.
Session.aperture_time property, select the number of PLCs for the powerline frequency.
For example, if powerline frequency = 50 Hz (or 20ms) and aperture time in PLCs = 5, then aperture
time in Seconds = 20ms * 5 PLCs = 100 ms. Similarly, if powerline frequency = 60 Hz (or 16.667
ms) and aperture time in PLCs = 6, then aperture time in Seconds = 16.667 ms * 6 PLCs = 100 ms.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Powerline Frequency

• C Attribute: NIDMM_ATTR_POWERLINE_FREQ

range

nidmm.Session.range
Specifies the measurement range. Use positive values to represent the absolute value of
the maximum expected measurement. The value is in units appropriate for the current
value of the nidmm.Session.method property. For example, if nidmm.Session.
method is set to NIDMM_VAL_VOLTS, the units are volts. The NI 4050 and NI 4060
only support Auto Range when the trigger and sample trigger is set to IMMEDIATE.
NIDMM_VAL_AUTO_RANGE_ON -1.0 NI-DMM performs an Auto Range before acquiring the
measurement. NIDMM_VAL_AUTO_RANGE_OFF -2.0 NI-DMM sets the Range to the current
nidmm.Session.auto_range_value and uses this range for all subsequent measurements
until the measurement configuration is changed. NIDMM_VAL_AUTO_RANGE_ONCE -3.0 NI-
DMM performs an Auto Range before acquiring the next measurement. The nidmm.Session.

7.3. nidmm module 307

NI Modular Instruments Python API Documentation, Release 1.4.1

auto_range_value is stored and used for all subsequent measurements until the measurement
configuration is changed.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Range

• C Attribute: NIDMM_ATTR_RANGE

resolution_absolute

nidmm.Session.resolution_absolute
Specifies the measurement resolution in absolute units. Setting this property to higher values in-
creases the measurement accuracy. Setting this property to lower values increases the measure-
ment speed. NI-DMM ignores this property for capacitance and inductance measurements on
the NI 4072. To achieve better resolution for such measurements, use the nidmm.Session.
lc_number_meas_to_average property.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Absolute Resolution

• C Attribute: NIDMM_ATTR_RESOLUTION_ABSOLUTE

resolution_digits

nidmm.Session.resolution_digits
Specifies the measurement resolution in digits. Setting this property to higher values increases
the measurement accuracy. Setting this property to lower values increases the measurement
speed. NI-DMM ignores this property for capacitance and inductance measurements on the
NI 4072. To achieve better resolution for such measurements, use the nidmm.Session.
lc_number_meas_to_average property.

The following table lists the characteristics of this property.

308 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Digits Resolution

• C Attribute: NIDMM_ATTR_RESOLUTION_DIGITS

sample_count

nidmm.Session.sample_count
Specifies the number of measurements the DMM takes each time it receives a trigger in a multiple
point acquisition.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Multi Point Acquisition:Sample Count

• C Attribute: NIDMM_ATTR_SAMPLE_COUNT

sample_interval

nidmm.Session.sample_interval
Specifies the amount of time in seconds the DMM waits between measurement cycles. This property
only applies when the nidmm.Session.sample_trigger property is set to INTERVAL. On
the NI 4060, the value for this property is used as the settling time. When this property is set to 0, the
NI 4060 does not settle between measurement cycles. The onboard timing resolution is 1 µs on the
NI 4060. The NI 4065 and NI 4070/4071/4072 use the value specified in this property as additional
delay. On the NI 4065 and NI 4070/4071/4072, the onboard timing resolution is 34.72 ns and the
valid range is 0-149 s. Only positive values are valid when setting the sample interval. The NI 4050
is not supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.3. nidmm module 309

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Multi Point Acquisition:Sample Interval

• C Attribute: NIDMM_ATTR_SAMPLE_INTERVAL

sample_trigger

nidmm.Session.sample_trigger
Specifies the sample trigger source. To determine which values are supported by each device, refer
to the LabWindows/CVI Trigger Routing section in the NI Digital Multimeters Help.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.SampleTrigger
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Multi Point Acquisition:Sample Trigger

• C Attribute: NIDMM_ATTR_SAMPLE_TRIGGER

serial_number

nidmm.Session.serial_number
A string containing the serial number of the instrument. This property corresponds to the serial
number label that is attached to most products.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Serial
Number

• C Attribute: NIDMM_ATTR_SERIAL_NUMBER

settle_time

nidmm.Session.settle_time
Specifies the settling time in seconds. To override the default settling time, set this property. To
return to the default, set this property to NIDMM_VAL_SETTLE_TIME_AUTO (-1). The NI 4050
and NI 4060 are not supported.

310 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Advanced:Settle Time

• C Attribute: NIDMM_ATTR_SETTLE_TIME

short_cable_comp_reactance

nidmm.Session.short_cable_comp_reactance
For the NI 4072 only, represents the reactive part (reactance) of the short cable compensation. The
valid range is any real number greater than 0. The default value (-1) indicates that compensation
has not taken place. Changing the method or the range through this property or through nidmm.
Session.configure_measurement_digits() resets the value of this property to the de-
fault value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Short Cable Compensation Values:Reactance

• C Attribute: NIDMM_ATTR_SHORT_CABLE_COMP_REACTANCE

short_cable_comp_resistance

nidmm.Session.short_cable_comp_resistance
For the NI 4072 only, represents the active part (resistance) of the short cable compensation. The
valid range is any real number greater than 0. The default value (-1) indicates that compensation
has not taken place. Changing the method or the range through this property or through nidmm.
Session.configure_measurement_digits() resets the value of this property to the de-
fault value.

The following table lists the characteristics of this property.

7.3. nidmm module 311

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Short Cable Compensation Values:Resistance

• C Attribute: NIDMM_ATTR_SHORT_CABLE_COMP_RESISTANCE

simulate

nidmm.Session.simulate
Specifies whether or not to simulate instrument driver I/O operations. If simulation is enabled,
instrument driver methods perform range checking and call IVI Get and Set methods, but they do
not perform instrument I/O. For output parameters that represent instrument data, the instrument
driver methods return calculated values. The default value is False (0). Use the nidmm.Session.
__init__() method to override this setting. Simulate can only be set within the InitWithOptions
method. The property value cannot be changed outside of the method.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:User Options:Simulate

• C Attribute: NIDMM_ATTR_SIMULATE

specific_driver_description

nidmm.Session.specific_driver_description
A string containing a description of the specific driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Specific Driver Identification:Specific Driver
Description

312 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_major_version

nidmm.Session.specific_driver_major_version
Returns the major version number of this instrument driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Version Info:Specific Driver Major Version

• C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_MAJOR_VERSION

specific_driver_minor_version

nidmm.Session.specific_driver_minor_version
The minor version number of this instrument driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Version Info:Specific Driver Minor Version

• C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_MINOR_VERSION

specific_driver_revision

nidmm.Session.specific_driver_revision
A string that contains additional version information about this specific instrument driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

7.3. nidmm module 313

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Version Info:Specific Driver Revision

• C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

nidmm.Session.specific_driver_vendor
A string containing the vendor of the specific driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Specific Driver Identification:Specific Driver
Vendor

• C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_VENDOR

supported_instrument_models

nidmm.Session.supported_instrument_models
A string containing the instrument models supported by the specific driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Specific Driver Capabilities:Supported In-
strument Models

• C Attribute: NIDMM_ATTR_SUPPORTED_INSTRUMENT_MODELS

temp_rtd_a

nidmm.Session.temp_rtd_a
Specifies the Callendar-Van Dusen A coefficient for RTD scaling when the RTD Type property is
set to Custom. The default value is 3.9083e-3 (Pt3851).

The following table lists the characteristics of this property.

314 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD A

• C Attribute: NIDMM_ATTR_TEMP_RTD_A

temp_rtd_b

nidmm.Session.temp_rtd_b
Specifies the Callendar-Van Dusen B coefficient for RTD scaling when the RTD Type property is set
to Custom. The default value is -5.775e-7(Pt3851).

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD B

• C Attribute: NIDMM_ATTR_TEMP_RTD_B

temp_rtd_c

nidmm.Session.temp_rtd_c
Specifies the Callendar-Van Dusen C coefficient for RTD scaling when the RTD Type property is set
to Custom. The default value is -4.183e-12(Pt3851).

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD C

• C Attribute: NIDMM_ATTR_TEMP_RTD_C

7.3. nidmm module 315

NI Modular Instruments Python API Documentation, Release 1.4.1

temp_rtd_res

nidmm.Session.temp_rtd_res
Specifies the RTD resistance at 0 degrees Celsius. This applies to all supported RTDs, including
custom RTDs. The default value is 100 (?).

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD Resistance

• C Attribute: NIDMM_ATTR_TEMP_RTD_RES

temp_rtd_type

nidmm.Session.temp_rtd_type
Specifies the type of RTD used to measure temperature. The default value is PT3851. Refer to
the nidmm.Session.temp_rtd_type topic in the NI Digital Multimeters Help for additional
information about defined values.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.RTDType
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD Type

• C Attribute: NIDMM_ATTR_TEMP_RTD_TYPE

temp_tc_fixed_ref_junc

nidmm.Session.temp_tc_fixed_ref_junc
Specifies the reference junction temperature when a fixed reference junction is used to take a ther-
mocouple measurement. The default value is 25.0 (°C).

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

316 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Op-
tions:Temperature:Thermocouple:Fixed Reference Junction

• C Attribute: NIDMM_ATTR_TEMP_TC_FIXED_REF_JUNC

temp_tc_ref_junc_type

nidmm.Session.temp_tc_ref_junc_type
Specifies the type of reference junction to be used in the reference junction compensation of a
thermocouple. The only supported value, NIDMM_VAL_TEMP_REF_JUNC_FIXED, is fixed.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ThermocoupleReferenceJunctionType
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Op-
tions:Temperature:Thermocouple:Reference Junction Type

• C Attribute: NIDMM_ATTR_TEMP_TC_REF_JUNC_TYPE

temp_tc_type

nidmm.Session.temp_tc_type
Specifies the type of thermocouple used to measure the temperature. The default value is J .

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ThermocoupleType
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Op-
tions:Temperature:Thermocouple:Thermocouple Type

• C Attribute: NIDMM_ATTR_TEMP_TC_TYPE

7.3. nidmm module 317

NI Modular Instruments Python API Documentation, Release 1.4.1

temp_thermistor_a

nidmm.Session.temp_thermistor_a
Specifies the Steinhart-Hart A coefficient for thermistor scaling when the Thermistor Type property
is set to Custom. The default value is 0.0010295 (44006).

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Op-
tions:Temperature:Thermistor:Thermistor A

• C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_A

temp_thermistor_b

nidmm.Session.temp_thermistor_b
Specifies the Steinhart-Hart B coefficient for thermistor scaling when the Thermistor Type proerty
is set to Custom. The default value is 0.0002391 (44006).

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Op-
tions:Temperature:Thermistor:Thermistor B

• C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_B

temp_thermistor_c

nidmm.Session.temp_thermistor_c
Specifies the Steinhart-Hart C coefficient for thermistor scaling when the Thermistor Type property
is set to Custom. The default value is 1.568e-7 (44006).

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

318 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Op-
tions:Temperature:Thermistor:Thermistor C

• C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_C

temp_thermistor_type

nidmm.Session.temp_thermistor_type
Specifies the type of thermistor used to measure the temperature. The default value is
THERMISTOR_44006. Refer to the nidmm.Session.temp_thermistor_type topic in
the NI Digital Multimeters Help for additional information about defined values.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ThermistorType
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Op-
tions:Temperature:Thermistor:Thermistor Type

• C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_TYPE

temp_transducer_type

nidmm.Session.temp_transducer_type
Specifies the type of device used to measure the temperature. The default value is
NIDMM_VAL_4_THERMOCOUPLE.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TransducerType
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Configuration:Measurement Options:Temperature:Transducer Type

• C Attribute: NIDMM_ATTR_TEMP_TRANSDUCER_TYPE

7.3. nidmm module 319

NI Modular Instruments Python API Documentation, Release 1.4.1

trigger_count

nidmm.Session.trigger_count
Specifies the number of triggers the DMM receives before returning to the Idle state. This property
can be set to any positive ViInt32 value for the NI 4065 and NI 4070/4071/4072. The NI 4050 and
NI 4060 support this property being set to 1. Refer to the Multiple Point Acquisitions section of the
NI Digital Multimeters Help for more information.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Multi Point Acquisition:Trigger Count

• C Attribute: NIDMM_ATTR_TRIGGER_COUNT

trigger_delay

nidmm.Session.trigger_delay
Specifies the time (in seconds) that the DMM waits after it has received a trigger before taking
a measurement. The default value is AUTO DELAY (-1), which means that the DMM waits an
appropriate settling time before taking the measurement. (-1) signifies that AUTO DELAY is on,
and (-2) signifies that AUTO DELAY is off. The NI 4065 and NI 4070/4071/4072 use the value
specified in this property as additional settling time. For the The NI 4065 and NI 4070/4071/4072,
the valid range for Trigger Delay is AUTO DELAY (-1) or 0.0-149.0 seconds and the onboard
timing resolution is 34.72 ns. On the NI 4060, if this property is set to 0, the DMM does not
settle before taking the measurement. On the NI 4060, the valid range for AUTO DELAY (-1)
is 0.0-12.0 seconds and the onboard timing resolution is 100 ms. When using the NI 4050, this
property must be set to AUTO DELAY (-1). Use positive values to set the trigger delay in seconds.
Valid Range: NIDMM_VAL_AUTO_DELAY (-1.0), 0.0-12.0 seconds (NI 4060 only) Default Value:
NIDMM_VAL_AUTO_DELAY

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Trigger:Trigger Delay

• C Attribute: NIDMM_ATTR_TRIGGER_DELAY

320 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

trigger_source

nidmm.Session.trigger_source
Specifies the trigger source. When nidmm.Session._initiate() is called, the DMM waits
for the trigger specified with this property. After it receives the trigger, the DMM waits the length
of time specified with the nidmm.Session.trigger_delay property. The DMM then takes
a measurement. This property is not supported on the NI 4050. To determine which values are
supported by each device, refer to the LabWindows/CVI Trigger Routing section in the NI Digital
Multimeters Help.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerSource
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Trigger:Trigger Source

• C Attribute: NIDMM_ATTR_TRIGGER_SOURCE

waveform_coupling

nidmm.Session.waveform_coupling
For the NI 4070/4071/4072 only, specifies the coupling during a waveform acquisition.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.WaveformCoupling
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Acquisition:Waveform Coupling

• C Attribute: NIDMM_ATTR_WAVEFORM_COUPLING

waveform_points

nidmm.Session.waveform_points
For the NI 4070/4071/4072 only, specifies the number of points to acquire in a waveform acquisition.

The following table lists the characteristics of this property.

7.3. nidmm module 321

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Acquisition:Waveform Points

• C Attribute: NIDMM_ATTR_WAVEFORM_POINTS

waveform_rate

nidmm.Session.waveform_rate
For the NI 4070/4071/4072 only, specifies the rate of the waveform acquisition in Samples per
second (S/s). The valid Range is 10.0-1,800,000 S/s. Values are coerced to the closest integer
divisor of 1,800,000. The default value is 1,800,000.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Acquisition:Waveform Rate

• C Attribute: NIDMM_ATTR_WAVEFORM_RATE

Session

• Session

• Methods

– abort

– close

– configure_measurement_absolute

– configure_measurement_digits

– configure_multi_point

– configure_rtd_custom

– configure_rtd_type

– configure_thermistor_custom

– configure_thermocouple

– configure_trigger

322 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– configure_waveform_acquisition

– disable

– export_attribute_configuration_buffer

– export_attribute_configuration_file

– fetch

– fetch_multi_point

– fetch_waveform

– fetch_waveform_into

– get_cal_date_and_time

– get_dev_temp

– get_ext_cal_recommended_interval

– get_last_cal_temp

– get_self_cal_supported

– import_attribute_configuration_buffer

– import_attribute_configuration_file

– initiate

– lock

– perform_open_cable_comp

– perform_short_cable_comp

– read

– read_multi_point

– read_status

– read_waveform

– reset

– reset_with_defaults

– self_cal

– self_test

– send_software_trigger

– unlock

• Properties

– ac_max_freq

– ac_min_freq

– adc_calibration

– aperture_time

– aperture_time_units

7.3. nidmm module 323

NI Modular Instruments Python API Documentation, Release 1.4.1

– auto_range_value

– auto_zero

– buffer_size

– cable_comp_type

– channel_count

– current_source

– dc_bias

– dc_noise_rejection

– driver_setup

– freq_voltage_auto_range

– freq_voltage_range

– function

– input_resistance

– instrument_firmware_revision

– instrument_manufacturer

– instrument_model

– instrument_product_id

– io_resource_descriptor

– lc_calculation_model

– lc_number_meas_to_average

– logical_name

– meas_complete_dest

– number_of_averages

– offset_comp_ohms

– open_cable_comp_conductance

– open_cable_comp_susceptance

– operation_mode

– powerline_freq

– range

– resolution_absolute

– resolution_digits

– sample_count

– sample_interval

– sample_trigger

– serial_number

324 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– settle_time

– short_cable_comp_reactance

– short_cable_comp_resistance

– simulate

– specific_driver_description

– specific_driver_major_version

– specific_driver_minor_version

– specific_driver_revision

– specific_driver_vendor

– supported_instrument_models

– temp_rtd_a

– temp_rtd_b

– temp_rtd_c

– temp_rtd_res

– temp_rtd_type

– temp_tc_fixed_ref_junc

– temp_tc_ref_junc_type

– temp_tc_type

– temp_thermistor_a

– temp_thermistor_b

– temp_thermistor_c

– temp_thermistor_type

– temp_transducer_type

– trigger_count

– trigger_delay

– trigger_source

– waveform_coupling

– waveform_points

– waveform_rate

Enums

Enums used in NI-DMM

7.3. nidmm module 325

NI Modular Instruments Python API Documentation, Release 1.4.1

ADCCalibration

class nidmm.ADCCalibration

AUTO
The DMM enables or disables ADC calibration for you.

OFF
The DMM does not compensate for changes to the gain.

ON
The DMM measures an internal reference to calculate the correct gain for the measurement.

AcquisitionStatus

class nidmm.AcquisitionStatus

RUNNING
Running

FINISHED_WITH_BACKLOG
Finished with Backlog

FINISHED_WITH_NO_BACKLOG
Finished with no Backlog

PAUSED
Paused

NO_ACQUISITION_IN_PROGRESS
No acquisition in progress

ApertureTimeUnits

class nidmm.ApertureTimeUnits

SECONDS
Seconds

POWER_LINE_CYCLES
Powerline Cycles

AutoZero

class nidmm.AutoZero

AUTO
The drivers chooses the AutoZero setting based on the configured method and resolution.

OFF
Disables AutoZero.

326 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

ON
The DMM internally disconnects the input signal following each measurement and takes a zero reading.
It then subtracts the zero reading from the preceding reading.

ONCE
The DMM internally disconnects the input signal for the first measurement and takes a zero reading. It
then subtracts the zero reading from the first reading and the following readings.

CableCompensationType

class nidmm.CableCompensationType

NONE
No Cable Compensation

OPEN
Open Cable Compensation

SHORT
Short Cable Compensation

OPEN_AND_SHORT
Open and Short Cable Compensation

DCNoiseRejection

class nidmm.DCNoiseRejection

AUTO
The driver chooses the DC noise rejection setting based on the configured method and resolution.

NORMAL
NI-DMM weighs all samples equally.

SECOND_ORDER
NI-DMM weighs the samples taken in the middle of the aperture time more than samples taken at the
beginning and the end of the measurement using a triangular weighing method.

HIGH_ORDER
NI-DMM weighs the samples taken in the middle of the aperture time more than samples taken at the
beginning and the end of the measurement using a bell-curve weighing method.

Function

class nidmm.Function

DC_VOLTS
DC Voltage

AC_VOLTS
AC Voltage

DC_CURRENT
DC Current

7.3. nidmm module 327

NI Modular Instruments Python API Documentation, Release 1.4.1

AC_CURRENT
AC Current

TWO_WIRE_RES
2-Wire Resistance

FOUR_WIRE_RES
4-Wire Resistance

FREQ
Frequency

PERIOD
Period

TEMPERATURE
NI 4065, NI 4070/4071/4072, and NI 4080/4081/4182 supported.

AC_VOLTS_DC_COUPLED
AC Voltage with DC Coupling

DIODE
Diode

WAVEFORM_VOLTAGE
Waveform voltage

WAVEFORM_CURRENT
Waveform current

CAPACITANCE
Capacitance

INDUCTANCE
Inductance

LCCalculationModel

class nidmm.LCCalculationModel

AUTO
NI-DMM chooses the algorithm based on method and range

SERIES
NI-DMM uses the series impedance model to calculate capacitance and inductance

PARALLEL
NI-DMM uses the parallel admittance model to calculate capacitance and inductance

MeasurementCompleteDest

class nidmm.MeasurementCompleteDest

NONE
No Trigger

EXTERNAL
AUX I/O Connector

328 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

PXI_TRIG0
PXI Trigger Line 0

PXI_TRIG1
PXI Trigger Line 1

PXI_TRIG2
PXI Trigger Line 2

PXI_TRIG3
PXI Trigger Line 3

PXI_TRIG4
PXI Trigger Line 4

PXI_TRIG5
PXI Trigger Line 5

PXI_TRIG6
PXI Trigger Line 6

PXI_TRIG7
PXI Trigger Line 7

LBR_TRIG0
Internal Trigger Line of a PXI/SCXI Combination Chassis

OperationMode

class nidmm.OperationMode

IVIDMM
IviDmm Mode

WAVEFORM
Waveform acquisition mode

RTDType

class nidmm.RTDType

CUSTOM
Performs Callendar-Van Dusen RTD scaling with the user-specified A, B, and C coefficients.

PT3750
Performs scaling for a Pt 3750 RTD.

PT3851
Performs scaling for a Pt 3851 RTD.

PT3911
Performs scaling for a Pt 3911 RTD.

PT3916
Performs scaling for a Pt 3916 RTD.

PT3920
Performs scaling for a Pt 3920 RTD.

7.3. nidmm module 329

NI Modular Instruments Python API Documentation, Release 1.4.1

PT3928
Performs scaling for a Pt 3928 RTD.

SampleTrigger

class nidmm.SampleTrigger

IMMEDIATE
No Trigger

EXTERNAL
AUX I/O Connector Trigger Line 0

SOFTWARE_TRIG
Software Trigger

INTERVAL
Interval Trigger

PXI_TRIG0
PXI Trigger Line 0

PXI_TRIG1
PXI Trigger Line 1

PXI_TRIG2
PXI Trigger Line 2

PXI_TRIG3
PXI Trigger Line 3

PXI_TRIG4
PXI Trigger Line 4

PXI_TRIG5
PXI Trigger Line 5

PXI_TRIG6
PXI Trigger Line 6

PXI_TRIG7
PXI Trigger Line 7

PXI_STAR
PXI Star Trigger Line

AUX_TRIG1
AUX I/0 Connector Trigger Line 1

LBR_TRIG1
Internal Trigger Line of a PXI/SCXI Combination Chassis

ThermistorType

class nidmm.ThermistorType

CUSTOM
Custom

330 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

THERMISTOR_44004
44004

THERMISTOR_44006
44006

THERMISTOR_44007
44007

ThermocoupleReferenceJunctionType

class nidmm.ThermocoupleReferenceJunctionType

FIXED
Thermocouple reference juction is fixed at the user-specified temperature.

ThermocoupleType

class nidmm.ThermocoupleType

B
Thermocouple type B

E
Thermocouple type E

J
Thermocouple type J

K
Thermocouple type K

N
Thermocouple type N

R
Thermocouple type R

S
Thermocouple type S

T
Thermocouple type T

TransducerType

class nidmm.TransducerType

THERMOCOUPLE
Thermocouple

THERMISTOR
Thermistor

7.3. nidmm module 331

NI Modular Instruments Python API Documentation, Release 1.4.1

TWO_WIRE_RTD
2-wire RTD

FOUR_WIRE_RTD
4-wire RTD

TriggerSource

class nidmm.TriggerSource

IMMEDIATE
No Trigger

EXTERNAL
AUX I/O Connector Trigger Line 0

SOFTWARE_TRIG
Software Trigger

PXI_TRIG0
PXI Trigger Line 0

PXI_TRIG1
PXI Trigger Line 1

PXI_TRIG2
PXI Trigger Line 2

PXI_TRIG3
PXI Trigger Line 3

PXI_TRIG4
PXI Trigger Line 4

PXI_TRIG5
PXI Trigger Line 5

PXI_TRIG6
PXI Trigger Line 6

PXI_TRIG7
PXI Trigger Line 7

PXI_STAR
PXI Star Trigger Line

AUX_TRIG1
AUX I/O Connector Trigger Line 1

LBR_TRIG1
Internal Trigger Line of a PXI/SCXI Combination Chassis

WaveformCoupling

class nidmm.WaveformCoupling

AC
AC Coupled

332 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

DC
DC Coupled

Exceptions and Warnings

Error

exception nidmm.errors.Error
Base exception type that all NI-DMM exceptions derive from

DriverError

exception nidmm.errors.DriverError
An error originating from the NI-DMM driver

UnsupportedConfigurationError

exception nidmm.errors.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

DriverNotInstalledError

exception nidmm.errors.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

InvalidRepeatedCapabilityError

exception nidmm.errors.InvalidRepeatedCapabilityError
An error due to an invalid character in a repeated capability

SelfTestError

exception nidmm.errors.SelfTestError
An error due to a failed self-test

DriverWarning

exception nidmm.errors.DriverWarning
A warning originating from the NI-DMM driver

Examples

You can download all nidmm examples here

7.3. nidmm module 333

https://github.com/ni/nimi-python/releases/download/1.4.1/nidmm_examples.zip

NI Modular Instruments Python API Documentation, Release 1.4.1

nidmm_fetch_waveform.py

Listing 7: (nidmm_fetch_waveform.py)

1 #!/usr/bin/python
2

3 import argparse
4 import nidmm
5 import sys
6 import time
7

8

9 def example(resource_name, options, function, range, points, rate):
10 with nidmm.Session(resource_name=resource_name, options=options) as session:
11 session.configure_waveform_acquisition(measurement_function=nidmm.

→˓Function[function], range=range, rate=rate, waveform_points=points)
12 with session.initiate():
13 while True:
14 time.sleep(0.1)
15 backlog, acquisition_state = session.read_status()
16 if acquisition_state == nidmm.AcquisitionStatus.FINISHED_WITH_NO_

→˓BACKLOG:
17 break
18 measurements = session.fetch_waveform(array_size=backlog)
19 print(measurements)
20

21

22 def _main(argsv):
23 parser = argparse.ArgumentParser(description='Performs a waveform acquisition

→˓using the NI-DMM API.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
24 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource

→˓name of a National Instruments Digital Multimeter.')
25 parser.add_argument('-f', '--function', default='WAVEFORM_VOLTAGE', choices=nidmm.

→˓Function.__members__.keys(), type=str.upper, help='Measurement function.')
26 parser.add_argument('-r', '--range', default=10, type=float, help='Measurement

→˓range.')
27 parser.add_argument('-p', '--points', default=10, type=int, help='Specifies the

→˓number of points to acquire before the waveform acquisition completes.')
28 parser.add_argument('-s', '--rate', default=1000, type=int, help='Specifies the

→˓rate of the acquisition in samples per second.')
29 parser.add_argument('-op', '--option-string', default='', type=str, help='Option

→˓string')
30 args = parser.parse_args(argsv)
31 example(args.resource_name, args.option_string, args.function, args.range, args.

→˓points, args.rate)
32

33

34 def main():
35 _main(sys.argv[1:])
36

37

38 def test_example():
39 options = {'simulate': True, 'driver_setup': {'Model': '4082', 'BoardType': 'PXIe

→˓', }, }
40 example('PXI1Slot2', options, 'WAVEFORM_VOLTAGE', 10, 10, 1000)
41

42

(continues on next page)

334 Chapter 7. License

https://github.com/ni/nimi-python/blob/1.4.1/src/nidmm/examples/nidmm_fetch_waveform.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

43 def test_main():
44 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4082; BoardType:PXIe

→˓',]
45 _main(cmd_line)
46

47

48 if __name__ == '__main__':
49 main()
50

51

nidmm_measurement.py

Listing 8: (nidmm_measurement.py)

1 #!/usr/bin/python
2

3 import argparse
4 import nidmm
5 import sys
6

7

8 def example(resource_name, option_string, function, range, digits):
9 with nidmm.Session(resource_name=resource_name, options=option_string) as session:

10 session.configure_measurement_digits(measurement_function=nidmm.
→˓Function[function], range=range, resolution_digits=digits)

11 print(session.read())
12

13

14 def _main(argsv):
15 supported_functions = list(nidmm.Function.__members__.keys())
16 parser = argparse.ArgumentParser(description='Performs a single measurement using

→˓the NI-DMM API.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
17 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource

→˓name of a National Instruments Digital Multimeter.')
18 parser.add_argument('-f', '--function', default=supported_functions[0],

→˓choices=supported_functions, type=str.upper, help='Measurement function.')
19 parser.add_argument('-r', '--range', default=10, type=float, help='Measurement

→˓range.')
20 parser.add_argument('-d', '--digits', default=6.5, type=float, help='Digits of

→˓resolution for the measurement.')
21 parser.add_argument('-op', '--option-string', default='', type=str, help='Option

→˓string')
22 args = parser.parse_args(argsv)
23 example(args.resource_name, args.option_string, args.function, args.range, args.

→˓digits)
24

25

26 def main():
27 _main(sys.argv[1:])
28

29

30 def test_example():
31 options = {'simulate': True, 'driver_setup': {'Model': '4082', 'BoardType': 'PXIe

→˓', }, }
(continues on next page)

7.3. nidmm module 335

https://github.com/ni/nimi-python/blob/1.4.1/src/nidmm/examples/nidmm_measurement.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

32 example('PXI1Slot2', options, 'DC_VOLTS', 10, 6.5)
33

34

35 def test_main():
36 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4082; BoardType:PXIe

→˓',]
37 _main(cmd_line)
38

39

40 if __name__ == '__main__':
41 main()
42

43

nidmm_multi_point_measurement.py

Listing 9: (nidmm_multi_point_measurement.py)

1 #!/usr/bin/python
2

3 import argparse
4 import nidmm
5 import sys
6

7

8 def example(resource_name, options, function, range, digits, samples, triggers):
9 with nidmm.Session(resource_name=resource_name, options=options) as session:

10 session.configure_measurement_digits(measurement_function=nidmm.
→˓Function[function], range=range, resolution_digits=digits)

11 session.configure_multi_point(trigger_count=triggers, sample_count=samples)
12 measurements = session.read_multi_point(array_size=samples)
13 print('Measurements: ', measurements)
14

15

16 def _main(argsv):
17 parser = argparse.ArgumentParser(description='Performs a multipoint measurement

→˓using the NI-DMM API.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
18 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource

→˓name of a National Instruments Digital Multimeter.')
19 parser.add_argument('-f', '--function', default='DC_VOLTS', choices=nidmm.

→˓Function.__members__.keys(), type=str.upper, help='Measurement function.')
20 parser.add_argument('-r', '--range', default=10, type=float, help='Measurement

→˓range.')
21 parser.add_argument('-d', '--digits', default=6.5, type=float, help='Digits of

→˓resolution for the measurement.')
22 parser.add_argument('-s', '--samples', default=10, type=int, help='The number of

→˓measurements the DMM makes.')
23 parser.add_argument('-t', '--triggers', default=1, type=int, help='Sets the

→˓number of triggers you want the DMM to receive before returning to the Idle state.')
24 parser.add_argument('-op', '--option-string', default='', type=str, help='Option

→˓string')
25 args = parser.parse_args(argsv)
26 example(args.resource_name, args.option_string, args.function, args.range, args.

→˓digits, args.samples, args.triggers)

(continues on next page)

336 Chapter 7. License

https://github.com/ni/nimi-python/blob/1.4.1/src/nidmm/examples/nidmm_multi_point_measurement.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

27

28

29 def main():
30 _main(sys.argv[1:])
31

32

33 def test_example():
34 options = {'simulate': True, 'driver_setup': {'Model': '4082', 'BoardType': 'PXIe

→˓', }, }
35 example('PXI1Slot2', options, 'DC_VOLTS', 10, 6.5, 10, 1)
36

37

38 def test_main():
39 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4082; BoardType:PXIe

→˓',]
40 _main(cmd_line)
41

42

43 if __name__ == '__main__':
44 main()
45

46

47

7.4 nifgen module

7.4.1 Installation

As a prerequisite to using the nifgen module, you must install the NI-FGEN runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-FGEN) can be installed with pip:

$ python -m pip install nifgen~=1.4.1

Or easy_install from setuptools:

$ python -m easy_install nifgen

7.4.2 Usage

The following is a basic example of using the nifgen module to open a session to a Function Generator and generate
a sine wave for 5 seconds.

import nifgen
import time
with nifgen.Session("Dev1") as session:

session.output_mode = nifgen.OutputMode.FUNC
session.configure_standard_waveform(waveform=nifgen.Waveform.SINE, amplitude=1.0,

→˓frequency=10000000, dc_offset=0.0, start_phase=0.0)
with session.initiate():

time.sleep(5)

7.4. nifgen module 337

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

NI Modular Instruments Python API Documentation, Release 1.4.1

Additional examples for NI-FGEN are located in src/nifgen/examples/ directory.

7.4.3 API Reference

Session

class nifgen.Session(self, resource_name, channel_name=None, reset_device=False, options={})
Creates and returns a new NI-FGEN session to the specified channel of a waveform generator that is used in all
subsequent NI-FGEN method calls.

Parameters

• resource_name (str) –

Caution: Traditional NI-DAQ and NI-DAQmx device names are not case-sensitive.
However, all IVI names, such as logical names, are case-sensitive. If you use logical
names, driver session names, or virtual names in your program, you must ensure that the
name you use matches the name in the IVI Configuration Store file exactly, without any
variations in the case of the characters.

Specifies the resource name of the device to initialize.

For Traditional NI-DAQ devices, the syntax is DAQ::n, where n is the device number as-
signed by MAX, as shown in Example 1.

For NI-DAQmx devices, the syntax is just the device name specified in MAX, as shown in
Example 2. Typical default names for NI-DAQmx devices in MAX are Dev1 or PXI1Slot1.
You can rename an NI-DAQmx device by right-clicking on the name in MAX and entering
a new name.

An alternate syntax for NI-DAQmx devices consists of DAQ::NI-DAQmx device name, as
shown in Example 3. This naming convention allows for the use of an NI-DAQmx device in
an application that was originally designed for a Traditional NI-DAQ device. For example,
if the application expects DAQ::1, you can rename the NI-DAQmx device to 1 in MAX and
pass in DAQ::1 for the resource name, as shown in Example 4.

If you use the DAQ::n syntax and an NI-DAQmx device name already exists with that same
name, the NI-DAQmx device is matched first.

You can also pass in the name of an IVI logical name or an IVI virtual name configured
with the IVI Configuration utility, as shown in Example 5. A logical name identifies a
particular virtual instrument. A virtual name identifies a specific device and specifies the
initial settings for the session.

338 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

Ex-
ample
#

Device Type Syntax Variable

1 Traditional NI-DAQ de-
vice

DAQ::1 (1 = device number)

2 NI-DAQmx device myDAQmxDevice (myDAQmxDevice = de-
vice name)

3 NI-DAQmx device DAQ::myDAQmxDevice(myDAQmxDevice = de-
vice name)

4 NI-DAQmx device DAQ::2 (2 = device name)
5 IVI logical name or IVI

virtual name
myLogicalName (myLogicalName =

name)

• channel_name (str, list, range, tuple) – Specifies the channel that this VI
uses.

Default Value: “0”

• reset_device (bool) – Specifies whether you want to reset the device during the ini-
tialization procedure. True specifies that the device is reset and performs the same method
as the nifgen.Session.Reset() method.

Defined Values

Default Value: False

True Reset device
False Do not reset device

• options (dict) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status False
cache True
simulate False
record_value_coersions False
driver_setup {}

Methods

abort

nifgen.Session.abort()
Aborts any previously initiated signal generation. Call the nifgen.Session.initiate()

7.4. nifgen module 339

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

NI Modular Instruments Python API Documentation, Release 1.4.1

method to cause the signal generator to produce a signal again.

allocate_named_waveform

nifgen.Session.allocate_named_waveform(waveform_name, waveform_size)
Specifies the size of a named waveform up front so that it can be allocated in onboard memory
before loading the associated data. Data can then be loaded in smaller blocks with the niFgen Write
(Binary16) Waveform methods.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].allocate_named_waveform()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.allocate_named_waveform()

Parameters

• waveform_name (str) – Specifies the name to associate with the allocated wave-
form.

• waveform_size (int) – Specifies the size of the waveform to allocate in sam-
ples.

Default Value: “4096”

allocate_waveform

nifgen.Session.allocate_waveform(waveform_size)
Specifies the size of a waveform so that it can be allocated in onboard memory before loading the
associated data. Data can then be loaded in smaller blocks with the Write Binary 16 Waveform
methods.

Note: The signal generator must not be in the Generating state when you call this method.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].allocate_waveform()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.allocate_waveform()

Parameters waveform_size (int) – Specifies, in samples, the size of the waveform
to allocate.

Return type int

340 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python API Documentation, Release 1.4.1

Returns The handle that identifies the new waveform. This handle is used later when
referring to this waveform.

clear_arb_memory

nifgen.Session.clear_arb_memory()
Removes all previously created arbitrary waveforms, sequences, and scripts from the signal genera-
tor memory and invalidates all waveform handles, sequence handles, and waveform names.

Note: The signal generator must not be in the Generating state when you call this method.

clear_arb_sequence

nifgen.Session.clear_arb_sequence(sequence_handle)
Removes a previously created arbitrary sequence from the signal generator memory and invalidates
the sequence handle.

Note: The signal generator must not be in the Generating state when you call this method.

Parameters sequence_handle (int) – Specifies the handle of the arbitrary se-
quence that you want the signal generator to remove. You can create an arbitrary se-
quence using the nifgen.Session.create_arb_sequence() or nifgen.
Session.create_advanced_arb_sequence() method. These methods re-
turn a handle that you use to identify the sequence.

Defined Value:
NIFGEN_VAL_ALL_SEQUENCES—Remove all sequences from the signal
generator

Default Value: None

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

clear_freq_list

nifgen.Session.clear_freq_list(frequency_list_handle)
Removes a previously created frequency list from the signal generator memory and invalidates the
frequency list handle.

Note: The signal generator must not be in the Generating state when you call this method.

7.4. nifgen module 341

https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python API Documentation, Release 1.4.1

Parameters frequency_list_handle (int) – Specifies the handle of the fre-
quency list you want the signal generator to remove. You create multiple frequency
lists using nifgen.Session.create_freq_list(). nifgen.Session.
create_freq_list() returns a handle that you use to identify each list. Specify
a value of -1 to clear all frequency lists.

Defined Value

NIFGEN_VAL_ALL_FLISTS—Remove all frequency lists from the signal genera-
tor.

Default Value: None

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

clear_user_standard_waveform

nifgen.Session.clear_user_standard_waveform()
Clears the user-defined waveform created by the nifgen.Session.
define_user_standard_waveform() method.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].clear_user_standard_waveform()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.clear_user_standard_waveform()

close

nifgen.Session.close()
Performs the following operations:

• Closes the instrument I/O session.

• Destroys the NI-FGEN session and all of its properties.

• Deallocates any memory resources NI-FGEN uses.

Not all signal routes established by calling the nifgen.Session.ExportSignal() and
nifgen.Session.RouteSignalOut() methods are released when the NI-FGEN session is
closed. The following table shows what happens to a signal route on your device when you call the
nifgen.Session._close() method.

Routes To NI 5401/5411/5431 Other Devices
Front Panel Remain connected Remain connected
RTSI/PXI Backplane Remain connected Disconnected

342 Chapter 7. License

https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: After calling nifgen.Session._close(), you cannot use NI-FGEN again until you
call the nifgen.Session.init() or nifgen.Session.InitWithOptions() meth-
ods.

Note: This method is not needed when using the session context manager

commit

nifgen.Session.commit()
Causes a transition to the Committed state. This method verifies property values, reserves the device,
and commits the property values to the device. If the property values are all valid, NI-FGEN sets the
device hardware configuration to match the session configuration. This method does not support the
NI 5401/5404/5411/5431 signal generators.

In the Committed state, you can load waveforms, scripts, and sequences into memory. If any prop-
erties are changed, NI-FGEN implicitly transitions back to the Idle state, where you can program
all session properties before applying them to the device. This method has no effect if the device is
already in the Committed or Generating state and returns a successful status value.

Calling this VI before the niFgen Initiate Generation VI is optional but has the following benefits:

• Routes are committed, so signals are exported or imported.

• Any Reference Clock and external clock circuits are phase-locked.

• A subsequent nifgen.Session.initiate() method can run faster because the device
is already configured.

configure_arb_sequence

nifgen.Session.configure_arb_sequence(sequence_handle, gain, offset)
Configures the signal generator properties that affect arbitrary sequence generation. Sets
the nifgen.Session.arb_sequence_handle, nifgen.Session.arb_gain, and
nifgen.Session.arb_offset properties.

Note: The signal generator must not be in the Generating state when you call this method.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_arb_sequence()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.configure_arb_sequence()

Parameters

7.4. nifgen module 343

NI Modular Instruments Python API Documentation, Release 1.4.1

• sequence_handle (int) – Specifies the handle of the arbitrary sequence that
you want the signal generator to produce. NI-FGEN sets the nifgen.Session.
arb_sequence_handle property to this value. You can create an arbi-
trary sequence using the nifgen.Session.create_arb_sequence() or
nifgen.Session.create_advanced_arb_sequence() method. These
methods return a handle that you use to identify the sequence.

Default Value: None

• gain (float) – Specifies the factor by which the signal generator scales the arbi-
trary waveforms in the sequence. When you create an arbitrary waveform, you must
first normalize the data points to a range of –1.00 to +1.00. You can use this param-
eter to scale the waveform to other ranges. The gain is applied before the offset is
added.

For example, to configure the output signal to range from –2.00 to +2.00 V, set gain
to 2.00.

Units: unitless

Default Value: None

• offset (float) – Specifies the value the signal generator adds to the arbitrary
waveform data. When you create arbitrary waveforms, you must first normal-
ize the data points to a range of –1.00 to +1.00 V. You can use this parameter to
shift the range of the arbitrary waveform. NI-FGEN sets the nifgen.Session.
arb_offset property to this value.

For example, to configure the output signal to range from 0.00 to 2.00 V instead of
–1.00 to 1.00 V, set the offset to 1.00.

Units: volts

Default Value: None

configure_arb_waveform

nifgen.Session.configure_arb_waveform(waveform_handle, gain, offset)
Configures the properties of the signal generator that affect arbitrary waveform generation.
Sets the nifgen.Session.arb_waveform_handle, nifgen.Session.arb_gain,
and nifgen.Session.arb_offset properties.

Note: The signal generator must not be in the Generating state when you call this method.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_arb_waveform()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.configure_arb_waveform()

Parameters

344 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

• waveform_handle (int) – Specifies the handle of the arbitrary waveform you
want the signal generator to produce. NI-FGEN sets the nifgen.Session.
arb_waveform_handle property to this value. You can create an arbitrary
waveform using one of the following niFgen Create Waveform methods:

– nifgen.Session.create_waveform()

– nifgen.Session.create_waveform()

– nifgen.Session.create_waveform_from_file_i16()

– nifgen.Session.create_waveform_from_file_f64()

– nifgen.Session.CreateWaveformFromFileHWS()

These methods return a handle that you use to identify the waveform.

Default Value: None

Note: One or more of the referenced methods are not in the Python API for this
driver.

• gain (float) – Specifies the factor by which the signal generator scales the arbi-
trary waveforms in the sequence. When you create an arbitrary waveform, you must
first normalize the data points to a range of –1.00 to +1.00. You can use this param-
eter to scale the waveform to other ranges. The gain is applied before the offset is
added.

For example, to configure the output signal to range from –2.00 to +2.00 V, set gain
to 2.00.

Units: unitless

Default Value: None

• offset (float) – Specifies the value the signal generator adds to the arbitrary
waveform data. When you create arbitrary waveforms, you must first normal-
ize the data points to a range of –1.00 to +1.00 V. You can use this parameter to
shift the range of the arbitrary waveform. NI-FGEN sets the nifgen.Session.
arb_offset property to this value.

For example, to configure the output signal to range from 0.00 to 2.00 V instead of
–1.00 to 1.00 V, set the offset to 1.00.

Units: volts

Default Value: None

configure_freq_list

nifgen.Session.configure_freq_list(frequency_list_handle, amplitude,
dc_offset=0.0, start_phase=0.0)

Configures the properties of the signal generator that affect frequency list generation (the
nifgen.Session.freq_list_handle, nifgen.Session.func_amplitude,
nifgen.Session.func_dc_offset, and nifgen.Session.func_start_phase
properties).

Note: The signal generator must not be in the Generating state when you call this method.

7.4. nifgen module 345

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_freq_list()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.configure_freq_list()

Parameters

• frequency_list_handle (int) – Specifies the handle of the frequency list
that you want the signal generator to produce. NI-FGEN sets the nifgen.
Session.freq_list_handle property to this value. You can create a
frequency list using the nifgen.Session.create_freq_list() method,
which returns a handle that you use to identify the list. Default Value: None

• amplitude (float) – Specifies the amplitude of the standard waveform that you
want the signal generator to produce. This value is the amplitude at the output
terminal. NI-FGEN sets the nifgen.Session.func_amplitude property to
this value.

For example, to produce a waveform ranging from –5.00 V to +5.00 V, set the am-
plitude to 10.00 V.

Units: peak-to-peak voltage

Default Value: None

Note: This parameter does not affect signal generator behavior
when you set the waveform parameter of the nifgen.Session.
configure_standard_waveform() method to DC.

• dc_offset (float) – Specifies the DC offset of the standard waveform that you
want the signal generator to produce. The value is the offset from ground to the
center of the waveform you specify with the waveform parameter, observed at the
output terminal. For example, to configure a waveform with an amplitude of 10.00
V to range from 0.00 V to +10.00 V, set the dcOffset to 5.00 V. NI-FGEN sets the
nifgen.Session.func_dc_offset property to this value.

Units: volts

Default Value: None

• start_phase (float) – Specifies the horizontal offset of the standard waveform
you want the signal generator to produce. Specify this property in degrees of one
waveform cycle. NI-FGEN sets the nifgen.Session.func_start_phase
property to this value. A start phase of 180 degrees means output generation begins
halfway through the waveform. A start phase of 360 degrees offsets the output by
an entire waveform cycle, which is identical to a start phase of 0 degrees.

Units: degrees of one cycle

Default Value: None degrees

346 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: This parameter does not affect signal generator behavior when you set the
waveform parameter to DC.

configure_standard_waveform

nifgen.Session.configure_standard_waveform(waveform, amplitude, frequency,
dc_offset=0.0, start_phase=0.0)

Configures the following properties of the signal generator that affect standard waveform generation:

• nifgen.Session.func_waveform

• nifgen.Session.func_amplitude

• nifgen.Session.func_dc_offset

• nifgen.Session.func_frequency

• nifgen.Session.func_start_phase

Note: You must call the nifgen.Session.ConfigureOutputMode() method with the
outputMode parameter set to FUNC before calling this method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_standard_waveform()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.configure_standard_waveform()

Parameters

• waveform (nifgen.Waveform) – Specifies the standard waveform that you
want the signal generator to produce. NI-FGEN sets the nifgen.Session.
func_waveform property to this value.

Defined Values

Default Value: SINE

7.4. nifgen module 347

NI Modular Instruments Python API Documentation, Release 1.4.1

SINE Specifies that the signal generator produces a sinusoid waveform.
SQUARESpecifies that the signal generator produces a square waveform.
TRIANGLESpecifies that the signal generator produces a triangle waveform.
RAMP_UPSpecifies that the signal generator produces a positive ramp waveform.
RAMP_DOWNSpecifies that the signal generator produces a negative ramp waveform.
DC Specifies that the signal generator produces a constant voltage.
NOISE Specifies that the signal generator produces white noise.
USER Specifies that the signal generator produces a user-defined

waveform as defined with the nifgen.Session.
define_user_standard_waveform() method.

• amplitude (float) – Specifies the amplitude of the standard waveform that you
want the signal generator to produce. This value is the amplitude at the output
terminal. NI-FGEN sets the nifgen.Session.func_amplitude property to
this value.

For example, to produce a waveform ranging from –5.00 V to +5.00 V, set the am-
plitude to 10.00 V.

Units: peak-to-peak voltage

Default Value: None

Note: This parameter does not affect signal generator behavior
when you set the waveform parameter of the nifgen.Session.
configure_standard_waveform() method to DC.

• frequency (float) –

Specifies the frequency of the standard waveform that you want the signal
generator to produce. NI-FGEN sets the
nifgen.Session.func_frequency property to this value.

Units: hertz

Default Value: None

Note: This parameter does not affect signal generator behavior
when you set the waveform parameter of the nifgen.Session.
configure_standard_waveform() method to DC.

• dc_offset (float) – Specifies the DC offset of the standard waveform that you
want the signal generator to produce. The value is the offset from ground to the
center of the waveform you specify with the waveform parameter, observed at the
output terminal. For example, to configure a waveform with an amplitude of 10.00
V to range from 0.00 V to +10.00 V, set the dcOffset to 5.00 V. NI-FGEN sets the
nifgen.Session.func_dc_offset property to this value.

Units: volts

Default Value: None

• start_phase (float) – Specifies the horizontal offset of the standard wave-
form that you want the signal generator to produce. Specify this parameter

348 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

in degrees of one waveform cycle. NI-FGEN sets the nifgen.Session.
func_start_phase property to this value. A start phase of 180 degrees means
output generation begins halfway through the waveform. A start phase of 360 de-
grees offsets the output by an entire waveform cycle, which is identical to a start
phase of 0 degrees.

Units: degrees of one cycle

Default Value: 0.00

Note: This parameter does not affect signal generator behavior when you set the
waveform parameter to DC.

create_advanced_arb_sequence

nifgen.Session.create_advanced_arb_sequence(waveform_handles_array,
loop_counts_array, sam-
ple_counts_array=None,
marker_location_array=None)

Creates an arbitrary sequence from an array of waveform handles and an array of corresponding
loop counts. This method returns a handle that identifies the sequence. You pass this handle to
the nifgen.Session.configure_arb_sequence() method to specify what arbitrary se-
quence you want the signal generator to produce.

The nifgen.Session.create_advanced_arb_sequence() method extends on the
nifgen.Session.create_arb_sequence() method by adding the ability to set the num-
ber of samples in each sequence step and to set marker locations.

An arbitrary sequence consists of multiple waveforms. For each waveform, you specify the number
of times the signal generator produces the waveform before proceeding to the next waveform. The
number of times to repeat a specific waveform is called the loop count.

Note: The signal generator must not be in the Generating state when you call this method. You
must call the nifgen.Session.ConfigureOutputMode() method to set the outputMode
parameter to SEQ before calling this method.

Parameters

• waveform_handles_array (list of int) – Specifies the array of wave-
form handles from which you want to create a new arbitrary sequence. The ar-
ray must have at least as many elements as the value that you specify in se-
quenceLength. Each waveformHandlesArray element has a corresponding loop-
CountsArray element that indicates how many times that waveform is repeated.
You obtain waveform handles when you create arbitrary waveforms with the
nifgen.Session.allocate_waveform() method or one of the following
niFgen CreateWaveform methods:

– nifgen.Session.create_waveform()

– nifgen.Session.create_waveform()

– nifgen.Session.create_waveform_from_file_i16()

– nifgen.Session.create_waveform_from_file_f64()

7.4. nifgen module 349

NI Modular Instruments Python API Documentation, Release 1.4.1

– nifgen.Session.CreateWaveformFromFileHWS()

Default Value: None

• loop_counts_array (list of int) – Specifies the array of loop counts you
want to use to create a new arbitrary sequence. The array must have at least as many
elements as the value that you specify in the sequenceLength parameter. Each loop-
CountsArray element corresponds to a waveformHandlesArray element and indi-
cates how many times to repeat that waveform. Each element of the loopCountsAr-
ray must be less than or equal to the maximum number of loop counts that the
signal generator allows. You can obtain the maximum loop count from maximum-
LoopCount in the nifgen.Session.query_arb_seq_capabilities()
method.

Default Value: None

• sample_counts_array (list of int) – Specifies the array of sample
counts that you want to use to create a new arbitrary sequence. The array must have
at least as many elements as the value you specify in the sequenceLength parame-
ter. Each sampleCountsArray element corresponds to a waveformHandlesArray
element and indicates the subset, in samples, of the given waveform to generate.
Each element of the sampleCountsArray must be larger than the minimum wave-
form size, a multiple of the waveform quantum and no larger than the number of
samples in the corresponding waveform. You can obtain these values by calling the
nifgen.Session.query_arb_wfm_capabilities() method.

Default Value: None

• marker_location_array (list of int) – Specifies the array of marker
locations to where you want a marker to be generated in the sequence. The array
must have at least as many elements as the value you specify in the sequenceLength
parameter. Each markerLocationArray element corresponds to a waveformHan-
dlesArray element and indicates where in the waveform a marker is to generate.
The marker location must be less than the size of the waveform the marker is in.
The markers are coerced to the nearest marker quantum and the coerced values are
returned in the coercedMarkersArray parameter.

If you do not want a marker generated for a particular sequence stage, set this pa-
rameter to NIFGEN_VAL_NO_MARKER.

Defined Value: NIFGEN_VAL_NO_MARKER

Default Value: None

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type

tuple (coerced_markers_array, sequence_handle)

WHERE

coerced_markers_array (list of int):

Returns an array of all given markers that are coerced (rounded) to the nearest
marker quantum. Not all devices coerce markers.

Default Value: None

350 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

sequence_handle (int):

Returns the handle that identifies the new arbitrary sequence. You can pass this
handle to nifgen.Session.configure_arb_sequence() to generate
the arbitrary sequence.

create_arb_sequence

nifgen.Session.create_arb_sequence(waveform_handles_array,
loop_counts_array)

Creates an arbitrary sequence from an array of waveform handles and an array of corresponding
loop counts. This method returns a handle that identifies the sequence. You pass this handle to
the nifgen.Session.configure_arb_sequence() method to specify what arbitrary se-
quence you want the signal generator to produce.

An arbitrary sequence consists of multiple waveforms. For each waveform, you can specify the
number of times that the signal generator produces the waveform before proceeding to the next
waveform. The number of times to repeat a specific waveform is called the loop count.

Note: You must call the nifgen.Session.ConfigureOutputMode() method to set the
outputMode parameter to SEQ before calling this method.

Parameters

• waveform_handles_array (list of int) – Specifies the array of wave-
form handles from which you want to create a new arbitrary sequence. The ar-
ray must have at least as many elements as the value that you specify in se-
quenceLength. Each waveformHandlesArray element has a corresponding loop-
CountsArray element that indicates how many times that waveform is repeated.
You obtain waveform handles when you create arbitrary waveforms with the
nifgen.Session.allocate_waveform() method or one of the following
niFgen CreateWaveform methods:

– nifgen.Session.create_waveform()

– nifgen.Session.create_waveform()

– nifgen.Session.create_waveform_from_file_i16()

– nifgen.Session.create_waveform_from_file_f64()

– nifgen.Session.CreateWaveformFromFileHWS()

Default Value: None

• loop_counts_array (list of int) – Specifies the array of loop counts you
want to use to create a new arbitrary sequence. The array must have at least as many
elements as the value that you specify in the sequenceLength parameter. Each loop-
CountsArray element corresponds to a waveformHandlesArray element and indi-
cates how many times to repeat that waveform. Each element of the loopCountsAr-
ray must be less than or equal to the maximum number of loop counts that the
signal generator allows. You can obtain the maximum loop count from maximum-
LoopCount in the nifgen.Session.query_arb_seq_capabilities()
method.

Default Value: None

Return type int

7.4. nifgen module 351

https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python API Documentation, Release 1.4.1

Returns Returns the handle that identifies the new arbitrary sequence. You can pass
this handle to nifgen.Session.configure_arb_sequence() to generate
the arbitrary sequence.

create_freq_list

nifgen.Session.create_freq_list(waveform, frequency_array, duration_array)
Creates a frequency list from an array of frequencies (frequencyArray) and an array of dura-
tions (durationArray). The two arrays should have the same number of elements, and this value
must also be the size of the frequencyListLength. The method returns a handle that identifies
the frequency list (the frequencyListHandle). You can pass this handle to nifgen.Session.
configure_freq_list() to specify what frequency list you want the signal generator to pro-
duce.

A frequency list consists of a list of frequencies and durations. The signal generator generates each
frequency for the given amount of time and then proceeds to the next frequency. When the end of
the list is reached, the signal generator starts over at the beginning of the list.

Note: The signal generator must not be in the Generating state when you call this method.

Parameters

• waveform (nifgen.Waveform) – Specifies the standard waveform that you
want the signal generator to produce. NI-FGEN sets the nifgen.Session.
func_waveform property to this value.

Defined Values

Default Value: SINE

SINE Specifies that the signal generator produces a sinusoid waveform.
SQUARESpecifies that the signal generator produces a square waveform.
TRIANGLESpecifies that the signal generator produces a triangle waveform.
RAMP_UPSpecifies that the signal generator produces a positive ramp waveform.
RAMP_DOWNSpecifies that the signal generator produces a negative ramp waveform.
DC Specifies that the signal generator produces a constant voltage.
NOISE Specifies that the signal generator produces white noise.
USER Specifies that the signal generator produces a user-defined

waveform as defined with the nifgen.Session.
define_user_standard_waveform() method.

• frequency_array (list of float) – Specifies the array of frequencies to
form the frequency list. The array must have at least as many elements as the value
you specify in frequencyListLength. Each frequencyArray element has a cor-
responding durationArray element that indicates how long that frequency is re-
peated.

Units: hertz

Default Value: None

• duration_array (list of float) – Specifies the array of durations to form
the frequency list. The array must have at least as many elements as the value that

352 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

you specify in frequencyListLength. Each durationArray element has a corre-
sponding frequencyArray element and indicates how long in seconds to generate
the corresponding frequency.

Units: seconds

Default Value: None

Return type int

Returns Returns the handle that identifies the new frequency list. You can pass this han-
dle to nifgen.Session.configure_freq_list() to generate the arbitrary
sequence.

create_waveform_from_file_f64

nifgen.Session.create_waveform_from_file_f64(file_name, byte_order)
This method takes the floating point double (F64) data from the specified file and creates an onboard
waveform for use in Arbitrary Waveform or Arbitrary Sequence output mode. The waveformHan-
dle returned by this method can later be used for setting the active waveform, changing the data
in the waveform, building sequences of waveforms, or deleting the waveform when it is no longer
needed.

Note: The F64 data must be between –1.0 and +1.0 V. Use the nifgen.Session.
digital_gain property to generate different voltage outputs.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].create_waveform_from_file_f64()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.create_waveform_from_file_f64()

Parameters

• file_name (str) – The full path and name of the file where the waveform data
resides.

• byte_order (nifgen.ByteOrder) – Specifies the byte order of the data in
the file.

Defined Values

Default Value: LITTLE

7.4. nifgen module 353

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

LITTLELittle Endian Data—The least significant bit is stored at the lowest ad-
dress, followed by the other bits, in order of increasing significance.

BIG Big Endian Data—The most significant bit is stored at the lowest address,
followed by the other bits, in order of decreasing significance.

Note: Data written by most applications in Windows (including LabWin-
dows™/CVI™) is in Little Endian format. Data written to a file from LabVIEW
is in Big Endian format by default on all platforms. Big Endian and Little Endian
refer to the way data is stored in memory, which can differ on different processors.

Return type int

Returns The handle that identifies the new waveform. This handle is used later when
referring to this waveform.

create_waveform_from_file_i16

nifgen.Session.create_waveform_from_file_i16(file_name, byte_order)
Takes the binary 16-bit signed integer (I16) data from the specified file and creates an onboard
waveform for use in Arbitrary Waveform or Arbitrary Sequence output mode. The waveformHan-
dle returned by this method can later be used for setting the active waveform, changing the data
in the waveform, building sequences of waveforms, or deleting the waveform when it is no longer
needed.

Note: The I16 data (values between –32768 and +32767) is assumed to represent –1 to +1 V. Use
the nifgen.Session.digital_gain property to generate different voltage outputs.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].create_waveform_from_file_i16()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.create_waveform_from_file_i16()

Parameters

• file_name (str) – The full path and name of the file where the waveform data
resides.

• byte_order (nifgen.ByteOrder) – Specifies the byte order of the data in
the file.

Defined Values

Default Value: LITTLE

354 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

LITTLELittle Endian Data—The least significant bit is stored at the lowest ad-
dress, followed by the other bits, in order of increasing significance.

BIG Big Endian Data—The most significant bit is stored at the lowest address,
followed by the other bits, in order of decreasing significance.

Note: Data written by most applications in Windows (including LabWin-
dows™/CVI™) is in Little Endian format. Data written to a file from LabVIEW
is in Big Endian format by default on all platforms. Big Endian and Little Endian
refer to the way data is stored in memory, which can differ on different processors.

Return type int

Returns The handle that identifies the new waveform. This handle is used later when
referring to this waveform.

create_waveform_numpy

nifgen.Session.create_waveform_numpy(waveform_data_array)
Creates an onboard waveform for use in Arbitrary Waveform output mode or Arbitrary Sequence
output mode.

Note: You must set nifgen.Session.output_mode to ARB or SEQ before calling this
method.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].create_waveform()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.create_waveform()

Parameters waveform_data_array (iterable of float or int16) – Ar-
ray of data for the new arbitrary waveform. This may be an iterable of float or int16,
or for best performance a numpy.ndarray of dtype int16 or float64.

Return type int

Returns The handle that identifies the new waveform. This handle is used in other meth-
ods when referring to this waveform.

define_user_standard_waveform

nifgen.Session.define_user_standard_waveform(waveform_data_array)
Defines a user waveform for use in either Standard Method or Frequency List output mode.

7.4. nifgen module 355

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python API Documentation, Release 1.4.1

To select the waveform, set the waveform parameter to USER with either the nifgen.
Session.configure_standard_waveform() or the nifgen.Session.
create_freq_list() method.

The waveform data must be scaled between –1.0 and 1.0. Use the amplitude parameter in the
nifgen.Session.configure_standard_waveform() method to generate different out-
put voltages.

Note: You must call the nifgen.Session.ConfigureOutputMode() method to set the
outputMode parameter to FUNC or FREQ_LIST before calling this method.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].define_user_standard_waveform()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.define_user_standard_waveform()

Parameters waveform_data_array (list of float) – Specifies the array of
data you want to use for the new arbitrary waveform. The array must have at least
as many elements as the value that you specify in waveformSize.

You must normalize the data points in the array to be between –1.00 and +1.00.

Default Value: None

delete_script

nifgen.Session.delete_script(script_name)
Deletes the specified script from onboard memory.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].delete_script()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.delete_script()

Parameters script_name (str) – Specifies the name of the script you want to delete.
The script name appears in the text of the script following the script keyword.

delete_waveform

nifgen.Session.delete_waveform(waveform_name_or_handle)
Removes a previously created arbitrary waveform from the signal generator memory.

356 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: The signal generator must not be in the Generating state when you call this method.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].delete_waveform()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.delete_waveform()

Parameters waveform_name_or_handle (str or int) – The name
(str) or handle (int) of an arbitrary waveform previously allocated with
nifgen.Session.allocate_named_waveform(), nifgen.Session.
allocate_waveform() or nifgen.Session.create_waveform().

disable

nifgen.Session.disable()
Places the instrument in a quiescent state where it has minimal or no impact on the system to which
it is connected. The analog output and all exported signals are disabled.

export_attribute_configuration_buffer

nifgen.Session.export_attribute_configuration_buffer()
Exports the property configuration of the session to a configuration buffer.

You can export and import session property configurations only between devices with identical
model numbers, channel counts, and onboard memory sizes.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-FGEN returns an error.

Return type bytes

Returns Specifies the byte array buffer to be populated with the exported property config-
uration.

export_attribute_configuration_file

nifgen.Session.export_attribute_configuration_file(file_path)
Exports the property configuration of the session to the specified file.

You can export and import session property configurations only between devices with identical
model numbers, channel counts, and onboard memory sizes.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-FGEN returns an error.

Parameters file_path (str) – Specifies the absolute path to the file to contain the
exported property configuration. If you specify an empty or relative path, this method
returns an error. Default file extension: .nifgenconfig

7.4. nifgen module 357

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

get_channel_name

nifgen.Session.get_channel_name(index)
Returns the channel string that is in the channel table at an index you specify.

Note: This method is included for compliance with the IviFgen Class Specification.

Parameters index (int) – A 1-based index into the channel table.

Return type str

Returns Returns the channel string that is in the channel table at the index you specify.
Do not modify the contents of the channel string.

get_ext_cal_last_date_and_time

nifgen.Session.get_ext_cal_last_date_and_time()
Returns the date and time of the last successful external calibration. The time returned is 24-hour
(military) local time; for example, if the device was calibrated at 2:30 PM, this method returns 14
for the hour parameter and 30 for the minute parameter.

Return type hightime.datetime

Returns Indicates date and time of the last calibration.

get_ext_cal_last_temp

nifgen.Session.get_ext_cal_last_temp()
Returns the temperature at the last successful external calibration. The temperature is returned in
degrees Celsius.

Return type float

Returns Specifies the temperature at the last successful calibration in degrees Celsius.

get_ext_cal_recommended_interval

nifgen.Session.get_ext_cal_recommended_interval()
Returns the recommended interval between external calibrations in months.

Return type hightime.timedelta

Returns Specifies the recommended interval between external calibrations in months.

get_hardware_state

nifgen.Session.get_hardware_state()
Returns the current hardware state of the device and, if the device is in the hardware error state, the
current hardware error.

Note: Hardware states do not necessarily correspond to NI-FGEN states.

358 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

Return type nifgen.HardwareState

Returns

Returns the hardware state of the signal generator.

Defined Values

IDLE The device is in the Idle state.
WAITING_FOR_START_TRIGGER The device is waiting for Start Trigger.
RUNNING The device is in the Running state.
DONE The generation has completed success-

fully.
HARDWARE_ERROR There is a hardware error.

get_self_cal_last_date_and_time

nifgen.Session.get_self_cal_last_date_and_time()
Returns the date and time of the last successful self-calibration.

Return type hightime.datetime

Returns Returns the date and time the device was last calibrated.

get_self_cal_last_temp

nifgen.Session.get_self_cal_last_temp()
Returns the temperature at the last successful self-calibration. The temperature is returned in degrees
Celsius.

Return type float

Returns Specifies the temperature at the last successful calibration in degrees Celsius.

get_self_cal_supported

nifgen.Session.get_self_cal_supported()
Returns whether the device supports self–calibration.

Return type bool

Returns

Returns whether the device supports self-calibration.

Defined Values

True Self–calibration is supported.
False Self–calibration is not supported.

import_attribute_configuration_buffer

nifgen.Session.import_attribute_configuration_buffer(configuration)
Imports a property configuration to the session from the specified configuration buffer.

7.4. nifgen module 359

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

You can export and import session property configurations only between devices with identical
model numbers, channel counts, and onboard memory sizes.

Note: You cannot call this method while the session is in a running state, such as while generating
a signal.

Parameters configuration (bytes) – Specifies the byte array buffer that contains
the property configuration to import.

import_attribute_configuration_file

nifgen.Session.import_attribute_configuration_file(file_path)
Imports a property configuration to the session from the specified file.

You can export and import session property configurations only between devices with identical
model numbers, channel counts, and onboard memory sizes.

Note: You cannot call this method while the session is in a running state, such as while generating
a signal.

Parameters file_path (str) – Specifies the absolute path to the file containing the
property configuration to import. If you specify an empty or relative path, this method
returns an error. Default File Extension: .nifgenconfig

initiate

nifgen.Session.initiate()
Initiates signal generation. If you want to abort signal generation, call the nifgen.Session.
abort() method. After the signal generation is aborted, you can call the nifgen.Session.
initiate() method to cause the signal generator to produce a signal again.

Note: This method will return a Python context manager that will initiate on entering and abort on
exit.

is_done

nifgen.Session.is_done()
Determines whether the current generation is complete. This method sets the done parameter to
True if the session is in the Idle or Committed states.

Note: NI-FGEN only reports the done parameter as True after the current generation is complete
in Single trigger mode.

Return type bool

360 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

Returns

Returns information about the completion of waveform generation.

Defined Values

True Generation is complete.
False Generation is not complete.

lock

nifgen.Session.lock()
Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:

• The application called the nifgen.Session.lock() method.

• A call to NI-FGEN locked the session.

• After a call to the nifgen.Session.lock() method returns successfully, no other threads can access
the device session until you call the nifgen.Session.unlock()method or exit out of the with block
when using lock context manager.

• Use the nifgen.Session.lock()method and the nifgen.Session.unlock()method around
a sequence of calls to instrument driver methods if you require that the device retain its settings through
the end of the sequence.

You can safely make nested calls to the nifgen.Session.lock() method within the same thread. To
completely unlock the session, you must balance each call to the nifgen.Session.lock() method with a
call to the nifgen.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

with nifgen.Session('dev1') as session:
with session.lock():

Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type context manager

Returns When used in a with statement, nifgen.Session.lock() acts as a context manager
and unlock will be called when the with block is exited

query_arb_seq_capabilities

nifgen.Session.query_arb_seq_capabilities()
Returns the properties of the signal generator that are related to creating arbitrary
sequences (the nifgen.Session.max_num_sequences, nifgen.Session.
min_sequence_length, nifgen.Session.max_sequence_length, and nifgen.
Session.max_loop_count properties).

7.4. nifgen module 361

NI Modular Instruments Python API Documentation, Release 1.4.1

Return type

tuple (maximum_number_of_sequences, minimum_sequence_length, maxi-
mum_sequence_length, maximum_loop_count)

WHERE

maximum_number_of_sequences (int):

Returns the maximum number of arbitrary waveform sequences that the signal
generator allows. NI-FGEN obtains this value from the nifgen.Session.
max_num_sequences property.

minimum_sequence_length (int):

Returns the minimum number of arbitrary waveforms the signal generator al-
lows in a sequence. NI-FGEN obtains this value from the nifgen.Session.
min_sequence_length property.

maximum_sequence_length (int):

Returns the maximum number of arbitrary waveforms the signal generator al-
lows in a sequence. NI-FGEN obtains this value from the nifgen.Session.
max_sequence_length property.

maximum_loop_count (int):

Returns the maximum number of times the signal generator can repeat an arbi-
trary waveform in a sequence. NI-FGEN obtains this value from the nifgen.
Session.max_loop_count property.

query_arb_wfm_capabilities

nifgen.Session.query_arb_wfm_capabilities()
Returns the properties of the signal generator that are related to creating arbitrary waveforms. These
properties are the maximum number of waveforms, waveform quantum, minimum waveform size,
and maximum waveform size.

Note: If you do not want to obtain the waveform quantum, pass a value of VI_NULL for this
parameter.

Return type

tuple (maximum_number_of_waveforms, waveform_quantum, mini-
mum_waveform_size, maximum_waveform_size)

WHERE

maximum_number_of_waveforms (int):

Returns the maximum number of arbitrary waveforms that the signal gen-
erator allows. NI-FGEN obtains this value from the nifgen.Session.
max_num_waveforms property.

waveform_quantum (int):

The size (number of points) of each waveform must be a multiple of a con-
stant quantum value. This parameter obtains the quantum value that the sig-

362 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

nal generator uses. NI-FGEN returns this value from the nifgen.Session.
waveform_quantum property.

For example, when this property returns a value of 8, all waveform sizes must be
a multiple of 8.

minimum_waveform_size (int):

Returns the minimum number of points that the signal generator allows in
a waveform. NI-FGEN obtains this value from the nifgen.Session.
min_waveform_size property.

maximum_waveform_size (int):

Returns the maximum number of points that the signal generator allows in
a waveform. NI-FGEN obtains this value from the nifgen.Session.
max_waveform_size property.

query_freq_list_capabilities

nifgen.Session.query_freq_list_capabilities()
Returns the properties of the signal generator that are related to creating fre-
quency lists. These properties are nifgen.Session.max_num_freq_lists,
nifgen.Session.min_freq_list_length, nifgen.Session.
max_freq_list_length, nifgen.Session.min_freq_list_duration,
nifgen.Session.max_freq_list_duration, and nifgen.Session.
freq_list_duration_quantum.

Return type

tuple (maximum_number_of_freq_lists, minimum_frequency_list_length,
maximum_frequency_list_length, minimum_frequency_list_duration, maxi-
mum_frequency_list_duration, frequency_list_duration_quantum)

WHERE

maximum_number_of_freq_lists (int):

Returns the maximum number of frequency lists that the signal genera-
tor allows. NI-FGEN obtains this value from the nifgen.Session.
max_num_freq_lists property.

minimum_frequency_list_length (int):

Returns the minimum number of steps that the signal generator allows in a
frequency list. NI-FGEN obtains this value from the nifgen.Session.
min_freq_list_length property.

maximum_frequency_list_length (int):

Returns the maximum number of steps that the signal generator allows in a
frequency list. NI-FGEN obtains this value from the nifgen.Session.
max_freq_list_length property.

minimum_frequency_list_duration (float):

Returns the minimum duration that the signal generator allows in a step of a
frequency list. NI-FGEN obtains this value from the nifgen.Session.
min_freq_list_duration property.

maximum_frequency_list_duration (float):

7.4. nifgen module 363

NI Modular Instruments Python API Documentation, Release 1.4.1

Returns the maximum duration that the signal generator allows in a step of
a frequency list. NI-FGEN obtains this value from the nifgen.Session.
max_freq_list_duration property.

frequency_list_duration_quantum (float):

Returns the quantum of which all durations must be a multiple in a fre-
quency list. NI-FGEN obtains this value from the nifgen.Session.
freq_list_duration_quantum property.

read_current_temperature

nifgen.Session.read_current_temperature()
Reads the current onboard temperature of the device. The temperature is returned in degrees Celsius.

Return type float

Returns Returns the current temperature read from onboard temperature sensors, in de-
grees Celsius.

reset

nifgen.Session.reset()
Resets the instrument to a known state. This method aborts the generation, clears all routes, and
resets session properties to the default values. This method does not, however, commit the session
properties or configure the device hardware to its default state.

Note: For the NI 5401/5404/5411/5431, this method exhibits the same behavior as the nifgen.
Session.reset_device() method.

reset_device

nifgen.Session.reset_device()
Performs a hard reset on the device. Generation is stopped, all routes are released, external bidi-
rectional terminals are tristated, FPGAs are reset, hardware is configured to its default state, and all
session properties are reset to their default states.

reset_with_defaults

nifgen.Session.reset_with_defaults()
Resets the instrument and reapplies initial user–specified settings from the logical name that was
used to initialize the session. If the session was created without a logical name, this method is
equivalent to the nifgen.Session.reset() method.

self_cal

nifgen.Session.self_cal()
Performs a full internal self-calibration on the device. If the calibration is successful, new calibration
data and constants are stored in the onboard EEPROM.

364 Chapter 7. License

https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

self_test

nifgen.Session.self_test()
Runs the instrument self-test routine and returns the test result(s).

Raises SelfTestError on self test failure. Properties on exception object:

• code - failure code from driver

• message - status message from driver

Self-Test Code Description
0 Passed self-test
1 Self-test failed

Note: When used on some signal generators, the device is reset after the nifgen.Session.
self_test() method runs. If you use the nifgen.Session.self_test() method, your
device may not be in its previously configured state after the method runs.

send_software_edge_trigger

nifgen.Session.send_software_edge_trigger(trigger, trigger_id)
Sends a command to trigger the signal generator. This VI can act as an override for an external edge
trigger.

Note: This VI does not override external digital edge triggers of the NI 5401/5411/5431.

Parameters

• trigger (nifgen.Trigger) – Trigger specifies the type of software trigger to
send

Defined Values
START
SCRIPT

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

• trigger_id (str) – Trigger ID specifies the Script Trigger to use for triggering.

set_next_write_position

nifgen.Session.set_next_write_position(waveform_name_or_handle, relative_to,
offset)

Sets the position in the waveform at which the next waveform data is written. This method allows
you to write to arbitrary locations within the waveform. These settings apply only to the next write
to the waveform specified by the waveformHandle parameter. Subsequent writes to that waveform

7.4. nifgen module 365

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

begin where the last write left off, unless this method is called again. The waveformHandle passed in
must have been created by a call to the nifgen.Session.allocate_waveform() method
or one of the following nifgen.Session.create_waveform() method.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].set_next_write_position()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.set_next_write_position()

Parameters

• waveform_name_or_handle (str or int) – The name (str) or han-
dle (int) of an arbitrary waveform previously allocated with nifgen.
Session.allocate_named_waveform(), nifgen.Session.
allocate_waveform() or nifgen.Session.create_waveform().

• relative_to (nifgen.RelativeTo) – Specifies the reference position in the
waveform. This position and offset together determine where to start loading data
into the waveform.

Defined Values

START (0) Use the start of the waveform as the reference position.
CURRENT
(1)

Use the current position within the waveform as the reference
position.

• offset (int) – Specifies the offset from relativeTo at which to start loading the
data into the waveform.

unlock

nifgen.Session.unlock()
Releases a lock that you acquired on an device session using nifgen.Session.lock(). Refer to
nifgen.Session.unlock() for additional information on session locks.

wait_until_done

nifgen.Session.wait_until_done(max_time=hightime.timedelta(seconds=10.0))
Waits until the device is done generating or until the maximum time has expired.

Parameters max_time (hightime.timedelta, datetime.timedelta, or
int in milliseconds) – Specifies the timeout value in milliseconds.

write_script

nifgen.Session.write_script(script)
Writes a string containing one or more scripts that govern the generation of waveforms.

366 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].write_script()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.write_script()

Parameters script (str) – Contains the text of the script you want to use for your gen-
eration operation. Refer to scripting Instructions for more information about writing
scripts.

write_waveform

nifgen.Session.write_waveform(waveform_name_or_handle, data)
Writes data to the waveform in onboard memory.

By default, subsequent calls to this method continue writing data from the position of the last
sample written. You can set the write position and offset by calling the nifgen.Session.
set_next_write_position() nifgen.Session.set_next_write_position()
method.

Tip: This method can be called on specific channels within your nifgen.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].write_waveform()

To call the method on all channels, you can call it directly on the nifgen.Session.

Example: my_session.write_waveform()

Parameters

• waveform_name_or_handle (str or int) – The name (str) or han-
dle (int) of an arbitrary waveform previously allocated with nifgen.
Session.allocate_named_waveform(), nifgen.Session.
allocate_waveform() or nifgen.Session.create_waveform().

• data (list of float) – Array of data to load into the waveform. This may
be an iterable of float, or for best performance a numpy.ndarray of dtype int16 or
float64.

Properties

absolute_delay

nifgen.Session.absolute_delay
Specifies the sub-Sample Clock delay, in seconds, to apply to the waveform. Use this property
to reduce the trigger jitter when synchronizing multiple devices with NI-TClk. This property can
also help maintain synchronization repeatability by writing the absolute delay value of a previous

7.4. nifgen module 367

https://docs.python.org/3/library/stdtypes.html#str
REPLACE_DRIVER_SPECIFIC_URL_2(niscripted.chm',%20'scripting_instructions)
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python API Documentation, Release 1.4.1

measurement to the current session. To set this property, the waveform generator must be in the Idle
(Configuration) state. Units: seconds (s) Valid Values: Plus or minus half of one Sample Clock
period Default Value: 0.0 Supported Waveform Generators: PXIe-5413/5423/5433

Note: If this property is set, NI-TClk cannot perform any sub-Sample Clock adjustment.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Absolute Delay

• C Attribute: NIFGEN_ATTR_ABSOLUTE_DELAY

all_marker_events_latched_status

nifgen.Session.all_marker_events_latched_status
Returns a bit field of the latched status of all Marker Events. Write 0 to this property to clear the
latched status of all Marker Events.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Marker:Advanced:All Marker Events Latched Status

• C Attribute: NIFGEN_ATTR_ALL_MARKER_EVENTS_LATCHED_STATUS

all_marker_events_live_status

nifgen.Session.all_marker_events_live_status
Returns a bit field of the live status of all Marker Events.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

368 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Marker:Advanced:All Marker Events Live Status

• C Attribute: NIFGEN_ATTR_ALL_MARKER_EVENTS_LIVE_STATUS

analog_data_mask

nifgen.Session.analog_data_mask
Specifies the mask to apply to the analog output. The masked data is replaced with the data in
nifgen.Session.analog_static_value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Data Mask:Analog Data Mask

• C Attribute: NIFGEN_ATTR_ANALOG_DATA_MASK

analog_filter_enabled

nifgen.Session.analog_filter_enabled
Controls whether the signal generator applies to an analog filter to the output signal. This property
is valid in arbitrary waveform, arbitrary sequence, and script modes. This property can also be used
in standard method and frequency list modes for user-defined waveforms.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Filters:Analog Filter Enabled

• C Attribute: NIFGEN_ATTR_ANALOG_FILTER_ENABLED

7.4. nifgen module 369

NI Modular Instruments Python API Documentation, Release 1.4.1

analog_path

nifgen.Session.analog_path
Specifies the analog signal path that should be used. The main path allows you to configure gain,
offset, analog filter status, output impedance, and output enable. The main path has two amplifier
options, high- and low-gain. The direct path presents a much smaller gain range, and you cannot
adjust offset or the filter status. The direct path also provides a smaller output range but also lower
distortion. NI-FGEN normally chooses the amplifier based on the user-specified gain.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.AnalogPath
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Analog Path

• C Attribute: NIFGEN_ATTR_ANALOG_PATH

analog_static_value

nifgen.Session.analog_static_value
Specifies the static value that replaces data masked by nifgen.Session.
analog_data_mask.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Data Mask:Analog Static Value

• C Attribute: NIFGEN_ATTR_ANALOG_STATIC_VALUE

arb_gain

nifgen.Session.arb_gain
Specifies the factor by which the signal generator scales the arbitrary waveform data. When you
create arbitrary waveforms, you must first normalize the data points to the range -1.0 to +1.0. Use
this property to scale the arbitrary waveform to other ranges. For example, when you set this property
to 2.0, the output signal ranges from -2.0 V to +2.0 V. Use this property when nifgen.Session.
output_mode is set to ARB or SEQ.

370 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Gain

• C Attribute: NIFGEN_ATTR_ARB_GAIN

arb_marker_position

nifgen.Session.arb_marker_position
Specifies the position for a marker to be asserted in the arbitrary waveform. This property de-
faults to -1 when no marker position is specified. Use this property when nifgen.Session.
output_mode is set to ARB. Use nifgen.Session.ExportSignal() to export the marker
signal.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Arbitrary Waveform Mode:Marker Position

• C Attribute: NIFGEN_ATTR_ARB_MARKER_POSITION

arb_offset

nifgen.Session.arb_offset
Specifies the value that the signal generator adds to the arbitrary waveform data. When you create
arbitrary waveforms, you must first normalize the data points to the range -1.0 to +1.0. Use this prop-
erty to shift the arbitrary waveform range. For example, when you set this property to 1.0, the output
signal ranges from 2.0 V to 0.0 V. Use this property when nifgen.Session.output_mode is
set to ARB or SEQ. Units: Volts

The following table lists the characteristics of this property.

7.4. nifgen module 371

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Offset

• C Attribute: NIFGEN_ATTR_ARB_OFFSET

arb_repeat_count

nifgen.Session.arb_repeat_count
Specifies number of times to repeat the arbitrary waveform when the triggerMode parameter of
nifgen.Session.ConfigureTriggerMode() is set to SINGLE or STEPPED. This prop-
erty is ignored if the triggerMode parameter is set to CONTINUOUS or BURST. Use this property
when nifgen.Session.output_mode is set to ARB. When used during streaming, this prop-
erty specifies the number of times to repeat the streaming waveform (the onboard memory allocated
for streaming). For more information about streaming, refer to the Streaming topic.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Arbitrary Waveform Mode:Repeat Count

• C Attribute: NIFGEN_ATTR_ARB_REPEAT_COUNT

arb_sample_rate

nifgen.Session.arb_sample_rate
Specifies the rate at which the signal generator outputs the points in arbitrary waveforms. Use this
property when nifgen.Session.output_mode is set to ARB or SEQ. Units: Samples/s

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

372 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Clocks:Sample Clock:Rate

• C Attribute: NIFGEN_ATTR_ARB_SAMPLE_RATE

arb_sequence_handle

nifgen.Session.arb_sequence_handle
This channel-based property identifies which sequence the signal generator produces. You can
create multiple sequences using nifgen.Session.create_arb_sequence(). nifgen.
Session.create_arb_sequence() returns a handle that you can use to identify the partic-
ular sequence. To configure the signal generator to produce a particular sequence, set this property
to the sequence handle. Use this property only when nifgen.Session.output_mode is set
to SEQ.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Arbitrary Sequence
Handle

• C Attribute: NIFGEN_ATTR_ARB_SEQUENCE_HANDLE

arb_waveform_handle

nifgen.Session.arb_waveform_handle
Selects which arbitrary waveform the signal generator produces. You can cre-
ate multiple arbitrary waveforms using one of the following niFgen Create Wave-
form methods: nifgen.Session.create_waveform() nifgen.Session.
create_waveform() nifgen.Session.create_waveform_from_file_i16()
nifgen.Session.create_waveform_from_file_f64() nifgen.Session.
CreateWaveformFromFileHWS() These methods return a handle that you can use to identify
the particular waveform. To configure the signal generator to produce a particular waveform,
set this property to the waveform handle. Use this property only when nifgen.Session.
output_mode is set to ARB.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

7.4. nifgen module 373

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Arbitrary Waveform Mode:Arbitrary Wave-
form Handle

• C Attribute: NIFGEN_ATTR_ARB_WAVEFORM_HANDLE

aux_power_enabled

nifgen.Session.aux_power_enabled
Controls the specified auxiliary power pin. Setting this property to TRUE energizes the auxiliary
power when the session is committed. When this property is FALSE, the power pin of the connector
outputs no power.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Advanced:AUX Power Enabled

• C Attribute: NIFGEN_ATTR_AUX_POWER_ENABLED

bus_type

nifgen.Session.bus_type
The bus type of the signal generator.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.BusType
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Bus Type

• C Attribute: NIFGEN_ATTR_BUS_TYPE

374 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

channel_delay

nifgen.Session.channel_delay
Specifies, in seconds, the delay to apply to the analog output of the channel specified by the channel
string. You can use the channel delay to configure the timing relationship between channels on a
multichannel device. Values for this property can be zero or positive. A value of zero indicates
that the channels are aligned. A positive value delays the analog output by the specified number of
seconds.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Channel Delay

• C Attribute: NIFGEN_ATTR_CHANNEL_DELAY

clock_mode

nifgen.Session.clock_mode
Controls which clock mode is used for the signal generator. For signal generators that support it,
this property allows switching the sample clock to High-Resolution mode. When in Divide-Down
mode, the sample rate can only be set to certain frequences, based on dividing down the update
clock. However, in High-Resolution mode, the sample rate may be set to any value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ClockMode
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Sample Clock:Mode

• C Attribute: NIFGEN_ATTR_CLOCK_MODE

common_mode_offset

nifgen.Session.common_mode_offset
Specifies, in volts, the value the signal generator adds to or subtracts from the arbi-
trary waveform data. This property applies only when you set the nifgen.Session.
terminal_configuration property to DIFFERENTIAL. Common mode offset is applied
to the signals generated at each differential output terminal.

7.4. nifgen module 375

NI Modular Instruments Python API Documentation, Release 1.4.1

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Common Mode Offset

• C Attribute: NIFGEN_ATTR_COMMON_MODE_OFFSET

data_marker_events_count

nifgen.Session.data_marker_events_count
Returns the number of Data Marker Events supported by the device.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Data Marker Events Count

• C Attribute: NIFGEN_ATTR_DATA_MARKER_EVENTS_COUNT

data_marker_event_data_bit_number

nifgen.Session.data_marker_event_data_bit_number
Specifies the bit number to assign to the Data Marker Event.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Data Marker:Data Bit Number

• C Attribute: NIFGEN_ATTR_DATA_MARKER_EVENT_DATA_BIT_NUMBER

376 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

data_marker_event_level_polarity

nifgen.Session.data_marker_event_level_polarity
Specifies the output polarity of the Data marker event.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.DataMarkerEventLevelPolarity
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Data Marker:Level:Active Level

• C Attribute: NIFGEN_ATTR_DATA_MARKER_EVENT_LEVEL_POLARITY

data_marker_event_output_terminal

nifgen.Session.data_marker_event_output_terminal
Specifies the destination terminal for the Data Marker Event.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Data Marker:Output Terminal

• C Attribute: NIFGEN_ATTR_DATA_MARKER_EVENT_OUTPUT_TERMINAL

data_transfer_block_size

nifgen.Session.data_transfer_block_size
The number of samples at a time to download to onboard memory. Useful when the total data to be
transferred to onboard memory is large.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

7.4. nifgen module 377

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Data Transfer:Data Transfer Block Size

• C Attribute: NIFGEN_ATTR_DATA_TRANSFER_BLOCK_SIZE

data_transfer_maximum_bandwidth

nifgen.Session.data_transfer_maximum_bandwidth
Specifies the maximum amount of bus bandwidth (in bytes per second) to use for data transfers.
The signal generator limits data transfer speeds on the PCIe bus to the value you specify for this
property. Set this property to optimize bus bandwidth usage for multi-device streaming applications
by preventing the signal generator from consuming all of the available bandwidth on a PCI express
link when waveforms are being written to the onboard memory of the device.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Data Transfer:Maximum Bandwidth

• C Attribute: NIFGEN_ATTR_DATA_TRANSFER_MAXIMUM_BANDWIDTH

data_transfer_maximum_in_flight_reads

nifgen.Session.data_transfer_maximum_in_flight_reads
Specifies the maximum number of concurrent PCI Express read requests the signal generator can
issue. When transferring data from computer memory to device onboard memory across the PCI
Express bus, the signal generator can issue multiple memory reads at the same time. In general, the
larger the number of read requests, the more efficiently the device uses the bus because the multiple
read requests keep the data flowing, even in a PCI Express topology that has high latency due to
PCI Express switches in the data path. Most NI devices can issue a large number of read requests
(typically 8 or 16). By default, this property is set to the highest value the signal generator supports.
If other devices in your system cannot tolerate long data latencies, it may be helpful to decrease the
number of in-flight read requests the NI signal generator issues. This helps to reduce the amount of
data the signal generator reads at one time.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

378 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Data Transfer:Advanced:Maximum In-Flight
Read Requests

• C Attribute: NIFGEN_ATTR_DATA_TRANSFER_MAXIMUM_IN_FLIGHT_READS

data_transfer_preferred_packet_size

nifgen.Session.data_transfer_preferred_packet_size
Specifies the preferred size of the data field in a PCI Express read request packet. In general, the
larger the packet size, the more efficiently the device uses the bus. By default, NI signal generators
use the largest packet size allowed by the system. However, due to different system implementations,
some systems may perform better with smaller packet sizes. Recommended values for this property
are powers of two between 64 and 512. In some cases, the signal generator generates packets
smaller than the preferred size you set with this property. You cannot change this property while the
device is generating a waveform. If you want to change the device configuration, call the nifgen.
Session.abort() method or wait for the generation to complete.

Note: :

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Data Transfer:Advanced:Preferred Packet Size

• C Attribute: NIFGEN_ATTR_DATA_TRANSFER_PREFERRED_PACKET_SIZE

digital_data_mask

nifgen.Session.digital_data_mask
Specifies the mask to apply to the output on the digital connector. The masked data is replaced with
the data in nifgen.Session.digital_static_value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

7.4. nifgen module 379

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Data Mask:Digital Data Mask

• C Attribute: NIFGEN_ATTR_DIGITAL_DATA_MASK

digital_edge_script_trigger_edge

nifgen.Session.digital_edge_script_trigger_edge
Specifies the active edge for the Script trigger. This property is used when nifgen.Session.
script_trigger_type is set to Digital Edge.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ScriptTriggerDigitalEdgeEdge
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Script:Digital Edge:Edge

• C Attribute: NIFGEN_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_EDGE

digital_edge_script_trigger_source

nifgen.Session.digital_edge_script_trigger_source
Specifies the source terminal for the Script trigger. This property is used when nifgen.
Session.script_trigger_type is set to Digital Edge.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Script:Digital Edge:Source

• C Attribute: NIFGEN_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_SOURCE

380 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

digital_edge_start_trigger_edge

nifgen.Session.digital_edge_start_trigger_edge
Specifies the active edge for the Start trigger. This property is used only when nifgen.Session.
start_trigger_type is set to Digital Edge.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.StartTriggerDigitalEdgeEdge
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Start:Digital Edge:Edge

• C Attribute: NIFGEN_ATTR_DIGITAL_EDGE_START_TRIGGER_EDGE

digital_edge_start_trigger_source

nifgen.Session.digital_edge_start_trigger_source
Specifies the source terminal for the Start trigger. This property is used only when nifgen.
Session.start_trigger_type is set to Digital Edge.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Start:Digital Edge:Source

• C Attribute: NIFGEN_ATTR_DIGITAL_EDGE_START_TRIGGER_SOURCE

digital_filter_enabled

nifgen.Session.digital_filter_enabled
Controls whether the signal generator applies a digital filter to the output signal. This property is
valid in arbitrary waveform, arbitrary sequence, and script modes. This property can also be used in
standard method and frequency list modes for user-defined waveforms.

The following table lists the characteristics of this property.

7.4. nifgen module 381

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Filters:Digital Filter Enabled

• C Attribute: NIFGEN_ATTR_DIGITAL_FILTER_ENABLED

digital_filter_interpolation_factor

nifgen.Session.digital_filter_interpolation_factor
This property only affects the device when nifgen.Session.digital_filter_enabled
is set to True. If you do not set this property directly, NI-FGEN automatically selects the maximum
interpolation factor allowed for the current sample rate. Valid values are 2, 4, and 8.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Filters:Digital Filter Interpolation Factor

• C Attribute: NIFGEN_ATTR_DIGITAL_FILTER_INTERPOLATION_FACTOR

digital_gain

nifgen.Session.digital_gain
Specifies a factor by which the signal generator digitally multiplies generated data before converting
it to an analog signal in the DAC. For a digital gain greater than 1.0, the product of digital gain
times the generated data must be inside the range plus or minus 1.0 (assuming floating point data).
If the product exceeds these limits, the signal generator clips the output signal, and an error results.
Some signal generators support both digital gain and an analog gain (analog gain is specified with
the nifgen.Session.func_amplitude property or the nifgen.Session.arb_gain
property). Digital gain can be changed during generation without the glitches that may occur when
changing analog gains, due to relay switching. However, the DAC output resolution is a method of
analog gain, so only analog gain makes full use of the resolution of the DAC.

The following table lists the characteristics of this property.

382 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Digital Gain

• C Attribute: NIFGEN_ATTR_DIGITAL_GAIN

digital_pattern_enabled

nifgen.Session.digital_pattern_enabled
Controls whether the signal generator generates a digital pattern of the output signal.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Advanced:Digital Pattern Enabled

• C Attribute: NIFGEN_ATTR_DIGITAL_PATTERN_ENABLED

digital_static_value

nifgen.Session.digital_static_value
Specifies the static value that replaces data masked by nifgen.Session.
digital_data_mask.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Data Mask:Digital Static Value

• C Attribute: NIFGEN_ATTR_DIGITAL_STATIC_VALUE

7.4. nifgen module 383

NI Modular Instruments Python API Documentation, Release 1.4.1

done_event_output_terminal

nifgen.Session.done_event_output_terminal
Specifies the destination terminal for the Done Event.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Done:Output Terminal

• C Attribute: NIFGEN_ATTR_DONE_EVENT_OUTPUT_TERMINAL

driver_setup

nifgen.Session.driver_setup
Specifies the driver setup portion of the option string that was passed into the nifgen.Session.
InitWithOptions() method.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIFGEN_ATTR_DRIVER_SETUP

exported_onboard_reference_clock_output_terminal

nifgen.Session.exported_onboard_reference_clock_output_terminal
Specifies the terminal to which to export the Onboard Reference Clock.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

384 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Reference Clock:Onboard Reference Clock:Export Output
Terminal

• C Attribute: NIFGEN_ATTR_EXPORTED_ONBOARD_REFERENCE_CLOCK_OUTPUT_TERMINAL

exported_reference_clock_output_terminal

nifgen.Session.exported_reference_clock_output_terminal
Specifies the terminal to which to export the Reference Clock.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Reference Clock:Export Output Terminal

• C Attribute: NIFGEN_ATTR_EXPORTED_REFERENCE_CLOCK_OUTPUT_TERMINAL

exported_sample_clock_divisor

nifgen.Session.exported_sample_clock_divisor
Specifies the factor by which to divide the Sample clock, also known as the Update clock, before it is
exported. To export the Sample clock, use the nifgen.Session.ExportSignal() method
or the nifgen.Session.exported_sample_clock_output_terminal property.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Sample Clock:Exported Sample Clock Divisor

• C Attribute: NIFGEN_ATTR_EXPORTED_SAMPLE_CLOCK_DIVISOR

7.4. nifgen module 385

NI Modular Instruments Python API Documentation, Release 1.4.1

exported_sample_clock_output_terminal

nifgen.Session.exported_sample_clock_output_terminal
Specifies the terminal to which to export the Sample Clock.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Sample Clock:Export Output Terminal

• C Attribute: NIFGEN_ATTR_EXPORTED_SAMPLE_CLOCK_OUTPUT_TERMINAL

exported_sample_clock_timebase_divisor

nifgen.Session.exported_sample_clock_timebase_divisor
Specifies the factor by which to divide the sample clock timebase (board clock) before it is exported.
To export the Sample clock timebase, use the nifgen.Session.ExportSignal() method
or the nifgen.Session.exported_sample_clock_timebase_output_terminal
property.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Sample Clock Timebase:Exported Sample Clock Timebase
Divisor

• C Attribute: NIFGEN_ATTR_EXPORTED_SAMPLE_CLOCK_TIMEBASE_DIVISOR

exported_sample_clock_timebase_output_terminal

nifgen.Session.exported_sample_clock_timebase_output_terminal
Specifies the terminal to which to export the Sample clock timebase. If you specify a di-
visor with the nifgen.Session.exported_sample_clock_timebase_divisor

386 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

property, the Sample clock exported with the nifgen.Session.
exported_sample_clock_timebase_output_terminal property is the value of
the Sample clock timebase after it is divided-down. For a list of the terminals available on
your device, refer to the Device Routes tab in MAX. To change the device configuration, call
nifgen.Session.abort() or wait for the generation to complete.

Note: The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Sample Clock Timebase:Export Output Terminal

• C Attribute: NIFGEN_ATTR_EXPORTED_SAMPLE_CLOCK_TIMEBASE_OUTPUT_TERMINAL

exported_script_trigger_output_terminal

nifgen.Session.exported_script_trigger_output_terminal
Specifies the output terminal for the exported Script trigger. Setting this property to an empty string
means that when you commit the session, the signal is removed from that terminal and, if possible,
the terminal is tristated.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Script:Output Terminal

• C Attribute: NIFGEN_ATTR_EXPORTED_SCRIPT_TRIGGER_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

nifgen.Session.exported_start_trigger_output_terminal
Specifies the destination terminal for exporting the Start trigger.

The following table lists the characteristics of this property.

7.4. nifgen module 387

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Start:Output Terminal

• C Attribute: NIFGEN_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

external_clock_delay_binary_value

nifgen.Session.external_clock_delay_binary_value
Binary value of the external clock delay.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Advanced:External Clock Delay Binary Value

• C Attribute: NIFGEN_ATTR_EXTERNAL_CLOCK_DELAY_BINARY_VALUE

external_sample_clock_multiplier

nifgen.Session.external_sample_clock_multiplier
Specifies a multiplication factor to use to obtain a desired sample rate from an external Sample clock.
The resulting sample rate is equal to this factor multiplied by the external Sample clock rate. You
can use this property to generate samples at a rate higher than your external clock rate. When using
this property, you do not need to explicitly set the external clock rate.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Advanced:External Sample Clock Multiplier

• C Attribute: NIFGEN_ATTR_EXTERNAL_SAMPLE_CLOCK_MULTIPLIER

388 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

file_transfer_block_size

nifgen.Session.file_transfer_block_size
The number of samples at a time to read from the file and download to onboard memory. Used in
conjunction with the Create From File and Write From File methods.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Data Transfer:File Transfer Block Size

• C Attribute: NIFGEN_ATTR_FILE_TRANSFER_BLOCK_SIZE

filter_correction_frequency

nifgen.Session.filter_correction_frequency
Controls the filter correction frequency of the analog filter. This property corrects for the ripples in
the analog filter frequency response at the frequency specified. For standard waveform output, the
filter correction frequency should be set to be the same as the frequency of the standard waveform.
To have no filter correction, set this property to 0 Hz.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:5401/5411/5431:Filter Correction Frequency

• C Attribute: NIFGEN_ATTR_FILTER_CORRECTION_FREQUENCY

flatness_correction_enabled

nifgen.Session.flatness_correction_enabled
When True, the signal generator applies a flatness correction factor to the generated sine wave in
order to ensure the same output power level at all frequencies. This property should be set to False
when performing Flatness Calibration.

The following table lists the characteristics of this property.

7.4. nifgen module 389

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Filters:Flatness Correction Enabled

• C Attribute: NIFGEN_ATTR_FLATNESS_CORRECTION_ENABLED

fpga_bitfile_path

nifgen.Session.fpga_bitfile_path
Gets the absolute file path to the bitfile loaded on the FPGA.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:FPGA Bitfile Path

• C Attribute: NIFGEN_ATTR_FPGA_BITFILE_PATH

freq_list_duration_quantum

nifgen.Session.freq_list_duration_quantum
Returns the quantum of which all durations must be a multiple in a frequency list.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Frequency List Mode:Frequency List Duration
Quantum

• C Attribute: NIFGEN_ATTR_FREQ_LIST_DURATION_QUANTUM

390 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

freq_list_handle

nifgen.Session.freq_list_handle
Sets which frequency list the signal generator produces. Create a frequency list using nifgen.
Session.create_freq_list(). nifgen.Session.create_freq_list() returns a
handle that you can use to identify the list.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Frequency List Mode:Frequency List Handle

• C Attribute: NIFGEN_ATTR_FREQ_LIST_HANDLE

func_amplitude

nifgen.Session.func_amplitude
Controls the amplitude of the standard waveform that the signal generator produces. This value is
the amplitude at the output terminal. For example, to produce a waveform ranging from -5.00 V to
+5.00 V, set the amplitude to 10.00 V. set the Waveform parameter to DC. Units: Vpk-pk

Note: This parameter does not affect signal generator behavior when you

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Amplitude

• C Attribute: NIFGEN_ATTR_FUNC_AMPLITUDE

func_buffer_size

nifgen.Session.func_buffer_size
This property contains the number of samples used in the standard method waveform buffer. This
property is only valid on devices that implement standard method mode in software, and is read-only
for all other devices. implementation of Standard Method Mode on your device.

7.4. nifgen module 391

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: Refer to the Standard Method Mode topic for more information on the

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Standard Function Mode:Buffer Size

• C Attribute: NIFGEN_ATTR_FUNC_BUFFER_SIZE

func_dc_offset

nifgen.Session.func_dc_offset
Controls the DC offset of the standard waveform that the signal generator produces. This value is the
offset at the output terminal. The value is the offset from ground to the center of the waveform that
you specify with the Waveform parameter. For example, to configure a waveform with an amplitude
of 10.00 V to range from 0.00 V to +10.00 V, set DC Offset to 5.00 V. Units: volts

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:DC Offset

• C Attribute: NIFGEN_ATTR_FUNC_DC_OFFSET

func_duty_cycle_high

nifgen.Session.func_duty_cycle_high
Controls the duty cycle of the square wave the signal generator produces. Specify this property as a
percentage of the time the square wave is high in a cycle. set the Waveform parameter to SQUARE.
Units: Percentage of time the waveform is high

Note: This parameter only affects signal generator behavior when you

The following table lists the characteristics of this property.

392 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Duty Cycle High

• C Attribute: NIFGEN_ATTR_FUNC_DUTY_CYCLE_HIGH

func_frequency

nifgen.Session.func_frequency
Controls the frequency of the standard waveform that the signal generator produces. Units: hertz (1)
This parameter does not affect signal generator behavior when you set the Waveform parameter of
the nifgen.Session.configure_standard_waveform() method to DC. (2) For SINE,
the range is between 0 MHz and 16 MHz, but the range is between 0 MHz and 1 MHz for all other
waveforms.

Note: :

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Standard Function Mode:Frequency

• C Attribute: NIFGEN_ATTR_FUNC_FREQUENCY

func_max_buffer_size

nifgen.Session.func_max_buffer_size
This property sets the maximum number of samples that can be used in the standard method wave-
form buffer. Increasing this value may increase the quality of the waveform. This property is only
valid on devices that implement standard method mode in software, and is read-only for all other
devices. implementation of Standard Method Mode on your device.

Note: Refer to the Standard Method Mode topic for more information on the

The following table lists the characteristics of this property.

7.4. nifgen module 393

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Standard Function Mode:Maximum Buffer Size

• C Attribute: NIFGEN_ATTR_FUNC_MAX_BUFFER_SIZE

func_start_phase

nifgen.Session.func_start_phase
Controls horizontal offset of the standard waveform the signal generator produces. Specify this
property in degrees of one waveform cycle. A start phase of 180 degrees means output generation
begins halfway through the waveform. A start phase of 360 degrees offsets the output by an entire
waveform cycle, which is identical to a start phase of 0 degrees. set the Waveform parameter to DC.
Units: Degrees of one cycle

Note: This parameter does not affect signal generator behavior when you

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Start Phase

• C Attribute: NIFGEN_ATTR_FUNC_START_PHASE

func_waveform

nifgen.Session.func_waveform
This channel-based property specifies which standard waveform the signal generator produces.
Use this property only when nifgen.Session.output_mode is set to FUNC. SINE -
Sinusoid waveform SQUARE - Square waveform TRIANGLE - Triangle waveform RAMP_UP
- Positive ramp waveform RAMP_DOWN - Negative ramp waveform DC - Constant voltage
NOISE - White noise USER - User-defined waveform as defined with nifgen.Session.
define_user_standard_waveform()

The following table lists the characteristics of this property.

394 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype enums.Waveform
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Waveform

• C Attribute: NIFGEN_ATTR_FUNC_WAVEFORM

idle_behavior

nifgen.Session.idle_behavior
Specifies the behavior of the output during the Idle state. The output can be configured to hold the
last generated voltage before entering the Idle state or jump to the Idle Value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.IdleBehavior
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Advanced:Idle Behavior

• C Attribute: NIFGEN_ATTR_IDLE_BEHAVIOR

idle_value

nifgen.Session.idle_value
Specifies the value to generate in the Idle state. The Idle Behavior must be configured to jump to
this value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Advanced:Idle Value

• C Attribute: NIFGEN_ATTR_IDLE_VALUE

7.4. nifgen module 395

NI Modular Instruments Python API Documentation, Release 1.4.1

instrument_firmware_revision

nifgen.Session.instrument_firmware_revision
A string that contains the firmware revision information for the device that you are currently using.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Inherent IVI Attributes:Instrument Identifica-
tion:Firmware Revision

• C Attribute: NIFGEN_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

nifgen.Session.instrument_manufacturer
A string that contains the name of the device manufacturer you are currently using.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Inherent IVI Attributes:Instrument Identifica-
tion:Manufacturer

• C Attribute: NIFGEN_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

nifgen.Session.instrument_model
A string that contains the model number or name of the device that you are currently using.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

396 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Inherent IVI Attributes:Instrument Identification:Model

• C Attribute: NIFGEN_ATTR_INSTRUMENT_MODEL

io_resource_descriptor

nifgen.Session.io_resource_descriptor
Indicates the resource descriptor that NI-FGEN uses to identify the physical device. If you initialize
NI-FGEN with a logical name, this property contains the resource descriptor that corresponds to the
entry in the IVI Configuration Utility. If you initialize NI-FGEN with the resource descriptor, this
property contains that value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Inherent IVI Attributes:Advanced Session Informa-
tion:Resource Descriptor

• C Attribute: NIFGEN_ATTR_IO_RESOURCE_DESCRIPTOR

load_impedance

nifgen.Session.load_impedance
This channel-based property specifies the load impedance connected to the analog output of the
channel. If you set this property to NIFGEN_VAL_MATCHED_LOAD_IMPEDANCE (-1.0), NI-
FGEN assumes that the load impedance matches the output impedance. NI-FGEN compensates to
give the desired peak-to-peak voltage amplitude or arbitrary gain (relative to 1 V).

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.4. nifgen module 397

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Output:Load Impedance

• C Attribute: NIFGEN_ATTR_LOAD_IMPEDANCE

logical_name

nifgen.Session.logical_name
A string containing the logical name that you specified when opening the current IVI ses-
sion. You may pass a logical name to nifgen.Session.init() or nifgen.Session.
InitWithOptions(). The IVI Configuration Utility must contain an entry for the logical name.
The logical name entry refers to a virtual instrument section in the IVI Configuration file. The virtual
instrument section specifies a physical device and initial user options.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Inherent IVI Attributes:Advanced Session Informa-
tion:Logical Name

• C Attribute: NIFGEN_ATTR_LOGICAL_NAME

marker_events_count

nifgen.Session.marker_events_count
Returns the number of markers supported by the device. Use this property when nifgen.
Session.output_mode is set to SCRIPT.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Marker Events Count

• C Attribute: NIFGEN_ATTR_MARKER_EVENTS_COUNT

398 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

marker_event_output_terminal

nifgen.Session.marker_event_output_terminal
Specifies the destination terminal for the Marker Event.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Marker:Output Terminal

• C Attribute: NIFGEN_ATTR_MARKER_EVENT_OUTPUT_TERMINAL

max_freq_list_duration

nifgen.Session.max_freq_list_duration
Returns the maximum duration of any one step in the frequency list.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Frequency List Mode:Maximum Frequency List
Duration

• C Attribute: NIFGEN_ATTR_MAX_FREQ_LIST_DURATION

max_freq_list_length

nifgen.Session.max_freq_list_length
Returns the maximum number of steps that can be in a frequency list.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

7.4. nifgen module 399

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Frequency List Mode:Maximum Frequency List
Length

• C Attribute: NIFGEN_ATTR_MAX_FREQ_LIST_LENGTH

max_loop_count

nifgen.Session.max_loop_count
Returns the maximum number of times that the signal generator can repeat a waveform in a se-
quence. Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Max Loop Count

• C Attribute: NIFGEN_ATTR_MAX_LOOP_COUNT

max_num_freq_lists

nifgen.Session.max_num_freq_lists
Returns the maximum number of frequency lists the signal generator allows.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Frequency List Mode:Maximum Number Of Fre-
quency Lists

• C Attribute: NIFGEN_ATTR_MAX_NUM_FREQ_LISTS

400 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

max_num_sequences

nifgen.Session.max_num_sequences
Returns the maximum number of arbitrary sequences that the signal generator allows. Typically, this
value is constant for the signal generator.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Max Number of Se-
quences

• C Attribute: NIFGEN_ATTR_MAX_NUM_SEQUENCES

max_num_waveforms

nifgen.Session.max_num_waveforms
Returns the maximum number of arbitrary waveforms that the signal generator allows. Typically,
this value is constant for the signal generator.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Capabilities:Max Number of Waveforms

• C Attribute: NIFGEN_ATTR_MAX_NUM_WAVEFORMS

max_sequence_length

nifgen.Session.max_sequence_length
Returns the maximum number of arbitrary waveforms that the signal generator allows in a sequence.
Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

7.4. nifgen module 401

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Max Sequence
Length

• C Attribute: NIFGEN_ATTR_MAX_SEQUENCE_LENGTH

max_waveform_size

nifgen.Session.max_waveform_size
Returns the size, in samples, of the largest waveform that can be created. This property reflects the
space currently available, taking into account previously allocated waveforms and instructions.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Capabilities:Max Waveform Size

• C Attribute: NIFGEN_ATTR_MAX_WAVEFORM_SIZE

memory_size

nifgen.Session.memory_size
The total amount of memory, in bytes, on the signal generator.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Memory Size

• C Attribute: NIFGEN_ATTR_MEMORY_SIZE

402 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

min_freq_list_duration

nifgen.Session.min_freq_list_duration
Returns the minimum number of steps that can be in a frequency list.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Frequency List Mode:Minimum Frequency List
Duration

• C Attribute: NIFGEN_ATTR_MIN_FREQ_LIST_DURATION

min_freq_list_length

nifgen.Session.min_freq_list_length
Returns the minimum number of frequency lists that the signal generator allows.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Standard Function:Frequency List Mode:Minimum Frequency List
Length

• C Attribute: NIFGEN_ATTR_MIN_FREQ_LIST_LENGTH

min_sequence_length

nifgen.Session.min_sequence_length
Returns the minimum number of arbitrary waveforms that the signal generator allows in a sequence.
Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

7.4. nifgen module 403

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Min Sequence
Length

• C Attribute: NIFGEN_ATTR_MIN_SEQUENCE_LENGTH

min_waveform_size

nifgen.Session.min_waveform_size
Returns the minimum number of points that the signal generator allows in an arbitrary waveform.
Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Capabilities:Min Waveform Size

• C Attribute: NIFGEN_ATTR_MIN_WAVEFORM_SIZE

module_revision

nifgen.Session.module_revision
A string that contains the module revision for the device that you are currently using.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Inherent IVI Attributes:Instrument Identifica-
tion:Module Revision

• C Attribute: NIFGEN_ATTR_MODULE_REVISION

404 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

channel_count

nifgen.Session.channel_count
Indicates the number of channels that the specific instrument driver supports. For each property for
which IVI_VAL_MULTI_CHANNEL is set, the IVI Engine maintains a separate cache value for
each channel.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Capabilities:Channel
Count

• C Attribute: NIFGEN_ATTR_NUM_CHANNELS

output_enabled

nifgen.Session.output_enabled
This channel-based property specifies whether the signal that the signal generator produces appears
at the output connector.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Output Enabled

• C Attribute: NIFGEN_ATTR_OUTPUT_ENABLED

output_impedance

nifgen.Session.output_impedance
This channel-based property specifies the signal generator output impedance at the output connector.
NI signal sources modules have an output impedance of 50 ohms and an optional 75 ohms on select
modules. If the load impedance matches the output impedance, then the voltage at the signal output
connector is at the needed level. The voltage at the signal output connector varies with load output
impedance, up to doubling the voltage for a high-impedance load.

The following table lists the characteristics of this property.

7.4. nifgen module 405

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Output Impedance

• C Attribute: NIFGEN_ATTR_OUTPUT_IMPEDANCE

output_mode

nifgen.Session.output_mode
Sets which output mode the signal generator will use. The value you specify determines which
methods and properties you use to configure the waveform the signal generator produces.

Note: The signal generator must not be in the Generating state when you change this property. To
change the device configuration, call nifgen.Session.abort() or wait for the generation to
complete.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.OutputMode
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Output Mode

• C Attribute: NIFGEN_ATTR_OUTPUT_MODE

ready_for_start_event_output_terminal

nifgen.Session.ready_for_start_event_output_terminal
Specifies the destination terminal for the Ready for Start Event.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

406 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Ready For Start:Output Terminal

• C Attribute: NIFGEN_ATTR_READY_FOR_START_EVENT_OUTPUT_TERMINAL

reference_clock_source

nifgen.Session.reference_clock_source
Specifies the reference clock source used by the signal generator. The signal generator derives the
frequencies and sample rates that it uses to generate waveforms from the source you specify. For
example, when you set this property to ClkIn, the signal generator uses the signal it receives at the
CLK IN front panel connector as the Reference clock. To change the device configuration, call
nifgen.Session.abort() or wait for the generation to complete.

Note: The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ReferenceClockSource
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Reference Clock:Source

• C Attribute: NIFGEN_ATTR_REFERENCE_CLOCK_SOURCE

ref_clock_frequency

nifgen.Session.ref_clock_frequency
Sets the frequency of the signal generator reference clock. The signal generator uses the reference
clock to derive frequencies and sample rates when generating output.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Reference Clock:Frequency

• C Attribute: NIFGEN_ATTR_REF_CLOCK_FREQUENCY

7.4. nifgen module 407

NI Modular Instruments Python API Documentation, Release 1.4.1

sample_clock_source

nifgen.Session.sample_clock_source
Specifies the Sample clock source. If you specify a divisor with the nifgen.Session.
exported_sample_clock_divisor property, the Sample clock exported with the nifgen.
Session.exported_sample_clock_output_terminal property is the value of the
Sample clock after it is divided-down. For a list of the terminals available on your device, refer
to the Device Routes tab in MAX. To change the device configuration, call nifgen.Session.
abort() or wait for the generation to complete.

Note: The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.SampleClockSource
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Sample Clock:Source

• C Attribute: NIFGEN_ATTR_SAMPLE_CLOCK_SOURCE

sample_clock_timebase_rate

nifgen.Session.sample_clock_timebase_rate
Specifies the Sample clock timebase rate. This property applies only to external Sample clock
timebases. To change the device configuration, call nifgen.Session.abort() or wait for the
generation to complete.

Note: The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Sample Clock Timebase:Rate

• C Attribute: NIFGEN_ATTR_SAMPLE_CLOCK_TIMEBASE_RATE

408 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

sample_clock_timebase_source

nifgen.Session.sample_clock_timebase_source
Specifies the Sample Clock Timebase source. To change the device configuration, call the nifgen.
Session.abort() method or wait for the generation to complete.

Note: The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.SampleClockTimebaseSource
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocks:Sample Clock Timebase:Source

• C Attribute: NIFGEN_ATTR_SAMPLE_CLOCK_TIMEBASE_SOURCE

script_to_generate

nifgen.Session.script_to_generate
Specifies which script the generator produces. To configure the generator to run a particular script,
set this property to the name of the script. Use nifgen.Session.write_script() to create
multiple scripts. Use this property when nifgen.Session.output_mode is set to SCRIPT.

Note: The signal generator must not be in the Generating state when you change this property. To
change the device configuration, call nifgen.Session.abort() or wait for the generation to
complete.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Script Mode:Script to Generate

• C Attribute: NIFGEN_ATTR_SCRIPT_TO_GENERATE

7.4. nifgen module 409

NI Modular Instruments Python API Documentation, Release 1.4.1

script_triggers_count

nifgen.Session.script_triggers_count
Specifies the number of Script triggers supported by the device. Use this property when nifgen.
Session.output_mode is set to SCRIPT.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Script Triggers Count

• C Attribute: NIFGEN_ATTR_SCRIPT_TRIGGERS_COUNT

script_trigger_type

nifgen.Session.script_trigger_type
Specifies the Script trigger type. Depending upon the value of this property, additional properties
may need to be configured to fully configure the trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ScriptTriggerType
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Script:Trigger Type

• C Attribute: NIFGEN_ATTR_SCRIPT_TRIGGER_TYPE

serial_number

nifgen.Session.serial_number
The signal generator’s serial number.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

410 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Serial Number

• C Attribute: NIFGEN_ATTR_SERIAL_NUMBER

simulate

nifgen.Session.simulate
Specifies whether to simulate NI-FGEN I/O operations. If simulation is enabled, NI-FGEN methods
perform range checking and call Ivi_GetAttribute and Ivi_SetAttribute, but they do not perform
device I/O. For output parameters that represent device data, NI-FGEN methods return calculated
values. Default Value: False Use nifgen.Session.InitWithOptions() to override default
value.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Inherent IVI Attributes:User Options:Simulate

• C Attribute: NIFGEN_ATTR_SIMULATE

specific_driver_description

nifgen.Session.specific_driver_description
Returns a brief description of NI-FGEN.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Identification:Description

• C Attribute: NIFGEN_ATTR_SPECIFIC_DRIVER_DESCRIPTION

7.4. nifgen module 411

NI Modular Instruments Python API Documentation, Release 1.4.1

major_version

nifgen.Session.major_version
Returns the major version number of NI-FGEN.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Obsolete:Major Version

• C Attribute: NIFGEN_ATTR_SPECIFIC_DRIVER_MAJOR_VERSION

minor_version

nifgen.Session.minor_version
Returns the minor version number of NI-FGEN.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Obsolete:Minor Version

• C Attribute: NIFGEN_ATTR_SPECIFIC_DRIVER_MINOR_VERSION

specific_driver_revision

nifgen.Session.specific_driver_revision
A string that contains additional version information about NI-FGEN.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

412 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Identification:Revision

• C Attribute: NIFGEN_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

nifgen.Session.specific_driver_vendor
A string that contains the name of the vendor that supplies NI-FGEN.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Identification:Driver Ven-
dor

• C Attribute: NIFGEN_ATTR_SPECIFIC_DRIVER_VENDOR

started_event_output_terminal

nifgen.Session.started_event_output_terminal
Specifies the destination terminal for the Started Event.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Started:Output Terminal

• C Attribute: NIFGEN_ATTR_STARTED_EVENT_OUTPUT_TERMINAL

start_trigger_type

nifgen.Session.start_trigger_type
Specifies whether you want the Start trigger to be a Digital Edge, or Software trigger. You can also
choose None as the value for this property.

The following table lists the characteristics of this property.

7.4. nifgen module 413

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype enums.StartTriggerType
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Start:Trigger Type

• C Attribute: NIFGEN_ATTR_START_TRIGGER_TYPE

streaming_space_available_in_waveform

nifgen.Session.streaming_space_available_in_waveform
Indicates the space available (in samples) in the streaming waveform for writing new data. Dur-
ing generation, this available space may be in multiple locations with, for example, part of the
available space at the end of the streaming waveform and the rest at the beginning. In this sit-
uation, writing a block of waveform data the size of the total space available in the streaming
waveform causes NI-FGEN to return an error, as NI-FGEN will not wrap the data from the end
of the waveform to the beginning and cannot write data past the end of the waveform buffer.
To avoid writing data past the end of the waveform, write new data to the waveform in a fixed
size that is an integer divisor of the total size of the streaming waveform. Used in conjunc-
tion with the nifgen.Session.streaming_waveform_handle or nifgen.Session.
streaming_waveform_name properties.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Data Transfer:Streaming:Space Available in
Streaming Waveform

• C Attribute: NIFGEN_ATTR_STREAMING_SPACE_AVAILABLE_IN_WAVEFORM

streaming_waveform_handle

nifgen.Session.streaming_waveform_handle
Specifies the waveform handle of the waveform used to continuously stream data during generation.
This property defaults to -1 when no streaming waveform is specified. Used in conjunction with
nifgen.Session.streaming_space_available_in_waveform.

The following table lists the characteristics of this property.

414 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Data Transfer:Streaming:Streaming Waveform
Handle

• C Attribute: NIFGEN_ATTR_STREAMING_WAVEFORM_HANDLE

streaming_waveform_name

nifgen.Session.streaming_waveform_name
Specifies the name of the waveform used to continuously stream data during generation. This prop-
erty defaults to // when no streaming waveform is specified. Use in conjunction with nifgen.
Session.streaming_space_available_in_waveform.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Data Transfer:Streaming:Streaming Waveform
Name

• C Attribute: NIFGEN_ATTR_STREAMING_WAVEFORM_NAME

streaming_write_timeout

nifgen.Session.streaming_write_timeout
Specifies the maximum amount of time allowed to complete a streaming write operation.

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.4. nifgen module 415

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Arbitrary Waveform:Data Transfer:Streaming:Streaming Write
Timeout

• C Attribute: NIFGEN_ATTR_STREAMING_WRITE_TIMEOUT

supported_instrument_models

nifgen.Session.supported_instrument_models
Returns a model code of the device. For NI-FGEN versions that support more than one device, this
property contains a comma-separated list of supported device models.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Capabilities:Supported
Instrument Models

• C Attribute: NIFGEN_ATTR_SUPPORTED_INSTRUMENT_MODELS

terminal_configuration

nifgen.Session.terminal_configuration
Specifies whether gain and offset values will be analyzed based on single-ended or differential op-
eration.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TerminalConfiguration
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Terminal Configuration

• C Attribute: NIFGEN_ATTR_TERMINAL_CONFIGURATION

trigger_mode

nifgen.Session.trigger_mode
Controls the trigger mode.

416 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerMode
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Trigger Mode

• C Attribute: NIFGEN_ATTR_TRIGGER_MODE

wait_behavior

nifgen.Session.wait_behavior
Specifies the behavior of the output while waiting for a script trigger or during a wait instruction.
The output can be configured to hold the last generated voltage before waiting or jump to the Wait
Value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.WaitBehavior
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Advanced:Wait Behavior

• C Attribute: NIFGEN_ATTR_WAIT_BEHAVIOR

wait_value

nifgen.Session.wait_value
Specifies the value to generate while waiting. The Wait Behavior must be configured to jump to this
value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output:Advanced:Wait Value

7.4. nifgen module 417

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NIFGEN_ATTR_WAIT_VALUE

waveform_quantum

nifgen.Session.waveform_quantum
The size of each arbitrary waveform must be a multiple of a quantum value. This property returns
the quantum value that the signal generator allows. For example, when this property returns a value
of 8, all waveform sizes must be a multiple of 8. Typically, this value is constant for the signal
generator.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Arbitrary Waveform:Capabilities:Waveform Quantum

• C Attribute: NIFGEN_ATTR_WAVEFORM_QUANTUM

NI-TClk Support

nifgen.Session.tclk
This is used to get and set NI-TClk attributes on the session.

See also:

See nitclk.SessionReference for a complete list of attributes.

Session

• Session

• Methods

– abort

– allocate_named_waveform

– allocate_waveform

– clear_arb_memory

– clear_arb_sequence

– clear_freq_list

– clear_user_standard_waveform

– close

– commit

418 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– configure_arb_sequence

– configure_arb_waveform

– configure_freq_list

– configure_standard_waveform

– create_advanced_arb_sequence

– create_arb_sequence

– create_freq_list

– create_waveform_from_file_f64

– create_waveform_from_file_i16

– create_waveform_numpy

– define_user_standard_waveform

– delete_script

– delete_waveform

– disable

– export_attribute_configuration_buffer

– export_attribute_configuration_file

– get_channel_name

– get_ext_cal_last_date_and_time

– get_ext_cal_last_temp

– get_ext_cal_recommended_interval

– get_hardware_state

– get_self_cal_last_date_and_time

– get_self_cal_last_temp

– get_self_cal_supported

– import_attribute_configuration_buffer

– import_attribute_configuration_file

– initiate

– is_done

– lock

– query_arb_seq_capabilities

– query_arb_wfm_capabilities

– query_freq_list_capabilities

– read_current_temperature

– reset

– reset_device

7.4. nifgen module 419

NI Modular Instruments Python API Documentation, Release 1.4.1

– reset_with_defaults

– self_cal

– self_test

– send_software_edge_trigger

– set_next_write_position

– unlock

– wait_until_done

– write_script

– write_waveform

• Properties

– absolute_delay

– all_marker_events_latched_status

– all_marker_events_live_status

– analog_data_mask

– analog_filter_enabled

– analog_path

– analog_static_value

– arb_gain

– arb_marker_position

– arb_offset

– arb_repeat_count

– arb_sample_rate

– arb_sequence_handle

– arb_waveform_handle

– aux_power_enabled

– bus_type

– channel_delay

– clock_mode

– common_mode_offset

– data_marker_events_count

– data_marker_event_data_bit_number

– data_marker_event_level_polarity

– data_marker_event_output_terminal

– data_transfer_block_size

– data_transfer_maximum_bandwidth

420 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– data_transfer_maximum_in_flight_reads

– data_transfer_preferred_packet_size

– digital_data_mask

– digital_edge_script_trigger_edge

– digital_edge_script_trigger_source

– digital_edge_start_trigger_edge

– digital_edge_start_trigger_source

– digital_filter_enabled

– digital_filter_interpolation_factor

– digital_gain

– digital_pattern_enabled

– digital_static_value

– done_event_output_terminal

– driver_setup

– exported_onboard_reference_clock_output_terminal

– exported_reference_clock_output_terminal

– exported_sample_clock_divisor

– exported_sample_clock_output_terminal

– exported_sample_clock_timebase_divisor

– exported_sample_clock_timebase_output_terminal

– exported_script_trigger_output_terminal

– exported_start_trigger_output_terminal

– external_clock_delay_binary_value

– external_sample_clock_multiplier

– file_transfer_block_size

– filter_correction_frequency

– flatness_correction_enabled

– fpga_bitfile_path

– freq_list_duration_quantum

– freq_list_handle

– func_amplitude

– func_buffer_size

– func_dc_offset

– func_duty_cycle_high

– func_frequency

7.4. nifgen module 421

NI Modular Instruments Python API Documentation, Release 1.4.1

– func_max_buffer_size

– func_start_phase

– func_waveform

– idle_behavior

– idle_value

– instrument_firmware_revision

– instrument_manufacturer

– instrument_model

– io_resource_descriptor

– load_impedance

– logical_name

– marker_events_count

– marker_event_output_terminal

– max_freq_list_duration

– max_freq_list_length

– max_loop_count

– max_num_freq_lists

– max_num_sequences

– max_num_waveforms

– max_sequence_length

– max_waveform_size

– memory_size

– min_freq_list_duration

– min_freq_list_length

– min_sequence_length

– min_waveform_size

– module_revision

– channel_count

– output_enabled

– output_impedance

– output_mode

– ready_for_start_event_output_terminal

– reference_clock_source

– ref_clock_frequency

– sample_clock_source

422 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– sample_clock_timebase_rate

– sample_clock_timebase_source

– script_to_generate

– script_triggers_count

– script_trigger_type

– serial_number

– simulate

– specific_driver_description

– major_version

– minor_version

– specific_driver_revision

– specific_driver_vendor

– started_event_output_terminal

– start_trigger_type

– streaming_space_available_in_waveform

– streaming_waveform_handle

– streaming_waveform_name

– streaming_write_timeout

– supported_instrument_models

– terminal_configuration

– trigger_mode

– wait_behavior

– wait_value

– waveform_quantum

• NI-TClk Support

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the underlying driver
function call. This can be the actual function based on the Session method being called, or it can be
the appropriate Get/Set Attribute function, such as niFgen_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities. The
parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or an integer.
If it is a string, you can indicate a range using the same format as the driver: ‘0-2’ or ‘0:2’

Some repeated capabilities use a prefix before the number and this is optional

7.4. nifgen module 423

NI Modular Instruments Python API Documentation, Release 1.4.1

channels

nifgen.Session.channels[]

session.channels['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

script_triggers

nifgen.Session.script_triggers[]
If no prefix is added to the items in the parameter, the correct prefix will be added when the driver
function call is made.

session.script_triggers['0-2'].channel_enabled = True

passes a string of ‘ScriptTrigger0, ScriptTrigger1, ScriptTrigger2’ to the set
attribute function.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix for
the specific repeated capability.

session.script_triggers['ScriptTrigger0-ScriptTrigger2'].channel_enabled
→˓= True

passes a string of ‘ScriptTrigger0, ScriptTrigger1, ScriptTrigger2’ to the set
attribute function.

markers

nifgen.Session.markers[]
If no prefix is added to the items in the parameter, the correct prefix will be added when the driver
function call is made.

session.markers['0-2'].channel_enabled = True

passes a string of ‘Marker0, Marker1, Marker2’ to the set attribute function.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix for
the specific repeated capability.

session.markers['Marker0-Marker2'].channel_enabled = True

passes a string of ‘Marker0, Marker1, Marker2’ to the set attribute function.

Enums

Enums used in NI-FGEN

424 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

AnalogPath

class nifgen.AnalogPath

MAIN
Specifies use of the main path. NI-FGEN chooses the amplifier based on the user-specified gain.

DIRECT
Specifies use of the direct path.

FIXED_LOW_GAIN
Specifies use of the low-gain amplifier in the main path, no matter what value the user specifies for gain.
This setting limits the output range.

FIXED_HIGH_GAIN
Specifies use of the high-gain amplifier in the main path.

BusType

class nifgen.BusType

INVALID
Indicates an invalid bus type.

AT
Indicates the signal generator is the AT bus type.

PCI
Indicates the signal generator is the PCI bus type.

PXI
Indicates the signal generator is the PXI bus type.

VXI
Indicates the signal generator is the VXI bus type.

PCMCIA
Indicates the signal generator is the PCI-CMA bus type.

PXIE
Indicates the signal generator is the PXI Express bus type.

ByteOrder

class nifgen.ByteOrder

LITTLE

BIG

ClockMode

class nifgen.ClockMode

7.4. nifgen module 425

NI Modular Instruments Python API Documentation, Release 1.4.1

HIGH_RESOLUTION
High resolution sampling—Sample rate is generated by a high–resolution clock source.

DIVIDE_DOWN
Divide down sampling—Sample rates are generated by dividing the source frequency.

AUTOMATIC
Automatic Selection—NI-FGEN selects between the divide–down and high–resolution clocking modes.

DataMarkerEventLevelPolarity

class nifgen.DataMarkerEventLevelPolarity

HIGH
When the operation is ready to start, the Ready for Start event level is high.

LOW
When the operation is ready to start, the Ready for Start event level is low.

HardwareState

class nifgen.HardwareState

IDLE

WAITING_FOR_START_TRIGGER

RUNNING

DONE

HARDWARE_ERROR

IdleBehavior

class nifgen.IdleBehavior

HOLD_LAST
While in an Idle or Wait state, the output signal remains at the last voltage generated prior to entering the
state.

JUMP_TO
While in an Idle or Wait state, the output signal remains at the value configured in the Idle or Wait value
property.

OutputMode

class nifgen.OutputMode

FUNC
Standard Method mode— Generates standard method waveforms such as sine, square, triangle, and so on.

426 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

ARB
Arbitrary waveform mode—Generates waveforms from user-created/provided waveform arrays of numeric
data.

SEQ
Arbitrary sequence mode — Generates downloaded waveforms in an order your specify.

FREQ_LIST
Frequency List mode—Generates a standard method using a list of frequencies you define.

SCRIPT
Script mode—Allows you to use scripting to link and loop multiple waveforms in complex combinations.

ReferenceClockSource

class nifgen.ReferenceClockSource

CLOCK_IN
Specifies that the CLK IN input signal from the front panel connector is used as the Reference Clock
source.

NONE
Specifies that a Reference Clock is not used.

ONBOARD_REFERENCE_CLOCK
Specifies that the onboard Reference Clock is used as the Reference Clock source.

PXI_CLOCK
Specifies the PXI Clock is used as the Reference Clock source.

RTSI_7
Specifies that the RTSI line 7 is used as the Reference Clock source.

RelativeTo

class nifgen.RelativeTo

START

CURRENT

SampleClockSource

class nifgen.SampleClockSource

CLOCK_IN
Specifies that the signal at the CLK IN front panel connector is used as the Sample Clock source.

DDC_CLOCK_IN
Specifies that the Sample Clock from DDC connector is used as the Sample Clock source.

ONBOARD_CLOCK
Specifies that the onboard clock is used as the Sample Clock source.

7.4. nifgen module 427

NI Modular Instruments Python API Documentation, Release 1.4.1

PXI_STAR_LINE
Specifies that the PXI_STAR trigger line is used as the Sample Clock source.

PXI_TRIGGER_LINE_0_RTSI_0
Specifies that the PXI or RTSI line 0 is used as the Sample Clock source.

PXI_TRIGGER_LINE_1_RTSI_1
Specifies that the PXI or RTSI line 1 is used as the Sample Clock source.

PXI_TRIGGER_LINE_2_RTSI_2
Specifies that the PXI or RTSI line 2 is used as the Sample Clock source.

PXI_TRIGGER_LINE_3_RTSI_3
Specifies that the PXI or RTSI line 3 is used as the Sample Clock source.

PXI_TRIGGER_LINE_4_RTSI_4
Specifies that the PXI or RTSI line 4 is used as the Sample Clock source.

PXI_TRIGGER_LINE_5_RTSI_5
Specifies that the PXI or RTSI line 5 is used as the Sample Clock source.

PXI_TRIGGER_LINE_6_RTSI_6
Specifies that the PXI or RTSI line 6 is used as the Sample Clock source.

PXI_TRIGGER_LINE_7_RTSI_7
Specifies that the PXI or RTSI line 7 is used as the Sample Clock source.

SampleClockTimebaseSource

class nifgen.SampleClockTimebaseSource

CLOCK_IN
Specifies that the external signal on the CLK IN front panel connector is used as the source.

ONBOARD_CLOCK
Specifies that the onboard Sample Clock timebase is used as the source.

ScriptTriggerDigitalEdgeEdge

class nifgen.ScriptTriggerDigitalEdgeEdge

RISING
Rising Edge

FALLING
Falling Edge

ScriptTriggerType

class nifgen.ScriptTriggerType

TRIG_NONE
No trigger is configured. Signal generation starts immediately.

428 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

DIGITAL_EDGE
Trigger is asserted when a digital edge is detected.

DIGITAL_LEVEL
Trigger is asserted when a digital level is detected.

SOFTWARE_EDGE
Trigger is asserted when a software edge is detected.

StartTriggerDigitalEdgeEdge

class nifgen.StartTriggerDigitalEdgeEdge

RISING
Rising Edge

FALLING
Falling Edge

StartTriggerType

class nifgen.StartTriggerType

TRIG_NONE
None

DIGITAL_EDGE
Digital Edge

SOFTWARE_EDGE
Software Edge

P2P_ENDPOINT_FULLNESS
P2P Endpoint Fullness

TerminalConfiguration

class nifgen.TerminalConfiguration

SINGLE_ENDED
Single-ended operation

DIFFERENTIAL
Differential operation

Trigger

class nifgen.Trigger

START

SCRIPT

7.4. nifgen module 429

NI Modular Instruments Python API Documentation, Release 1.4.1

TriggerMode

class nifgen.TriggerMode

SINGLE
Single Trigger Mode - The waveform you describe in the sequence list is generated only once by going
through the entire staging list. Only one trigger is required to start the waveform generation. You can
use Single trigger mode with the output mode in any mode. After a trigger is received, the waveform
generation starts from the first stage and continues through to the last stage. Then, the last stage generates
repeatedly until you stop the waveform generation.

CONTINUOUS
Continuous Trigger Mode - The waveform you describe in the staging list generates infinitely by repeatedly
cycling through the staging list. After a trigger is received, the waveform generation starts from the first
stage and continues through to the last stage. After the last stage completes, the waveform generation loops
back to the start of the first stage and continues until it is stopped. Only one trigger is required to start the
waveform generation.

STEPPED
Stepped Trigger Mode - After a start trigger is received, the waveform described by the first stage generates.
Then, the device waits for the next trigger signal. On the next trigger, the waveform described by the second
stage generates, and so on. After the staging list completes, the waveform generation returns to the first
stage and continues in a cyclic fashion. After any stage has generated completely, the first eight samples
of the next stage are repeated continuously until the next trigger is received. trigger mode.

Note: In Frequency List mode, Stepped trigger mode is the same as Burst

BURST
Burst Trigger Mode - After a start trigger is received, the waveform described by the first stage generates
until another trigger is received. At the next trigger, the buffer of the previous stage completes, and then
the waveform described by the second stage generates. After the staging list completes, the waveform
generation returns to the first stage and continues in a cyclic fashion. In Frequency List mode, the duration
instruction is ignored, and the trigger switches the frequency to the next frequency in the list. trigger mode.

Note: In Frequency List mode, Stepped trigger mode is the same as Burst

WaitBehavior

class nifgen.WaitBehavior

HOLD_LAST
While in an Idle or Wait state, the output signal remains at the last voltage generated prior to entering the
state.

JUMP_TO
While in an Idle or Wait state, the output signal remains at the value configured in the Idle or Wait value
property.

430 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Waveform

class nifgen.Waveform

SINE
Sinusoid waveform

SQUARE
Square waveform

TRIANGLE
Triange waveform

RAMP_UP
Positive ramp waveform

RAMP_DOWN
Negative ramp waveform

DC
Constant voltage

NOISE
White noise

USER
User-defined waveform as defined by the nifgen.Session.
define_user_standard_waveform() method.

Exceptions and Warnings

Error

exception nifgen.errors.Error
Base exception type that all NI-FGEN exceptions derive from

DriverError

exception nifgen.errors.DriverError
An error originating from the NI-FGEN driver

UnsupportedConfigurationError

exception nifgen.errors.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

DriverNotInstalledError

exception nifgen.errors.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

7.4. nifgen module 431

NI Modular Instruments Python API Documentation, Release 1.4.1

InvalidRepeatedCapabilityError

exception nifgen.errors.InvalidRepeatedCapabilityError
An error due to an invalid character in a repeated capability

SelfTestError

exception nifgen.errors.SelfTestError
An error due to a failed self-test

DriverWarning

exception nifgen.errors.DriverWarning
A warning originating from the NI-FGEN driver

Examples

You can download all nifgen examples here

nifgen_arb_waveform.py

Listing 10: (nifgen_arb_waveform.py)

1 #!/usr/bin/python
2

3 import argparse
4 import math
5 import nifgen
6 import sys
7 import time
8

9

10 def create_waveform_data(number_of_samples):
11 waveform_data = []
12 angle_per_sample = (2 * math.pi) / number_of_samples
13 for i in range(number_of_samples):
14 waveform_data.append(math.sin(i * angle_per_sample) * math.sin(i * angle_per_

→˓sample * 20))
15 return waveform_data
16

17

18 def example(resource_name, options, samples, gain, offset, gen_time):
19 waveform_data = create_waveform_data(samples)
20 with nifgen.Session(resource_name=resource_name, options=options) as session:
21 session.output_mode = nifgen.OutputMode.ARB
22 waveform = session.create_waveform(waveform_data_array=waveform_data)
23 session.configure_arb_waveform(waveform_handle=waveform, gain=gain,

→˓offset=offset)
24 with session.initiate():
25 time.sleep(gen_time)
26

(continues on next page)

432 Chapter 7. License

https://github.com/ni/nimi-python/releases/download/1.4.1/nifgen_examples.zip
https://github.com/ni/nimi-python/blob/1.4.1/src/nifgen/examples/nifgen_arb_waveform.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

27

28 def _main(argsv):
29 parser = argparse.ArgumentParser(description='Continuously generates an arbitrary

→˓waveform.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
30 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource

→˓name of a National Instruments Arbitrary Waveform Generator')
31 parser.add_argument('-s', '--samples', default=100000, type=int, help='Number of

→˓samples')
32 parser.add_argument('-g', '--gain', default=1.0, type=float, help='Gain')
33 parser.add_argument('-o', '--offset', default=0.0, type=float, help='DC offset (V)

→˓')
34 parser.add_argument('-t', '--time', default=5.0, type=float, help='Generation

→˓time (s)')
35 parser.add_argument('-op', '--option-string', default='', type=str, help='Option

→˓string')
36 args = parser.parse_args(argsv)
37 example(args.resource_name, args.option_string, args.samples, args.gain, args.

→˓offset, args.time)
38

39

40 def main():
41 _main(sys.argv[1:])
42

43

44 def test_example():
45 options = {'simulate': True, 'driver_setup': {'Model': '5433 (2CH)', 'BoardType':

→˓'PXIe', }, }
46 example('PXI1Slot2', options, 100000, 1.0, 0.0, 5.0)
47

48

49 def test_main():
50 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5433 (2CH);

→˓BoardType:PXIe',]
51 _main(cmd_line)
52

53

54 if __name__ == '__main__':
55 main()
56

57

nifgen_script.py

Listing 11: (nifgen_script.py)

1 #!/usr/bin/python
2

3 import argparse
4 import nifgen
5 import numpy as np
6 from scipy import signal
7 import sys
8 import time
9

(continues on next page)

7.4. nifgen module 433

https://github.com/ni/nimi-python/blob/1.4.1/src/nifgen/examples/nifgen_script.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

10 number_of_points = 256
11

12

13 def calculate_sinewave():
14 time = np.linspace(start=0, stop=10, num=number_of_points) # np.linspace(start,

→˓ stop, num=50, endpoint=True, retstep=False, dtype=None)
15 amplitude = np.sin(time)
16 sinewave = amplitude.tolist() # List of Float
17 return sinewave
18

19

20 def calculate_rampup():
21 ramp = np.linspace(start=0, stop=0.5, num=number_of_points) # np.linspace(start,

→˓ stop, num=50, endpoint=True, retstep=False, dtype=None)
22 ramp_up = ramp.tolist() # List of Float
23 return ramp_up
24

25

26 def calculate_rampdown():
27 ramp = np.linspace(start=0, stop=0.5, num=number_of_points) # np.linspace(start,

→˓ stop, num=50, endpoint=True, retstep=False, dtype=None)
28 ramp_down = ramp.tolist() # List of Float
29 ramp_down.reverse() # Reverse list to get

→˓a ramp down
30 return ramp_down
31

32

33 def calculate_square():
34 time = np.linspace(start=0, stop=10, num=number_of_points) # np.linspace(start,

→˓ stop, num=50, endpoint=True, retstep=False, dtype=None)
35 square_build = signal.square(t=time, duty=0.5) # signal.square(t,

→˓duty=0.5)
36 square = square_build.tolist() # List of Float
37 return square
38

39

40 def calculate_triangle():
41 time = np.linspace(start=0, stop=1, num=number_of_points) # np.linspace(start,

→˓ stop, num=50, endpoint=True, retstep=False, dtype=None)
42 triangle_build = signal.sawtooth(t=time) # signal.sawtooth(t,

→˓width=1)
43 triangle = triangle_build.tolist() # List of Float
44 return triangle
45

46

47 def calculate_gaussian_noise():
48 random_noise = np.random.normal(loc=0, scale=0.1, size=number_of_points) #

→˓random.normal(loc=0.0, scale=1.0, size=None)
49 noise = random_noise.tolist() # List of

→˓Float
50 return noise
51

52

53 SCRIPT_ALL = '''
54 script scriptmulti
55 repeat until scriptTrigger0
56 generate rampup

(continues on next page)

434 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

57 generate sine
58 generate rampdown
59 end repeat
60 repeat until scriptTrigger0
61 generate rampdown
62 generate square
63 generate rampup
64 end repeat
65 repeat until scriptTrigger0
66 generate rampup
67 generate rampdown
68 end repeat
69 repeat until scriptTrigger0
70 generate sine
71 end repeat
72 repeat until scriptTrigger0
73 generate triangle
74 end repeat
75 repeat until scriptTrigger0
76 generate rampdown
77 generate noise
78 generate rampup
79 end repeat
80 end script
81

82 script scriptsine
83 repeat until scriptTrigger0
84 generate sine
85 end repeat
86 end script
87

88 script scriptrampup
89 repeat until scriptTrigger0
90 generate rampup
91 end repeat
92 end script
93

94 script scriptrampdown
95 repeat until scriptTrigger0
96 generate rampdown
97 end repeat
98 end script
99

100 script scriptsquare
101 repeat until scriptTrigger0
102 generate square
103 end repeat
104 end script
105

106 script scripttriangle
107 repeat until scriptTrigger0
108 generate triangle
109 end repeat
110 end script
111

112 script scriptnoise
113 repeat until scriptTrigger0

(continues on next page)

7.4. nifgen module 435

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

114 generate noise
115 end repeat
116 end script
117 '''
118

119

120 def example(resource_name, options, shape, channel):
121 with nifgen.Session(resource_name=resource_name, options=options, channel_

→˓name=channel) as session:
122 # CONFIGURATION
123 # 1 - Set the mode to Script
124 session.output_mode = nifgen.OutputMode.SCRIPT
125

126 # 2 - Configure Trigger:
127 # SOFTWARE TRIGGER: used in the script
128 session.script_triggers[0].script_trigger_type = nifgen.ScriptTriggerType.

→˓SOFTWARE_EDGE # TRIG_NONE / DIGITAL_EDGE / DIGITAL_LEVEL / SOFTWARE_EDGE
129 session.script_triggers[0].digital_edge_script_trigger_edge = nifgen.

→˓ScriptTriggerDigitalEdgeEdge.RISING # RISING / FAILING
130

131 # 3 - Calculate and write different waveform data to the device's onboard
→˓memory

132 session.channels[channel].write_waveform('sine', calculate_sinewave())
→˓# (waveform_name, data)

133 session.channels[channel].write_waveform('rampup', calculate_rampup())
134 session.channels[channel].write_waveform('rampdown', calculate_rampdown())
135 session.channels[channel].write_waveform('square', calculate_square())
136 session.channels[channel].write_waveform('triangle', calculate_triangle())
137 session.channels[channel].write_waveform('noise', calculate_gaussian_noise())
138

139 # 4 - Script to generate
140 # supported shapes: SINE / SQUARE / TRIANGLE / RAMPUP / RAMPDOWN / NOISE /

→˓MULTI
141 script_name = 'script{}'.format(shape.lower())
142 num_triggers = 6 if shape.upper() == 'MULTI' else 1 # Only multi needs two

→˓triggers, all others need one
143

144 session.channels[channel].write_script(SCRIPT_ALL)
145 session.script_to_generate = script_name
146

147 # LAUNCH
148 with session.initiate():
149 for x in range(num_triggers):
150 time.sleep(10)
151 session.script_triggers[0].send_software_edge_trigger()
152

153

154 def _main(argsv):
155 parser = argparse.ArgumentParser(description='Generate different shape waveforms.

→˓', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
156 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource

→˓name of a National Instruments Arbitrary Waveform Generator')
157 parser.add_argument('-s', '--shape', default='SINE', help='Shape of the signal to

→˓generate')
158 parser.add_argument('-c', '--channel', default='0', help='Channel to use when

→˓generating')
159 parser.add_argument('-op', '--option-string', default='', type=str, help='Option

→˓string') (continues on next page)

436 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

160 args = parser.parse_args(argsv)
161 example(args.resource_name, args.option_string, args.shape.upper(), args.channel)
162

163

164 def test_example():
165 options = {'simulate': True, 'driver_setup': {'Model': '5433 (2CH)', 'BoardType':

→˓'PXIe', }, }
166 example('PXI1Slot2', options, 'SINE', '0')
167

168

169 def test_main():
170 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5433 (2CH);

→˓BoardType:PXIe', '--channel', '0',]
171 _main(cmd_line)
172

173

174 def main():
175 _main(sys.argv[1:])
176

177

178 if __name__ == '__main__':
179 main()
180

181

182

183

nifgen_standard_function.py

Listing 12: (nifgen_standard_function.py)

1 #!/usr/bin/python
2

3 import argparse
4 import nifgen
5 import sys
6 import time
7

8

9 def example(resource_name, options, waveform, frequency, amplitude, offset, phase,
→˓gen_time):

10 with nifgen.Session(resource_name=resource_name, options=options) as session:
11 session.output_mode = nifgen.OutputMode.FUNC
12 session.configure_standard_waveform(waveform=nifgen.Waveform[waveform],

→˓amplitude=amplitude, frequency=frequency, dc_offset=offset, start_phase=phase)
13 with session.initiate():
14 time.sleep(gen_time)
15

16

17 def _main(argsv):
18 supported_waveforms = list(nifgen.Waveform.__members__.keys())[:-1] # no support

→˓for user-defined waveforms in example
19 parser = argparse.ArgumentParser(description='Generates the standard function.',

→˓formatter_class=argparse.ArgumentDefaultsHelpFormatter)

(continues on next page)

7.4. nifgen module 437

https://github.com/ni/nimi-python/blob/1.4.1/src/nifgen/examples/nifgen_standard_function.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

20 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource
→˓name of a National Instruments Function Generator')

21 parser.add_argument('-w', '--waveform', default=supported_waveforms[0],
→˓choices=supported_waveforms, type=str.upper, help='Standard waveform')

22 parser.add_argument('-f', '--frequency', default=1000, type=float, help=
→˓'Frequency (Hz)')

23 parser.add_argument('-a', '--amplitude', default=1.0, type=float, help='Amplitude
→˓(Vpk-pk)')

24 parser.add_argument('-o', '--offset', default=0.0, type=float, help='DC offset (V)
→˓')

25 parser.add_argument('-p', '--phase', default=0.0, type=float, help='Start phase
→˓(deg)')

26 parser.add_argument('-t', '--time', default=5.0, type=float, help='Generation
→˓time (s)')

27 parser.add_argument('-op', '--option-string', default='', type=str, help='Option
→˓string')

28 args = parser.parse_args(argsv)
29 example(args.resource_name, args.option_string, args.waveform, args.frequency,

→˓args.amplitude, args.offset, args.phase, args.time)
30

31

32 def main():
33 _main(sys.argv[1:])
34

35

36 def test_example():
37 options = {'simulate': True, 'driver_setup': {'Model': '5433 (2CH)', 'BoardType':

→˓'PXIe', }, }
38 example('PXI1Slot2', options, 'SINE', 1000, 1.0, 0.0, 0.0, 5.0)
39

40

41 def test_main():
42 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5433 (2CH);

→˓BoardType:PXIe',]
43 _main(cmd_line)
44

45

46 if __name__ == '__main__':
47 main()
48

49

50

nifgen_trigger.py

Listing 13: (nifgen_trigger.py)

1 import argparse
2 import nifgen
3 import sys
4 import time
5

6

7 def example(resource_name1, resource_name2, options, waveform, gen_time):

(continues on next page)

438 Chapter 7. License

https://github.com/ni/nimi-python/blob/1.4.1/src/nifgen/examples/nifgen_trigger.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

8 with nifgen.Session(resource_name=resource_name1, options=options) as session1,
→˓nifgen.Session(resource_name=resource_name2, options=options) as session2:

9 session_list = [session1, session2]
10 for session in session_list:
11 session.output_mode = nifgen.OutputMode.FUNC
12 session.configure_standard_waveform(waveform=nifgen.Waveform[waveform],

→˓amplitude=1.0, frequency=1000, dc_offset=0.0, start_phase=0.0)
13 session1.start_trigger_type = nifgen.StartTriggerType.SOFTWARE_EDGE
14 session2.start_trigger_type = nifgen.StartTriggerType.DIGITAL_EDGE
15 session2.digital_edge_start_trigger_edge = nifgen.StartTriggerDigitalEdgeEdge.

→˓RISING
16 session2.digital_edge_start_trigger_source = '/' + resource_name1 + '/0/

→˓StartTrigger'
17 with session2.initiate():
18 with session1.initiate():
19 session1.send_software_edge_trigger(nifgen.Trigger.START)
20 time.sleep(gen_time)
21

22

23 def _main(argsv):
24 supported_waveforms = list(nifgen.Waveform.__members__.keys())[:-1] # no support

→˓for user-defined waveforms in example
25 parser = argparse.ArgumentParser(description='Triggers one device on the start

→˓trigger of another device.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
26 parser.add_argument('-n1', '--resource-name1', default='PXI1Slot2', help=

→˓'Resource name of a NI Function Generator')
27 parser.add_argument('-n2', '--resource-name2', default='PXI1Slot3', help=

→˓'Resource name of a NI Function Generator')
28 parser.add_argument('-w', '--waveform', default=supported_waveforms[0],

→˓choices=supported_waveforms, type=str.upper, help='Standard waveform')
29 parser.add_argument('-t', '--time', default=5.0, type=float, help='Generation

→˓time (s)')
30 parser.add_argument('-op', '--option-string', default='', type=str, help='Option

→˓string')
31 args = parser.parse_args(argsv)
32 example(args.resource_name1, args.resource_name2, args.option_string, args.

→˓waveform, args.time)
33

34

35 def main():
36 _main(sys.argv[1:])
37

38

39 def test_example():
40 options = {'simulate': True, 'driver_setup': {'Model': '5433 (2CH)', 'BoardType':

→˓'PXIe', }, }
41 example('PXI1Slot2', 'PXI1Slot3', options, 'SINE', 5.0)
42

43

44 def test_main():
45 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5433 (2CH);

→˓BoardType:PXIe',]
46 _main(cmd_line)
47

48

49 if __name__ == '__main__':
50 main()

7.4. nifgen module 439

NI Modular Instruments Python API Documentation, Release 1.4.1

7.5 niscope module

7.5.1 Installation

As a prerequisite to using the niscope module, you must install the NI-SCOPE runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-SCOPE) can be installed with pip:

$ python -m pip install niscope~=1.4.1

Or easy_install from setuptools:

$ python -m easy_install niscope

7.5.2 Usage

The following is a basic example of using the niscope module to open a session to a High Speed Digitizer and capture
a single record of 1000 points.

import niscope
with niscope.Session("Dev1") as session:

session.channels[0].configure_vertical(range=1.0, coupling=niscope.
→˓VerticalCoupling.AC)

session.channels[1].configure_vertical(range=10.0, coupling=niscope.
→˓VerticalCoupling.DC)

session.configure_horizontal_timing(min_sample_rate=50000000, min_num_pts=1000,
→˓ref_position=50.0, num_records=5, enforce_realtime=True)

with session.initiate():
waveforms = session.channels[0,1].fetch(num_records=5)

for wfm in waveforms:
print('Channel {0}, record {1} samples acquired: {2:,}\n'.format(wfm.channel,

→˓wfm.record, len(wfm.samples)))

Find all channel 1 records (Note channel name is always a string even if
→˓integers used in channel[])

chan1 = [wfm for wfm in waveforms if wfm.channel == '0']

Find all record number 3
rec3 = [wfm for wfm in waveforms if wfm.record == 3]

The waveform returned from fetch is a flat list of Python objects

• Attributes:

– relative_initial_x (float) the time (in seconds) from the trigger to the first sample in the fetched waveform

– absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This timestamp is comparable
between records and acquisitions; devices that do not support this parameter use 0 for this output.

– x_increment (float) the time between points in the acquired waveform in seconds

– channel (str) channel name this waveform was acquired from

– record (int) record number of this waveform

– gain (float) the gain factor of the given channel; useful for scaling binary data with the following formula:

voltage = binary data * gain factor + offset

440 Chapter 7. License

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools
niscope/class.html#fetch

NI Modular Instruments Python API Documentation, Release 1.4.1

– offset (float) the offset factor of the given channel; useful for scaling binary data with the following for-
mula:

voltage = binary data * gain factor + offset

– samples (array of float) floating point array of samples. Length will be of the actual samples acquired

• Such that all record 0 waveforms are first. For example, with a channel list of 0,1, you would have the following
index values:

– index 0 = record 0, channel 0

– index 1 = record 0, channel 1

– index 2 = record 1, channel 0

– index 3 = record 1, channel 1

– etc.

If you need more performance or need to work with SciPy, you can use the fetch_into() method instead of fetch(). This
method takes an already allocated numpy array and puts the acquired samples in it. Data types supported:

• numpy.float64

• numpy.int8

• numpy.in16

• numpy.int32

voltage_range = 1.0
record_length = 2000
channels = [0, 1]
num_channels = len(channels)
num_records = 5
wfm = numpy.ndarray(num_channels * record_length, dtype=numpy.int8)
session.configure_vertical(voltage_range, niscope.VerticalCoupling.AC)
session.configure_horizontal_timing(50000000, record_length, 50.0, num_records, True)
with session.initiate():

waveform_infos = session.channels[channels].fetch_into(wfm=wfm, num_records=num_
→˓records)

The waveform_infos returned from fetch_into is a 1D list of Python objects

• Attributes:

– relative_initial_x (float) the time (in seconds) from the trigger to the first sample in the fetched waveform

– absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This timestamp is comparable
between records and acquisitions; devices that do not support this parameter use 0 for this output.

– x_increment (float) the time between points in the acquired waveform in seconds

– channel (str) channel name this waveform was asquire from

– record (int) record number of this waveform

– gain (float) the gain factor of the given channel; useful for scaling binary data with the following formula:

voltage = binary data * gain factor + offset

– offset (float) the offset factor of the given channel; useful for scaling binary data with the following for-
mula:

voltage = binary data * gain factor + offset

7.5. niscope module 441

https://www.scipy.org/
http://www.numpy.org/
niscope/class.html#fetch-into

NI Modular Instruments Python API Documentation, Release 1.4.1

– samples (numpy array of datatype used) floating point array of samples. Length will be of the actual
samples acquired

Note: Python 3 only

• Such that all record 0 waveforms are first. For example, with a channel list of 0,1, you would have the following
index values:

– index 0 = record 0, channel 0

– index 1 = record 0, channel 1

– index 2 = record 1, channel 0

– index 3 = record 1, channel 1

– etc.

Note: When using Python 2, the waveform_infos objects do not include the waveform for that record. Instead,
samples are in the waveform passed into the function using the following layout:

• index 0 = record 0, channel 0

• index x = record 0, channel 1

• index 2x = record 1, channel 0

• index 3x = record 1, channel 1

• etc.

• Where x = the record length

Additional examples for NI-SCOPE are located in src/niscope/examples/ directory.

7.5.3 API Reference

Session

class niscope.Session(self, resource_name, id_query=False, reset_device=False, options={})
Performs the following initialization actions:

• Creates a new IVI instrument driver and optionally sets the initial state of the following session properties:
Range Check, Cache, Simulate, Record Value Coercions

• Opens a session to the specified device using the interface and address you specify for the resourceName

• Resets the digitizer to a known state if resetDevice is set to True

• Queries the instrument ID and verifies that it is valid for this instrument driver if the IDQuery is set to
True

• Returns an instrument handle that you use to identify the instrument in all subsequent instrument driver
method calls

Parameters

• resource_name (str) –

442 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

Caution: Traditional NI-DAQ and NI-DAQmx device names are not case-sensitive.
However, all IVI names, such as logical names, are case-sensitive. If you use logical
names, driver session names, or virtual names in your program, you must make sure that
the name you use matches the name in the IVI Configuration Store file exactly, without
any variations in the case of the characters.

Specifies the resource name of the device to initialize

For Traditional NI-DAQ devices, the syntax is DAQ::n, where n is the device number as-
signed by MAX, as shown in Example 1.

For NI-DAQmx devices, the syntax is just the device name specified in MAX, as shown in
Example 2. Typical default names for NI-DAQmx devices in MAX are Dev1 or PXI1Slot1.
You can rename an NI-DAQmx device by right-clicking on the name in MAX and entering
a new name.

An alternate syntax for NI-DAQmx devices consists of DAQ::NI-DAQmx device name, as
shown in Example 3. This naming convention allows for the use of an NI-DAQmx device in
an application that was originally designed for a Traditional NI-DAQ device. For example,
if the application expects DAQ::1, you can rename the NI-DAQmx device to 1 in MAX and
pass in DAQ::1 for the resource name, as shown in Example 4.

If you use the DAQ::n syntax and an NI-DAQmx device name already exists with that same
name, the NI-DAQmx device is matched first.

You can also pass in the name of an IVI logical name or an IVI virtual name configured
with the IVI Configuration utility, as shown in Example 5. A logical name identifies a
particular virtual instrument. A virtual name identifies a specific device and specifies the
initial settings for the session.

Exam-
ple

Device Type Syntax

1 Traditional NI-DAQ device DAQ::1 (1 = device number)
2 NI-DAQmx device myDAQmxDevice (myDAQmxDevice = de-

vice name)
3 NI-DAQmx device DAQ::myDAQmxDevice (myDAQmxDevice

= device name)
4 NI-DAQmx device DAQ::2 (2 = device name)
5 IVI logical name or IVI vir-

tual name
myLogicalName (myLogicalName = name)

• id_query (bool) – Specify whether to perform an ID query.

When you set this parameter to True, NI-SCOPE verifies that the device you initialize is a
type that it supports.

When you set this parameter to False, the method initializes the device without performing
an ID query.

Defined Values

True—Perform ID query

7.5. niscope module 443

https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

False—Skip ID query

Default Value: True

• reset_device (bool) – Specify whether to reset the device during the initialization
process.

Default Value: True

Defined Values

True (1)—Reset device

False (0)—Do not reset device

Note: For the NI 5112, repeatedly resetting the device may cause excessive wear on the
electromechanical relays. Refer to NI 5112 Electromechanical Relays for recommended
programming practices.

• options (dict) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status False
cache True
simulate False
record_value_coersions False
driver_setup {}

Methods

abort

niscope.Session.abort()
Aborts an acquisition and returns the digitizer to the Idle state. Call this method if the digitizer times
out waiting for a trigger.

acquisition_status

niscope.Session.acquisition_status()
Returns status information about the acquisition to the status output parameter.

Return type niscope.AcquisitionStatus

444 Chapter 7. License

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

NI Modular Instruments Python API Documentation, Release 1.4.1

Returns

Returns whether the acquisition is complete, in progress, or unknown.

Defined Values

COMPLETE

IN_PROGRESS

STATUS_UNKNOWN

add_waveform_processing

niscope.Session.add_waveform_processing(meas_function)
Adds one measurement to the list of processing steps that are completed before the measurement.
The processing is added on a per channel basis, and the processing measurements are completed
in the same order they are registered. All measurement library parameters—the properties starting
with “meas_”—are cached at the time of registering the processing, and this set of parameters is
used during the processing step. The processing measurements are streamed, so the result of the
first processing step is used as the input for the next step. The processing is done before any other
measurements.

Tip: This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].add_waveform_processing()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.add_waveform_processing()

Parameters meas_function (niscope.ArrayMeasurement) – The array mea-
surement to add.

auto_setup

niscope.Session.auto_setup()
Automatically configures the instrument. When you call this method, the digitizer senses the input
signal and automatically configures many of the instrument settings. If a signal is detected on a
channel, the driver chooses the smallest available vertical range that is larger than the signal range.
For example, if the signal is a 1.2 Vpk-pk sine wave, and the device supports 1 V and 2 V vertical
ranges, the driver will choose the 2 V vertical range for that channel.

If no signal is found on any analog input channel, a warning is returned, and all channels are enabled.
A channel is considered to have a signal present if the signal is at least 10% of the smallest vertical
range available for that channel.

The following settings are changed:

7.5. niscope module 445

NI Modular Instruments Python API Documentation, Release 1.4.1

General
Acquisition mode Normal
Reference clock Internal
Vertical
Vertical coupling AC (DC for NI 5621)
Vertical bandwidth Full
Vertical range Changed by auto setup
Vertical offset 0 V
Probe attenuation Unchanged by auto setup
Input impedance Unchanged by auto setup
Horizontal
Sample rate Changed by auto setup
Min record length Changed by auto setup
Enforce realtime True
Number of Records Changed to 1
Triggering
Trigger type Edge if signal present, otherwise immediate
Trigger channel Lowest numbered channel with a signal present
Trigger slope Positive
Trigger coupling DC
Reference position 50%
Trigger level 50% of signal on trigger channel
Trigger delay 0
Trigger holdoff 0
Trigger output None

clear_waveform_measurement_stats

niscope.Session.clear_waveform_measurement_stats(clearable_measurement_function=niscope.ClearableMeasurement.ALL_MEASUREMENTS)
Clears the waveform stats on the channel and measurement you specify. If you want to clear all of
the measurements, use ALL_MEASUREMENTS in the clearableMeasurementFunction parameter.

Every time a measurement is called, the statistics information is updated, including the min, max,
mean, standard deviation, and number of updates. This information is fetched with niscope.
Session._fetch_measurement_stats(). The multi-acquisition array measurements are
also cleared with this method.

Tip: This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].clear_waveform_measurement_stats()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.clear_waveform_measurement_stats()

Parameters clearable_measurement_function (niscope.
ClearableMeasurement) – The scalar measurement or array measurement
to clear the stats for.

446 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

clear_waveform_processing

niscope.Session.clear_waveform_processing()
Clears the list of processing steps assigned to the given channel. The processing is added using the
niscope.Session.add_waveform_processing() method, where the processing steps
are completed in the same order in which they are registered. The processing measurements are
streamed, so the result of the first processing step is used as the input for the next step. The process-
ing is also done before any other measurements.

Tip: This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].clear_waveform_processing()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.clear_waveform_processing()

close

niscope.Session.close()
When you are finished using an instrument driver session, you must call this method to perform the
following actions:

• Closes the instrument I/O session.

• Destroys the IVI session and all of its properties.

• Deallocates any memory resources used by the IVI session.

Note: This method is not needed when using the session context manager

commit

niscope.Session.commit()
Commits to hardware all the parameter settings associated with the task. Use this method if you
want a parameter change to be immediately reflected in the hardware. This method is not supported
for Traditional NI-DAQ (Legacy) devices.

configure_chan_characteristics

niscope.Session.configure_chan_characteristics(input_impedance,
max_input_frequency)

Configures the properties that control the electrical characteristics of the channel—the input
impedance and the bandwidth.

Tip: This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

7.5. niscope module 447

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.channels[...].configure_chan_characteristics()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.configure_chan_characteristics()

Parameters

• input_impedance (float) – The input impedance for the channel; NI-SCOPE
sets niscope.Session.input_impedance to this value.

• max_input_frequency (float) – The bandwidth for the channel; NI-SCOPE
sets niscope.Session.max_input_frequency to this value. Pass 0 for
this value to use the hardware default bandwidth. Pass –1 for this value to achieve
full bandwidth.

configure_equalization_filter_coefficients

niscope.Session.configure_equalization_filter_coefficients(coefficients)
Configures the custom coefficients for the equalization FIR filter on the device. This filter is designed
to compensate the input signal for artifacts introduced to the signal outside of the digitizer. Because
this filter is a generic FIR filter, any coefficients are valid. Coefficient values should be between +1
and –1.

Tip: This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_equalization_filter_coefficients()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.configure_equalization_filter_coefficients()

Parameters coefficients (list of float) – The custom coeffi-
cients for the equalization FIR filter on the device. These coefficients
should be between +1 and –1. You can obtain the number of coef-
ficients from the :py:attr:‘niscope.Session.equalization_num_coefficients
<cvi:py:attr:niscope.Session.equalization_num_coefficients.html>‘__
property. The :py:attr:‘niscope.Session.equalization_filter_enabled
<cvi:py:attr:niscope.Session.equalization_filter_enabled.html>‘__ property must
be set to TRUE to enable the filter.

configure_horizontal_timing

niscope.Session.configure_horizontal_timing(min_sample_rate, min_num_pts,
ref_position, num_records, en-
force_realtime)

Configures the common properties of the horizontal subsystem for a multirecord acquisition in terms
of minimum sample rate.

Parameters

448 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

• min_sample_rate (float) – The sampling rate for the acquisition. Refer to
niscope.Session.min_sample_rate for more information.

• min_num_pts (int) – The minimum number of points you need in the record for
each channel; call niscope.Session.ActualRecordLength() to obtain
the actual record length used.

Valid Values: Greater than 1; limited by available memory

Note: One or more of the referenced methods are not in the Python API for this
driver.

• ref_position (float) – The position of the Reference Event in the waveform
record specified as a percentage.

• num_records (int) – The number of records to acquire

• enforce_realtime (bool) – Indicates whether the digitizer enforces real-time
measurements or allows equivalent-time (RIS) measurements; not all digitizers sup-
port RIS—refer to Features Supported by Device for more information.

Default value: True

Defined Values

True—Allow real-time acquisitions only

False—Allow real-time and equivalent-time acquisitions

configure_trigger_digital

niscope.Session.configure_trigger_digital(trigger_source,
slope=niscope.TriggerSlope.POSITIVE,
hold-
off=hightime.timedelta(seconds=0.0),
delay=hightime.timedelta(seconds=0.0))

Configures the common properties of a digital trigger.

When you initiate an acquisition, the digitizer waits for the start trigger, which is configured through
the niscope.Session.acq_arm_source (Start Trigger Source) property. The default is im-
mediate. Upon receiving the start trigger the digitizer begins sampling pretrigger points. After the
digitizer finishes sampling pretrigger points, the digitizer waits for a reference (stop) trigger that you
specify with a method such as this one. Upon receiving the reference trigger the digitizer finishes
the acquisition after completing posttrigger sampling. With each Configure Trigger method, you
specify configuration parameters such as the trigger source and the amount of trigger delay.

Note: For multirecord acquisitions, all records after the first record are started by using the Advance
Trigger Source. The default is immediate.

You can adjust the amount of pre-trigger and post-trigger samples using the reference position pa-
rameter on the niscope.Session.configure_horizontal_timing() method. The de-
fault is half of the record length.

Some features are not supported by all digitizers. Refer to Features Supported by Device for more
information.

Digital triggering is not supported in RIS mode.

7.5. niscope module 449

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

Parameters

• trigger_source (str) – Specifies the trigger source. Refer to niscope.
Session.trigger_source for defined values.

• slope (niscope.TriggerSlope) – Specifies whether you want a rising
edge or a falling edge to trigger the digitizer. Refer to niscope.Session.
trigger_slope for more information.

• holdoff (hightime.timedelta, datetime.timedelta, or
float in seconds) – The length of time the digitizer waits after detect-
ing a trigger before enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

• delay (hightime.timedelta, datetime.timedelta, or float
in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for
more information.

configure_trigger_edge

niscope.Session.configure_trigger_edge(trigger_source, level, trigger_coupling,
slope=niscope.TriggerSlope.POSITIVE,
holdoff=hightime.timedelta(seconds=0.0),
delay=hightime.timedelta(seconds=0.0))

Configures common properties for analog edge triggering.

When you initiate an acquisition, the digitizer waits for the start trigger, which is configured through
the niscope.Session.acq_arm_source (Start Trigger Source) property. The default is im-
mediate. Upon receiving the start trigger the digitizer begins sampling pretrigger points. After the
digitizer finishes sampling pretrigger points, the digitizer waits for a reference (stop) trigger that you
specify with a method such as this one. Upon receiving the reference trigger the digitizer finishes
the acquisition after completing posttrigger sampling. With each Configure Trigger method, you
specify configuration parameters such as the trigger source and the amount of trigger delay.

Note: Some features are not supported by all digitizers. Refer to Features Supported by Device for
more information.

Parameters

• trigger_source (str) – Specifies the trigger source. Refer to niscope.
Session.trigger_source for defined values.

• level (float) – The voltage threshold for the trigger. Refer to niscope.
Session.trigger_level for more information.

• trigger_coupling (niscope.TriggerCoupling) – Applies coupling
and filtering options to the trigger signal. Refer to niscope.Session.
trigger_coupling for more information.

• slope (niscope.TriggerSlope) – Specifies whether you want a rising
edge or a falling edge to trigger the digitizer. Refer to niscope.Session.
trigger_slope for more information.

• holdoff (hightime.timedelta, datetime.timedelta, or
float in seconds) – The length of time the digitizer waits after detect-

450 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

ing a trigger before enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

• delay (hightime.timedelta, datetime.timedelta, or float
in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for
more information.

configure_trigger_hysteresis

niscope.Session.configure_trigger_hysteresis(trigger_source, level, hys-
teresis, trigger_coupling,
slope=niscope.TriggerSlope.POSITIVE,
hold-
off=hightime.timedelta(seconds=0.0),
de-
lay=hightime.timedelta(seconds=0.0))

Configures common properties for analog hysteresis triggering. This kind of trigger specifies an
additional value, specified in the hysteresis parameter, that a signal must pass through before a
trigger can occur. This additional value acts as a kind of buffer zone that keeps noise from triggering
an acquisition.

When you initiate an acquisition, the digitizer waits for the start trigger, which is configured through
the niscope.Session.acq_arm_source. The default is immediate. Upon receiving the
start trigger the digitizer begins sampling pretrigger points. After the digitizer finishes sampling
pretrigger points, the digitizer waits for a reference (stop) trigger that you specify with a method
such as this one. Upon receiving the reference trigger the digitizer finishes the acquisition after
completing posttrigger sampling. With each Configure Trigger method, you specify configuration
parameters such as the trigger source and the amount of trigger delay.

Note: Some features are not supported by all digitizers. Refer to Features Supported by Device for
more information.

Parameters

• trigger_source (str) – Specifies the trigger source. Refer to niscope.
Session.trigger_source for defined values.

• level (float) – The voltage threshold for the trigger. Refer to niscope.
Session.trigger_level for more information.

• hysteresis (float) – The size of the hysteresis window on either side of
the level in volts; the digitizer triggers when the trigger signal passes through
the hysteresis value you specify with this parameter, has the slope you spec-
ify with slope, and passes through the level. Refer to niscope.Session.
trigger_hysteresis for defined values.

• trigger_coupling (niscope.TriggerCoupling) – Applies coupling
and filtering options to the trigger signal. Refer to niscope.Session.
trigger_coupling for more information.

• slope (niscope.TriggerSlope) – Specifies whether you want a rising
edge or a falling edge to trigger the digitizer. Refer to niscope.Session.
trigger_slope for more information.

7.5. niscope module 451

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python API Documentation, Release 1.4.1

• holdoff (hightime.timedelta, datetime.timedelta, or
float in seconds) – The length of time the digitizer waits after detect-
ing a trigger before enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

• delay (hightime.timedelta, datetime.timedelta, or float
in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for
more information.

configure_trigger_immediate

niscope.Session.configure_trigger_immediate()
Configures common properties for immediate triggering. Immediate triggering means the digitizer
triggers itself.

When you initiate an acquisition, the digitizer waits for a trigger. You specify the type of trig-
ger that the digitizer waits for with a Configure Trigger method, such as niscope.Session.
configure_trigger_immediate().

configure_trigger_software

niscope.Session.configure_trigger_software(holdoff=hightime.timedelta(seconds=0.0),
de-
lay=hightime.timedelta(seconds=0.0))

Configures common properties for software triggering.

When you initiate an acquisition, the digitizer waits for the start trigger, which is configured through
the niscope.Session.acq_arm_source (Start Trigger Source) property. The default is im-
mediate. Upon receiving the start trigger the digitizer begins sampling pretrigger points. After the
digitizer finishes sampling pretrigger points, the digitizer waits for a reference (stop) trigger that you
specify with a method such as this one. Upon receiving the reference trigger the digitizer finishes
the acquisition after completing posttrigger sampling. With each Configure Trigger method, you
specify configuration parameters such as the trigger source and the amount of trigger delay.

To trigger the acquisition, use niscope.Session.send_software_trigger_edge().

Note: Some features are not supported by all digitizers. Refer to Features Supported by Device for
more information.

Parameters

• holdoff (hightime.timedelta, datetime.timedelta, or
float in seconds) – The length of time the digitizer waits after detect-
ing a trigger before enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

• delay (hightime.timedelta, datetime.timedelta, or float
in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for
more information.

452 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

configure_trigger_video

niscope.Session.configure_trigger_video(trigger_source, signal_format,
event, polarity, trigger_coupling,
enable_dc_restore=False,
line_number=1, hold-
off=hightime.timedelta(seconds=0.0),
delay=hightime.timedelta(seconds=0.0))

Configures the common properties for video triggering, including the signal format, TV event, line
number, polarity, and enable DC restore. A video trigger occurs when the digitizer finds a valid
video signal sync.

When you initiate an acquisition, the digitizer waits for the start trigger, which is configured through
the niscope.Session.acq_arm_source (Start Trigger Source) property. The default is im-
mediate. Upon receiving the start trigger the digitizer begins sampling pretrigger points. After the
digitizer finishes sampling pretrigger points, the digitizer waits for a reference (stop) trigger that you
specify with a method such as this one. Upon receiving the reference trigger the digitizer finishes
the acquisition after completing posttrigger sampling. With each Configure Trigger method, you
specify configuration parameters such as the trigger source and the amount of trigger delay.

Note: Some features are not supported by all digitizers. Refer to Features Supported by Device for
more information.

Parameters

• trigger_source (str) – Specifies the trigger source. Refer to niscope.
Session.trigger_source for defined values.

• signal_format (niscope.VideoSignalFormat) – Specifies the type of
video signal sync the digitizer should look for. Refer to niscope.Session.
tv_trigger_signal_format for more information.

• event (niscope.VideoTriggerEvent) – Specifies the TV event you want
to trigger on. You can trigger on a specific or on the next coming line or field of the
signal.

• polarity (niscope.VideoPolarity) – Specifies the polarity of the video
signal sync.

• trigger_coupling (niscope.TriggerCoupling) – Applies coupling
and filtering options to the trigger signal. Refer to niscope.Session.
trigger_coupling for more information.

• enable_dc_restore (bool) – Offsets each video line so the clamping level
(the portion of the video line between the end of the color burst and the begin-
ning of the active image) is moved to zero volt. Refer to niscope.Session.
enable_dc_restore for defined values.

• line_number (int) – Selects the line number to trigger on. The line
number range covers an entire frame and is referenced as shown on Ver-
tical Blanking and Synchronization Signal. Refer to niscope.Session.
tv_trigger_line_number for more information.

Default value: 1

• holdoff (hightime.timedelta, datetime.timedelta, or
float in seconds) – The length of time the digitizer waits after detect-

7.5. niscope module 453

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

ing a trigger before enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

• delay (hightime.timedelta, datetime.timedelta, or float
in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for
more information.

configure_trigger_window

niscope.Session.configure_trigger_window(trigger_source, low_level,
high_level, window_mode,
trigger_coupling, hold-
off=hightime.timedelta(seconds=0.0),
delay=hightime.timedelta(seconds=0.0))

Configures common properties for analog window triggering. A window trigger occurs when a
signal enters or leaves a window you specify with the high level or low level parameters.

When you initiate an acquisition, the digitizer waits for the start trigger, which is configured through
the niscope.Session.acq_arm_source (Start Trigger Source) property. The default is im-
mediate. Upon receiving the start trigger the digitizer begins sampling pretrigger points. After the
digitizer finishes sampling pretrigger points, the digitizer waits for a reference (stop) trigger that you
specify with a method such as this one. Upon receiving the reference trigger the digitizer finishes
the acquisition after completing posttrigger sampling. With each Configure Trigger method, you
specify configuration parameters such as the trigger source and the amount of trigger delay.

To trigger the acquisition, use niscope.Session.send_software_trigger_edge().

Note: Some features are not supported by all digitizers.

Parameters

• trigger_source (str) – Specifies the trigger source. Refer to niscope.
Session.trigger_source for defined values.

• low_level (float) – Passes the voltage threshold you want the digitizer to use
for low triggering.

• high_level (float) – Passes the voltage threshold you want the digitizer to use
for high triggering.

• window_mode (niscope.TriggerWindowMode) – Specifies whether you
want the trigger to occur when the signal enters or leaves a window.

• trigger_coupling (niscope.TriggerCoupling) – Applies coupling
and filtering options to the trigger signal. Refer to niscope.Session.
trigger_coupling for more information.

• holdoff (hightime.timedelta, datetime.timedelta, or
float in seconds) – The length of time the digitizer waits after detect-
ing a trigger before enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

• delay (hightime.timedelta, datetime.timedelta, or float
in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for
more information.

454 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

configure_vertical

niscope.Session.configure_vertical(range, coupling, offset=0.0,
probe_attenuation=1.0, enabled=True)

Configures the most commonly configured properties of the digitizer vertical subsystem, such as the
range, offset, coupling, probe attenuation, and the channel.

Tip: This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_vertical()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.configure_vertical()

Parameters

• range (float) – Specifies the vertical range Refer to niscope.Session.
vertical_range for more information.

• coupling (niscope.VerticalCoupling) – Specifies how to couple the in-
put signal. Refer to niscope.Session.vertical_coupling for more in-
formation.

• offset (float) – Specifies the vertical offset. Refer to niscope.Session.
vertical_offset for more information.

• probe_attenuation (float) – Specifies the probe attenuation. Refer to
niscope.Session.probe_attenuation for valid values.

• enabled (bool) – Specifies whether the channel is enabled for acquisition. Refer
to niscope.Session.channel_enabled for more information.

disable

niscope.Session.disable()
Aborts any current operation, opens data channel relays, and releases RTSI and PFI lines.

export_attribute_configuration_buffer

niscope.Session.export_attribute_configuration_buffer()
Exports the property configuration of the session to a configuration buffer.

You can export and import session property configurations only between devices with identical
model numbers, channel counts, and onboard memory sizes.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-SCOPE returns an error.

Related Topics:

Properties and Property Methods

Setting Properties Before Reading Properties

7.5. niscope module 455

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

Return type bytes

Returns Specifies the byte array buffer to be populated with the exported property config-
uration.

export_attribute_configuration_file

niscope.Session.export_attribute_configuration_file(file_path)
Exports the property configuration of the session to the specified file.

You can export and import session property configurations only between devices with identical
model numbers, channel counts, and onboard memory sizes.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-SCOPE returns an error.

Related Topics:

Properties and Property Methods

Setting Properties Before Reading Properties

Parameters file_path (str) – Specifies the absolute path to the file to contain the
exported property configuration. If you specify an empty or relative path, this method
returns an error. Default file extension: .niscopeconfig

fetch

niscope.Session.fetch(num_samples=None, relative_to=niscope.FetchRelativeTo.PRETRIGGER,
offset=0, record_number=0, num_records=None, time-
out=hightime.timedelta(seconds=5.0))

Returns the waveform from a previously initiated acquisition that the digitizer acquires for the spec-
ified channel. This method returns scaled voltage waveforms.

This method may return multiple waveforms depending on the number of channels, the acquisition
type, and the number of records you specify.

Note: Some functionality, such as time stamping, is not supported in all digitizers.

Tip: This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].fetch()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.fetch()

Parameters

• num_samples (int) – The maximum number of samples to fetch for each wave-
form. If the acquisition finishes with fewer points than requested, some devices
return partial data if the acquisition finished, was aborted, or a timeout of 0 was
used. If it fails to complete within the timeout period, the method raises.

456 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python API Documentation, Release 1.4.1

• relative_to (niscope.FetchRelativeTo) – Position to start fetching
within one record.

• offset (int) – Offset in samples to start fetching data within each record. The
offset can be positive or negative.

• record_number (int) – Zero-based index of the first record to fetch.

• num_records (int) – Number of records to fetch. Use -1 to fetch all configured
records.

• timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) – The time to wait for data to be acquired; using 0
for this parameter tells NI-SCOPE to fetch whatever is currently available. Using
-1 seconds for this parameter implies infinite timeout.

Return type list of WaveformInfo

Returns

Returns a list of class instances with the following timing and scaling information
about each waveform:

• relative_initial_x (float) the time (in seconds) from the trigger to the first sample in
the fetched waveform

• absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This
timestamp is comparable between records and acquisitions; devices that do not sup-
port this parameter use 0 for this output.

• x_increment (float) the time between points in the acquired waveform in seconds

• channel (str) channel name this waveform was acquired from

• record (int) record number of this waveform

• gain (float) the gain factor of the given channel; useful for scaling binary data with
the following formula:

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑑𝑎𝑡𝑎 * 𝑔𝑎𝑖𝑛𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡

• offset (float) the offset factor of the given channel; useful for scaling binary data
with the following formula:

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑑𝑎𝑡𝑎 * 𝑔𝑎𝑖𝑛𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡

• samples (array of float) floating point array of samples. Length will be of the actual
samples acquired

7.5. niscope module 457

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

fetch_array_measurement

niscope.Session.fetch_array_measurement(array_meas_function,
meas_wfm_size=None, rela-
tive_to=niscope.FetchRelativeTo.PRETRIGGER,
offset=0, record_number=0,
num_records=None,
meas_num_samples=None, time-
out=hightime.timedelta(seconds=5.0))

Obtains a waveform from the digitizer and returns the specified measurement array. This method
may return multiple waveforms depending on the number of channels, the acquisition type, and the
number of records you specify.

Note: Some functionality, such as time stamping, is not supported in all digitizers.

Tip: This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].fetch_array_measurement()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.fetch_array_measurement()

Parameters

• array_meas_function (niscope.ArrayMeasurement) – The array
measurement to perform.

• meas_wfm_size (int) – The maximum number of samples returned in the mea-
surement waveform array for each waveform measurement. Default Value: None
(returns all available samples).

• relative_to (niscope.FetchRelativeTo) – Position to start fetching
within one record.

• offset (int) – Offset in samples to start fetching data within each record. The
offset can be positive or negative.

• record_number (int) – Zero-based index of the first record to fetch.

• num_records (int) – Number of records to fetch. Use None to fetch all config-
ured records.

• meas_num_samples (int) – Number of samples to fetch when performing a
measurement. Use None to fetch the actual record length.

• timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) – The time to wait in seconds for data to be ac-
quired; using 0 for this parameter tells NI-SCOPE to fetch whatever is currently
available. Using -1 for this parameter implies infinite timeout.

Return type list of WaveformInfo

Returns

458 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

Returns a list of class instances with the following timing and scaling information
about each waveform:

• relativeInitialX—the time (in seconds) from the trigger to the first sample in the
fetched waveform

• absoluteInitialX—timestamp (in seconds) of the first fetched sample. This times-
tamp is comparable between records and acquisitions; devices that do not support
this parameter use 0 for this output.

• xIncrement—the time between points in the acquired waveform in seconds

• channel-channel name this waveform was acquired from

• record-record number of this waveform

• gain—the gain factor of the given channel; useful for scaling binary data with the
following formula:

voltage = binary data × gain factor + offset

• offset—the offset factor of the given channel; useful for scaling binary data with the
following formula:

voltage = binary data × gain factor + offset

• samples-floating point array of samples. Length will be of actual samples acquired.

fetch_into

niscope.Session.fetch_into(waveform, relative_to=niscope.FetchRelativeTo.PRETRIGGER,
offset=0, record_number=0, num_records=None, time-
out=hightime.timedelta(seconds=5.0))

Returns the waveform from a previously initiated acquisition that the digitizer acquires for the spec-
ified channel. This method returns scaled voltage waveforms.

This method may return multiple waveforms depending on the number of channels, the acquisition
type, and the number of records you specify.

Note: Some functionality, such as time stamping, is not supported in all digitizers.

Tip: This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].fetch()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.fetch()

Parameters

• waveform (array.array("d")) – numpy array of the appropriate type and
size that should be acquired as a 1D array. Size should be num_samples times
number of waveforms. Call niscope.Session._actual_num_wfms() to
determine the number of waveforms.

7.5. niscope module 459

https://docs.python.org/3/library/array.html#array.array

NI Modular Instruments Python API Documentation, Release 1.4.1

Types supported are

– numpy.float64

– numpy.int8

– numpy.in16

– numpy.int32

Example:

waveform = numpy.ndarray(num_samples * session.actual_num_
→˓wfms(), dtype=numpy.float64)
wfm_info = session['0,1'].fetch_into(waveform, timeout=5.0)

• relative_to (niscope.FetchRelativeTo) – Position to start fetching
within one record.

• offset (int) – Offset in samples to start fetching data within each record.The
offset can be positive or negative.

• record_number (int) – Zero-based index of the first record to fetch.

• num_records (int) – Number of records to fetch. Use -1 to fetch all configured
records.

• timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) – The time to wait in seconds for data to be ac-
quired; using 0 for this parameter tells NI-SCOPE to fetch whatever is currently
available. Using -1 for this parameter implies infinite timeout.

Return type list of WaveformInfo

Returns

Returns a list of class instances with the following timing and scaling information
about each waveform:

• relative_initial_x (float) the time (in seconds) from the trigger to the first sample in
the fetched waveform

• absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This
timestamp is comparable between records and acquisitions; devices that do not sup-
port this parameter use 0 for this output.

• x_increment (float) the time between points in the acquired waveform in seconds

• channel (str) channel name this waveform was acquired from

• record (int) record number of this waveform

• gain (float) the gain factor of the given channel; useful for scaling binary data with
the following formula:

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑑𝑎𝑡𝑎 * 𝑔𝑎𝑖𝑛𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡

• offset (float) the offset factor of the given channel; useful for scaling binary data
with the following formula:

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑑𝑎𝑡𝑎 * 𝑔𝑎𝑖𝑛𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡

460 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

• samples (array of float) floating point array of samples. Length will be of the actual
samples acquired

fetch_measurement_stats

niscope.Session.fetch_measurement_stats(scalar_meas_function, rela-
tive_to=niscope.FetchRelativeTo.PRETRIGGER,
offset=0, record_number=0,
num_records=None, time-
out=hightime.timedelta(seconds=5.0))

Obtains a waveform measurement and returns the measurement value. This method may return
multiple statistical results depending on the number of channels, the acquisition type, and the number
of records you specify.

You specify a particular measurement type, such as rise time, frequency, or voltage peak-to-peak.
The waveform on which the digitizer calculates the waveform measurement is from an acquisition
that you previously initiated. The statistics for the specified measurement method are returned,
where the statistics are updated once every acquisition when the specified measurement is fetched
by any of the Fetch Measurement methods. If a Fetch Measurement method has not been called, this
method fetches the data on which to perform the measurement. The statistics are cleared by calling
niscope.Session.clear_waveform_measurement_stats().

Many of the measurements use the low, mid, and high reference levels. You configure the
low, mid, and high references with niscope.Session.meas_chan_low_ref_level,
niscope.Session.meas_chan_mid_ref_level, and niscope.Session.
meas_chan_high_ref_level to set each channel differently.

Tip: This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].fetch_measurement_stats()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.fetch_measurement_stats()

Parameters

• scalar_meas_function (niscope.ScalarMeasurement) – The scalar
measurement to be performed on each fetched waveform.

• relative_to (niscope.FetchRelativeTo) – Position to start fetching
within one record.

• offset (int) – Offset in samples to start fetching data within each record. The
offset can be positive or negative.

• record_number (int) – Zero-based index of the first record to fetch.

• num_records (int) – Number of records to fetch. Use None to fetch all config-
ured records.

• timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) – The time to wait in seconds for data to be ac-
quired; using 0 for this parameter tells NI-SCOPE to fetch whatever is currently
available. Using -1 for this parameter implies infinite timeout.

7.5. niscope module 461

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

Return type list of MeasurementStats

Returns

Returns a list of class instances with the following measurement statistics about the
specified measurement:

• result (float): the resulting measurement

• mean (float): the mean scalar value, which is obtained by

averaging each fetch_measurement_stats call - stdev (float): the standard deviations
of the most recent numInStats measurements - min_val (float): the smallest scalar
value acquired (the minimum of the numInStats measurements) - max_val (float):
the largest scalar value acquired (the maximum of the numInStats measurements) -
num_in_stats (int): the number of times fetch_measurement_stats has been called
- channel (str): channel name this result was acquired from - record (int): record
number of this result

get_equalization_filter_coefficients

niscope.Session.get_equalization_filter_coefficients()
Retrieves the custom coefficients for the equalization FIR filter on the device. This filter is designed
to compensate the input signal for artifacts introduced to the signal outside of the digitizer. Because
this filter is a generic FIR filter, any coefficients are valid. Coefficient values should be between +1
and –1.

Tip: This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].get_equalization_filter_coefficients()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.get_equalization_filter_coefficients()

get_ext_cal_last_date_and_time

niscope.Session.get_ext_cal_last_date_and_time()
Returns the date and time of the last external calibration performed.

Return type hightime.timedelta, datetime.timedelta, or float in seconds

Returns Indicates the date of the last calibration. A hightime.datetime object is returned,
but only contains resolution to the day.

get_ext_cal_last_temp

niscope.Session.get_ext_cal_last_temp()
Returns the onboard temperature, in degrees Celsius, of an oscilloscope at the time of the last suc-
cessful external calibration. The temperature returned by this node is an onboard temperature read
from a sensor on the surface of the oscilloscope. This temperature should not be confused with the

462 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

environmental temperature of the oscilloscope surroundings. During operation, the onboard tem-
perature is normally higher than the environmental temperature. Temperature-sensitive parameters
are calibrated during self-calibration. Therefore, the self-calibration temperature is usually more
important to read than the external calibration temperature.

Return type float

Returns Returns the temperature in degrees Celsius during the last calibration.

get_self_cal_last_date_and_time

niscope.Session.get_self_cal_last_date_and_time()
Returns the date and time of the last self calibration performed.

Return type hightime.timedelta, datetime.timedelta, or float in seconds

Returns Indicates the date of the last calibration. A hightime.datetime object is returned,
but only contains resolution to the day.

get_self_cal_last_temp

niscope.Session.get_self_cal_last_temp()
Returns the onboard temperature, in degrees Celsius, of an oscilloscope at the time of the last suc-
cessful self calibration. The temperature returned by this node is an onboard temperature read from
a sensor on the surface of the oscilloscope. This temperature should not be confused with the envi-
ronmental temperature of the oscilloscope surroundings. During operation, the onboard temperature
is normally higher than the environmental temperature. Temperature-sensitive parameters are cali-
brated during self-calibration. Therefore, the self-calibration temperature is usually more important
to read than the external calibration temperature.

Return type float

Returns Returns the temperature in degrees Celsius during the last calibration.

import_attribute_configuration_buffer

niscope.Session.import_attribute_configuration_buffer(configuration)
Imports a property configuration to the session from the specified configuration buffer.

You can export and import session property configurations only between devices with identical
model numbers, channel counts, and onboard memory sizes.

Related Topics:

Properties and Property Methods

Setting Properties Before Reading Properties

Note: You cannot call this method while the session is in a running state, such as while acquiring a
signal.

Parameters configuration (bytes) – Specifies the byte array buffer that contains
the property configuration to import.

7.5. niscope module 463

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytes

NI Modular Instruments Python API Documentation, Release 1.4.1

import_attribute_configuration_file

niscope.Session.import_attribute_configuration_file(file_path)
Imports a property configuration to the session from the specified file.

You can export and import session property configurations only between devices with identical
model numbers, channel counts, and onboard memory sizes.

Related Topics:

Properties and Property Methods

Setting Properties Before Reading Properties

Note: You cannot call this method while the session is in a running state, such as while acquiring a
signal.

Parameters file_path (str) – Specifies the absolute path to the file containing the
property configuration to import. If you specify an empty or relative path, this method
returns an error. Default File Extension: .niscopeconfig

initiate

niscope.Session.initiate()
Initiates a waveform acquisition.

After calling this method, the digitizer leaves the Idle state and waits for a trigger. The
digitizer acquires a waveform for each channel you enable with niscope.Session.
configure_vertical().

Note: This method will return a Python context manager that will initiate on entering and abort on
exit.

lock

niscope.Session.lock()
Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:

• The application called the niscope.Session.lock() method.

• A call to NI-SCOPE locked the session.

• After a call to the niscope.Session.lock() method returns successfully, no other threads can ac-
cess the device session until you call the niscope.Session.unlock() method or exit out of the
with block when using lock context manager.

• Use the niscope.Session.lock() method and the niscope.Session.unlock() method
around a sequence of calls to instrument driver methods if you require that the device retain its settings
through the end of the sequence.

464 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

You can safely make nested calls to the niscope.Session.lock() method within the same thread. To
completely unlock the session, you must balance each call to the niscope.Session.lock() method with
a call to the niscope.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

with niscope.Session('dev1') as session:
with session.lock():

Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type context manager

Returns When used in a with statement, niscope.Session.lock() acts as a context manager
and unlock will be called when the with block is exited

probe_compensation_signal_start

niscope.Session.probe_compensation_signal_start()
Starts the 1 kHz square wave output on PFI 1 for probe compensation.

probe_compensation_signal_stop

niscope.Session.probe_compensation_signal_stop()
Stops the 1 kHz square wave output on PFI 1 for probe compensation.

read

niscope.Session.read(num_samples=None, relative_to=niscope.FetchRelativeTo.PRETRIGGER,
offset=0, record_number=0, num_records=None, time-
out=hightime.timedelta(seconds=5.0))

Initiates an acquisition, waits for it to complete, and retrieves the data. The process is sim-
ilar to calling niscope.Session._initiate_acquisition(), niscope.Session.
acquisition_status(), and niscope.Session.fetch(). The only difference is that
with niscope.Session.read(), you enable all channels specified with channelList be-
fore the acquisition; in the other method, you enable the channels with niscope.Session.
configure_vertical().

This method may return multiple waveforms depending on the number of channels, the acquisition
type, and the number of records you specify.

Note: Some functionality, such as time stamping, is not supported in all digitizers.

Tip: This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].read()

7.5. niscope module 465

NI Modular Instruments Python API Documentation, Release 1.4.1

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.read()

Parameters

• num_samples (int) – The maximum number of samples to fetch for each wave-
form. If the acquisition finishes with fewer points than requested, some devices
return partial data if the acquisition finished, was aborted, or a timeout of 0 was
used. If it fails to complete within the timeout period, the method raises.

• relative_to (niscope.FetchRelativeTo) – Position to start fetching
within one record.

• offset (int) – Offset in samples to start fetching data within each record. The
offset can be positive or negative.

• record_number (int) – Zero-based index of the first record to fetch.

• num_records (int) – Number of records to fetch. Use -1 to fetch all configured
records.

• timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) – The time to wait for data to be acquired; using 0
for this parameter tells NI-SCOPE to fetch whatever is currently available. Using
-1 seconds for this parameter implies infinite timeout.

Return type list of WaveformInfo

Returns

Returns a list of class instances with the following timing and scaling information
about each waveform:

• relative_initial_x (float) the time (in seconds) from the trigger to the first sample in
the fetched waveform

• absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This
timestamp is comparable between records and acquisitions; devices that do not sup-
port this parameter use 0 for this output.

• x_increment (float) the time between points in the acquired waveform in seconds

• channel (str) channel name this waveform was acquired from

• record (int) record number of this waveform

• gain (float) the gain factor of the given channel; useful for scaling binary data with
the following formula:

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑑𝑎𝑡𝑎 * 𝑔𝑎𝑖𝑛𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡

• offset (float) the offset factor of the given channel; useful for scaling binary data
with the following formula:

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑑𝑎𝑡𝑎 * 𝑔𝑎𝑖𝑛𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡

• samples (array of float) floating point array of samples. Length will be of the actual
samples acquired

466 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

reset

niscope.Session.reset()
Stops the acquisition, releases routes, and all session properties are reset to their default states.

reset_device

niscope.Session.reset_device()
Performs a hard reset of the device. Acquisition stops, all routes are released, RTSI and PFI lines
are tristated, hardware is configured to its default state, and all session properties are reset to their
default state.

• Thermal Shutdown

reset_with_defaults

niscope.Session.reset_with_defaults()
Performs a software reset of the device, returning it to the default state and applying any initial
default settings from the IVI Configuration Store.

self_cal

niscope.Session.self_cal(option=niscope.Option.SELF_CALIBRATE_ALL_CHANNELS)
Self-calibrates most NI digitizers, including all SMC-based devices and most Traditional NI-DAQ
(Legacy) devices. To verify that your digitizer supports self-calibration, refer to Features Supported
by Device.

For SMC-based digitizers, if the self-calibration is performed successfully in a regular session, the
calibration constants are immediately stored in the self-calibration area of the EEPROM. If the
self-calibration is performed in an external calibration session, the calibration constants take effect
immediately for the duration of the session. However, they are not stored in the EEPROM until
niscope.Session.CalEnd() is called with action set to NISCOPE_VAL_ACTION_STORE
and no errors occur.

Note: One or more of the referenced methods are not in the Python API for this driver.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].self_cal()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.self_cal()

7.5. niscope module 467

REPLACE_DRIVER_SPECIFIC_URL_2(scopefunc.chm','cviattribute_defaults)
digitizers.chm::/Thermal_Shutdown.html

NI Modular Instruments Python API Documentation, Release 1.4.1

Parameters option (niscope.Option) – The calibration op-
tion. Use VI_NULL for a normal self-calibration operation or
NISCOPE_VAL_CAL_RESTORE_EXTERNAL_CALIBRATION to restore the
previous calibration.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

self_test

niscope.Session.self_test()
Runs the instrument self-test routine and returns the test result(s). Refer to the device-specific help
topics for an explanation of the message contents.

Raises SelfTestError on self test failure. Properties on exception object:

• code - failure code from driver

• message - status message from driver

Self-Test Code Description
0 Passed self-test
1 Self-test failed

send_software_trigger_edge

niscope.Session.send_software_trigger_edge(which_trigger)
Sends the selected trigger to the digitizer. Call this method if you called niscope.Session.
configure_trigger_software() when you want the Reference trigger to occur. You can
also call this method to override a misused edge, digital, or hysteresis trigger. If you have configured
niscope.Session.acq_arm_source, niscope.Session.arm_ref_trig_src, or
niscope.Session.adv_trig_src, call this method when you want to send the correspond-
ing trigger to the digitizer.

Parameters which_trigger (niscope.WhichTrigger) – Specifies the type of
trigger to send to the digitizer.

Defined Values

START (0L)
ARM_REFERENCE (1L)

REFERENCE (2L)
ADVANCE (3L)

unlock

niscope.Session.unlock()
Releases a lock that you acquired on an device session using niscope.Session.lock(). Refer to
niscope.Session.unlock() for additional information on session locks.

468 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Properties

absolute_sample_clock_offset

niscope.Session.absolute_sample_clock_offset
Gets or sets the absolute time offset of the sample clock relative to the reference clock in terms of
seconds.

Note: Configures the sample clock relationship with respect to the reference clock. This parameter
is factored into NI-TClk adjustments and is typically used to improve the repeatability of NI-TClk
Synchronization. When this parameter is read, the currently programmed value is returned. The
range of the absolute sample clock offset is [-.5 sample clock periods, .5 sample clock periods]. The
default absolute sample clock offset is 0s.

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Advanced:Absolute Sample Clock Offset

• C Attribute: NISCOPE_ATTR_ABSOLUTE_SAMPLE_CLOCK_OFFSET

acquisition_start_time

niscope.Session.acquisition_start_time
Specifies the length of time from the trigger event to the first point in the waveform record in sec-
onds. If the value is positive, the first point in the waveform record occurs after the trigger event
(same as specifying niscope.Session.trigger_delay_time). If the value is negative, the
first point in the waveform record occurs before the trigger event (same as specifying niscope.
Session.horz_record_ref_position).

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Advanced:Acquisition Start Time

• C Attribute: NISCOPE_ATTR_ACQUISITION_START_TIME

7.5. niscope module 469

NI Modular Instruments Python API Documentation, Release 1.4.1

acquisition_type

niscope.Session.acquisition_type
Specifies how the digitizer acquires data and fills the waveform record.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.AcquisitionType
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Acquisition:Acquisition Type

• C Attribute: NISCOPE_ATTR_ACQUISITION_TYPE

acq_arm_source

niscope.Session.acq_arm_source
Specifies the source the digitizer monitors for a start (acquisition arm) trigger. When
the start trigger is received, the digitizer begins acquiring pretrigger samples. Valid
Values: NISCOPE_VAL_IMMEDIATE (‘VAL_IMMEDIATE’) - Triggers immediately
NISCOPE_VAL_RTSI_0 (‘VAL_RTSI_0’) - RTSI 0 NISCOPE_VAL_RTSI_1 (‘VAL_RTSI_1’)
- RTSI 1 NISCOPE_VAL_RTSI_2 (‘VAL_RTSI_2’) - RTSI 2 NISCOPE_VAL_RTSI_3
(‘VAL_RTSI_3’) - RTSI 3 NISCOPE_VAL_RTSI_4 (‘VAL_RTSI_4’) - RTSI 4
NISCOPE_VAL_RTSI_5 (‘VAL_RTSI_5’) - RTSI 5 NISCOPE_VAL_RTSI_6 (‘VAL_RTSI_6’)
- RTSI 6 NISCOPE_VAL_PFI_0 (‘VAL_PFI_0’) - PFI 0 NISCOPE_VAL_PFI_1 (‘VAL_PFI_1’)
- PFI 1 NISCOPE_VAL_PFI_2 (‘VAL_PFI_2’) - PFI 2 NISCOPE_VAL_PXI_STAR
(‘VAL_PXI_STAR’) - PXI Star Trigger

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Start Trigger (Acq. Arm):Source

• C Attribute: NISCOPE_ATTR_ACQ_ARM_SOURCE

470 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

advance_trigger_terminal_name

niscope.Session.advance_trigger_terminal_name
Returns the fully qualified name for the Advance Trigger terminal. You can use this terminal as the
source for another trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Advance Trigger:Terminal Name

• C Attribute: NISCOPE_ATTR_ADVANCE_TRIGGER_TERMINAL_NAME

adv_trig_src

niscope.Session.adv_trig_src
Specifies the source the digitizer monitors for an advance trigger. When the advance trigger is
received, the digitizer begins acquiring pretrigger samples.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Advance Trigger:Source

• C Attribute: NISCOPE_ATTR_ADV_TRIG_SRC

allow_more_records_than_memory

niscope.Session.allow_more_records_than_memory
Indicates whether more records can be configured with niscope.Session.
configure_horizontal_timing() than fit in the onboard memory. If this property
is set to True, it is necessary to fetch records while the acquisition is in progress. Eventually, some
of the records will be overwritten. An error is returned from the fetch method if you attempt to fetch
a record that has been overwritten.

The following table lists the characteristics of this property.

7.5. niscope module 471

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Enable Records > Memory

• C Attribute: NISCOPE_ATTR_ALLOW_MORE_RECORDS_THAN_MEMORY

arm_ref_trig_src

niscope.Session.arm_ref_trig_src
Specifies the source the digitizer monitors for an arm reference trigger. When the arm reference
trigger is received, the digitizer begins looking for a reference (stop) trigger from the user-configured
trigger source.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Arm Reference Trigger:Source

• C Attribute: NISCOPE_ATTR_ARM_REF_TRIG_SRC

backlog

niscope.Session.backlog
Returns the number of samples (niscope.Session.points_done) that have been acquired
but not fetched for the record specified by niscope.Session.fetch_record_number.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Fetch:Fetch Backlog

• C Attribute: NISCOPE_ATTR_BACKLOG

472 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

bandpass_filter_enabled

niscope.Session.bandpass_filter_enabled
Enables the bandpass filter on the specificed channel. The default value is FALSE.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].bandpass_filter_enabled

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.bandpass_filter_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Advanced:Bandpass Filter Enabled

• C Attribute: NISCOPE_ATTR_BANDPASS_FILTER_ENABLED

binary_sample_width

niscope.Session.binary_sample_width
Indicates the bit width of the binary data in the acquired waveform. Useful for determining which
Binary Fetch method to use. Compare to niscope.Session.resolution. To configure the
device to store samples with a lower resolution that the native, set this property to the desired binary
width. This can be useful for streaming at faster speeds at the cost of resolution. The least significant
bits will be lost with this configuration. Valid Values: 8, 16, 32

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Acquisition:Binary Sample Width

• C Attribute: NISCOPE_ATTR_BINARY_SAMPLE_WIDTH

7.5. niscope module 473

NI Modular Instruments Python API Documentation, Release 1.4.1

cable_sense_mode

niscope.Session.cable_sense_mode
Specifies whether and how the oscilloscope is configured to generate a CableSense signal on the
specified channels when the niscope.Session.CableSenseSignalStart() method is
called.

Device-Specific Behavior:

PXIe-5160/5162

• The value of this property must be identical across all channels whose input impedance
is set to 50 ohms.

• If this property is set to a value other than DISABLED for any channel(s), the input
impedance of all channels for which this property is set to DISABLED must be set to 1
M Ohm.

Supported Devices
PXIe-5110
PXIe-5111
PXIe-5113
PXIe-5160
PXIe-5162

Note: the input impedance of the channel(s) to convey the CableSense signal must be set to 50
ohms.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.CableSenseMode
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_CABLE_SENSE_MODE

cable_sense_signal_enable

niscope.Session.cable_sense_signal_enable
TBD

The following table lists the characteristics of this property.

474 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_CABLE_SENSE_SIGNAL_ENABLE

cable_sense_voltage

niscope.Session.cable_sense_voltage
Returns the voltage of the CableSense signal that is written to the EEPROM of the oscilloscope
during factory calibration.

Supported Devices
PXIe-5110
PXIe-5111
PXIe-5113
PXIe-5160
PXIe-5162

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_CABLE_SENSE_VOLTAGE

channel_count

niscope.Session.channel_count
Indicates the number of channels that the specific instrument driver supports. For channel-based
properties, the IVI engine maintains a separate cache value for each channel.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

7.5. niscope module 475

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Channel Count

• C Attribute: NISCOPE_ATTR_CHANNEL_COUNT

channel_enabled

niscope.Session.channel_enabled
Specifies whether the digitizer acquires a waveform for the channel. Valid Values: True (1) - Acquire
data on this channel False (0) - Don’t acquire data on this channel

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].channel_enabled

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.channel_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Channel Enabled

• C Attribute: NISCOPE_ATTR_CHANNEL_ENABLED

channel_terminal_configuration

niscope.Session.channel_terminal_configuration
Specifies the terminal configuration for the channel.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].channel_terminal_configuration

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.channel_terminal_configuration

The following table lists the characteristics of this property.

476 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype enums.TerminalConfiguration
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Channel Terminal Configuration

• C Attribute: NISCOPE_ATTR_CHANNEL_TERMINAL_CONFIGURATION

data_transfer_block_size

niscope.Session.data_transfer_block_size
Specifies the maximum number of samples to transfer at one time from the device to host memory.
Increasing this number should result in better fetching performance because the driver does not need
to restart the transfers as often. However, increasing this number may also increase the amount of
page-locked memory required from the system.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Fetch:Data Transfer Block Size

• C Attribute: NISCOPE_ATTR_DATA_TRANSFER_BLOCK_SIZE

data_transfer_maximum_bandwidth

niscope.Session.data_transfer_maximum_bandwidth
This property specifies the maximum bandwidth that the device is allowed to consume.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Fetch:Advanced:Maximum Bandwidth

• C Attribute: NISCOPE_ATTR_DATA_TRANSFER_MAXIMUM_BANDWIDTH

7.5. niscope module 477

NI Modular Instruments Python API Documentation, Release 1.4.1

data_transfer_preferred_packet_size

niscope.Session.data_transfer_preferred_packet_size
This property specifies the size of (read request|memory write) data payload. Due to alignment of
the data buffers, the hardware may not always generate a packet of this size.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Fetch:Advanced:Preferred Packet Size

• C Attribute: NISCOPE_ATTR_DATA_TRANSFER_PREFERRED_PACKET_SIZE

device_temperature

niscope.Session.device_temperature
Returns the temperature of the device in degrees Celsius from the onboard sensor.

Tip: This property can be set/get on specific instruments within your niscope.Session in-
stance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].device_temperature

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.device_temperature

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Device:Temperature

• C Attribute: NISCOPE_ATTR_DEVICE_TEMPERATURE

478 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

enabled_channels

niscope.Session.enabled_channels
Returns a comma-separated list of the channels enabled for the session in ascending order.

If no channels are enabled, this property returns an empty string, “”. If all channels are enabled, this
property enumerates all of the channels.

Because this property returns channels in ascending order, but the order in which you specify chan-
nels for the input is important, the value of this property may not necessarily reflect the order in
which NI-SCOPE performs certain actions.

Refer to Channel String Syntax in the NI High-Speed Digitizers Help for more information on the
effects of channel order in NI-SCOPE.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_ENABLED_CHANNELS

enable_dc_restore

niscope.Session.enable_dc_restore
Restores the video-triggered data retrieved by the digitizer to the video signal’s zero reference point.
Valid Values: True - Enable DC restore False - Disable DC restore

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Video:Enable DC Restore

• C Attribute: NISCOPE_ATTR_ENABLE_DC_RESTORE

enable_time_interleaved_sampling

niscope.Session.enable_time_interleaved_sampling
Specifies whether the digitizer acquires the waveform using multiple ADCs for the channel enabling

7.5. niscope module 479

NI Modular Instruments Python API Documentation, Release 1.4.1

a higher maximum real-time sampling rate. Valid Values: True (1) - Use multiple interleaved ADCs
on this channel False (0) - Use only this channel’s ADC to acquire data for this channel

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].enable_time_interleaved_sampling

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.enable_time_interleaved_sampling

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Enable Time Interleaved Sampling

• C Attribute: NISCOPE_ATTR_ENABLE_TIME_INTERLEAVED_SAMPLING

end_of_acquisition_event_output_terminal

niscope.Session.end_of_acquisition_event_output_terminal
Specifies the destination for the End of Acquisition Event. When this event is asserted, the digitizer
has completed sampling for all records. Consult your device documentation for a specific list of
valid destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:End of Acquisition:Output Terminal

• C Attribute: NISCOPE_ATTR_END_OF_ACQUISITION_EVENT_OUTPUT_TERMINAL

end_of_acquisition_event_terminal_name

niscope.Session.end_of_acquisition_event_terminal_name
Returns the fully qualified name for the End of Acquisition Event terminal. You can use this terminal
as the source for a trigger.

480 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:End of Acquisition:Terminal Name

• C Attribute: NISCOPE_ATTR_END_OF_ACQUISITION_EVENT_TERMINAL_NAME

end_of_record_event_output_terminal

niscope.Session.end_of_record_event_output_terminal
Specifies the destination for the End of Record Event. When this event is asserted, the digitizer has
completed sampling for the current record. Consult your device documentation for a specific list of
valid destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:End of Record:Output Terminal

• C Attribute: NISCOPE_ATTR_END_OF_RECORD_EVENT_OUTPUT_TERMINAL

end_of_record_event_terminal_name

niscope.Session.end_of_record_event_terminal_name
Returns the fully qualified name for the End of Record Event terminal. You can use this terminal as
the source for a trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:End of Record:Terminal Name

7.5. niscope module 481

NI Modular Instruments Python API Documentation, Release 1.4.1

• C Attribute: NISCOPE_ATTR_END_OF_RECORD_EVENT_TERMINAL_NAME

end_of_record_to_advance_trigger_holdoff

niscope.Session.end_of_record_to_advance_trigger_holdoff
End of Record to Advance Trigger Holdoff is the length of time (in seconds) that a device waits
between the completion of one record and the acquisition of pre-trigger samples for the next record.
During this time, the acquisition engine state delays the transition to the Wait for Advance Trigger
state, and will not store samples in onboard memory, accept an Advance Trigger, or trigger on the
input signal.. Supported Devices: NI 5185/5186

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:End of Record to Advance Trigger Holdoff

• C Attribute: NISCOPE_ATTR_END_OF_RECORD_TO_ADVANCE_TRIGGER_HOLDOFF

equalization_filter_enabled

niscope.Session.equalization_filter_enabled
Enables the onboard signal processing FIR block. This block is connected directly to the input sig-
nal. This filter is designed to compensate the input signal for artifacts introduced to the signal outside
of the digitizer. However, since this is a generic FIR filter any coefficients are valid. Coefficients
should be between +1 and -1 in value.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].equalization_filter_enabled

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.equalization_filter_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

482 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Onboard Signal Processing:Equalization:Equalization Filter Enabled

• C Attribute: NISCOPE_ATTR_EQUALIZATION_FILTER_ENABLED

equalization_num_coefficients

niscope.Session.equalization_num_coefficients
Returns the number of coefficients that the FIR filter can accept. This filter is designed to compensate
the input signal for artifacts introduced to the signal outside of the digitizer. However, since this is a
generic FIR filter any coefficients are valid. Coefficients should be between +1 and -1 in value.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].equalization_num_coefficients

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.equalization_num_coefficients

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Onboard Signal Processing:Equalization:Equalization Num Coeffi-
cients

• C Attribute: NISCOPE_ATTR_EQUALIZATION_NUM_COEFFICIENTS

exported_advance_trigger_output_terminal

niscope.Session.exported_advance_trigger_output_terminal
Specifies the destination to export the advance trigger. When the advance trigger is received, the
digitizer begins acquiring samples for the Nth record. Consult your device documentation for a
specific list of valid destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.5. niscope module 483

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Synchronization:Advance Trigger:Output Terminal

• C Attribute: NISCOPE_ATTR_EXPORTED_ADVANCE_TRIGGER_OUTPUT_TERMINAL

exported_ref_trigger_output_terminal

niscope.Session.exported_ref_trigger_output_terminal
Specifies the destination export for the reference (stop) trigger. Consult your device documentation
for a specific list of valid destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Output Terminal

• C Attribute: NISCOPE_ATTR_EXPORTED_REF_TRIGGER_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

niscope.Session.exported_start_trigger_output_terminal
Specifies the destination to export the Start trigger. When the start trigger is received, the digitizer
begins acquiring samples. Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Start Trigger (Acq. Arm):Output Terminal

• C Attribute: NISCOPE_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

flex_fir_antialias_filter_type

niscope.Session.flex_fir_antialias_filter_type
The NI 5922 flexible-resolution digitizer uses an onboard FIR lowpass antialias filter. Use this
property to select from several types of filters to achieve desired filtering characteristics.

484 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].flex_fir_antialias_filter_type

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.flex_fir_antialias_filter_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.FlexFIRAntialiasFilterType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Advanced:Flex FIR Antialias Filter Type

• C Attribute: NISCOPE_ATTR_FLEX_FIR_ANTIALIAS_FILTER_TYPE

fpga_bitfile_path

niscope.Session.fpga_bitfile_path
Gets the absolute file path to the bitfile loaded on the FPGA.

Note: Gets the absolute file path to the bitfile loaded on the FPGA.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Device:FPGA Bitfile Path

• C Attribute: NISCOPE_ATTR_FPGA_BITFILE_PATH

glitch_condition

niscope.Session.glitch_condition
Specifies whether the oscilloscope triggers on pulses of duration less than or greater than the value
specified by the niscope.Session.glitch_width property.

7.5. niscope module 485

NI Modular Instruments Python API Documentation, Release 1.4.1

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.GlitchCondition
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_GLITCH_CONDITION

glitch_polarity

niscope.Session.glitch_polarity
Specifies the polarity of pulses that trigger the oscilloscope for glitch triggering.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.GlitchPolarity
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_GLITCH_POLARITY

glitch_width

niscope.Session.glitch_width
Specifies the glitch duration, in seconds.

The oscilloscope triggers when it detects of pulse of duration either less than or greater than this
value depending on the value of the niscope.Session.glitch_condition property.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_GLITCH_WIDTH

486 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

high_pass_filter_frequency

niscope.Session.high_pass_filter_frequency
Specifies the frequency for the highpass filter in Hz. The device uses one of the valid values listed
below. If an invalid value is specified, no coercion occurs. The default value is 0. (PXIe-5164)
Valid Values: 0 90 450 Related topics: Digital Filtering

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].high_pass_filter_frequency

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.high_pass_filter_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Advanced:High Pass Filter Frequency

• C Attribute: NISCOPE_ATTR_HIGH_PASS_FILTER_FREQUENCY

horz_enforce_realtime

niscope.Session.horz_enforce_realtime
Indicates whether the digitizer enforces real-time measurements or allows equivalent-time measure-
ments.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Enforce Realtime

• C Attribute: NISCOPE_ATTR_HORZ_ENFORCE_REALTIME

7.5. niscope module 487

digitizers.chm::/Digital_Filtering_Overview.html

NI Modular Instruments Python API Documentation, Release 1.4.1

horz_min_num_pts

niscope.Session.horz_min_num_pts
Specifies the minimum number of points you require in the waveform record for each channel.
NI-SCOPE uses the value you specify to configure the record length that the digitizer uses for
waveform acquisition. niscope.Session.horz_record_length returns the actual record
length. Valid Values: 1 - available onboard memory

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Min Number of Points

• C Attribute: NISCOPE_ATTR_HORZ_MIN_NUM_PTS

horz_num_records

niscope.Session.horz_num_records
Specifies the number of records to acquire. Can be used for multi-record acquisition and single-
record acquisitions. Setting this to 1 indicates a single-record acquisition.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Number of Records

• C Attribute: NISCOPE_ATTR_HORZ_NUM_RECORDS

horz_record_length

niscope.Session.horz_record_length
Returns the actual number of points the digitizer acquires for each channel. The value is
equal to or greater than the minimum number of points you specify with niscope.Session.
horz_min_num_pts. Allocate a ViReal64 array of this size or greater to pass as the Wavefor-
mArray parameter of the Read and Fetch methods. This property is only valid after a call to the one
of the Configure Horizontal methods.

The following table lists the characteristics of this property.

488 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Actual Record Length

• C Attribute: NISCOPE_ATTR_HORZ_RECORD_LENGTH

horz_record_ref_position

niscope.Session.horz_record_ref_position
Specifies the position of the Reference Event in the waveform record. When the digitizer detects a
trigger, it waits the length of time the niscope.Session.trigger_delay_time property
specifies. The event that occurs when the delay time elapses is the Reference Event. The Reference
Event is relative to the start of the record and is a percentage of the record length. For example, the
value 50.0 corresponds to the center of the waveform record and 0.0 corresponds to the first element
in the waveform record. Valid Values: 0.0 - 100.0

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Reference Position

• C Attribute: NISCOPE_ATTR_HORZ_RECORD_REF_POSITION

horz_sample_rate

niscope.Session.horz_sample_rate
Returns the effective sample rate using the current configuration. The units are samples per second.
This property is only valid after a call to the one of the Configure Horizontal methods. Units: Hertz
(Samples / Second)

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities None

7.5. niscope module 489

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Actual Sample Rate

• C Attribute: NISCOPE_ATTR_HORZ_SAMPLE_RATE

horz_time_per_record

niscope.Session.horz_time_per_record
Specifies the length of time that corresponds to the record length. Units: Seconds

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Advanced:Time Per Record

• C Attribute: NISCOPE_ATTR_HORZ_TIME_PER_RECORD

input_clock_source

niscope.Session.input_clock_source
Specifies the input source for the PLL reference clock (the 1 MHz to 20 MHz clock on the NI 5122,
the 10 MHz clock for the NI 5112/5620/5621/5911) to which the digitizer will be phase-locked; for
the NI 5102, this is the source of the board clock.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Reference (Input) Clock Source

• C Attribute: NISCOPE_ATTR_INPUT_CLOCK_SOURCE

input_impedance

niscope.Session.input_impedance
Specifies the input impedance for the channel in Ohms.

490 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].input_impedance

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.input_impedance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Input Impedance

• C Attribute: NISCOPE_ATTR_INPUT_IMPEDANCE

instrument_firmware_revision

niscope.Session.instrument_firmware_revision
A string that contains the firmware revision information for the instrument you are currently using.

Tip: This property can be set/get on specific instruments within your niscope.Session in-
stance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].instrument_firmware_revision

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.instrument_firmware_revision

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Firmware Revision

• C Attribute: NISCOPE_ATTR_INSTRUMENT_FIRMWARE_REVISION

7.5. niscope module 491

NI Modular Instruments Python API Documentation, Release 1.4.1

instrument_manufacturer

niscope.Session.instrument_manufacturer
A string that contains the name of the instrument manufacturer.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Manufacturer

• C Attribute: NISCOPE_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

niscope.Session.instrument_model
A string that contains the model number of the current instrument.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Model

• C Attribute: NISCOPE_ATTR_INSTRUMENT_MODEL

interleaving_offset_correction_enabled

niscope.Session.interleaving_offset_correction_enabled
Enables the interleaving offset correction on the specified channel. The default value is TRUE.
Related topics: Timed Interleaved Sampling

Note: If disabled, warranted specifications are not guaranteed.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].interleaving_offset_correction_enabled

492 Chapter 7. License

digitizers.chm::/TimeInterleavedSampling.html

NI Modular Instruments Python API Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.interleaving_offset_correction_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Advanced:Interleaving Offset Correction Enabled

• C Attribute: NISCOPE_ATTR_INTERLEAVING_OFFSET_CORRECTION_ENABLED

io_resource_descriptor

niscope.Session.io_resource_descriptor
Indicates the resource descriptor the driver uses to identify the physical device. If you initialize
the driver with a logical name, this property contains the resource descriptor that corresponds to
the entry in the IVI Configuration utility. If you initialize the instrument driver with the resource
descriptor, this property contains that value.You can pass a logical name to niscope.Session.
Init() or niscope.Session.__init__(). The IVI Configuration utility must contain an
entry for the logical name. The logical name entry refers to a virtual instrument section in the IVI
Configuration file. The virtual instrument section specifies a physical device and initial user options.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Resource De-
scriptor

• C Attribute: NISCOPE_ATTR_IO_RESOURCE_DESCRIPTOR

is_probe_comp_on

niscope.Session.is_probe_comp_on

7.5. niscope module 493

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific instruments within your niscope.Session in-
stance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].is_probe_comp_on

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.is_probe_comp_on

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_IS_PROBE_COMP_ON

logical_name

niscope.Session.logical_name
A string containing the logical name you specified when opening the current IVI session. You can
pass a logical name to niscope.Session.Init() or niscope.Session.__init__().
The IVI Configuration utility must contain an entry for the logical name. The logical name entry
refers to a virtual instrument section in the IVI Configuration file. The virtual instrument section
specifies a physical device and initial user options.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name

• C Attribute: NISCOPE_ATTR_LOGICAL_NAME

494 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

master_enable

niscope.Session.master_enable
Specifies whether you want the device to be a master or a slave. The master typically originates the
trigger signal and clock sync pulse. For a standalone device, set this property to False.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Master Enable

• C Attribute: NISCOPE_ATTR_MASTER_ENABLE

max_input_frequency

niscope.Session.max_input_frequency
Specifies the bandwidth of the channel. Express this value as the fre-
quency at which the input circuitry attenuates the input signal by 3 dB.
The units are hertz. Defined Values: NISCOPE_VAL_BANDWIDTH_FULL
(-1.0) NISCOPE_VAL_BANDWIDTH_DEVICE_DEFAULT (0.0)
NISCOPE_VAL_20MHZ_BANDWIDTH (20000000.0) NISCOPE_VAL_100MHZ_BANDWIDTH
(100000000.0) NISCOPE_VAL_20MHZ_MAX_INPUT_FREQUENCY (20000000.0)
NISCOPE_VAL_100MHZ_MAX_INPUT_FREQUENCY (100000000.0)

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].max_input_frequency

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.max_input_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

7.5. niscope module 495

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Maximum Input Frequency

• C Attribute: NISCOPE_ATTR_MAX_INPUT_FREQUENCY

max_real_time_sampling_rate

niscope.Session.max_real_time_sampling_rate
Returns the maximum real time sample rate in Hz.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Maximum Real Time Sample Rate

• C Attribute: NISCOPE_ATTR_MAX_REAL_TIME_SAMPLING_RATE

max_ris_rate

niscope.Session.max_ris_rate
Returns the maximum sample rate in RIS mode in Hz.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Maximum RIS Rate

• C Attribute: NISCOPE_ATTR_MAX_RIS_RATE

meas_array_gain

niscope.Session.meas_array_gain
Every element of an array is multiplied by this scalar value during the Array Gain measurement.
Refer to ARRAY_GAIN for more information. Default: 1.0

496 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_array_gain

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_array_gain

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Array Gain

• C Attribute: NISCOPE_ATTR_MEAS_ARRAY_GAIN

meas_array_offset

niscope.Session.meas_array_offset
Every element of an array is added to this scalar value during the Array Offset measurement. Refer
to ARRAY_OFFSET for more information. Default: 0.0

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_array_offset

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_array_offset

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Array Offset

• C Attribute: NISCOPE_ATTR_MEAS_ARRAY_OFFSET

7.5. niscope module 497

NI Modular Instruments Python API Documentation, Release 1.4.1

meas_chan_high_ref_level

niscope.Session.meas_chan_high_ref_level
Stores the high reference level used in many scalar measurements. Different channels may have dif-
ferent reference levels. Do not use the IVI-defined, nonchannel-based properties such as niscope.
Session.meas_high_ref if you use this property to set various channels to different values.
Default: 90%

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_chan_high_ref_level

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_chan_high_ref_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Reference Levels:Channel Based High Ref
Level

• C Attribute: NISCOPE_ATTR_MEAS_CHAN_HIGH_REF_LEVEL

meas_chan_low_ref_level

niscope.Session.meas_chan_low_ref_level
Stores the low reference level used in many scalar measurements. Different channels may have dif-
ferent reference levels. Do not use the IVI-defined, nonchannel-based properties such as niscope.
Session.meas_low_ref if you use this property to set various channels to different values.
Default: 10%

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_chan_low_ref_level

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_chan_low_ref_level

The following table lists the characteristics of this property.

498 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Reference Levels:Channel Based Low Ref
Level

• C Attribute: NISCOPE_ATTR_MEAS_CHAN_LOW_REF_LEVEL

meas_chan_mid_ref_level

niscope.Session.meas_chan_mid_ref_level
Stores the mid reference level used in many scalar measurements. Different channels may have dif-
ferent reference levels. Do not use the IVI-defined, nonchannel-based properties such as niscope.
Session.meas_mid_ref if you use this property to set various channels to different values.
Default: 50%

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_chan_mid_ref_level

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_chan_mid_ref_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Reference Levels:Channel Based Mid Ref
Level

• C Attribute: NISCOPE_ATTR_MEAS_CHAN_MID_REF_LEVEL

meas_filter_center_freq

niscope.Session.meas_filter_center_freq
The center frequency in hertz for filters of type bandpass and bandstop. The width of the filter is
specified by niscope.Session.meas_filter_width, where the cutoff frequencies are the
center ± width. Default: 1.0e6 Hz

7.5. niscope module 499

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_center_freq

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_center_freq

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:Center Frequency

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_CENTER_FREQ

meas_filter_cutoff_freq

niscope.Session.meas_filter_cutoff_freq
Specifies the cutoff frequency in hertz for filters of type lowpass and highpass. The cutoff frequency
definition varies depending on the filter. Default: 1.0e6 Hz

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_cutoff_freq

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_cutoff_freq

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:Cutoff Frequency

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_CUTOFF_FREQ

500 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

meas_filter_order

niscope.Session.meas_filter_order
Specifies the order of an IIR filter. All positive integers are valid. Default: 2

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_order

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_order

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:IIR Order

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_ORDER

meas_filter_ripple

niscope.Session.meas_filter_ripple
Specifies the amount of ripple in the passband in units of decibels (positive values). Used only for
Chebyshev filters. The more ripple allowed gives a sharper cutoff for a given filter order. Default:
0.1 dB

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_ripple

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_ripple

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.5. niscope module 501

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Waveform Measurement:Filter:Ripple

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_RIPPLE

meas_filter_taps

niscope.Session.meas_filter_taps
Defines the number of taps (coefficients) for an FIR filter. Default: 25

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_taps

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_taps

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:FIR Taps

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_TAPS

meas_filter_transient_waveform_percent

niscope.Session.meas_filter_transient_waveform_percent
The percentage (0 - 100%) of the IIR filtered waveform to eliminate from the beginning of the
waveform. This allows eliminating the transient portion of the waveform that is undefined due to the
assumptions necessary at the boundary condition. Default: 20.0%

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_transient_waveform_percent

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_transient_waveform_percent

The following table lists the characteristics of this property.

502 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:Percent Waveform Transient

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_TRANSIENT_WAVEFORM_PERCENT

meas_filter_type

niscope.Session.meas_filter_type
Specifies the type of filter, for both IIR and FIR filters. The allowed values are the
following: · NISCOPE_VAL_MEAS_LOWPASS · NISCOPE_VAL_MEAS_HIGHPASS
· NISCOPE_VAL_MEAS_BANDPASS · NISCOPE_VAL_MEAS_BANDSTOP Default:
NISCOPE_VAL_MEAS_LOWPASS

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_type

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.FilterType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:Type

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_TYPE

7.5. niscope module 503

NI Modular Instruments Python API Documentation, Release 1.4.1

meas_filter_width

niscope.Session.meas_filter_width
Specifies the width of bandpass and bandstop type filters in hertz. The cutoff frequencies occur at
niscope.Session.meas_filter_center_freq ± one-half width. Default: 1.0e3 Hz

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_width

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:Width

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_WIDTH

meas_fir_filter_window

niscope.Session.meas_fir_filter_window
Specifies the FIR window type. The possible choices are: NONE HANNING_WINDOW
HAMMING_WINDOW TRIANGLE_WINDOW FLAT_TOP_WINDOW BLACKMAN_WINDOW The
symmetric windows are applied to the FIR filter coefficients to limit passband ripple in FIR filters.
Default: NONE

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_fir_filter_window

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_fir_filter_window

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.FIRFilterWindow
Permissions read-write
Repeated Capabilities channels

504 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:FIR Window

• C Attribute: NISCOPE_ATTR_MEAS_FIR_FILTER_WINDOW

meas_high_ref

niscope.Session.meas_high_ref
The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_MEAS_HIGH_REF

meas_hysteresis_percent

niscope.Session.meas_hysteresis_percent
Digital hysteresis that is used in several of the scalar waveform measurements. This property speci-
fies the percentage of the full-scale vertical range for the hysteresis window size. Default: 2%

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_hysteresis_percent

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_hysteresis_percent

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Hysteresis Percent

• C Attribute: NISCOPE_ATTR_MEAS_HYSTERESIS_PERCENT

7.5. niscope module 505

NI Modular Instruments Python API Documentation, Release 1.4.1

meas_interpolation_sampling_factor

niscope.Session.meas_interpolation_sampling_factor
The new number of points for polynomial interpolation is the sampling factor times the input
number of points. For example, if you acquire 1,000 points with the digitizer and set this prop-
erty to 2.5, calling niscope.Session.FetchWaveformMeasurementArray() with the
POLYNOMIAL_INTERPOLATION measurement resamples the waveform to 2,500 points. Default:
2.0

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_interpolation_sampling_factor

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_interpolation_sampling_factor

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Interpolation:Sampling Factor

• C Attribute: NISCOPE_ATTR_MEAS_INTERPOLATION_SAMPLING_FACTOR

meas_last_acq_histogram_size

niscope.Session.meas_last_acq_histogram_size
Specifies the size (that is, the number of bins) in the last acquisition histogram. This histogram
is used to determine several scalar measurements, most importantly voltage low and voltage high.
Default: 256

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_last_acq_histogram_size

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_last_acq_histogram_size

The following table lists the characteristics of this property.

506 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Last Acq. Histogram Size

• C Attribute: NISCOPE_ATTR_MEAS_LAST_ACQ_HISTOGRAM_SIZE

meas_low_ref

niscope.Session.meas_low_ref
The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_MEAS_LOW_REF

meas_mid_ref

niscope.Session.meas_mid_ref
The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_MEAS_MID_REF

meas_other_channel

niscope.Session.meas_other_channel
Specifies the second channel for two-channel measurements, such as ADD_CHANNELS. If process-
ing steps are registered with this channel, the processing is done before the waveform is used in a
two-channel measurement. Default: ‘0’

7.5. niscope module 507

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_other_channel

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_other_channel

The following table lists the characteristics of this property.

Characteristic Value
Datatype str or int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Other Channel

• C Attribute: NISCOPE_ATTR_MEAS_OTHER_CHANNEL

meas_percentage_method

niscope.Session.meas_percentage_method
Specifies the method used to map percentage reference units to voltages for the reference.
Possible values are: NISCOPE_VAL_MEAS_LOW_HIGH NISCOPE_VAL_MEAS_MIN_MAX
NISCOPE_VAL_MEAS_BASE_TOP Default: NISCOPE_VAL_MEAS_BASE_TOP

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_percentage_method

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_percentage_method

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.PercentageMethod
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

508 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Waveform Measurement:Reference Levels:Percentage Units Method

• C Attribute: NISCOPE_ATTR_MEAS_PERCENTAGE_METHOD

meas_polynomial_interpolation_order

niscope.Session.meas_polynomial_interpolation_order
Specifies the polynomial order used for the polynomial interpolation measurement. For example, an
order of 1 is linear interpolation whereas an order of 2 specifies parabolic interpolation. Any positive
integer is valid. Default: 1

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_polynomial_interpolation_order

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_polynomial_interpolation_order

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Interpolation:Polynomial Interpolation Or-
der

• C Attribute: NISCOPE_ATTR_MEAS_POLYNOMIAL_INTERPOLATION_ORDER

meas_ref_level_units

niscope.Session.meas_ref_level_units
Specifies the units of the reference levels. NISCOPE_VAL_MEAS_VOLTAGE–Specifies that the ref-
erence levels are given in units of volts NISCOPE_VAL_MEAS_PERCENTAGE–Percentage units,
where the measurements voltage low and voltage high represent 0% and 100%, respectively. De-
fault: NISCOPE_VAL_MEAS_PERCENTAGE

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_ref_level_units

7.5. niscope module 509

NI Modular Instruments Python API Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_ref_level_units

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.RefLevelUnits
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Reference Levels:Units

• C Attribute: NISCOPE_ATTR_MEAS_REF_LEVEL_UNITS

meas_time_histogram_high_time

niscope.Session.meas_time_histogram_high_time
Specifies the highest time value included in the multiple acquisition time histogram. The units are
always seconds. Default: 5.0e-4 seconds

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_high_time

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_high_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Time Histogram:High Time

• C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_HIGH_TIME

meas_time_histogram_high_volts

niscope.Session.meas_time_histogram_high_volts
Specifies the highest voltage value included in the multiple-acquisition time histogram. The units
are always volts. Default: 10.0 V

510 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_high_volts

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_high_volts

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Time Histogram:High Volts

• C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_HIGH_VOLTS

meas_time_histogram_low_time

niscope.Session.meas_time_histogram_low_time
Specifies the lowest time value included in the multiple-acquisition time histogram. The units are
always seconds. Default: -5.0e-4 seconds

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_low_time

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_low_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Time Histogram:Low Time

• C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_LOW_TIME

7.5. niscope module 511

NI Modular Instruments Python API Documentation, Release 1.4.1

meas_time_histogram_low_volts

niscope.Session.meas_time_histogram_low_volts
Specifies the lowest voltage value included in the multiple acquisition time histogram. The units are
always volts. Default: -10.0 V

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_low_volts

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_low_volts

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Time Histogram:Low Volts

• C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_LOW_VOLTS

meas_time_histogram_size

niscope.Session.meas_time_histogram_size
Determines the multiple acquisition voltage histogram size. The size is set during the first call to
a time histogram measurement after clearing the measurement history with niscope.Session.
clear_waveform_measurement_stats(). Default: 256

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_size

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_size

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

512 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Time Histogram:Size

• C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_SIZE

meas_voltage_histogram_high_volts

niscope.Session.meas_voltage_histogram_high_volts
Specifies the highest voltage value included in the multiple acquisition voltage histogram. The units
are always volts. Default: 10.0 V

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_voltage_histogram_high_volts

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_voltage_histogram_high_volts

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Voltage Histogram:High Volts

• C Attribute: NISCOPE_ATTR_MEAS_VOLTAGE_HISTOGRAM_HIGH_VOLTS

meas_voltage_histogram_low_volts

niscope.Session.meas_voltage_histogram_low_volts
Specifies the lowest voltage value included in the multiple-acquisition voltage histogram. The units
are always volts. Default: -10.0 V

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_voltage_histogram_low_volts

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_voltage_histogram_low_volts

The following table lists the characteristics of this property.

7.5. niscope module 513

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Voltage Histogram:Low Volts

• C Attribute: NISCOPE_ATTR_MEAS_VOLTAGE_HISTOGRAM_LOW_VOLTS

meas_voltage_histogram_size

niscope.Session.meas_voltage_histogram_size
Determines the multiple acquisition voltage histogram size. The size is set the first time a voltage his-
togram measurement is called after clearing the measurement history with the method niscope.
Session.clear_waveform_measurement_stats(). Default: 256

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_voltage_histogram_size

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_voltage_histogram_size

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Voltage Histogram:Size

• C Attribute: NISCOPE_ATTR_MEAS_VOLTAGE_HISTOGRAM_SIZE

min_sample_rate

niscope.Session.min_sample_rate
Specify the sampling rate for the acquisition in Samples per second. Valid Values: The combination
of sampling rate and min record length must allow the digitizer to sample at a valid sampling rate
for the acquisition type specified in niscope.Session.ConfigureAcquisition() and
not require more memory than the onboard memory module allows.

514 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Min Sample Rate

• C Attribute: NISCOPE_ATTR_MIN_SAMPLE_RATE

onboard_memory_size

niscope.Session.onboard_memory_size
Returns the total combined amount of onboard memory for all channels in bytes.

Tip: This property can be set/get on specific instruments within your niscope.Session in-
stance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].onboard_memory_size

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.onboard_memory_size

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Memory Size

• C Attribute: NISCOPE_ATTR_ONBOARD_MEMORY_SIZE

output_clock_source

niscope.Session.output_clock_source
Specifies the output source for the 10 MHz clock to which another digitizer’s sample clock can be
phased-locked.

7.5. niscope module 515

NI Modular Instruments Python API Documentation, Release 1.4.1

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Output Clock Source

• C Attribute: NISCOPE_ATTR_OUTPUT_CLOCK_SOURCE

pll_lock_status

niscope.Session.pll_lock_status
If TRUE, the PLL has remained locked to the external reference clock since it was last checked. If
FALSE, the PLL has become unlocked from the external reference clock since it was last checked.

Tip: This property can be set/get on specific instruments within your niscope.Session in-
stance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].pll_lock_status

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.pll_lock_status

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:PLL Lock Status

• C Attribute: NISCOPE_ATTR_PLL_LOCK_STATUS

points_done

niscope.Session.points_done
Actual number of samples acquired in the record specified by niscope.Session.
fetch_record_number from the niscope.Session.fetch_relative_to and
niscope.Session.fetch_offset properties.

The following table lists the characteristics of this property.

516 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Fetch:Points Done

• C Attribute: NISCOPE_ATTR_POINTS_DONE

poll_interval

niscope.Session.poll_interval
Specifies the poll interval in milliseconds to use during RIS acquisitions to check whether the acqui-
sition is complete.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_POLL_INTERVAL

probe_attenuation

niscope.Session.probe_attenuation
Specifies the probe attenuation for the input channel. For example, for a 10:1 probe, set this property
to 10.0. Valid Values: Any positive real number. Typical values are 1, 10, and 100.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].probe_attenuation

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.probe_attenuation

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

7.5. niscope module 517

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Probe Attenuation

• C Attribute: NISCOPE_ATTR_PROBE_ATTENUATION

ready_for_advance_event_output_terminal

niscope.Session.ready_for_advance_event_output_terminal
Specifies the destination for the Ready for Advance Event. When this event is asserted, the digitizer
is ready to receive an advance trigger. Consult your device documentation for a specific list of valid
destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Ready for Advance:Output Terminal

• C Attribute: NISCOPE_ATTR_READY_FOR_ADVANCE_EVENT_OUTPUT_TERMINAL

ready_for_advance_event_terminal_name

niscope.Session.ready_for_advance_event_terminal_name
Returns the fully qualified name for the Ready for Advance Event terminal. You can use this terminal
as the source for a trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Ready for Advance:Terminal Name

• C Attribute: NISCOPE_ATTR_READY_FOR_ADVANCE_EVENT_TERMINAL_NAME

518 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

ready_for_ref_event_output_terminal

niscope.Session.ready_for_ref_event_output_terminal
Specifies the destination for the Ready for Reference Event. When this event is asserted, the digitizer
is ready to receive a reference trigger. Consult your device documentation for a specific list of valid
destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Ready for Reference:Output Terminal

• C Attribute: NISCOPE_ATTR_READY_FOR_REF_EVENT_OUTPUT_TERMINAL

ready_for_ref_event_terminal_name

niscope.Session.ready_for_ref_event_terminal_name
Returns the fully qualified name for the Ready for Reference Event terminal. You can use this
terminal as the source for a trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Ready for Reference:Terminal Name

• C Attribute: NISCOPE_ATTR_READY_FOR_REF_EVENT_TERMINAL_NAME

ready_for_start_event_output_terminal

niscope.Session.ready_for_start_event_output_terminal
Specifies the destination for the Ready for Start Event. When this event is asserted, the digitizer
is ready to receive a start trigger. Consult your device documentation for a specific list of valid
destinations.

The following table lists the characteristics of this property.

7.5. niscope module 519

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Ready for Start:Output Terminal

• C Attribute: NISCOPE_ATTR_READY_FOR_START_EVENT_OUTPUT_TERMINAL

ready_for_start_event_terminal_name

niscope.Session.ready_for_start_event_terminal_name
Returns the fully qualified name for the Ready for Start Event terminal. You can use this terminal as
the source for a trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Ready for Start:Terminal Name

• C Attribute: NISCOPE_ATTR_READY_FOR_START_EVENT_TERMINAL_NAME

records_done

niscope.Session.records_done
Specifies the number of records that have been completely acquired.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Fetch:Records Done

• C Attribute: NISCOPE_ATTR_RECORDS_DONE

520 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

record_arm_source

niscope.Session.record_arm_source
Specifies the record arm source.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Record Arm Source

• C Attribute: NISCOPE_ATTR_RECORD_ARM_SOURCE

ref_clk_rate

niscope.Session.ref_clk_rate
If niscope.Session.input_clock_source is an external source, this property specifies
the frequency of the input, or reference clock, to which the internal sample clock timebase is syn-
chronized. The frequency is in hertz.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Reference Clock Rate

• C Attribute: NISCOPE_ATTR_REF_CLK_RATE

ref_trigger_detector_location

niscope.Session.ref_trigger_detector_location
Indicates which analog compare circuitry to use on the device.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.RefTriggerDetectorLocation
Permissions read-write
Repeated Capabilities None

7.5. niscope module 521

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Onboard Signal Processing:Ref Trigger Detection Loca-
tion

• C Attribute: NISCOPE_ATTR_REF_TRIGGER_DETECTOR_LOCATION

ref_trigger_minimum_quiet_time

niscope.Session.ref_trigger_minimum_quiet_time
The amount of time the trigger circuit must not detect a signal above the trigger level before the
trigger is armed. This property is useful for triggering at the beginning and not in the middle of
signal bursts.

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Onboard Signal Processing:Ref Trigger Min Quiet Time

• C Attribute: NISCOPE_ATTR_REF_TRIGGER_MINIMUM_QUIET_TIME

ref_trigger_terminal_name

niscope.Session.ref_trigger_terminal_name
Returns the fully qualified name for the Reference Trigger terminal. You can use this terminal as the
source for another trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Terminal Name

• C Attribute: NISCOPE_ATTR_REF_TRIGGER_TERMINAL_NAME

522 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

ref_trig_tdc_enable

niscope.Session.ref_trig_tdc_enable
This property controls whether the TDC is used to compute an accurate trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Advanced:Enable TDC

• C Attribute: NISCOPE_ATTR_REF_TRIG_TDC_ENABLE

resolution

niscope.Session.resolution
Indicates the bit width of valid data (as opposed to padding bits) in the acquired waveform. Compare
to niscope.Session.binary_sample_width.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Acquisition:Resolution

• C Attribute: NISCOPE_ATTR_RESOLUTION

ris_in_auto_setup_enable

niscope.Session.ris_in_auto_setup_enable
Indicates whether the digitizer should use RIS sample rates when searching for a frequency in au-
tosetup. Valid Values: True (1) - Use RIS sample rates in autosetup False (0) - Do not use RIS
sample rates in autosetup

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

7.5. niscope module 523

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Acquisition:Advanced:Enable RIS in Auto Setup

• C Attribute: NISCOPE_ATTR_RIS_IN_AUTO_SETUP_ENABLE

ris_method

niscope.Session.ris_method
Specifies the algorithm for random-interleaved sampling, which is used if the sample rate exceeds
the value of niscope.Session.max_real_time_sampling_rate.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.RISMethod
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:RIS Method

• C Attribute: NISCOPE_ATTR_RIS_METHOD

ris_num_averages

niscope.Session.ris_num_averages
The number of averages for each bin in an RIS acquisition. The number of averages times the
oversampling factor is the minimum number of real-time acquisitions necessary to reconstruct the
RIS waveform. Averaging is useful in RIS because the trigger times are not evenly spaced, so
adjacent points in the reconstructed waveform not be accurately spaced. By averaging, the errors in
both time and voltage are smoothed.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:RIS Num Avg

• C Attribute: NISCOPE_ATTR_RIS_NUM_AVERAGES

524 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

runt_high_threshold

niscope.Session.runt_high_threshold
Specifies the higher of two thresholds, in volts, that bound the vertical range to examine for runt
pulses.

The runt threshold that causes the oscilloscope to trigger depends on the runt polarity you select.
Refer to the niscope.Session.runt_polarity property for more information.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_RUNT_HIGH_THRESHOLD

runt_low_threshold

niscope.Session.runt_low_threshold
Specifies the lower of two thresholds, in volts, that bound the vertical range to examine for runt
pulses.

The runt threshold that causes the oscilloscope to trigger depends on the runt polarity you select.
Refer to the niscope.Session.runt_polarity property for more information.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_RUNT_LOW_THRESHOLD

runt_polarity

niscope.Session.runt_polarity
Specifies the polarity of pulses that trigger the oscilloscope for runt triggering.

When set to POSITIVE, the oscilloscope triggers when the following conditions are met:

• The leading edge of a pulse crosses the niscope.Session.runt_low_threshold
in a positive direction;

7.5. niscope module 525

NI Modular Instruments Python API Documentation, Release 1.4.1

• The trailing edge of the pulse crosses the niscope.Session.
runt_low_threshold in a negative direction; and

• No portion of the pulse crosses the niscope.Session.runt_high_threshold.

When set to NEGATIVE, the oscilloscope triggers when the following conditions are met:

• The leading edge of a pulse crosses the niscope.Session.
runt_high_threshold in a negative direction;

• The trailing edge of the pulse crosses the niscope.Session.
runt_high_threshold in a positive direction; and

• No portion of the pulse crosses the niscope.Session.runt_low_threshold.

When set to EITHER, the oscilloscope triggers in either case.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.RuntPolarity
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_RUNT_POLARITY

runt_time_condition

niscope.Session.runt_time_condition
Specifies whether runt triggers are time qualified, and if so, how the oscilloscope triggers in rela-
tion to the duration range bounded by the niscope.Session.runt_time_low_limit and
niscope.Session.runt_time_high_limit properties.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.RuntTimeCondition
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_RUNT_TIME_CONDITION

runt_time_high_limit

niscope.Session.runt_time_high_limit
Specifies, in seconds, the high runt threshold time.

526 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

This property sets the upper bound on the duration of runt pulses that may trigger the oscilloscope.
The niscope.Session.runt_time_condition property determines how the oscilloscope
triggers in relation to the runt time limits.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_RUNT_TIME_HIGH_LIMIT

runt_time_low_limit

niscope.Session.runt_time_low_limit
Specifies, in seconds, the low runt threshold time.

This property sets the lower bound on the duration of runt pulses that may trigger the oscilloscope.
The niscope.Session.runt_time_condition property determines how the oscilloscope
triggers in relation to the runt time limits.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_RUNT_TIME_LOW_LIMIT

sample_mode

niscope.Session.sample_mode
Indicates the sample mode the digitizer is currently using.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.5. niscope module 527

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Acquisition:Sample Mode

• C Attribute: NISCOPE_ATTR_SAMPLE_MODE

samp_clk_timebase_div

niscope.Session.samp_clk_timebase_div
If niscope.Session.samp_clk_timebase_src is an external source, specifies the ratio
between the sample clock timebase rate and the actual sample rate, which can be slower.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Sample Clock Timebase Divisor

• C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_DIV

sample_clock_timebase_multiplier

niscope.Session.sample_clock_timebase_multiplier
If niscope.Session.samp_clk_timebase_src is an external source, this property spec-
ifies the ratio between the niscope.Session.samp_clk_timebase_rate and the actual
sample rate, which can be higher. This property can be used in conjunction with niscope.
Session.samp_clk_timebase_div . Some devices use multiple ADCs to sample the same
channel at an effective sample rate that is greater than the specified clock rate. When providing an
external sample clock use this property to indicate when you want a higher sample rate. Valid values
for this property vary by device and current configuration.

Related topics: Sample Clock

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_MULT

528 Chapter 7. License

digitizers.chm::/Sample_Clock.html

NI Modular Instruments Python API Documentation, Release 1.4.1

samp_clk_timebase_rate

niscope.Session.samp_clk_timebase_rate
If niscope.Session.samp_clk_timebase_src is an external source, specifies the fre-
quency in hertz of the external clock used as the timebase source.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Sample Clock Timebase Rate

• C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_RATE

samp_clk_timebase_src

niscope.Session.samp_clk_timebase_src
Specifies the source of the sample clock timebase, which is the timebase used to control wave-
form sampling. The actual sample rate may be the timebase itself or a divided version of the time-
base, depending on the niscope.Session.min_sample_rate (for internal sources) or the
niscope.Session.samp_clk_timebase_div (for external sources).

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Sample Clock Timebase Source

• C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_SRC

serial_number

niscope.Session.serial_number
Returns the serial number of the device.

Tip: This property can be set/get on specific instruments within your niscope.Session in-
stance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

7.5. niscope module 529

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.instruments[...].serial_number

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.serial_number

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Device:Serial Number

• C Attribute: NISCOPE_ATTR_SERIAL_NUMBER

accessory_gain

niscope.Session.accessory_gain
Returns the calibration gain for the current device configuration.

Related topics: NI 5122/5124/5142 Calibration

Note: This property is supported only by the NI PXI-5900 differential amplifier.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].accessory_gain

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.accessory_gain

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_SIGNAL_COND_GAIN

530 Chapter 7. License

digitizers.chm::/5122_Calibration.html

NI Modular Instruments Python API Documentation, Release 1.4.1

accessory_offset

niscope.Session.accessory_offset
Returns the calibration offset for the current device configuration.

Related topics: NI 5122/5124/5142 Calibration

Note: This property is supported only by the NI PXI-5900 differential amplifier.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].accessory_offset

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.accessory_offset

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_SIGNAL_COND_OFFSET

simulate

niscope.Session.simulate
Specifies whether or not to simulate instrument driver I/O operations. If simulation is enabled,
instrument driver methods perform range checking and call Ivi_GetAttribute and Ivi_SetAttribute
methods, but they do not perform instrument I/O. For output parameters that represent instrument
data, the instrument driver methods return calculated values. The default value is False. Use the
niscope.Session.__init__() method to override this value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:User Options:Simulate

• C Attribute: NISCOPE_ATTR_SIMULATE

7.5. niscope module 531

digitizers.chm::/5122_Calibration.html

NI Modular Instruments Python API Documentation, Release 1.4.1

specific_driver_description

niscope.Session.specific_driver_description
A string that contains a brief description of the specific driver

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Description

• C Attribute: NISCOPE_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_revision

niscope.Session.specific_driver_revision
A string that contains additional version information about this instrument driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Revision

• C Attribute: NISCOPE_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

niscope.Session.specific_driver_vendor
A string that contains the name of the vendor that supplies this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

532 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Vendor

• C Attribute: NISCOPE_ATTR_SPECIFIC_DRIVER_VENDOR

start_to_ref_trigger_holdoff

niscope.Session.start_to_ref_trigger_holdoff
Pass the length of time you want the digitizer to wait after it starts acquiring data until the digitizer
enables the trigger system to detect a reference (stop) trigger. Units: Seconds Valid Values: 0.0 -
171.8

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Start To Ref Trigger Holdoff

• C Attribute: NISCOPE_ATTR_START_TO_REF_TRIGGER_HOLDOFF

start_trigger_terminal_name

niscope.Session.start_trigger_terminal_name
Returns the fully qualified name for the Start Trigger terminal. You can use this terminal as the
source for another trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Start Trigger (Acq. Arm):Terminal Name

• C Attribute: NISCOPE_ATTR_START_TRIGGER_TERMINAL_NAME

7.5. niscope module 533

NI Modular Instruments Python API Documentation, Release 1.4.1

supported_instrument_models

niscope.Session.supported_instrument_models
A string that contains a comma-separated list of the instrument model numbers supported by this
driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Supported Instrument
Models

• C Attribute: NISCOPE_ATTR_SUPPORTED_INSTRUMENT_MODELS

trigger_auto_triggered

niscope.Session.trigger_auto_triggered
Specifies if the last acquisition was auto triggered. You can use the Auto Triggered property to find
out if the last acquisition was triggered.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Auto Triggered

• C Attribute: NISCOPE_ATTR_TRIGGER_AUTO_TRIGGERED

trigger_coupling

niscope.Session.trigger_coupling
Specifies how the digitizer couples the trigger source. This property affects instrument operation
only when niscope.Session.trigger_type is set to EDGE, HYSTERESIS, or WINDOW .

The following table lists the characteristics of this property.

534 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype enums.TriggerCoupling
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Coupling

• C Attribute: NISCOPE_ATTR_TRIGGER_COUPLING

trigger_delay_time

niscope.Session.trigger_delay_time
Specifies the trigger delay time in seconds. The trigger delay time is the length of time the digi-
tizer waits after it receives the trigger. The event that occurs when the trigger delay elapses is the
Reference Event. Valid Values: 0.0 - 171.8

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Delay

• C Attribute: NISCOPE_ATTR_TRIGGER_DELAY_TIME

trigger_holdoff

niscope.Session.trigger_holdoff
Specifies the length of time (in seconds) the digitizer waits after detecting a trigger before en-
abling the trigger subsystem to detect another trigger. This property affects instrument opera-
tion only when the digitizer requires multiple acquisitions to build a complete waveform. The
digitizer requires multiple waveform acquisitions when it uses equivalent-time sampling or when
the digitizer is configured for a multi-record acquisition through a call to niscope.Session.
configure_horizontal_timing(). Valid Values: 0.0 - 171.8

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

7.5. niscope module 535

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Holdoff

• C Attribute: NISCOPE_ATTR_TRIGGER_HOLDOFF

trigger_hysteresis

niscope.Session.trigger_hysteresis
Specifies the size of the hysteresis window on either side of the trigger level. The digitizer triggers
when the trigger signal passes through the threshold you specify with the Trigger Level parame-
ter, has the slope you specify with the Trigger Slope parameter, and passes through the hysteresis
window that you specify with this parameter.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Hysteresis

• C Attribute: NISCOPE_ATTR_TRIGGER_HYSTERESIS

trigger_impedance

niscope.Session.trigger_impedance
Specifies the input impedance for the external analog trigger channel in Ohms. Valid Values: 50 -
50 ohms 1000000 - 1 mega ohm

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Impedance

• C Attribute: NISCOPE_ATTR_TRIGGER_IMPEDANCE

536 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

trigger_level

niscope.Session.trigger_level
Specifies the voltage threshold for the trigger subsystem. The units are volts. This property af-
fects instrument behavior only when the niscope.Session.trigger_type is set to EDGE,
HYSTERESIS, or WINDOW . Valid Values: The values of the range and offset parameters in
niscope.Session.configure_vertical() determine the valid range for the trigger level
on the channel you use as the Trigger Source. The value you pass for this parameter must meet the
following conditions:

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Level

• C Attribute: NISCOPE_ATTR_TRIGGER_LEVEL

trigger_modifier

niscope.Session.trigger_modifier
Configures the device to automatically complete an acquisition if a trigger has not been received.
Valid Values: None (1) - Normal triggering Auto Trigger (2) - Auto trigger acquisition if no trigger
arrives

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerModifier
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Modifier

• C Attribute: NISCOPE_ATTR_TRIGGER_MODIFIER

trigger_slope

niscope.Session.trigger_slope
Specifies if a rising or a falling edge triggers the digitizer. This property affects instrument operation
only when niscope.Session.trigger_type is set to EDGE, HYSTERESIS, or WINDOW .

The following table lists the characteristics of this property.

7.5. niscope module 537

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype enums.TriggerSlope
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Slope

• C Attribute: NISCOPE_ATTR_TRIGGER_SLOPE

trigger_source

niscope.Session.trigger_source
Specifies the source the digitizer monitors for the trigger event.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Source

• C Attribute: NISCOPE_ATTR_TRIGGER_SOURCE

trigger_type

niscope.Session.trigger_type
Specifies the type of trigger to use.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Type

• C Attribute: NISCOPE_ATTR_TRIGGER_TYPE

538 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

trigger_window_high_level

niscope.Session.trigger_window_high_level
Pass the upper voltage threshold you want the digitizer to use for window triggering.
The digitizer triggers when the trigger signal enters or leaves the window you spec-
ify with niscope.Session.trigger_window_low_level and niscope.Session.
trigger_window_high_level Valid Values: The values of the Vertical Range and Verti-
cal Offset parameters in niscope.Session.configure_vertical() determine the valid
range for the High Window Level on the channel you use as the Trigger Source parameter in
niscope.Session.ConfigureTriggerSource(). The value you pass for this parame-
ter must meet the following conditions. High Trigger Level <= Vertical Range/2 + Vertical Offset
High Trigger Level >= (-Vertical Range/2) + Vertical Offset High Trigger Level > Low Trigger Level

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Window:High Level

• C Attribute: NISCOPE_ATTR_TRIGGER_WINDOW_HIGH_LEVEL

trigger_window_low_level

niscope.Session.trigger_window_low_level
Pass the lower voltage threshold you want the digitizer to use for window triggering.
The digitizer triggers when the trigger signal enters or leaves the window you spec-
ify with niscope.Session.trigger_window_low_level and niscope.Session.
trigger_window_high_level. Units: Volts Valid Values: The values of the Vertical Range
and Vertical Offset parameters in niscope.Session.configure_vertical() determine
the valid range for the Low Window Level on the channel you use as the Trigger Source parameter
in niscope.Session.ConfigureTriggerSource(). The value you pass for this param-
eter must meet the following conditions. Low Trigger Level <= Vertical Range/2 + Vertical Offset
Low Trigger Level >= (-Vertical Range/2) + Vertical Offset Low Trigger Level < High Trigger Level

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

7.5. niscope module 539

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Window:Low Level

• C Attribute: NISCOPE_ATTR_TRIGGER_WINDOW_LOW_LEVEL

trigger_window_mode

niscope.Session.trigger_window_mode
Specifies whether you want a trigger to occur when the signal enters or leaves the window spec-
ified by niscope.Session.trigger_window_low_level, or niscope.Session.
trigger_window_high_level.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerWindowMode
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Window:Window Mode

• C Attribute: NISCOPE_ATTR_TRIGGER_WINDOW_MODE

tv_trigger_event

niscope.Session.tv_trigger_event
Specifies the condition in the video signal that causes the digitizer to trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.VideoTriggerEvent
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Video:Event

• C Attribute: NISCOPE_ATTR_TV_TRIGGER_EVENT

tv_trigger_line_number

niscope.Session.tv_trigger_line_number
Specifies the line on which to trigger, if niscope.Session.tv_trigger_event is set to

540 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

line number. The valid ranges of the property depend on the signal format selected. M-NTSC has a
valid range of 1 to 525. B/G-PAL, SECAM, 576i, and 576p have a valid range of 1 to 625. 720p has
a valid range of 1 to 750. 1080i and 1080p have a valid range of 1125.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Video:Line Number

• C Attribute: NISCOPE_ATTR_TV_TRIGGER_LINE_NUMBER

tv_trigger_polarity

niscope.Session.tv_trigger_polarity
Specifies whether the video signal sync is positive or negative.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.VideoPolarity
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Video:Polarity

• C Attribute: NISCOPE_ATTR_TV_TRIGGER_POLARITY

tv_trigger_signal_format

niscope.Session.tv_trigger_signal_format
Specifies the type of video signal, such as NTSC, PAL, or SECAM.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.VideoSignalFormat
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.5. niscope module 541

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Triggering:Trigger Video:Signal Format

• C Attribute: NISCOPE_ATTR_TV_TRIGGER_SIGNAL_FORMAT

use_spec_initial_x

niscope.Session.use_spec_initial_x
The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_USE_SPEC_INITIAL_X

vertical_coupling

niscope.Session.vertical_coupling
Specifies how the digitizer couples the input signal for the channel. When input coupling changes,
the input stage takes a finite amount of time to settle.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].vertical_coupling

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.vertical_coupling

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.VerticalCoupling
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Vertical Coupling

• C Attribute: NISCOPE_ATTR_VERTICAL_COUPLING

542 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

vertical_offset

niscope.Session.vertical_offset
Specifies the location of the center of the range. The value is with respect to ground and is in volts.
For example, to acquire a sine wave that spans between 0.0 and 10.0 V, set this property to 5.0 V.

Note: This property is not supported by all digitizers.Refer to the NI High-Speed Digitizers Help
for a list of vertical offsets supported for each device.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].vertical_offset

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.vertical_offset

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Vertical Offset

• C Attribute: NISCOPE_ATTR_VERTICAL_OFFSET

vertical_range

niscope.Session.vertical_range
Specifies the absolute value of the input range for a channel in volts. For example, to acquire a
sine wave that spans between -5 and +5 V, set this property to 10.0 V. Refer to the NI High-Speed
Digitizers Help for a list of supported vertical ranges for each device. If the specified range is not
supported by a device, the value is coerced up to the next valid range.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].vertical_range

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.vertical_range

The following table lists the characteristics of this property.

7.5. niscope module 543

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Vertical Range

• C Attribute: NISCOPE_ATTR_VERTICAL_RANGE

width_condition

niscope.Session.width_condition
Specifies whether the oscilloscope triggers on pulses within or outside the duration range
bounded by the niscope.Session.width_low_threshold and niscope.Session.
width_high_threshold properties.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.WidthCondition
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_WIDTH_CONDITION

width_high_threshold

niscope.Session.width_high_threshold
Specifies the high width threshold, in seconds.

This properties sets the upper bound on the duration range that triggers the oscilloscope. The
niscope.Session.width_condition property determines how the oscilloscope triggers in
relation to the width thresholds.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_WIDTH_HIGH_THRESHOLD

544 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

width_low_threshold

niscope.Session.width_low_threshold
Specifies the low width threshold, in seconds.

This property sets the lower bound on the duration range that triggers the oscilloscope. The
niscope.Session.width_condition property determines how the oscilloscope triggers in
relation to the width thresholds.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_WIDTH_LOW_THRESHOLD

width_polarity

niscope.Session.width_polarity
Specifies the polarity of pulses that trigger the oscilloscope for width triggering.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.WidthPolarity
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_WIDTH_POLARITY

NI-TClk Support

niscope.Session.tclk
This is used to get and set NI-TClk attributes on the session.

See also:

See nitclk.SessionReference for a complete list of attributes.

Session

• Session

7.5. niscope module 545

NI Modular Instruments Python API Documentation, Release 1.4.1

• Methods

– abort

– acquisition_status

– add_waveform_processing

– auto_setup

– clear_waveform_measurement_stats

– clear_waveform_processing

– close

– commit

– configure_chan_characteristics

– configure_equalization_filter_coefficients

– configure_horizontal_timing

– configure_trigger_digital

– configure_trigger_edge

– configure_trigger_hysteresis

– configure_trigger_immediate

– configure_trigger_software

– configure_trigger_video

– configure_trigger_window

– configure_vertical

– disable

– export_attribute_configuration_buffer

– export_attribute_configuration_file

– fetch

– fetch_array_measurement

– fetch_into

– fetch_measurement_stats

– get_equalization_filter_coefficients

– get_ext_cal_last_date_and_time

– get_ext_cal_last_temp

– get_self_cal_last_date_and_time

– get_self_cal_last_temp

– import_attribute_configuration_buffer

– import_attribute_configuration_file

– initiate

546 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– lock

– probe_compensation_signal_start

– probe_compensation_signal_stop

– read

– reset

– reset_device

– reset_with_defaults

– self_cal

– self_test

– send_software_trigger_edge

– unlock

• Properties

– absolute_sample_clock_offset

– acquisition_start_time

– acquisition_type

– acq_arm_source

– advance_trigger_terminal_name

– adv_trig_src

– allow_more_records_than_memory

– arm_ref_trig_src

– backlog

– bandpass_filter_enabled

– binary_sample_width

– cable_sense_mode

– cable_sense_signal_enable

– cable_sense_voltage

– channel_count

– channel_enabled

– channel_terminal_configuration

– data_transfer_block_size

– data_transfer_maximum_bandwidth

– data_transfer_preferred_packet_size

– device_temperature

– enabled_channels

– enable_dc_restore

7.5. niscope module 547

NI Modular Instruments Python API Documentation, Release 1.4.1

– enable_time_interleaved_sampling

– end_of_acquisition_event_output_terminal

– end_of_acquisition_event_terminal_name

– end_of_record_event_output_terminal

– end_of_record_event_terminal_name

– end_of_record_to_advance_trigger_holdoff

– equalization_filter_enabled

– equalization_num_coefficients

– exported_advance_trigger_output_terminal

– exported_ref_trigger_output_terminal

– exported_start_trigger_output_terminal

– flex_fir_antialias_filter_type

– fpga_bitfile_path

– glitch_condition

– glitch_polarity

– glitch_width

– high_pass_filter_frequency

– horz_enforce_realtime

– horz_min_num_pts

– horz_num_records

– horz_record_length

– horz_record_ref_position

– horz_sample_rate

– horz_time_per_record

– input_clock_source

– input_impedance

– instrument_firmware_revision

– instrument_manufacturer

– instrument_model

– interleaving_offset_correction_enabled

– io_resource_descriptor

– is_probe_comp_on

– logical_name

– master_enable

– max_input_frequency

548 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– max_real_time_sampling_rate

– max_ris_rate

– meas_array_gain

– meas_array_offset

– meas_chan_high_ref_level

– meas_chan_low_ref_level

– meas_chan_mid_ref_level

– meas_filter_center_freq

– meas_filter_cutoff_freq

– meas_filter_order

– meas_filter_ripple

– meas_filter_taps

– meas_filter_transient_waveform_percent

– meas_filter_type

– meas_filter_width

– meas_fir_filter_window

– meas_high_ref

– meas_hysteresis_percent

– meas_interpolation_sampling_factor

– meas_last_acq_histogram_size

– meas_low_ref

– meas_mid_ref

– meas_other_channel

– meas_percentage_method

– meas_polynomial_interpolation_order

– meas_ref_level_units

– meas_time_histogram_high_time

– meas_time_histogram_high_volts

– meas_time_histogram_low_time

– meas_time_histogram_low_volts

– meas_time_histogram_size

– meas_voltage_histogram_high_volts

– meas_voltage_histogram_low_volts

– meas_voltage_histogram_size

– min_sample_rate

7.5. niscope module 549

NI Modular Instruments Python API Documentation, Release 1.4.1

– onboard_memory_size

– output_clock_source

– pll_lock_status

– points_done

– poll_interval

– probe_attenuation

– ready_for_advance_event_output_terminal

– ready_for_advance_event_terminal_name

– ready_for_ref_event_output_terminal

– ready_for_ref_event_terminal_name

– ready_for_start_event_output_terminal

– ready_for_start_event_terminal_name

– records_done

– record_arm_source

– ref_clk_rate

– ref_trigger_detector_location

– ref_trigger_minimum_quiet_time

– ref_trigger_terminal_name

– ref_trig_tdc_enable

– resolution

– ris_in_auto_setup_enable

– ris_method

– ris_num_averages

– runt_high_threshold

– runt_low_threshold

– runt_polarity

– runt_time_condition

– runt_time_high_limit

– runt_time_low_limit

– sample_mode

– samp_clk_timebase_div

– sample_clock_timebase_multiplier

– samp_clk_timebase_rate

– samp_clk_timebase_src

– serial_number

550 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– accessory_gain

– accessory_offset

– simulate

– specific_driver_description

– specific_driver_revision

– specific_driver_vendor

– start_to_ref_trigger_holdoff

– start_trigger_terminal_name

– supported_instrument_models

– trigger_auto_triggered

– trigger_coupling

– trigger_delay_time

– trigger_holdoff

– trigger_hysteresis

– trigger_impedance

– trigger_level

– trigger_modifier

– trigger_slope

– trigger_source

– trigger_type

– trigger_window_high_level

– trigger_window_low_level

– trigger_window_mode

– tv_trigger_event

– tv_trigger_line_number

– tv_trigger_polarity

– tv_trigger_signal_format

– use_spec_initial_x

– vertical_coupling

– vertical_offset

– vertical_range

– width_condition

– width_high_threshold

– width_low_threshold

– width_polarity

7.5. niscope module 551

NI Modular Instruments Python API Documentation, Release 1.4.1

• NI-TClk Support

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the underlying driver
function call. This can be the actual function based on the Session method being called, or it can be
the appropriate Get/Set Attribute function, such as niScope_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities. The
parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or an integer.
If it is a string, you can indicate a range using the same format as the driver: ‘0-2’ or ‘0:2’

Some repeated capabilities use a prefix before the number and this is optional

channels

niscope.Session.channels[]

session.channels['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

instruments

niscope.Session.instruments[]

session.instruments['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

Enums

Enums used in NI-SCOPE

AcquisitionStatus

class niscope.AcquisitionStatus

COMPLETE

IN_PROGRESS

STATUS_UNKNOWN

552 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

AcquisitionType

class niscope.AcquisitionType

NORMAL
Sets the digitizer to normal resolution mode. The digitizer can use real-time sampling or equivalent-time
sampling.

FLEXRES
Sets the digitizer to flexible resolution mode if supported. The digitizer uses different hardware configura-
tions to change the resolution depending on the sampling rate used.

DDC
Sets the digitizer to DDC mode on the NI 5620/5621.

ArrayMeasurement

class niscope.ArrayMeasurement

NO_MEASUREMENT
None

LAST_ACQ_HISTOGRAM
Last Acquisition Histogram

FFT_PHASE_SPECTRUM
FFT Phase Spectrum

FFT_AMP_SPECTRUM_VOLTS_RMS
FFT Amp. Spectrum (Volts RMS)

MULTI_ACQ_VOLTAGE_HISTOGRAM
Multi Acquisition Voltage Histogram

MULTI_ACQ_TIME_HISTOGRAM
Multi Acquisition Time Histogram

ARRAY_INTEGRAL
Array Integral

DERIVATIVE
Derivative

INVERSE
Inverse

HANNING_WINDOW
Hanning Window

FLAT_TOP_WINDOW
Flat Top Window

POLYNOMIAL_INTERPOLATION
Polynomial Interpolation

MULTIPLY_CHANNELS
Multiply Channels

7.5. niscope module 553

NI Modular Instruments Python API Documentation, Release 1.4.1

ADD_CHANNELS
Add Channels

SUBTRACT_CHANNELS
Subtract Channels

DIVIDE_CHANNELS
Divide Channels

MULTI_ACQ_AVERAGE
Multi Acquisition Average

BUTTERWORTH_FILTER
Butterworth IIR Filter

CHEBYSHEV_FILTER
Chebyshev IIR Filter

FFT_AMP_SPECTRUM_DB
FFT Amp. Spectrum (dB)

HAMMING_WINDOW
Hamming Window

WINDOWED_FIR_FILTER
FIR Windowed Filter

BESSEL_FILTER
Bessel IIR Filter

TRIANGLE_WINDOW
Triangle Window

BLACKMAN_WINDOW
Blackman Window

ARRAY_OFFSET
Array Offset

ARRAY_GAIN
Array Gain

CableSenseMode

class niscope.CableSenseMode

DISABLED
The oscilloscope is not configured to emit a CableSense signal.

ON_DEMAND
The oscilloscope is configured to emit a single CableSense pulse.

ClearableMeasurement

class niscope.ClearableMeasurement

ALL_MEASUREMENTS

554 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

MULTI_ACQ_VOLTAGE_HISTOGRAM

MULTI_ACQ_TIME_HISTOGRAM

MULTI_ACQ_AVERAGE

FREQUENCY

AVERAGE_FREQUENCY

FFT_FREQUENCY

PERIOD

AVERAGE_PERIOD

RISE_TIME

FALL_TIME

RISE_SLEW_RATE

FALL_SLEW_RATE

OVERSHOOT

PRESHOOT

VOLTAGE_RMS

VOLTAGE_CYCLE_RMS

AC_ESTIMATE

FFT_AMPLITUDE

VOLTAGE_AVERAGE

VOLTAGE_CYCLE_AVERAGE

DC_ESTIMATE

VOLTAGE_MAX

VOLTAGE_MIN

VOLTAGE_PEAK_TO_PEAK

VOLTAGE_HIGH

VOLTAGE_LOW

AMPLITUDE

VOLTAGE_TOP

VOLTAGE_BASE

VOLTAGE_BASE_TO_TOP

WIDTH_NEG

WIDTH_POS

DUTY_CYCLE_NEG

DUTY_CYCLE_POS

INTEGRAL

AREA

7.5. niscope module 555

NI Modular Instruments Python API Documentation, Release 1.4.1

CYCLE_AREA

TIME_DELAY

PHASE_DELAY

LOW_REF_VOLTS

MID_REF_VOLTS

HIGH_REF_VOLTS

VOLTAGE_HISTOGRAM_MEAN

VOLTAGE_HISTOGRAM_STDEV

VOLTAGE_HISTOGRAM_MEDIAN

VOLTAGE_HISTOGRAM_MODE

VOLTAGE_HISTOGRAM_MAX

VOLTAGE_HISTOGRAM_MIN

VOLTAGE_HISTOGRAM_PEAK_TO_PEAK

VOLTAGE_HISTOGRAM_MEAN_PLUS_STDEV

VOLTAGE_HISTOGRAM_MEAN_PLUS_2_STDEV

VOLTAGE_HISTOGRAM_MEAN_PLUS_3_STDEV

VOLTAGE_HISTOGRAM_HITS

VOLTAGE_HISTOGRAM_NEW_HITS

TIME_HISTOGRAM_MEAN

TIME_HISTOGRAM_STDEV

TIME_HISTOGRAM_MEDIAN

TIME_HISTOGRAM_MODE

TIME_HISTOGRAM_MAX

TIME_HISTOGRAM_MIN

TIME_HISTOGRAM_PEAK_TO_PEAK

TIME_HISTOGRAM_MEAN_PLUS_STDEV

TIME_HISTOGRAM_MEAN_PLUS_2_STDEV

TIME_HISTOGRAM_MEAN_PLUS_3_STDEV

TIME_HISTOGRAM_HITS

TIME_HISTOGRAM_NEW_HITS

FIRFilterWindow

class niscope.FIRFilterWindow

NONE
No window.

556 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

HANNING
Specifies a Hanning window.

FLAT_TOP
Specifies a Flat Top window.

HAMMING
Specifies a Hamming window.

TRIANGLE
Specifies a Triangle window.

BLACKMAN
Specifies a Blackman window.

FetchRelativeTo

class niscope.FetchRelativeTo

READ_POINTER
The read pointer is set to zero when a new acquisition is initiated. After every fetch the read pointer is
incremeted to be the sample after the last sample retrieved. Therefore, you can repeatedly fetch relative to
the read pointer for a continuous acquisition program.

PRETRIGGER
Fetches relative to the first pretrigger point requested with niscope.Session.
configure_horizontal_timing().

NOW
Fetch data at the last sample acquired.

START
Fetch data starting at the first point sampled by the digitizer.

TRIGGER
Fetch at the first posttrigger sample.

FilterType

class niscope.FilterType

LOWPASS
Specifies lowpass as the filter type.

HIGHPASS
Specifies highpass as the filter type.

BANDPASS
Specifies bandpass as the filter type.

BANDSTOP
Specifies bandstop as the filter type.

7.5. niscope module 557

NI Modular Instruments Python API Documentation, Release 1.4.1

FlexFIRAntialiasFilterType

class niscope.FlexFIRAntialiasFilterType

FOURTYEIGHT_TAP_STANDARD
This filter is optimized for alias protection and frequency-domain flatness

FOURTYEIGHT_TAP_HANNING
This filter is optimized for the lowest possible bandwidth for a 48 tap filter and maximizes the SNR

SIXTEEN_TAP_HANNING
This filter is optimized for the lowest possible bandwidth for a 16 tap filter and maximizes the SNR

EIGHT_TAP_HANNING
This filter is optimized for the lowest possible bandwidth for a 8 tap filter and maximizes the SNR

GlitchCondition

class niscope.GlitchCondition

GREATER
Trigger on pulses with a duration greater than the specified glitch width.

LESS
Trigger on pulses with a duration shorter than the specified glitch width.

GlitchPolarity

class niscope.GlitchPolarity

POSITIVE
Trigger on pulses of positive polarity relative to the trigger threshold.

NEGATIVE
Trigger on pulses of negative polarity relative to the trigger threshold.

EITHER
Trigger on pulses of either positive or negative polarity.

Option

class niscope.Option

SELF_CALIBRATE_ALL_CHANNELS
Self Calibrating all Channels

RESTORE_EXTERNAL_CALIBRATION
Restore External Calibration.

558 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

PercentageMethod

class niscope.PercentageMethod

LOWHIGH
Specifies that the reference level percentages should be computed using the low/high method,

MINMAX
Reference level percentages are computed using the min/max method.

BASETOP
Reference level percentages are computed using the base/top method.

RISMethod

class niscope.RISMethod

EXACT_NUM_AVERAGES
Acquires exactly the specified number of records for each bin in the RIS acquisition. An error is re-
turned from the fetch method if the RIS acquisition does not successfully acquire the specified number
of waveforms within the timeout period. You may call the fetch method again to allow more time for the
acquisition to finish.

MIN_NUM_AVERAGES
Each RIS sample is the average of a least a minimum number of randomly distributed points.

INCOMPLETE
Returns the RIS waveform after the specified timeout even if it is incomplete. If no waveforms have been
acquired in certain bins, these bins will have a NaN (when fetching scaled data) or a zero (when fetching
binary data). A warning (positive error code) is returned from the fetch method if the RIS acquisition did
not finish. The acquisition aborts when data is returned.

LIMITED_BIN_WIDTH
Limits the waveforms in the various bins to be within 200 ps of the center of the bin.

RefLevelUnits

class niscope.RefLevelUnits

VOLTS
Specifies that the reference levels are given in units of volts.

PERCENTAGE
(Default) Specifies that the reference levels are given in percentage units.

RefTriggerDetectorLocation

class niscope.RefTriggerDetectorLocation

ANALOG_DETECTION_CIRCUIT
use the hardware analog circuitry to implement the reference trigger. This option will trigger before any
onboard signal processing.

7.5. niscope module 559

NI Modular Instruments Python API Documentation, Release 1.4.1

DDC_OUTPUT
use the onboard signal processing logic to implement the reference trigger. This option will trigger based
on the onboard signal processed data.

RuntPolarity

class niscope.RuntPolarity

POSITIVE
Trigger on pulses of positive polarity relative to niscope.Session.runt_low_threshold that
do not cross niscope.Session.runt_high_threshold.

NEGATIVE
Trigger on pulses of negative polarity relative to niscope.Session.runt_high_threshold that
do not cross niscope.Session.runt_low_threshold.

EITHER
Trigger on pulses of either positive or negative polarity.

RuntTimeCondition

class niscope.RuntTimeCondition

NONE
Time qualification is disabled. Trigger on runt pulses based solely on the voltage level of the pulses.

WITHIN
Trigger on pulses that, in addition to meeting runt voltage criteria, have a duration within
the range bounded by niscope.Session.runt_time_low_limit and niscope.Session.
runt_time_high_limit.

OUTSIDE
Trigger on pulses that, in addition to meeting runt voltage criteria, have a duration not within
the range bounded by niscope.Session.runt_time_low_limit and niscope.Session.
runt_time_high_limit.

ScalarMeasurement

class niscope.ScalarMeasurement

NO_MEASUREMENT
None

RISE_TIME

FALL_TIME

FREQUENCY

PERIOD

VOLTAGE_RMS

VOLTAGE_PEAK_TO_PEAK

560 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

VOLTAGE_MAX

VOLTAGE_MIN

VOLTAGE_HIGH

VOLTAGE_LOW

VOLTAGE_AVERAGE

WIDTH_NEG

WIDTH_POS

DUTY_CYCLE_NEG

DUTY_CYCLE_POS

AMPLITUDE

VOLTAGE_CYCLE_RMS

VOLTAGE_CYCLE_AVERAGE

OVERSHOOT

PRESHOOT

LOW_REF_VOLTS

MID_REF_VOLTS

HIGH_REF_VOLTS

AREA

CYCLE_AREA

INTEGRAL

VOLTAGE_BASE

VOLTAGE_TOP

FFT_FREQUENCY

FFT_AMPLITUDE

RISE_SLEW_RATE

FALL_SLEW_RATE

AC_ESTIMATE

DC_ESTIMATE

TIME_DELAY

AVERAGE_PERIOD

AVERAGE_FREQUENCY

VOLTAGE_BASE_TO_TOP

PHASE_DELAY

7.5. niscope module 561

NI Modular Instruments Python API Documentation, Release 1.4.1

TerminalConfiguration

class niscope.TerminalConfiguration

SINGLE_ENDED
Channel is single ended

UNBALANCED_DIFFERENTIAL
Channel is unbalanced differential

DIFFERENTIAL
Channel is differential

TriggerCoupling

class niscope.TriggerCoupling

AC
AC coupling

DC
DC coupling

HF_REJECT
Highpass filter coupling

LF_REJECT
Lowpass filter coupling

AC_PLUS_HF_REJECT
Highpass and lowpass filter coupling

TriggerModifier

class niscope.TriggerModifier

NO_TRIGGER_MOD
Normal triggering.

AUTO
Software will trigger an acquisition automatically if no trigger arrives after a certain amount of time.

AUTO_LEVEL

TriggerSlope

class niscope.TriggerSlope

NEGATIVE
Falling edge

POSITIVE
Rising edge

562 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

SLOPE_EITHER
Either edge

TriggerType

class niscope.TriggerType

EDGE
Configures the digitizer for edge triggering. An edge trigger occurs when the trigger signal crosses the
trigger level specified with the set trigger slope. You configure the trigger level and slope with niscope.
Session.configure_trigger_edge().

HYSTERESIS
Configures the digitizer for hysteresis triggering. A hysteresis trigger occurs when the trigger sig-
nal crosses the trigger level with the specified slope and passes through the hysteresis window
you specify. You configure the trigger level, slope, and hysteresis with niscope.Session.
configure_trigger_hysteresis().

DIGITAL
Configures the digitizer for digital triggering. A digital trigger occurs when the trigger sig-
nal has the specified slope. You configure the trigger slope with niscope.Session.
configure_trigger_digital().

WINDOW
Configures the digitizer for window triggering. A window trigger occurs when the trigger signal enters or
leaves the window defined by the values you specify with the Low Window Level, High Window Level,
and Window Mode Parameters. You configure the low window level high window level, and window mode
with niscope.Session.configure_trigger_window().

SOFTWARE
Configures the digitizer for software triggering. A software trigger occurs when niscope.Session.
SendSoftwareTrigger() is called.

TV
Configures the digitizer for video/TV triggering. You configure the video trigger parameters like
signal Format, Line to trigger off of, Polarity, and Enable DC Restore with niscope.Session.
configure_trigger_video().

GLITCH

WIDTH

RUNT

IMMEDIATE
Configures the digitizer for immediate triggering. An immediate trigger occurs as soon as the pretrigger
samples are acquired.

TriggerWindowMode

class niscope.TriggerWindowMode

ENTERING
Trigger upon entering the window

7.5. niscope module 563

NI Modular Instruments Python API Documentation, Release 1.4.1

LEAVING
Trigger upon leaving the window

ENTERING_OR_LEAVING

VerticalCoupling

class niscope.VerticalCoupling

AC
AC coupling

DC
DC coupling

GND
GND coupling

VideoPolarity

class niscope.VideoPolarity

POSITIVE
Specifies that the video signal has positive polarity.

NEGATIVE
Specifies that the video signal has negative polarity.

VideoSignalFormat

class niscope.VideoSignalFormat

NTSC
NTSC signal format supports line numbers from 1 to 525

PAL
PAL signal format supports line numbers from 1 to 625

SECAM
SECAM signal format supports line numbers from 1 to 625

M_PAL
M-PAL signal format supports line numbers from 1 to 525

VIDEO_480I_59_94_FIELDS_PER_SECOND
480 lines, interlaced, 59.94 fields per second

VIDEO_480I_60_FIELDS_PER_SECOND
480 lines, interlaced, 60 fields per second

VIDEO_480P_59_94_FRAMES_PER_SECOND
480 lines, progressive, 59.94 frames per second

VIDEO_480P_60_FRAMES_PER_SECOND
480 lines, progressive,60 frames per second

564 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

VIDEO_576I_50_FIELDS_PER_SECOND
576 lines, interlaced, 50 fields per second

VIDEO_576P_50_FRAMES_PER_SECOND
576 lines, progressive, 50 frames per second

VIDEO_720P_50_FRAMES_PER_SECOND
720 lines, progressive, 50 frames per second

VIDEO_720P_59_94_FRAMES_PER_SECOND
720 lines, progressive, 59.94 frames per second

VIDEO_720P_60_FRAMES_PER_SECOND
720 lines, progressive, 60 frames per second

VIDEO_1080I_50_FIELDS_PER_SECOND
1,080 lines, interlaced, 50 fields per second

VIDEO_1080I_59_94_FIELDS_PER_SECOND
1,080 lines, interlaced, 59.94 fields per second

VIDEO_1080I_60_FIELDS_PER_SECOND
1,080 lines, interlaced, 60 fields per second

VIDEO_1080P_24_FRAMES_PER_SECOND
1,080 lines, progressive, 24 frames per second

VideoTriggerEvent

class niscope.VideoTriggerEvent

FIELD1
Trigger on field 1 of the signal

FIELD2
Trigger on field 2 of the signal

ANY_FIELD
Trigger on the first field acquired

ANY_LINE
Trigger on the first line acquired

LINE_NUMBER
Trigger on a specific line of a video signal. Valid values vary depending on the signal format configured.

WhichTrigger

class niscope.WhichTrigger

START

ARM_REFERENCE

REFERENCE

ADVANCE

7.5. niscope module 565

NI Modular Instruments Python API Documentation, Release 1.4.1

WidthCondition

class niscope.WidthCondition

WITHIN
Trigger on pulses with a duration within the range bounded by niscope.Session.
width_low_threshold and niscope.Session.width_high_threshold.

OUTSIDE
Trigger on pulses with a duration not within the range bounded by niscope.Session.
width_low_threshold and niscope.Session.width_high_threshold.

WidthPolarity

class niscope.WidthPolarity

POSITIVE
Trigger on pulses of positive polarity relative to the trigger threshold.

NEGATIVE
Trigger on pulses of negative polarity relative to the trigger threshold.

EITHER
Trigger on pulses of either positive or negative polarity.

Exceptions and Warnings

Error

exception niscope.errors.Error
Base exception type that all NI-SCOPE exceptions derive from

DriverError

exception niscope.errors.DriverError
An error originating from the NI-SCOPE driver

UnsupportedConfigurationError

exception niscope.errors.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

DriverNotInstalledError

exception niscope.errors.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

566 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

InvalidRepeatedCapabilityError

exception niscope.errors.InvalidRepeatedCapabilityError
An error due to an invalid character in a repeated capability

SelfTestError

exception niscope.errors.SelfTestError
An error due to a failed self-test

DriverWarning

exception niscope.errors.DriverWarning
A warning originating from the NI-SCOPE driver

Examples

You can download all niscope examples here

niscope_fetch.py

Listing 14: (niscope_fetch.py)

1 #!/usr/bin/python
2

3 import argparse
4 import niscope
5 import pprint
6 import sys
7

8 pp = pprint.PrettyPrinter(indent=4, width=80)
9

10

11 def example(resource_name, channels, options, length, voltage):
12 with niscope.Session(resource_name=resource_name, options=options) as session:
13 session.configure_vertical(range=voltage, coupling=niscope.VerticalCoupling.

→˓AC)
14 session.configure_horizontal_timing(min_sample_rate=50000000, min_num_

→˓pts=length, ref_position=50.0, num_records=1, enforce_realtime=True)
15 with session.initiate():
16 waveforms = session.channels[channels].fetch(num_samples=length)
17 for i in range(len(waveforms)):
18 print('Waveform {0} information:'.format(i))
19 print(str(waveforms[i]) + '\n\n')
20

21

22 def _main(argsv):
23 parser = argparse.ArgumentParser(description='Acquires one record from the given

→˓channels.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
24 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource

→˓name of a National Instruments Digitizer')

(continues on next page)

7.5. niscope module 567

https://github.com/ni/nimi-python/releases/download/1.4.1/niscope_examples.zip
https://github.com/ni/nimi-python/blob/1.4.1/src/niscope/examples/niscope_fetch.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

25 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
26 parser.add_argument('-l', '--length', default=1000, type=int, help='Measure

→˓record length')
27 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage

→˓range (V)')
28 parser.add_argument('-op', '--option-string', default='', type=str, help='Option

→˓string')
29 args = parser.parse_args(argsv)
30 example(args.resource_name, args.channels, args.option_string, args.length, args.

→˓voltage)
31

32

33 def main():
34 _main(sys.argv[1:])
35

36

37 def test_example():
38 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe

→˓', }, }
39 example('PXI1Slot2', '0', options, 1000, 1.0)
40

41

42 def test_main():
43 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe

→˓',]
44 _main(cmd_line)
45

46

47 if __name__ == '__main__':
48 main()
49

niscope_fetch_forever.py

Listing 15: (niscope_fetch_forever.py)

1 #!/usr/bin/python
2

3 import argparse
4 import hightime
5 import niscope
6 import numpy as np
7 import pprint
8 import sys
9

10

11 pp = pprint.PrettyPrinter(indent=4, width=80)
12

13

14 # We use fetch_into which allows us to allocate a single buffer per channel and
→˓"fetch into" it a section at a time without having to

15 # reconstruct the waveform once we are done
16 def example(resource_name, options, total_acquisition_time_in_seconds, voltage,

→˓sample_rate_in_hz, samples_per_fetch):

(continues on next page)

568 Chapter 7. License

https://github.com/ni/nimi-python/blob/1.4.1/src/niscope/examples/niscope_fetch_forever.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

17 total_samples = int(total_acquisition_time_in_seconds * sample_rate_in_hz)
18 # 1. Opening session
19 with niscope.Session(resource_name=resource_name, options=options) as session:
20 # We will acquire on all channels of the device
21 channel_list = [c for c in range(session.channel_count)] # Need an actual

→˓list and not a range
22

23 # 2. Creating numpy arrays
24 waveforms = [np.ndarray(total_samples, dtype=np.float64) for c in channel_

→˓list]
25

26 # 3. Configuring
27 session.configure_horizontal_timing(min_sample_rate=sample_rate_in_hz, min_

→˓num_pts=1, ref_position=0.0, num_records=1, enforce_realtime=True)
28 session.channels[channel_list].configure_vertical(voltage, coupling=niscope.

→˓VerticalCoupling.DC, enabled=True)
29 # Configure software trigger, but never send the trigger.
30 # This starts an infinite acquisition, until you call session.abort() or

→˓session.close()
31 session.configure_trigger_software()
32 current_pos = 0
33 # 4. initiating
34 with session.initiate():
35 while current_pos < total_samples:
36 # We fetch each channel at a time so we don't have to de-interleave

→˓afterwards
37 # We do not keep the wfm_info returned from fetch_into
38 for channel, waveform in zip(channel_list, waveforms):
39 # 5. fetching - we return the slice of the waveform array that we

→˓want to "fetch into"
40 session.channels[channel].fetch_into(waveform[current_pos:current_

→˓pos + samples_per_fetch], relative_to=niscope.FetchRelativeTo.READ_POINTER,
41 offset=0, record_number=0,

→˓num_records=1, timeout=hightime.timedelta(seconds=5.0))
42 current_pos += samples_per_fetch
43

44

45 def _main(argsv):
46 parser = argparse.ArgumentParser(description='Fetch more samples than will fit in

→˓memory.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
47 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource

→˓name of a National Instruments Digitizer')
48 parser.add_argument('-t', '--time', default=10, type=int, help='Time to sample (s)

→˓')
49 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage

→˓range (V)')
50 parser.add_argument('-op', '--option-string', default='', type=str, help='Option

→˓string')
51 parser.add_argument('-r', '--sample-rate', default=1000.0, type=float, help=

→˓'Sample Rate (Hz)')
52 parser.add_argument('-s', '--samples-per-fetch', default=100, type=int, help=

→˓'Samples per fetch')
53 args = parser.parse_args(argsv)
54 example(args.resource_name, args.option_string, args.time, args.voltage, args.

→˓sample_rate, args.samples_per_fetch)
55

56

(continues on next page)

7.5. niscope module 569

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

57 def main():
58 _main(sys.argv[1:])
59

60

61 def test_example():
62 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe

→˓', }, }
63 example('PXI1Slot2', options, 10, 1.0, 1000.0, 100)
64

65

66 def test_main():
67 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe

→˓',]
68 _main(cmd_line)
69

70

71 if __name__ == '__main__':
72 main()
73

niscope_read.py

Listing 16: (niscope_read.py)

1 #!/usr/bin/python
2

3 import argparse
4 import niscope
5 import pprint
6 import sys
7

8 pp = pprint.PrettyPrinter(indent=4, width=80)
9

10

11 def example(resource_name, channels, options, length, voltage):
12 with niscope.Session(resource_name=resource_name, options=options) as session:
13 session.configure_vertical(range=voltage, coupling=niscope.VerticalCoupling.

→˓AC)
14 session.configure_horizontal_timing(min_sample_rate=50000000, min_num_

→˓pts=length, ref_position=50.0, num_records=1, enforce_realtime=True)
15 waveforms = session.channels[channels].read(num_samples=length)
16 for i in range(len(waveforms)):
17 print('Waveform {0} information:'.format(i))
18 print(str(waveforms[i]) + '\n\n')
19

20

21 def _main(argsv):
22 parser = argparse.ArgumentParser(description='Acquires one record from the given

→˓channels.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
23 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource

→˓name of a National Instruments Digitizer')
24 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
25 parser.add_argument('-l', '--length', default=1000, type=int, help='Measure

→˓record length')

(continues on next page)

570 Chapter 7. License

https://github.com/ni/nimi-python/blob/1.4.1/src/niscope/examples/niscope_read.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

26 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage
→˓range (V)')

27 parser.add_argument('-op', '--option-string', default='', type=str, help='Option
→˓string')

28 args = parser.parse_args(argsv)
29 example(args.resource_name, args.channels, args.option_string, args.length, args.

→˓voltage)
30

31

32 def main():
33 _main(sys.argv[1:])
34

35

36 def test_example():
37 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe

→˓', }, }
38 example('PXI1Slot2', '0', options, 1000, 1.0)
39

40

41 def test_main():
42 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe

→˓',]
43 _main(cmd_line)
44

45

46 if __name__ == '__main__':
47 main()
48

7.6 niswitch module

7.6.1 Installation

As a prerequisite to using the niswitch module, you must install the NI-SWITCH runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-SWITCH) can be installed with pip:

$ python -m pip install niswitch~=1.4.1

Or easy_install from setuptools:

$ python -m easy_install niswitch

7.6.2 Usage

The following is a basic example of using the niswitch module to open a session to a Switch and connect channels.

import niswitch
with niswitch.Session("Dev1") as session:

session.connect(channel1='r0', channel2='c0')

Additional examples for NI-SWITCH are located in src/niswitch/examples/ directory.

7.6. niswitch module 571

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

NI Modular Instruments Python API Documentation, Release 1.4.1

7.6.3 API Reference

Session

class niswitch.Session(self, resource_name, topology="Configured Topology", simulate=False, re-
set_device=False)

Returns a session handle used to identify the switch in all subsequent instrument driver calls and sets the topol-
ogy of the switch. niswitch.Session.__init__() creates a new IVI instrument driver session for
the switch specified in the resourceName parameter. The driver uses the topology specified in the topology
parameter and overrides the topology specified in MAX. Note: When initializing an NI SwitchBlock device
with topology, you must specify the toplogy created when you configured the device in MAX, using either
NISWITCH_TOPOLOGY_CONFIGURED_TOPOLOGY or the toplogy string of the device. Refer to the Ini-
tializing with Toplogy for NI SwitchBlock Devices topic in the NI Switches Help for information about deter-
mining the topology string of an NI SwitchBlock device. By default, the switch is reset to a known state. Enable
simulation by specifying the topology and setting the simulate parameter to True.

Parameters

• resource_name (str) – Resource name of the switch module to initialize. Default
value: None Syntax: Optional fields are shown in square brackets ([]). Configured in
MAX Under Valid Syntax Devices and Interfaces DeviceName Traditional NI-DAQ De-
vices SCXI[chassis ID]::slot number PXI System PXI[bus number]::device number TIP:
IVI logical names are also valid for the resource name. Default values for optional fields:
chassis ID = 1 bus number = 0 Example resource names: Resource Name Description
SC1Mod3 NI-DAQmx module in chassis “SC1” slot 3 MySwitch NI-DAQmx module re-
named to “MySwitch” SCXI1::3 Traditional NI-DAQ module in chassis 1, slot 3 SCXI::3
Traditional NI-DAQ module in chassis 1, slot 3 PXI0::16 PXI bus 0, device number 16
PXI::16 PXI bus 0, device number 16

• topology (str) – Pass the topology name you want to use for
the switch you specify with Resource Name parameter. You can
also pass NISWITCH_TOPOLOGY_CONFIGURED_TOPOLOGY to use
the last topology that was configured for the device in MAX. De-
fault Value: NISWITCH_TOPOLOGY_CONFIGURED_TOPOLOGY
Valid Values: NISWITCH_TOPOLOGY_1127_1_WIRE_64X1_MUX
NISWITCH_TOPOLOGY_1127_2_WIRE_32X1_MUX NISWITCH_TOPOLOGY_1127_2_WIRE_4X8_MATRIX
NISWITCH_TOPOLOGY_1127_4_WIRE_16X1_MUX NISWITCH_TOPOLOGY_1127_INDEPENDENT
NISWITCH_TOPOLOGY_1128_1_WIRE_64X1_MUX NISWITCH_TOPOLOGY_1128_2_WIRE_32X1_MUX
NISWITCH_TOPOLOGY_1128_2_WIRE_4X8_MATRIX
NISWITCH_TOPOLOGY_1128_4_WIRE_16X1_MUX NISWITCH_TOPOLOGY_1128_INDEPENDENT
NISWITCH_TOPOLOGY_1129_2_WIRE_16X16_MATRIX
NISWITCH_TOPOLOGY_1129_2_WIRE_8X32_MATRIX
NISWITCH_TOPOLOGY_1129_2_WIRE_4X64_MATRIX
NISWITCH_TOPOLOGY_1129_2_WIRE_DUAL_8X16_MATRIX
NISWITCH_TOPOLOGY_1129_2_WIRE_DUAL_4X32_MATRIX
NISWITCH_TOPOLOGY_1129_2_WIRE_QUAD_4X16_MATRIX
NISWITCH_TOPOLOGY_1130_1_WIRE_256X1_MUX NISWITCH_TOPOLOGY_1130_1_WIRE_DUAL_128X1_MUX
NISWITCH_TOPOLOGY_1130_1_WIRE_4X64_MATRIX
NISWITCH_TOPOLOGY_1130_1_WIRE_8x32_MATRIX
NISWITCH_TOPOLOGY_1130_1_WIRE_OCTAL_32X1_MUX
NISWITCH_TOPOLOGY_1130_1_WIRE_QUAD_64X1_MUX
NISWITCH_TOPOLOGY_1130_1_WIRE_SIXTEEN_16X1_MUX
NISWITCH_TOPOLOGY_1130_2_WIRE_4X32_MATRIX
NISWITCH_TOPOLOGY_1130_2_WIRE_128X1_MUX NISWITCH_TOPOLOGY_1130_2_WIRE_OCTAL_16X1_MUX
NISWITCH_TOPOLOGY_1130_2_WIRE_QUAD_32X1_MUX

572 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

NISWITCH_TOPOLOGY_1130_4_WIRE_64X1_MUX NISWITCH_TOPOLOGY_1130_4_WIRE_QUAD_16X1_MUX
NISWITCH_TOPOLOGY_1130_INDEPENDENT NISWITCH_TOPOLOGY_1160_16_SPDT
NISWITCH_TOPOLOGY_1161_8_SPDT NISWITCH_TOPOLOGY_1163R_OCTAL_4X1_MUX
NISWITCH_TOPOLOGY_1166_16_DPDT NISWITCH_TOPOLOGY_1166_32_SPDT
NISWITCH_TOPOLOGY_1167_INDEPENDENT NISWITCH_TOPOLOGY_1169_100_SPST
NISWITCH_TOPOLOGY_1169_50_DPST NISWITCH_TOPOLOGY_1175_1_WIRE_196X1_MUX
NISWITCH_TOPOLOGY_1175_2_WIRE_98X1_MUX NISWITCH_TOPOLOGY_1175_2_WIRE_95X1_MUX
NISWITCH_TOPOLOGY_1190_QUAD_4X1_MUX NISWITCH_TOPOLOGY_1191_QUAD_4X1_MUX
NISWITCH_TOPOLOGY_1192_8_SPDT NISWITCH_TOPOLOGY_1193_32X1_MUX
NISWITCH_TOPOLOGY_1193_16X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_1193_DUAL_16X1_MUX NISWITCH_TOPOLOGY_1193_DUAL_8X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_1193_QUAD_8X1_MUX NISWITCH_TOPOLOGY_1193_QUAD_4X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_1193_INDEPENDENT NISWITCH_TOPOLOGY_1194_QUAD_4X1_MUX
NISWITCH_TOPOLOGY_1195_QUAD_4X1_MUX NISWITCH_TOPOLOGY_2501_1_WIRE_48X1_MUX
NISWITCH_TOPOLOGY_2501_1_WIRE_48X1_AMPLIFIED_MUX
NISWITCH_TOPOLOGY_2501_2_WIRE_24X1_MUX NISWITCH_TOPOLOGY_2501_2_WIRE_24X1_AMPLIFIED_MUX
NISWITCH_TOPOLOGY_2501_2_WIRE_DUAL_12X1_MUX
NISWITCH_TOPOLOGY_2501_2_WIRE_QUAD_6X1_MUX
NISWITCH_TOPOLOGY_2501_2_WIRE_4X6_MATRIX
NISWITCH_TOPOLOGY_2501_4_WIRE_12X1_MUX NISWITCH_TOPOLOGY_2503_1_WIRE_48X1_MUX
NISWITCH_TOPOLOGY_2503_2_WIRE_24X1_MUX NISWITCH_TOPOLOGY_2503_2_WIRE_DUAL_12X1_MUX
NISWITCH_TOPOLOGY_2503_2_WIRE_QUAD_6X1_MUX
NISWITCH_TOPOLOGY_2503_2_WIRE_4X6_MATRIX
NISWITCH_TOPOLOGY_2503_4_WIRE_12X1_MUX NISWITCH_TOPOLOGY_2510_INDEPENDENT
NISWITCH_TOPOLOGY_2512_INDEPENDENT NISWITCH_TOPOLOGY_2514_INDEPENDENT
NISWITCH_TOPOLOGY_2515_INDEPENDENT NISWITCH_TOPOLOGY_2520_80_SPST
NISWITCH_TOPOLOGY_2521_40_DPST NISWITCH_TOPOLOGY_2522_53_SPDT
NISWITCH_TOPOLOGY_2523_26_DPDT NISWITCH_TOPOLOGY_2524_1_WIRE_128X1_MUX
NISWITCH_TOPOLOGY_2524_1_WIRE_DUAL_64X1_MUX
NISWITCH_TOPOLOGY_2524_1_WIRE_QUAD_32X1_MUX
NISWITCH_TOPOLOGY_2524_1_WIRE_OCTAL_16X1_MUX
NISWITCH_TOPOLOGY_2524_1_WIRE_SIXTEEN_8X1_MUX
NISWITCH_TOPOLOGY_2525_2_WIRE_64X1_MUX NISWITCH_TOPOLOGY_2525_2_WIRE_DUAL_32X1_MUX
NISWITCH_TOPOLOGY_2525_2_WIRE_QUAD_16X1_MUX
NISWITCH_TOPOLOGY_2525_2_WIRE_OCTAL_8X1_MUX
NISWITCH_TOPOLOGY_2525_2_WIRE_SIXTEEN_4X1_MUX
NISWITCH_TOPOLOGY_2526_1_WIRE_158X1_MUX NISWITCH_TOPOLOGY_2526_2_WIRE_79X1_MUX
NISWITCH_TOPOLOGY_2527_1_WIRE_64X1_MUX NISWITCH_TOPOLOGY_2527_1_WIRE_DUAL_32X1_MUX
NISWITCH_TOPOLOGY_2527_2_WIRE_32X1_MUX NISWITCH_TOPOLOGY_2527_2_WIRE_DUAL_16X1_MUX
NISWITCH_TOPOLOGY_2527_4_WIRE_16X1_MUX NISWITCH_TOPOLOGY_2527_INDEPENDENT
NISWITCH_TOPOLOGY_2529_2_WIRE_DUAL_4X16_MATRIX
NISWITCH_TOPOLOGY_2529_2_WIRE_8X16_MATRIX
NISWITCH_TOPOLOGY_2529_2_WIRE_4X32_MATRIX
NISWITCH_TOPOLOGY_2530_1_WIRE_128X1_MUX NISWITCH_TOPOLOGY_2530_1_WIRE_DUAL_64X1_MUX
NISWITCH_TOPOLOGY_2530_1_WIRE_4x32_MATRIX
NISWITCH_TOPOLOGY_2530_1_WIRE_8x16_MATRIX
NISWITCH_TOPOLOGY_2530_1_WIRE_OCTAL_16X1_MUX
NISWITCH_TOPOLOGY_2530_1_WIRE_QUAD_32X1_MUX
NISWITCH_TOPOLOGY_2530_2_WIRE_4x16_MATRIX
NISWITCH_TOPOLOGY_2530_2_WIRE_64X1_MUX NISWITCH_TOPOLOGY_2530_2_WIRE_DUAL_32X1_MUX
NISWITCH_TOPOLOGY_2530_2_WIRE_QUAD_16X1_MUX
NISWITCH_TOPOLOGY_2530_4_WIRE_32X1_MUX NISWITCH_TOPOLOGY_2530_4_WIRE_DUAL_16X1_MUX
NISWITCH_TOPOLOGY_2530_INDEPENDENT NISWITCH_TOPOLOGY_2531_1_WIRE_4X128_MATRIX
NISWITCH_TOPOLOGY_2531_1_WIRE_8X64_MATRIX

7.6. niswitch module 573

NI Modular Instruments Python API Documentation, Release 1.4.1

NISWITCH_TOPOLOGY_2531_1_WIRE_DUAL_4X64_MATRIX
NISWITCH_TOPOLOGY_2531_1_WIRE_DUAL_8X32_MATRIX
NISWITCH_TOPOLOGY_2531_2_WIRE_4X64_MATRIX NISWITCH_TOPOLOGY_2531_2_WIRE_8X32_MATRIX
NISWITCH_TOPOLOGY_2532_1_WIRE_16X32_MATRIX
NISWITCH_TOPOLOGY_2532_1_WIRE_4X128_MATRIX NISWITCH_TOPOLOGY_2532_1_WIRE_8X64_MATRIX
NISWITCH_TOPOLOGY_2532_1_WIRE_DUAL_16X16_MATRIX NISWITCH_TOPOLOGY_2532_1_WIRE_DUAL_4X64_MATRIX
NISWITCH_TOPOLOGY_2532_1_WIRE_DUAL_8X32_MATRIX NISWITCH_TOPOLOGY_2532_1_WIRE_SIXTEEN_2X16_MATRIX
NISWITCH_TOPOLOGY_2532_2_WIRE_16X16_MATRIX NISWITCH_TOPOLOGY_2532_2_WIRE_4X64_MATRIX
NISWITCH_TOPOLOGY_2532_2_WIRE_8X32_MATRIX NISWITCH_TOPOLOGY_2532_2_WIRE_DUAL_4X32_MATRIX
NISWITCH_TOPOLOGY_2533_1_WIRE_4X64_MATRIX NISWITCH_TOPOLOGY_2534_1_WIRE_8X32_MATRIX
NISWITCH_TOPOLOGY_2535_1_WIRE_4X136_MATRIX NISWITCH_TOPOLOGY_2536_1_WIRE_8X68_MATRIX
NISWITCH_TOPOLOGY_2540_1_WIRE_8X9_MATRIX NISWITCH_TOPOLOGY_2541_1_WIRE_8X12_MATRIX
NISWITCH_TOPOLOGY_2542_QUAD_2X1_TERMINATED_MUX NISWITCH_TOPOLOGY_2543_DUAL_4X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_2544_8X1_TERMINATED_MUX NISWITCH_TOPOLOGY_2545_4X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_2546_DUAL_4X1_MUX NISWITCH_TOPOLOGY_2547_8X1_MUX
NISWITCH_TOPOLOGY_2548_4_SPDT NISWITCH_TOPOLOGY_2549_TERMINATED_2_SPDT
NISWITCH_TOPOLOGY_2554_4X1_MUX NISWITCH_TOPOLOGY_2555_4X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_2556_DUAL_4X1_MUX NISWITCH_TOPOLOGY_2557_8X1_MUX
NISWITCH_TOPOLOGY_2558_4_SPDT NISWITCH_TOPOLOGY_2559_TERMINATED_2_SPDT
NISWITCH_TOPOLOGY_2564_16_SPST NISWITCH_TOPOLOGY_2564_8_DPST
NISWITCH_TOPOLOGY_2565_16_SPST NISWITCH_TOPOLOGY_2566_16_SPDT
NISWITCH_TOPOLOGY_2566_8_DPDT NISWITCH_TOPOLOGY_2567_INDEPENDENT
NISWITCH_TOPOLOGY_2568_15_DPST NISWITCH_TOPOLOGY_2568_31_SPST
NISWITCH_TOPOLOGY_2569_100_SPST NISWITCH_TOPOLOGY_2569_50_DPST
NISWITCH_TOPOLOGY_2570_20_DPDT NISWITCH_TOPOLOGY_2570_40_SPDT
NISWITCH_TOPOLOGY_2571_66_SPDT NISWITCH_TOPOLOGY_2575_1_WIRE_196X1_MUX
NISWITCH_TOPOLOGY_2575_2_WIRE_98X1_MUX NISWITCH_TOPOLOGY_2575_2_WIRE_95X1_MUX
NISWITCH_TOPOLOGY_2576_2_WIRE_64X1_MUX NISWITCH_TOPOLOGY_2576_2_WIRE_DUAL_32X1_MUX
NISWITCH_TOPOLOGY_2576_2_WIRE_OCTAL_8X1_MUX NISWITCH_TOPOLOGY_2576_2_WIRE_QUAD_16X1_MUX
NISWITCH_TOPOLOGY_2576_2_WIRE_SIXTEEN_4X1_MUX NISWITCH_TOPOLOGY_2576_INDEPENDENT
NISWITCH_TOPOLOGY_2584_1_WIRE_12X1_MUX NISWITCH_TOPOLOGY_2584_1_WIRE_DUAL_6X1_MUX
NISWITCH_TOPOLOGY_2584_2_WIRE_6X1_MUX NISWITCH_TOPOLOGY_2584_INDEPENDENT
NISWITCH_TOPOLOGY_2585_1_WIRE_10X1_MUX NISWITCH_TOPOLOGY_2586_10_SPST
NISWITCH_TOPOLOGY_2586_5_DPST NISWITCH_TOPOLOGY_2590_4X1_MUX
NISWITCH_TOPOLOGY_2591_4X1_MUX NISWITCH_TOPOLOGY_2593_16X1_MUX
NISWITCH_TOPOLOGY_2593_8X1_TERMINATED_MUX NISWITCH_TOPOLOGY_2593_DUAL_8X1_MUX
NISWITCH_TOPOLOGY_2593_DUAL_4X1_TERMINATED_MUX NISWITCH_TOPOLOGY_2593_INDEPENDENT
NISWITCH_TOPOLOGY_2594_4X1_MUX NISWITCH_TOPOLOGY_2595_4X1_MUX
NISWITCH_TOPOLOGY_2596_DUAL_6X1_MUX NISWITCH_TOPOLOGY_2597_6X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_2598_DUAL_TRANSFER NISWITCH_TOPOLOGY_2599_2_SPDT
NISWITCH_TOPOLOGY_2720_INDEPENDENT NISWITCH_TOPOLOGY_2722_INDEPENDENT
NISWITCH_TOPOLOGY_2725_INDEPENDENT NISWITCH_TOPOLOGY_2727_INDEPENDENT
NISWITCH_TOPOLOGY_2737_2_WIRE_4X64_MATRIX NISWITCH_TOPOLOGY_2738_2_WIRE_8X32_MATRIX
NISWITCH_TOPOLOGY_2739_2_WIRE_16X16_MATRIX NISWITCH_TOPOLOGY_2746_QUAD_4X1_MUX
NISWITCH_TOPOLOGY_2747_DUAL_8X1_MUX NISWITCH_TOPOLOGY_2748_16X1_MUX
NISWITCH_TOPOLOGY_2790_INDEPENDENT NISWITCH_TOPOLOGY_2796_DUAL_6X1_MUX
NISWITCH_TOPOLOGY_2797_6X1_TERMINATED_MUX NISWITCH_TOPOLOGY_2798_DUAL_TRANSFER
NISWITCH_TOPOLOGY_2799_2_SPDT

• simulate (bool) – Enables simulation of the switch module specified in the resource
name parameter. Valid Values: True - simulate False - Don’t simulate (Default Value)

• reset_device (bool) – Specifies whether to reset the switch module during the ini-
tialization process. Valid Values: True - Reset Device (Default Value) False - Currently
unsupported. The device will not reset.

574 Chapter 7. License

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

Methods

abort

niswitch.Session.abort()
Aborts the scan in progress. Initiate a scan with niswitch.Session.initiate(). If the
switch module is not scanning, NISWITCH_ERROR_NO_SCAN_IN_PROGRESS error is re-
turned.

can_connect

niswitch.Session.can_connect(channel1, channel2)
Verifies that a path between channel 1 and channel 2 can be created. If a path is possible in the switch
module, the availability of that path is returned given the existing connections. If the path is possible
but in use, a NISWITCH_WARN_IMPLICIT_CONNECTION_EXISTS warning is returned.

Parameters

• channel1 (str) – Input one of the channel names of the desired path. Pass the
other channel name as the channel 2 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel names: ch0,
com0, ab0, r1, c2, cjtemp Default value: “”

• channel2 (str) – Input one of the channel names of the desired path. Pass the
other channel name as the channel 1 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel names: ch0,
com0, ab0, r1, c2, cjtemp Default value: “”

Return type niswitch.PathCapability

Returns

Indicates whether a path is valid. Possible values include:

• PATH_AVAILABLE 1

• PATH_EXISTS 2

• PATH_UNSUPPORTED 3

• RESOURCE_IN_USE 4

• SOURCE_CONFLICT 5

• CHANNEL_NOT_AVAILABLE 6

Notes: (1) PATH_AVAILABLE indicates that the driver can create the path
at this time. (2) PATH_EXISTS indicates that the path already exists. (3)
PATH_UNSUPPORTED indicates that the instrument is not capable of creating a path
between the channels you specify. (4) RESOURCE_IN_USE indicates that although
the path is valid, the driver cannot create the path at this moment because the switch
device is currently using one or more of the required channels to create another path.
You must destroy the other path before creating this one. (5) SOURCE_CONFLICT
indicates that the instrument cannot create a path because both channels are connected
to a different source channel. (6) CHANNEL_NOT_AVAILABLE indicates that the
driver cannot create a path between the two channels because one of the channels is a
configuration channel and thus unavailable for external connections.

7.6. niswitch module 575

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

close

niswitch.Session.close()
Terminates the NI-SWITCH session and all of its properties and deallocates any memory resources
the driver uses. Notes: (1) You must unlock the session before calling niswitch.Session.
_close(). (2) After calling niswitch.Session._close(), you cannot use the instru-
ment driver again until you call niswitch.Session.init() or niswitch.Session.
InitWithOptions().

Note: One or more of the referenced methods are not in the Python API for this driver.

Note: This method is not needed when using the session context manager

commit

niswitch.Session.commit()
Downloads the configured scan list and trigger settings to hardware. Calling niswitch.
Session.commit() optional as it is implicitly called during niswitch.Session.
initiate(). Use niswitch.Session.commit() to arm triggers in a given order or to
control when expensive hardware operations are performed.

connect

niswitch.Session.connect(channel1, channel2)
Creates a path between channel 1 and channel 2. The driver calculates and uses the
shortest path between the two channels. Refer to Immediate Operations for informa-
tion about Channel Usage types. If a path is not available, the method returns one
of the following errors: - NISWITCH_ERROR_EXPLICIT_CONNECTION_EXISTS,
if the two channels are already explicitly connected by calling either the niswitch.
Session.connect() or niswitch.Session.set_path() method. -
NISWITCH_ERROR_IS_CONFIGURATION_CHANNEL, if a channel is a configuration
channel. Error elaboration contains information about which of the two channels is a configuration
channel. - NISWITCH_ERROR_ATTEMPT_TO_CONNECT_SOURCES, if both channels are
connected to a different source. Error elaboration contains information about sources channel 1
and 2 connect to. - NISWITCH_ERROR_CANNOT_CONNECT_TO_ITSELF, if channels 1 and 2
are one and the same channel. - NISWITCH_ERROR_PATH_NOT_FOUND, if the driver cannot
find a path between the two channels. Note: Paths are bidirectional. For example, if a path exists
between channels CH1 and CH2, then the path also exists between channels CH2 and CH1.

Parameters

• channel1 (str) – Input one of the channel names of the desired path. Pass the
other channel name as the channel 2 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel names: ch0,
com0, ab0, r1, c2, cjtemp Default value: None

• channel2 (str) – Input one of the channel names of the desired path. Pass the
other channel name as the channel 1 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel names: ch0,
com0, ab0, r1, c2, cjtemp Default value: None

576 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

connect_multiple

niswitch.Session.connect_multiple(connection_list)
Creates the connections between channels specified in Connection List. Specify connections with
two endpoints only or the explicit path between two endpoints. NI-SWITCH calculates and uses
the shortest path between the channels. Refer to Setting Source and Configuration Channels for
information about channel usage types. In the event of an error, connecting stops at the point in the
list where the error occurred. If a path is not available, the method returns one of the following er-
rors: - NISWITCH_ERROR_EXPLICIT_CONNECTION_EXISTS, if the two channels are already
explicitly connected. - NISWITCH_ERROR_IS_CONFIGURATION_CHANNEL, if a channel is
a configuration channel. Error elaboration contains information about which of the two channels is
a configuration channel. - NISWITCH_ERROR_ATTEMPT_TO_CONNECT_SOURCES, if both
channels are connected to a different source. Error elaboration contains information about sources
channel 1 and 2 to connect. - NISWITCH_ERROR_CANNOT_CONNECT_TO_ITSELF, if chan-
nels 1 and 2 are one and the same channel. - NISWITCH_ERROR_PATH_NOT_FOUND, if the
driver cannot find a path between the two channels. Note: Paths are bidirectional. For example, if a
path exists between channels ch1 and ch2, then the path also exists between channels ch1 and ch2.

Parameters connection_list (str) – Connection List specifies a list of connec-
tions between channels to make. NI-SWITCH validates the connection list, and aborts
execution of the list if errors are returned. Refer to Connection and Disconnection List
Syntax for valid connection list syntax and examples. Refer to Devices Overview for
valid channel names for the switch module. Example of a valid connection list: c0 ->
r1, [c2 -> r2 -> c3] In this example, r2 is a configuration channel. Default value: None

disable

niswitch.Session.disable()
Places the switch module in a quiescent state where it has minimal or no impact on the system to
which it is connected. All channels are disconnected and any scan in progress is aborted.

disconnect

niswitch.Session.disconnect(channel1, channel2)
This method destroys the path between two channels that you create with the niswitch.
Session.connect() or niswitch.Session.set_path() method. If a path is not con-
nected or not available, the method returns the IVISWTCH_ERROR_NO_SUCH_PATH error.

Parameters

• channel1 (str) – Input one of the channel names of the path to break. Pass
the other channel name as the channel 2 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel names: ch0,
com0, ab0, r1, c2, cjtemp Default value: None

• channel2 (str) – Input one of the channel names of the path to break. Pass
the other channel name as the channel 1 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel names: ch0,
com0, ab0, r1, c2, cjtemp Default value: None

7.6. niswitch module 577

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

disconnect_all

niswitch.Session.disconnect_all()
Breaks all existing paths. If the switch module cannot break all paths,
NISWITCH_WARN_PATH_REMAINS warning is returned.

disconnect_multiple

niswitch.Session.disconnect_multiple(disconnection_list)
Breaks the connections between channels specified in Disconnection List. If no connections exist
between channels, NI-SWITCH returns an error. In the event of an error, the VI stops at the point in
the list where the error occurred.

Parameters disconnection_list (str) – Disconnection List specifies a list of con-
nections between channels to break. NI-SWITCH validates the disconnection list, and
aborts execution of the list if errors are returned. Refer to Connection and Disconnec-
tion List Syntax for valid disconnection list syntax and examples. Refer to Devices
Overview for valid channel names for the switch module. Example of a valid discon-
nection list: c0 -> r1, [c2 -> r2 -> c3] In this example, r2 is a configuration channel.
Default value: None

get_channel_name

niswitch.Session.get_channel_name(index)
Returns the channel string that is in the channel table at the specified index. Use niswitch.
Session.get_channel_name() in a For Loop to get a complete list of valid channel names
for the switch module. Use the Channel Count property to determine the number of channels.

Parameters index (int) – A 1-based index into the channel table. Default value: 1
Maximum value: Value of Channel Count property.

Return type str

Returns Returns the channel name that is in the channel table at the index you specify.

get_path

niswitch.Session.get_path(channel1, channel2)
Returns a string that identifies the explicit path created with niswitch.Session.connect().
Pass this string to niswitch.Session.set_path() to establish the exact same path in fu-
ture connections. In some cases, multiple paths are available between two channels. When you
call niswitch.Session.connect(), the driver selects an available path. With niswitch.
Session.connect(), there is no guarantee that the driver selected path will always be the same
path through the switch module. niswitch.Session.get_path() only returns those paths
explicitly created by niSwitch Connect Channels or niswitch.Session.set_path(). For
example, if you connect channels CH1 and CH3,and then channels CH2 and CH3, an explicit path
between channels CH1 and CH2 does not exist an error is returned

Parameters

• channel1 (str) – Input one of the channel names of the desired path. Pass the
other channel name as the channel 2 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel names: ch0,
com0, ab0, r1, c2, cjtemp Default value: “”

578 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

• channel2 (str) – Input one of the channel names of the desired path. Pass the
other channel name as the channel 1 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel names: ch0,
com0, ab0, r1, c2, cjtemp Default value: “”

Return type str

Returns A string composed of comma-separated paths between channel 1 and channel 2.
The first and last names in the path are the endpoints of the path. All other channels in
the path are configuration channels. Examples of returned paths: ch0->com0, com0-
>ab0

get_relay_count

niswitch.Session.get_relay_count(relay_name)
Returns the number of times the relay has changed from Closed to Open. Relay count is useful for
tracking relay lifetime and usage. Call niswitch.Session.wait_for_debounce() before
niswitch.Session.get_relay_count() to ensure an accurate count. Refer to the Relay
Count topic in the NI Switches Help to determine if the switch module supports relay counting.

Parameters relay_name (str) – Name of the relay. Default value: None Examples
of valid relay names: ch0, ab0, 1wire, hlselect Refer to Devices Overview for a list of
valid relay names for the switch module.

Return type int

Returns The number of relay cycles.

get_relay_name

niswitch.Session.get_relay_name(index)
Returns the relay name string that is in the relay list at the specified index. Use niswitch.
Session.get_relay_name() in a For Loop to get a complete list of valid relay names for the
switch module. Use the Number of Relays property to determine the number of relays.

Parameters index (int) – A 1-based index into the channel table. Default value: 1
Maximum value: Value of Channel Count property.

Return type str

Returns Returns the relay name for the index you specify.

get_relay_position

niswitch.Session.get_relay_position(relay_name)
Returns the relay position for the relay specified in the Relay Name parameter.

Parameters relay_name (str) – Name of the relay. Default value: None Examples
of valid relay names: ch0, ab0, 1wire, hlselect Refer to Devices Overview for a list of
valid relay names for the switch module.

Return type niswitch.RelayPosition

Returns Indicates whether the relay is open or closed. OPEN 10 CLOSED 11

7.6. niswitch module 579

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

initiate

niswitch.Session.initiate()
Commits the configured scan list and trigger settings to hardware and initiates the scan. If
niSwitch Commit was called earlier, niSwitch Initiate Scan only initiates the scan and re-
turns immediately. Once the scanning operation begins, you cannot perform any other oper-
ation other than GetAttribute, AbortScan, or SendSoftwareTrigger. All other methods return
NISWITCH_ERROR_SCAN_IN_PROGRESS. To stop the scanning operation, To stop the scan-
ning operation, call niswitch.Session.abort().

Note: This method will return a Python context manager that will initiate on entering and abort on
exit.

lock

niswitch.Session.lock()
Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:

• The application called the niswitch.Session.lock() method.

• A call to NI-SWITCH locked the session.

• After a call to the niswitch.Session.lock() method returns successfully, no other threads can
access the device session until you call the niswitch.Session.unlock() method or exit out of the
with block when using lock context manager.

• Use the niswitch.Session.lock() method and the niswitch.Session.unlock() method
around a sequence of calls to instrument driver methods if you require that the device retain its settings
through the end of the sequence.

You can safely make nested calls to the niswitch.Session.lock() method within the same thread. To
completely unlock the session, you must balance each call to the niswitch.Session.lock() method
with a call to the niswitch.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

with niswitch.Session('dev1') as session:
with session.lock():

Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type context manager

Returns When used in a with statement, niswitch.Session.lock() acts as a context man-
ager and unlock will be called when the with block is exited

580 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

relay_control

niswitch.Session.relay_control(relay_name, relay_action)
Controls individual relays of the switch. When controlling individual relays, the protection offered
by setting the usage of source channels and configuration channels, and by enabling or disabling
analog bus sharing on the NI SwitchBlock, does not apply. Refer to the device book for your switch
in the NI Switches Help to determine if the switch supports individual relay control.

Parameters

• relay_name (str) – Name of the relay. Default value: None Examples of valid
relay names: ch0, ab0, 1wire, hlselect Refer to Devices Overview for a list of valid
relay names for the switch module.

• relay_action (niswitch.RelayAction) – Specifies whether to open or
close a given relay. Default value: Relay Close Defined values: OPEN CLOSE
(Default Value)

reset

niswitch.Session.reset()
Disconnects all created paths and returns the switch module to the state at initialization. Configura-
tion channel and source channel settings remain unchanged.

reset_with_defaults

niswitch.Session.reset_with_defaults()
Resets the switch module and applies initial user specified settings from the logical name used to
initialize the session. If the session was created without a logical name, this method is equivalent to
niswitch.Session.reset().

route_scan_advanced_output

niswitch.Session.route_scan_advanced_output(scan_advanced_output_connector,
scan_advanced_output_bus_line,
invert=False)

Routes the scan advanced output trigger from a trigger bus line (TTLx) to the front or rear connector.

Parameters

• scan_advanced_output_connector (niswitch.
ScanAdvancedOutput) – The scan advanced trigger destination. Valid
locations are the FRONTCONNECTOR and REARCONNECTOR. Default value:
FRONTCONNECTOR

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

• scan_advanced_output_bus_line (niswitch.
ScanAdvancedOutput) – The trigger line to route the scan advanced
output trigger from the front or rear connector. Select NONE to break an existing

7.6. niswitch module 581

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

route. Default value: None Valid Values: NONE TTL0 TTL1 TTL2 TTL3 TTL4
TTL5 TTL6 TTL7

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

• invert (bool) – If True, inverts the input trigger signal from falling to rising or
vice versa. Default value: False

route_trigger_input

niswitch.Session.route_trigger_input(trigger_input_connector, trig-
ger_input_bus_line, invert=False)

Routes the input trigger from the front or rear connector to a trigger bus line (TTLx). To disconnect
the route, call this method again and specify None for trigger bus line parameter.

Parameters

• trigger_input_connector (niswitch.TriggerInput) – The loca-
tion of the input trigger source on the switch module. Valid locations are the
FRONTCONNECTOR and REARCONNECTOR. Default value: FRONTCONNECTOR

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

• trigger_input_bus_line (niswitch.TriggerInput) – The trigger
line to route the input trigger. Select NISWITCH_VAL_NONE to break an existing
route. Default value: None Valid Values: NISWITCH_VAL_NONE TTL0 TTL1
TTL2 TTL3 TTL4 TTL5 TTL6 TTL7

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

• invert (bool) – If True, inverts the input trigger signal from falling to rising or
vice versa. Default value: False

self_test

niswitch.Session.self_test()
Verifies that the driver can communicate with the switch module.

Raises SelfTestError on self test failure. Properties on exception object:

• code - failure code from driver

• message - status message from driver

Self-Test Code Description
0 Passed self-test
1 Self-test failed

582 Chapter 7. License

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python API Documentation, Release 1.4.1

send_software_trigger

niswitch.Session.send_software_trigger()
Sends a software trigger to the switch module specified in the NI-SWITCH session. When
the trigger input is set to SOFTWARE_TRIG through either the niswitch.Session.
ConfigureScanTrigger() or the niswitch.Session.trigger_input property, the
scan does not proceed from a semi-colon (wait for trigger) until niswitch.Session.
send_software_trigger() is called.

Note: One or more of the referenced methods are not in the Python API for this driver.

set_path

niswitch.Session.set_path(path_list)
Connects two channels by specifying an explicit path in the path list parameter. niswitch.
Session.set_path() is particularly useful where path repeatability is important, such as in
calibrated signal paths. If this is not necessary, use niswitch.Session.connect().

Parameters path_list (str) – A string composed of comma-separated paths between
channel 1 and channel 2. The first and last names in the path are the endpoints of the
path. Every other channel in the path are configuration channels. Example of a valid
path list string: ch0->com0, com0->ab0. In this example, com0 is a configuration
channel. Default value: None Obtain the path list for a previously created path with
niswitch.Session.get_path().

unlock

niswitch.Session.unlock()
Releases a lock that you acquired on an device session using niswitch.Session.lock(). Refer to
niswitch.Session.unlock() for additional information on session locks.

wait_for_debounce

niswitch.Session.wait_for_debounce(maximum_time_ms=hightime.timedelta(milliseconds=5000))
Pauses until all created paths have settled. If the time you specify with the Maximum
Time (ms) parameter elapsed before the switch paths have settled, this method returns the
NISWITCH_ERROR_MAX_TIME_EXCEEDED error.

Parameters maximum_time_ms (hightime.timedelta, datetime.
timedelta, or int in milliseconds) – Specifies the maximum length
of time to wait for all relays in the switch module to activate or deactivate. If the
specified time elapses before all relays active or deactivate, a timeout error is returned.
Default Value:5000 ms

wait_for_scan_complete

niswitch.Session.wait_for_scan_complete(maximum_time_ms=hightime.timedelta(milliseconds=5000))
Pauses until the switch module stops scanning or the maximum time has elapsed and

7.6. niswitch module 583

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

returns a timeout error. If the time you specify with the Maximum Time (ms) pa-
rameter elapsed before the scanning operation has finished, this method returns the
NISWITCH_ERROR_MAX_TIME_EXCEEDED error.

Parameters maximum_time_ms (hightime.timedelta, datetime.
timedelta, or int in milliseconds) – Specifies the maximum length
of time to wait for the switch module to stop scanning. If the specified time elapses
before the scan ends, NISWITCH_ERROR_MAX_TIME_EXCEEDED error is
returned. Default Value:5000 ms

Properties

analog_bus_sharing_enable

niswitch.Session.analog_bus_sharing_enable
Enables or disables sharing of an analog bus line so that multiple NI SwitchBlock devices may
connect to it simultaneously. To enable multiple NI SwitchBlock devices to share an analog bus
line, set this property to True for each device on the channel that corresponds with the shared analog
bus line. The default value for all devices is False, which disables sharing of the analog bus. Refer
to the Using the Analog Bus on an NI SwitchBlock Carrier topic in the NI Switches Help for more
information about sharing the analog bus.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].analog_bus_sharing_enable

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.analog_bus_sharing_enable

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Channel Configuration:Analog Bus Sharing Enable

• C Attribute: NISWITCH_ATTR_ANALOG_BUS_SHARING_ENABLE

bandwidth

niswitch.Session.bandwidth
This channel-based property returns the bandwidth for the channel. The units are hertz.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

584 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.channels[...].bandwidth

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.bandwidth

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Bandwidth

• C Attribute: NISWITCH_ATTR_BANDWIDTH

channel_count

niswitch.Session.channel_count
Indicates the number of channels that the specific instrument driver supports.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Channel Count

• C Attribute: NISWITCH_ATTR_CHANNEL_COUNT

characteristic_impedance

niswitch.Session.characteristic_impedance
This channel-based property returns the characteristic impedance for the channel. The units are
ohms.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].characteristic_impedance

To set/get on all channels, you can call the property directly on the niswitch.Session.

7.6. niswitch module 585

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.characteristic_impedance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Characteristic Impedance

• C Attribute: NISWITCH_ATTR_CHARACTERISTIC_IMPEDANCE

continuous_scan

niswitch.Session.continuous_scan
When a switch device is scanning, the swich can either stop scanning when the end of the scan
(False) or continue scanning from the top of the scan list again (True). Notice that if you set the scan
to continuous (True), the Wait For Scan Complete operation will always time out and you must call
Abort to stop the scan.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Scanning Configuration:Continuous Scan

• C Attribute: NISWITCH_ATTR_CONTINUOUS_SCAN

digital_filter_enable

niswitch.Session.digital_filter_enable
This property specifies whether to apply the pulse width filter to the Trigger Input. Enabling the
Digital Filter (True) prevents the switch module from being triggered by pulses that are less than
150 ns on PXI trigger lines 0–7. When Digital Filter is disabled (False), it is possible for the switch
module to be triggered by noise on the PXI trigger lines. If the device triggering the switch is capable
of sending pulses greater than 150 ns, you should not disable the Digital Filter.

The following table lists the characteristics of this property.

586 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Scanning Configuration:Digital Filter Enable

• C Attribute: NISWITCH_ATTR_DIGITAL_FILTER_ENABLE

driver_setup

niswitch.Session.driver_setup
This property indicates the Driver Setup string that the user specified when initializing the driver.
Some cases exist where the end-user must specify instrument driver options at initialization time.
An example of this is specifying a particular instrument model from among a family of instruments
that the driver supports. This is useful when using simulation. The end-user can specify driver-
specific options through the DriverSetup keyword in the optionsString parameter to the niswitch.
Session.InitWithOptions() method, or through the IVI Configuration Utility. If the user
does not specify a Driver Setup string, this property returns an empty string.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Driver Setup

• C Attribute: NISWITCH_ATTR_DRIVER_SETUP

handshaking_initiation

niswitch.Session.handshaking_initiation
The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.HandshakingInitiation
Permissions read-write
Repeated Capabilities None

7.6. niswitch module 587

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Scanning Configuration:Handshaking Initiation

• C Attribute: NISWITCH_ATTR_HANDSHAKING_INITIATION

instrument_firmware_revision

niswitch.Session.instrument_firmware_revision
A string that contains the firmware revision information for the instrument you are currently using.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Firmware Revision

• C Attribute: NISWITCH_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

niswitch.Session.instrument_manufacturer
A string that contains the name of the instrument manufacturer you are currently using.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Manufacturer

• C Attribute: NISWITCH_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

niswitch.Session.instrument_model
A string that contains the model number or name of the instrument that you are currently using.

The following table lists the characteristics of this property.

588 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Model

• C Attribute: NISWITCH_ATTR_INSTRUMENT_MODEL

io_resource_descriptor

niswitch.Session.io_resource_descriptor
Indicates the resource descriptor the driver uses to identify the physical device. If you initialize
the driver with a logical name, this property contains the resource descriptor that corresponds to
the entry in the IVI Configuration utility. If you initialize the instrument driver with the resource
descriptor, this property contains that value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:IO Resource
Descriptor

• C Attribute: NISWITCH_ATTR_IO_RESOURCE_DESCRIPTOR

is_configuration_channel

niswitch.Session.is_configuration_channel
This channel-based property specifies whether to reserve the channel for internal path cre-
ation. A channel that is available for internal path creation is called a configuration chan-
nel. The driver may use configuration channels to create paths between two channels you spec-
ify in the niswitch.Session.connect() method. Configuration channels are not avail-
able for external connections. Set this property to True to mark the channel as a configura-
tion channel. Set this property to False to mark the channel as available for external con-
nections. After you identify a channel as a configuration channel, you cannot use that chan-
nel for external connections. The niswitch.Session.connect() method returns the
NISWITCH_ERROR_IS_CONFIGURATION_CHANNEL error when you attempt to establish a
connection between a configuration channel and any other channel.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

7.6. niswitch module 589

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.channels[...].is_configuration_channel

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.is_configuration_channel

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Channel Configuration:Is Configuration Channel

• C Attribute: NISWITCH_ATTR_IS_CONFIGURATION_CHANNEL

is_debounced

niswitch.Session.is_debounced
This property indicates whether the entire switch device has settled since the last switching com-
mand. A value of True indicates that all signals going through the switch device are valid.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Is Debounced

• C Attribute: NISWITCH_ATTR_IS_DEBOUNCED

is_scanning

niswitch.Session.is_scanning
If True, the switch module is currently scanning through the scan list (i.e. it is not in the Idle state).
If False, the switch module is not currently scanning through the scan list (i.e. it is in the Idle state).

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities None

590 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Scanning Configuration:Is Scanning

• C Attribute: NISWITCH_ATTR_IS_SCANNING

is_source_channel

niswitch.Session.is_source_channel
This channel-based property specifies whether you want to identify the channel as a source
channel. Typically, you set this property to True when you attach the channel to a power
supply, a method generator, or an active measurement point on the unit under test, and you
do not want to connect the channel to another source. The driver prevents source channels
from connecting to each other. The niswitch.Session.connect() method returns the
NISWITCH_ERROR_ATTEMPT_TO_CONNECT_SOURCES when you attempt to connect two
channels that you identify as source channels.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].is_source_channel

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.is_source_channel

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Channel Configuration:Is Source Channel

• C Attribute: NISWITCH_ATTR_IS_SOURCE_CHANNEL

is_waiting_for_trig

niswitch.Session.is_waiting_for_trig
In a scan list, a semi-colon (;) is used to indicate that at that point in the scan list, the scan engine
should pause until a trigger is received from the trigger input. If that trigger is user generated through
either a hardware pulse or the Send SW Trigger operation, it is necessary for the user to know when
the scan engine has reached such a state.

The following table lists the characteristics of this property.

7.6. niswitch module 591

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Scanning Configuration:Is Waiting for Trigger?

• C Attribute: NISWITCH_ATTR_IS_WAITING_FOR_TRIG

logical_name

niswitch.Session.logical_name
A string containing the logical name you specified when opening the current IVI session. You
may pass a logical name to the niswitch.Session.init() or niswitch.Session.
InitWithOptions() methods. The IVI Configuration utility must contain an entry for the
logical name. The logical name entry refers to a virtual instrument section in the IVI Configura-
tion file. The virtual instrument section specifies a physical device and initial user options.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name

• C Attribute: NISWITCH_ATTR_LOGICAL_NAME

max_ac_voltage

niswitch.Session.max_ac_voltage
This channel-based property returns the maximum AC voltage the channel can switch. The units are
volts RMS.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].max_ac_voltage

To set/get on all channels, you can call the property directly on the niswitch.Session.

592 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Example: my_session.max_ac_voltage

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Maximum AC Voltage

• C Attribute: NISWITCH_ATTR_MAX_AC_VOLTAGE

max_carry_ac_current

niswitch.Session.max_carry_ac_current
This channel-based property returns the maximum AC current the channel can carry. The units are
amperes RMS.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].max_carry_ac_current

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.max_carry_ac_current

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Maximum Carry AC Current

• C Attribute: NISWITCH_ATTR_MAX_CARRY_AC_CURRENT

max_carry_ac_power

niswitch.Session.max_carry_ac_power
This channel-based property returns the maximum AC power the channel can carry. The units are
volt-amperes.

7.6. niswitch module 593

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].max_carry_ac_power

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.max_carry_ac_power

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Maximum Carry AC Power

• C Attribute: NISWITCH_ATTR_MAX_CARRY_AC_POWER

max_carry_dc_current

niswitch.Session.max_carry_dc_current
This channel-based property returns the maximum DC current the channel can carry. The units are
amperes.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].max_carry_dc_current

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.max_carry_dc_current

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Maximum Carry DC Current

• C Attribute: NISWITCH_ATTR_MAX_CARRY_DC_CURRENT

594 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

max_carry_dc_power

niswitch.Session.max_carry_dc_power
This channel-based property returns the maximum DC power the channel can carry. The units are
watts.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].max_carry_dc_power

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.max_carry_dc_power

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Maximum Carry DC Power

• C Attribute: NISWITCH_ATTR_MAX_CARRY_DC_POWER

max_dc_voltage

niswitch.Session.max_dc_voltage
This channel-based property returns the maximum DC voltage the channel can switch. The units are
volts.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].max_dc_voltage

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.max_dc_voltage

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.6. niswitch module 595

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Module Characteristics:Maximum DC Voltage

• C Attribute: NISWITCH_ATTR_MAX_DC_VOLTAGE

max_switching_ac_current

niswitch.Session.max_switching_ac_current
This channel-based property returns the maximum AC current the channel can switch. The units are
amperes RMS.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].max_switching_ac_current

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.max_switching_ac_current

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Maximum Switching AC Current

• C Attribute: NISWITCH_ATTR_MAX_SWITCHING_AC_CURRENT

max_switching_ac_power

niswitch.Session.max_switching_ac_power
This channel-based property returns the maximum AC power the channel can switch. The units are
volt-amperes.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].max_switching_ac_power

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.max_switching_ac_power

The following table lists the characteristics of this property.

596 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Maximum Switching AC Power

• C Attribute: NISWITCH_ATTR_MAX_SWITCHING_AC_POWER

max_switching_dc_current

niswitch.Session.max_switching_dc_current
This channel-based property returns the maximum DC current the channel can switch. The units are
amperes.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].max_switching_dc_current

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.max_switching_dc_current

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Maximum Switching DC Current

• C Attribute: NISWITCH_ATTR_MAX_SWITCHING_DC_CURRENT

max_switching_dc_power

niswitch.Session.max_switching_dc_power
This channel-based property returns the maximum DC power the channel can switch. The units are
watts.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].max_switching_dc_power

7.6. niswitch module 597

NI Modular Instruments Python API Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.max_switching_dc_power

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Maximum Switching DC Power

• C Attribute: NISWITCH_ATTR_MAX_SWITCHING_DC_POWER

number_of_relays

niswitch.Session.number_of_relays
This property returns the number of relays.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Number of Relays

• C Attribute: NISWITCH_ATTR_NUMBER_OF_RELAYS

num_of_columns

niswitch.Session.num_of_columns
This property returns the number of channels on the column of a matrix or scanner. If the switch
device is a scanner, this value is the number of input channels. The niswitch.Session.
wire_mode property affects the number of available columns. For example, if your device has
8 input lines and you use the four-wire mode, then the number of columns you have available is 2.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

598 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Matrix Configuration:Number of Columns

• C Attribute: NISWITCH_ATTR_NUM_OF_COLUMNS

num_of_rows

niswitch.Session.num_of_rows
This property returns the number of channels on the row of a matrix or scanner. If the switch device
is a scanner, this value is the number of output channels. The niswitch.Session.wire_mode
property affects the number of available rows. For example, if your device has 8 input lines and you
use the two-wire mode, then the number of columns you have available is 4.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Matrix Configuration:Number of Rows

• C Attribute: NISWITCH_ATTR_NUM_OF_ROWS

power_down_latching_relays_after_debounce

niswitch.Session.power_down_latching_relays_after_debounce
This property specifies whether to power down latching relays after calling Wait For Debounce.
When Power Down Latching Relays After Debounce is enabled (True), a call to Wait For Debounce
ensures that the relays are settled and the latching relays are powered down.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Power Down Latching Relays After De-
bounce

• C Attribute: NISWITCH_ATTR_POWER_DOWN_LATCHING_RELAYS_AFTER_DEBOUNCE

7.6. niswitch module 599

NI Modular Instruments Python API Documentation, Release 1.4.1

scan_advanced_output

niswitch.Session.scan_advanced_output
This property specifies the method you want to use to notify another instrument that all signals going
through the switch device have settled following the processing of one entry in the scan list.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ScanAdvancedOutput
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Scanning Configuration:Scan Advanced Output

• C Attribute: NISWITCH_ATTR_SCAN_ADVANCED_OUTPUT

scan_advanced_polarity

niswitch.Session.scan_advanced_polarity
The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ScanAdvancedPolarity
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Scanning Configuration:Scan Advanced Polarity

• C Attribute: NISWITCH_ATTR_SCAN_ADVANCED_POLARITY

scan_delay

niswitch.Session.scan_delay
This property specifies the minimum amount of time the switch device waits before it asserts the
scan advanced output trigger after opening or closing the switch. The switch device always waits for
debounce before asserting the trigger. The units are seconds. the greater value of the settling time
and the value you specify as the scan delay.

Note: NI PXI-2501/2503/2565/2590/2591 Users–the actual delay will always be

The following table lists the characteristics of this property.

600 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Scanning Configuration:Scan Delay

• C Attribute: NISWITCH_ATTR_SCAN_DELAY

scan_list

niswitch.Session.scan_list
This property contains a scan list, which is a string that specifies channel connections and trigger
conditions. The niswitch.Session.initiate() method makes or breaks connections and
waits for triggers according to the instructions in the scan list. The scan list is comprised of channel
names that you separate with special characters. These special characters determine the operations
the scanner performs on the channels when it executes this scan list. To create a path between two
channels, use the following character between the two channel names: -> (a dash followed by a ‘>’
sign) Example: ‘CH1->CH2’ tells the switch to make a path from channel CH1 to channel CH2.
To break or clear a path, use the following character as a prefix before the path: ~ (tilde) Example:
‘~CH1->CH2’ tells the switch to break the path from channel CH1 to channel CH2. To tell the
switch device to wait for a trigger event, use the following character as a separator between paths:
; (semi-colon) Example: ‘CH1->CH2;CH3->CH4’ tells the switch to make the path from channel
CH1 to channel CH2, wait for a trigger, and then make the path from CH3 to CH4.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Scanning Configuration:Scan List

• C Attribute: NISWITCH_ATTR_SCAN_LIST

scan_mode

niswitch.Session.scan_mode
This property specifies what happens to existing connections that conflict with the connections you
make in a scan list. For example, if CH1 is already connected to CH2 and the scan list instructs
the switch device to connect CH1 to CH3, this property specifies what happens to the connection
between CH1 and CH2. If the value of this property is NONE, the switch device takes no action on
existing paths. If the value is BREAK_BEFORE_MAKE, the switch device breaks conflicting paths
before making new ones. If the value is BREAK_AFTER_MAKE, the switch device breaks conflicting

7.6. niswitch module 601

NI Modular Instruments Python API Documentation, Release 1.4.1

paths after making new ones. Most switch devices support only one of the possible values. In such
cases, this property serves as an indicator of the device’s behavior.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ScanMode
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Scanning Configuration:Scan Mode

• C Attribute: NISWITCH_ATTR_SCAN_MODE

serial_number

niswitch.Session.serial_number
This read-only property returns the serial number for the switch device controlled by this
instrument driver. If the device does not return a serial number, the driver returns the
IVI_ERROR_ATTRIBUTE_NOT_SUPPORTED error.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Serial Number

• C Attribute: NISWITCH_ATTR_SERIAL_NUMBER

settling_time

niswitch.Session.settling_time
This channel-based property returns the maximum length of time from after you make a connection
until the signal flowing through the channel settles. The units are seconds. the greater value of the
settling time and the value you specify as the scan delay.

Note: NI PXI-2501/2503/2565/2590/2591 Users–the actual delay will always be

602 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].settling_time

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.settling_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Settling Time

• C Attribute: NISWITCH_ATTR_SETTLING_TIME

simulate

niswitch.Session.simulate
Specifies whether or not to simulate instrument driver I/O operations. If simulation is enabled,
instrument driver methods perform range checking and call Ivi_GetAttribute and Ivi_SetAttribute
methods, but they do not perform instrument I/O. For output parameters that represent instrument
data, the instrument driver methods return calculated values. The default value is False. Use the
niswitch.Session.InitWithOptions() method to override this value.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:User Options:Simulate

• C Attribute: NISWITCH_ATTR_SIMULATE

7.6. niswitch module 603

NI Modular Instruments Python API Documentation, Release 1.4.1

specific_driver_description

niswitch.Session.specific_driver_description
A string that contains a brief description of the specific driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Description

• C Attribute: NISWITCH_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_revision

niswitch.Session.specific_driver_revision
A string that contains additional version information about this instrument driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Revision

• C Attribute: NISWITCH_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

niswitch.Session.specific_driver_vendor
A string that contains the name of the vendor that supplies this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

604 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Vendor

• C Attribute: NISWITCH_ATTR_SPECIFIC_DRIVER_VENDOR

supported_instrument_models

niswitch.Session.supported_instrument_models
Contains a comma-separated list of supported instrument models.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Supported Instrument
Models

• C Attribute: NISWITCH_ATTR_SUPPORTED_INSTRUMENT_MODELS

temperature

niswitch.Session.temperature
This property returns the temperature as read by the Switch module. The units are degrees Celsius.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Temperature

• C Attribute: NISWITCH_ATTR_TEMPERATURE

trigger_input

niswitch.Session.trigger_input
This property specifies the source of the trigger for which the switch device can wait when processing
a scan list. The switch device waits for a trigger when it encounters a semi-colon in a scan list. When
the trigger occurs, the switch device advances to the next entry in the scan list.

The following table lists the characteristics of this property.

7.6. niswitch module 605

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype enums.TriggerInput
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Scanning Configuration:Trigger Input

• C Attribute: NISWITCH_ATTR_TRIGGER_INPUT

trigger_input_polarity

niswitch.Session.trigger_input_polarity
Determines the behavior of the trigger Input.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerInputPolarity
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Scanning Configuration:Trigger Input Polarity

• C Attribute: NISWITCH_ATTR_TRIGGER_INPUT_POLARITY

wire_mode

niswitch.Session.wire_mode
This property returns the wire mode of the switch device. This property affects the values of the
niswitch.Session.num_of_rows and niswitch.Session.num_of_columns prop-
erties. The actual number of input and output lines on the switch device is fixed, but the number of
channels depends on how many lines constitute each channel.

Tip: This property can be set/get on specific channels within your niswitch.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].wire_mode

To set/get on all channels, you can call the property directly on the niswitch.Session.

Example: my_session.wire_mode

The following table lists the characteristics of this property.

606 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Module Characteristics:Wire mode

• C Attribute: NISWITCH_ATTR_WIRE_MODE

Session

• Session

• Methods

– abort

– can_connect

– close

– commit

– connect

– connect_multiple

– disable

– disconnect

– disconnect_all

– disconnect_multiple

– get_channel_name

– get_path

– get_relay_count

– get_relay_name

– get_relay_position

– initiate

– lock

– relay_control

– reset

– reset_with_defaults

– route_scan_advanced_output

– route_trigger_input

– self_test

7.6. niswitch module 607

NI Modular Instruments Python API Documentation, Release 1.4.1

– send_software_trigger

– set_path

– unlock

– wait_for_debounce

– wait_for_scan_complete

• Properties

– analog_bus_sharing_enable

– bandwidth

– channel_count

– characteristic_impedance

– continuous_scan

– digital_filter_enable

– driver_setup

– handshaking_initiation

– instrument_firmware_revision

– instrument_manufacturer

– instrument_model

– io_resource_descriptor

– is_configuration_channel

– is_debounced

– is_scanning

– is_source_channel

– is_waiting_for_trig

– logical_name

– max_ac_voltage

– max_carry_ac_current

– max_carry_ac_power

– max_carry_dc_current

– max_carry_dc_power

– max_dc_voltage

– max_switching_ac_current

– max_switching_ac_power

– max_switching_dc_current

– max_switching_dc_power

– number_of_relays

608 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

– num_of_columns

– num_of_rows

– power_down_latching_relays_after_debounce

– scan_advanced_output

– scan_advanced_polarity

– scan_delay

– scan_list

– scan_mode

– serial_number

– settling_time

– simulate

– specific_driver_description

– specific_driver_revision

– specific_driver_vendor

– supported_instrument_models

– temperature

– trigger_input

– trigger_input_polarity

– wire_mode

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the underlying driver
function call. This can be the actual function based on the Session method being called, or it can be
the appropriate Get/Set Attribute function, such as niSwitch_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities. The
parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or an integer.
If it is a string, you can indicate a range using the same format as the driver: ‘0-2’ or ‘0:2’

Some repeated capabilities use a prefix before the number and this is optional

channels

niswitch.Session.channels[]

session.channels['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

7.6. niswitch module 609

NI Modular Instruments Python API Documentation, Release 1.4.1

Enums

Enums used in NI-SWITCH

HandshakingInitiation

class niswitch.HandshakingInitiation

MEASUREMENT_DEVICE
The niSwitch Initiate Scan <switchviref.chm::/:py:meth:‘niswitch.Session.Initiate_Scan.html>‘__
VI does not return until the switch hardware is waiting for a trigger input. This en-
sures that if you initiate the measurement device after calling the niSwitch Initiate Scan
<switchviref.chm::/:py:meth:‘niswitch.Session.Initiate_Scan.html>‘__ VI , the switch is sure to re-
ceive the first measurement complete (MC) signal sent by the measurement device. The measurement
device should be configured to first take a measurement, send MC, then wait for scanner advanced output
signal. Thus, the first MC of the measurement device initiates handshaking.

SWITCH
The niSwitch Initiate Scan <switchviref.chm::/:py:meth:‘niswitch.Session.Initiate_Scan.html>‘__ VI re-
turns immediately after beginning scan list execution. It is assumed that the measurement device has
already been configured and is waiting for the scanner advanced signal. The measurement should be con-
figured to first wait for a trigger, then take a measurement. Thus, the first scanner advanced output signal
of the switch module initiates handshaking.

PathCapability

class niswitch.PathCapability

PATH_AVAILABLE
Path Available

PATH_EXISTS
Path Exists

PATH_UNSUPPORTED
Path Unsupported

RESOURCE_IN_USE
Resource in use

SOURCE_CONFLICT
Source conflict

CHANNEL_NOT_AVAILABLE
Channel not available

RelayAction

class niswitch.RelayAction

OPEN
Open Relay

610 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

CLOSE
Close Relay

RelayPosition

class niswitch.RelayPosition

OPEN
Open

CLOSED
Closed

ScanAdvancedOutput

class niswitch.ScanAdvancedOutput

NONE
The switch device does not produce a Scan Advanced Output trigger.

EXTERNAL
External Trigger. The switch device produces the Scan Advanced Output trigger on the external trigger
output.

TTL0
The switch device produces the Scan Advanced Output on the PXI TRIG0 line.

TTL1
The switch device produces the Scan Advanced Output on the PXI TRIG1 line.

TTL2
The switch device produces the Scan Advanced Output on the PXI TRIG2 line.

TTL3
The switch device produces the Scan Advanced Output on the PXI TRIG3 line.

TTL4
The switch device produces the Scan Advanced Output on the PXI TRIG4 line.

TTL5
The switch device produces the Scan Advanced Output on the PXI TRIG5 line.

TTL6
The switch device produces the Scan Advanced Output on the PXI TRIG6 line.

TTL7
The switch device produces the Scan Advanced Output on the PXI TRIG7 line.

PXI_STAR
The switch module produces the Scan Advanced Output Trigger on the PXI Star trigger bus before pro-
cessing the next entry in the scan list.

REARCONNECTOR
The switch device produces the Scan Advanced Output trigger on the rear connector.

FRONTCONNECTOR
The switch device produces the Scan Advanced Output trigger on the front connector.

7.6. niswitch module 611

NI Modular Instruments Python API Documentation, Release 1.4.1

REARCONNECTOR_MODULE1
The switch module produces the Scan Advanced Output Trigger on the rear connector module 1.

REARCONNECTOR_MODULE2
The switch module produces the Scan Advanced Output Trigger on the rear connector module 2.

REARCONNECTOR_MODULE3
The switch module produces the Scan Advanced Output Trigger on the rear connector module 3.

REARCONNECTOR_MODULE4
The switch module produces the Scan Advanced Output Trigger on the rear connector module 4.

REARCONNECTOR_MODULE5
The switch module produces the Scan Advanced Output Trigger on the rear connector module 5.

REARCONNECTOR_MODULE6
The switch module produces the Scan Advanced Output Trigger on the rear connector module 6.

REARCONNECTOR_MODULE7
The switch module produces the Scan Advanced Output Trigger on the rear connector module 7.

REARCONNECTOR_MODULE8
The switch module produces the Scan Advanced Output Trigger on the rear connector module 8.

REARCONNECTOR_MODULE9
The switch module produces the Scan Advanced Ouptut Trigger on the rear connector module 9.

REARCONNECTOR_MODULE10
The switch module produces the Scan Advanced Output Trigger on the rear connector module 10.

REARCONNECTOR_MODULE11
The switch module produces the Scan Advanced Output Trigger on the rear connector module 11.

REARCONNECTOR_MODULE12
The switch module produces the Scan Advanced Output Trigger on the rear connector module 12.

FRONTCONNECTOR_MODULE1
The switch module produces the Scan Advanced Output Trigger on the front connector module 1.

FRONTCONNECTOR_MODULE2
The switch module produces the Scan Advanced Output Trigger on the front connector module 2.

FRONTCONNECTOR_MODULE3
The switch module produces the Scan Advanced Output Trigger on the front connector module 3.

FRONTCONNECTOR_MODULE4
The switch module produces the Scan Advanced Output Trigger on the front connector module 4.

FRONTCONNECTOR_MODULE5
The switch module produces the Scan Advanced Output Trigger on the front connector module 5.

FRONTCONNECTOR_MODULE6
The switch module produces the Scan Advanced Output Trigger on the front connector module 6.

FRONTCONNECTOR_MODULE7
The switch module produces the Scan Advanced Output Trigger on the front connector module 7.

FRONTCONNECTOR_MODULE8
The switch module produces the Scan Advanced Output Trigger on the front connector module 8.

FRONTCONNECTOR_MODULE9
The switch module produces the Scan Advanced Output Trigger on the front connector module 9.

612 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

FRONTCONNECTOR_MODULE10
The switch module produces the Scan Advanced Output Trigger on the front connector module 10.

FRONTCONNECTOR_MODULE11
The switch module produces the Scan Advanced Output Trigger on the front connector module 11.

FRONTCONNECTOR_MODULE12
The switch module produces the Scan Advanced Output Trigger on the front connector module 12.

ScanAdvancedPolarity

class niswitch.ScanAdvancedPolarity

RISING
The trigger occurs on the rising edge of the signal.

FALLING
The trigger occurs on the falling edge of the signal.

ScanMode

class niswitch.ScanMode

NONE
No implicit action on connections when scanning.

BREAK_BEFORE_MAKE
When scanning, the switch device breaks existing connections before making new connections.

BREAK_AFTER_MAKE
When scanning, the switch device breaks existing connections after making new connections.

TriggerInput

class niswitch.TriggerInput

IMMEDIATE
Immediate Trigger. The switch device does not wait for a trigger before processing the next entry in the
scan list.

EXTERNAL
External Trigger. The switch device waits until it receives a trigger from an external source through the
external trigger input before processing the next entry in the scan list.

SOFTWARE_TRIG
The switch device waits until you call the niswitch.Session.send_software_trigger()
method before processing the next entry in the scan list.

TTL0
The switch device waits until it receives a trigger on the PXI TRIG0 line before processing the next entry
in the scan list.

7.6. niswitch module 613

NI Modular Instruments Python API Documentation, Release 1.4.1

TTL1
The switch device waits until it receives a trigger on the PXI TRIG1 line before processing the next entry
in the scan list.

TTL2
The switch device waits until it receives a trigger on the PXI TRIG2 line before processing the next entry
in the scan list.

TTL3
The switch device waits until it receives a trigger on the PXI TRIG3 line before processing the next entry
in the scan list.

TTL4
The switch device waits until it receives a trigger on the PXI TRIG4 line before processing the next entry
in the scan list.

TTL5
The switch device waits until it receives a trigger on the PXI TRIG5 line before processing the next entry
in the scan list.

TTL6
The switch device waits until it receives a trigger on the PXI TRIG6 line before processing the next entry
in the scan list.

TTL7
The switch device waits until it receives a trigger on the PXI TRIG7 line before processing the next entry
in the scan list.

PXI_STAR
The switch device waits until it receives a trigger on the PXI STAR trigger bus before processing the next
entry in the scan list.

REARCONNECTOR
The switch device waits until it receives a trigger on the rear connector.

FRONTCONNECTOR
The switch device waits until it receives a trigger on the front connector.

REARCONNECTOR_MODULE1
The switch module waits until it receives a trigger on the rear connector module 1.

REARCONNECTOR_MODULE2
The switch module waits until it receives a trigger on the rear connector module 2.

REARCONNECTOR_MODULE3
The switch module waits until it receives a trigger on the rear connector module 3.

REARCONNECTOR_MODULE4
The switch module waits until it receives a trigger on the rear connector module 4.

REARCONNECTOR_MODULE5
The switch module waits until it receives a trigger on the rear connector module 5.

REARCONNECTOR_MODULE6
The switch module waits until it receives a trigger on the rear connector module 6.

REARCONNECTOR_MODULE7
The switch module waits until it receives a trigger on the rear connector module 7.

REARCONNECTOR_MODULE8
The switch module waits until it receives a trigger on the rear connector module 8.

614 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

REARCONNECTOR_MODULE9
The switch module waits until it receives a trigger on the rear connector module 9.

REARCONNECTOR_MODULE10
The switch module waits until it receives a trigger on the rear connector module 10.

REARCONNECTOR_MODULE11
The switch module waits until it receives a trigger on the rear connector module 11.

REARCONNECTOR_MODULE12
The switch module waits until it receives a trigger on the rear connector module 12.

FRONTCONNECTOR_MODULE1
The switch module waits until it receives a trigger on the front connector module 1.

FRONTCONNECTOR_MODULE2
The switch module waits until it receives a trigger on the front connector module 2.

FRONTCONNECTOR_MODULE3
The switch module waits until it receives a trigger on the front connector module 3.

FRONTCONNECTOR_MODULE4
The switch module waits until it receives a trigger on the front connector module 4.

FRONTCONNECTOR_MODULE5
The switch module waits until it receives a trigger on the front connector module 5.

FRONTCONNECTOR_MODULE6
The switch module waits until it receives a trigger on the front connector module 6.

FRONTCONNECTOR_MODULE7
The switch module waits until it receives a trigger on the front connector module 7.

FRONTCONNECTOR_MODULE8
The switch module waits until it receives a trigger on the front connector module 8.

FRONTCONNECTOR_MODULE9
The switch module waits until it receives a trigger on the front connector module 9.

FRONTCONNECTOR_MODULE10
The switch module waits until it receives a trigger on the front connector module 10.

FRONTCONNECTOR_MODULE11
The switch module waits until it receives a trigger on the front connector module 11.

FRONTCONNECTOR_MODULE12
The switch module waits until it receives a trigger on the front connector module 12.

TriggerInputPolarity

class niswitch.TriggerInputPolarity

RISING
The trigger occurs on the rising edge of the signal.

FALLING
The trigger occurs on the falling edge of the signal.

7.6. niswitch module 615

NI Modular Instruments Python API Documentation, Release 1.4.1

Exceptions and Warnings

Error

exception niswitch.errors.Error
Base exception type that all NI-SWITCH exceptions derive from

DriverError

exception niswitch.errors.DriverError
An error originating from the NI-SWITCH driver

UnsupportedConfigurationError

exception niswitch.errors.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

DriverNotInstalledError

exception niswitch.errors.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

InvalidRepeatedCapabilityError

exception niswitch.errors.InvalidRepeatedCapabilityError
An error due to an invalid character in a repeated capability

SelfTestError

exception niswitch.errors.SelfTestError
An error due to a failed self-test

DriverWarning

exception niswitch.errors.DriverWarning
A warning originating from the NI-SWITCH driver

Examples

You can download all niswitch examples here

niswitch_connect_channels.py

616 Chapter 7. License

https://github.com/ni/nimi-python/releases/download/1.4.1/niswitch_examples.zip

NI Modular Instruments Python API Documentation, Release 1.4.1

Listing 17: (niswitch_connect_channels.py)

1 #!/usr/bin/python
2

3 import argparse
4 import niswitch
5 import sys
6

7

8 def example(resource_name, channel1, channel2, topology, simulate):
9 # if we are simulating resource name must be blank

10 resource_name = '' if simulate else resource_name
11

12 with niswitch.Session(resource_name=resource_name, topology=topology,
→˓simulate=simulate) as session:

13 session.connect(channel1=channel1, channel2=channel2)
14 print('Channel ', channel1, ' and ', channel2, ' are now connected.')
15 session.disconnect(channel1=channel1, channel2=channel2)
16 print('Channel ', channel1, ' and ', channel2, ' are now disconnected.')
17

18

19 def _main(argsv):
20 parser = argparse.ArgumentParser(description='Performs a connection with NI-

→˓SWITCH Channels.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
21 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource

→˓name of a National Instruments Switch.')
22 parser.add_argument('-ch1', '--channel1', default='c0', help='Channel One.')
23 parser.add_argument('-ch2', '--channel2', default='r0', help='Channel Two.')
24 parser.add_argument('-t', '--topology', default='Configured Topology', help=

→˓'Topology.')
25 parser.add_argument('-s', '--simulate', default=False, action='store_true', help=

→˓'Simulate device.')
26 args = parser.parse_args(argsv)
27 example(args.resource_name, args.channel1, args.channel2, args.topology, args.

→˓simulate)
28

29

30 def test_example():
31 example('', 'c0', 'r0', '2737/2-Wire 4x64 Matrix', True)
32

33

34 def test_main():
35 cmd_line = ['--topology', '2737/2-Wire 4x64 Matrix', '--simulate']
36 _main(cmd_line)
37

38

39 def main():
40 _main(sys.argv[1:])
41

42

43 if __name__ == '__main__':
44 main()
45

46

niswitch_get_device_info.py

7.6. niswitch module 617

https://github.com/ni/nimi-python/blob/1.4.1/src/niswitch/examples/niswitch_connect_channels.py

NI Modular Instruments Python API Documentation, Release 1.4.1

Listing 18: (niswitch_get_device_info.py)

1 #!/usr/bin/python
2

3 import argparse
4 import niswitch
5 import sys
6

7

8 def example(resource_name, topology, simulate, device, channel, relay):
9 # if we are simulating resource name must be blank

10 resource_name = '' if simulate else resource_name
11

12 with niswitch.Session(resource_name=resource_name, topology=topology,
→˓simulate=simulate) as session:

13 if device:
14 print('Device Info:')
15 row_format = '{:<18}' * (2)
16 print(row_format.format('Device Name: ', session.io_resource_descriptor))
17 print(row_format.format('Device Model: ', session.instrument_model))
18 print(row_format.format('Driver Revision: ', session.specific_driver_

→˓revision))
19 print(row_format.format('Channel count: ', session.channel_count))
20 print(row_format.format('Relay count: ', session.number_of_relays))
21 if channel:
22 print('Channel Info:')
23 row_format = '{:6}' + ' ' * 12 + '{:<15}{:<22}{:6}'
24 print(row_format.format('Number', 'Name', 'Is Configuration', 'Is Source

→˓'))
25 for i in range(1, session.channel_count + 1):
26 channel_name = session.get_channel_name(index=i)
27 channel = session.channels[channel_name]
28 print(row_format.format(i, channel_name, str(channel.is_configuration_

→˓channel), str(channel.is_source_channel)))
29 if relay:
30 print('Relay Info:')
31 row_format = '{:6}' + ' ' * 12 + '{:<15}{:<22}{:6}'
32 print(row_format.format('Number', 'Name', 'Position', 'Count'))
33 for i in range(1, session.number_of_relays + 1):
34 relay_name = session.get_relay_name(index=i)
35 print(row_format.format(i, relay_name, session.get_relay_

→˓position(relay_name=relay_name), session.get_relay_count(relay_name=relay_name)))
36

37

38 def _main(argsv):
39 parser = argparse.ArgumentParser(description='Prints information for the

→˓specified National Instruments Switch module.', formatter_class=argparse.
→˓ArgumentDefaultsHelpFormatter)

40 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource
→˓name of a National Instruments Switch.')

41 parser.add_argument('-d', '--device', default=False, action='store_true', help=
→˓'Prints information for the device')

42 parser.add_argument('-c', '--channel', default=False, action='store_true', help=
→˓'Prints information for all channels on the device')

43 parser.add_argument('-r', '--relay', default=False, action='store_true', help=
→˓'Prints information for all relays on the device')

44 parser.add_argument('-t', '--topology', default='Configured Topology', help=
→˓'Topology.')

(continues on next page)

618 Chapter 7. License

https://github.com/ni/nimi-python/blob/1.4.1/src/niswitch/examples/niswitch_get_device_info.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

45 parser.add_argument('-s', '--simulate', default=False, action='store_true', help=
→˓'Simulate device.')

46 args = parser.parse_args(argsv)
47

48 if not (args.device or args.channel or args.relay):
49 print('You must specify at least one of -d, -c, or -r!')
50 parser.print_help()
51 sys.exit(1)
52

53 example(args.resource_name, args.topology, args.simulate, args.device, args.
→˓channel, args.relay)

54

55

56 def test_example():
57 example('', '2737/2-Wire 4x64 Matrix', True, True, True, True)
58

59

60 def test_main():
61 cmd_line = ['--topology', '2737/2-Wire 4x64 Matrix', '--simulate', '--device', '--

→˓channel', '--relay',]
62 _main(cmd_line)
63

64

65 def main():
66 _main(sys.argv[1:])
67

68

69 if __name__ == '__main__':
70 main()
71

72

niswitch_relay_control.py

Listing 19: (niswitch_relay_control.py)

1 #!/usr/bin/python
2

3 import argparse
4 import niswitch
5 import sys
6

7

8 def example(resource_name, topology, simulate, relay, action):
9 # if we are simulating resource name must be blank

10 resource_name = '' if simulate else resource_name
11

12 with niswitch.Session(resource_name=resource_name, topology=topology,
→˓simulate=simulate) as session:

13 session.relay_control(relay_name=relay, relay_action=niswitch.
→˓RelayAction[action])

14 print('Relay ', relay, ' has had the action ', action, ' performed.')
15

16

(continues on next page)

7.6. niswitch module 619

https://github.com/ni/nimi-python/blob/1.4.1/src/niswitch/examples/niswitch_relay_control.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

17 def _main(argsv):
18 parser = argparse.ArgumentParser(description='Performs relay control with NI-

→˓SWITCH relays.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
19 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource

→˓name of a National Instruments Switch.')
20 parser.add_argument('-r', '--relay', default='k0', help='Relay Name.')
21 parser.add_argument('-a', '--action', default='OPEN', choices=niswitch.

→˓RelayAction.__members__.keys(), type=str.upper, help='Relay Action.')
22 parser.add_argument('-t', '--topology', default='Configured Topology', help=

→˓'Topology.')
23 parser.add_argument('-s', '--simulate', default=False, action='store_true', help=

→˓'Simulate device.')
24 args = parser.parse_args(argsv)
25 example(args.resource_name, args.topology, args.simulate, args.relay, args.action)
26

27

28 def test_example():
29 example('', '2737/2-Wire 4x64 Matrix', True, 'kr0c0', 'OPEN')
30

31

32 def test_main():
33 cmd_line = ['--topology', '2737/2-Wire 4x64 Matrix', '--simulate', '--relay',

→˓'kr0c0']
34 _main(cmd_line)
35

36

37 def main():
38 _main(sys.argv[1:])
39

40

41 if __name__ == '__main__':
42 main()
43

44

7.7 nise module

7.7.1 Installation

As a prerequisite to using the nise module, you must install the NI Switch Executive runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI Switch Executive) can be installed with pip:

$ python -m pip install nise~=1.4.1

Or easy_install from setuptools:

$ python -m easy_install nise

620 Chapter 7. License

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

NI Modular Instruments Python API Documentation, Release 1.4.1

7.7.2 Usage

The following is a basic example of using the nise module to open a session to a Switch Executive Virtual Device and
connect a routegroup.

import nise
with nise.Session('SwitchExecutiveExample') as session:

session.connect('DIOToUUT')

Additional examples for NI Switch Executive are located in src/nise/examples/ directory.

7.7.3 API Reference

Session

class nise.Session(self, virtual_device_name, options={})
Opens a session to a specified NI Switch Executive virtual device. Opens communications with all of the IVI
switches associated with the specified NI Switch Executive virtual device. Returns a session handle that you use
to identify the virtual device in all subsequent NI Switch Executive method calls. NI Switch Executive uses a
reference counting scheme to manage open session handles to an NI Switch Executive virtual device. Each call
to nise.Session.__init__() must be matched with a subsequent call to nise.Session.close().
Successive calls to nise.Session.__init__() with the same virtual device name always returns the
same session handle. NI Switch Executive disconnects its communication with the IVI switches after all session
handles are closed to a given virtual device. The session handles may be used safely in multiple threads of an
application. Sessions may only be opened to a given NI Switch Executive virtual device from a single process
at a time.

Parameters

• virtual_device_name (str) – The name of the NI Switch Executive virtual device.

• options (dict) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status False
cache True
simulate False
record_value_coersions False
driver_setup {}

Methods

7.7. nise module 621

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

NI Modular Instruments Python API Documentation, Release 1.4.1

close

nise.Session.close()
Reduces the reference count of open sessions by one. If the reference count goes to 0, the method
deallocates any memory resources the driver uses and closes any open IVI switch sessions. Af-
ter calling the nise.Session.close() method, you should not use the NI Switch Executive
virtual device again until you call nise.Session.__init__().

Note: This method is not needed when using the session context manager

connect

nise.Session.connect(connect_spec, multiconnect_mode=nise.MulticonnectMode.DEFAULT,
wait_for_debounce=True)

Connects the routes specified by the connection specification. When connecting, it may allow for
multiconnection based on the multiconnection mode. In the event of an error, the call to nise.
Session.connect()will attempt to undo any connections made so that the system will be left in
the same state that it was in before the call was made. Some errors can be caught before manipulating
hardware, although it is feasible that a hardware call could fail causing some connections to be
momentarily closed and then reopened. If the wait for debounce parameter is set, the method will
not return until the switch system has debounced.

Parameters

• connect_spec (str) – String describing the connections to be made. The route
specification strings are best summarized as a series of routes delimited by amper-
sands. The specified routes may be route names, route group names, or fully speci-
fied route paths delimited by square brackets. Some examples of route specification
strings are: MyRoute MyRouteGroup MyRoute & MyRouteGroup [A->Switch1/r0-
>B] MyRoute & MyRouteGroup & [A->Switch1/r0->B] Refer to Route Specifica-
tion Strings in the NI Switch Executive Help for more information.

• multiconnect_mode (nise.MulticonnectMode) – This value sets the
connection mode for the method. The mode might be one of the following:
NISE_VAL_USE_DEFAULT_MODE (-1) - uses the mode selected as the default for
the route in the NI Switch Executive virtual device configuration. If a mode has not
been selected for the route in the NI Switch Executive virtual device, this parameter
defaults to NISE_VAL_MULTICONNECT_ROUTES. NO_MULTICONNECT (0) -
routes specified in the connection specification must be disconnected before they can
be reconnected. Calling Connect on a route that was connected using No Multicon-
nect mode results in an error condition. NISE_VAL_MULTICONNECT_ROUTES
(1)- routes specified in the connection specification can be connected multiple times.
The first call to Connect performs the physical hardware connection. Successive
calls to Connect increase a connection reference count. Similarly, calls to Discon-
nect decrease the reference count. Once it reaches 0, the hardware is physically
disconnected. Multiconnecting routes applies to entire routes and not to route seg-
ments.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

622 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

• wait_for_debounce (bool) – Waits (if true) for switches to debounce between
its connect and disconnect operations. If false, it immediately begins the second
operation after completing the first. The order of connect and disconnect operation
is set by the Operation Order input.

connect_and_disconnect

nise.Session.connect_and_disconnect(connect_spec, disconnect_spec, multicon-
nect_mode=nise.MulticonnectMode.DEFAULT,
operation_order=nise.OperationOrder.AFTER,
wait_for_debounce=True)

Connects routes and disconnects routes in a similar fashion to nise.Session.connect() and
nise.Session.disconnect() except that the operations happen in the context of a single
method call. This method is useful for switching from one state to another state. nise.Session.
connect_and_disconnect() manipulates the hardware connections and disconnections only
when the routes are different between the connection and disconnection specifications. If any routes
are common between the connection and disconnection specifications, NI Switch Executive deter-
mines whether or not the relays need to be switched. This functionality has the distinct advantage of
increased throughput for shared connections, because hardware does not have to be involved and po-
tentially increases relay lifetime by decreasing the number of times that the relay has to be switched.
In the event of an error, the call to nise.Session.connect_and_disconnect() attempts
to undo any connections made, but does not attempt to reconnect disconnections. Some errors can be
caught before manipulating hardware, although it is feasible that a hardware call could fail causing
some connections to be momentarily closed and then reopened.

Parameters

• connect_spec (str) – String describing the connections to be made. The route
specification strings are best summarized as a series of routes delimited by amper-
sands. The specified routes may be route names, route group names, or fully speci-
fied route paths delimited by square brackets. Some examples of route specification
strings are: MyRoute MyRouteGroup MyRoute & MyRouteGroup [A->Switch1/r0-
>B] MyRoute & MyRouteGroup & [A->Switch1/r0->B] Refer to Route Specifica-
tion Strings in the NI Switch Executive Help for more information.

• disconnect_spec (str) – String describing the disconnections to be made.
The route specification strings are best summarized as a series of routes delimited
by ampersands. The specified routes may be route names, route group names, or
fully specified route paths delimited by square brackets. Some examples of route
specification strings are: MyRoute MyRouteGroup MyRoute & MyRouteGroup
[A->Switch1/r0->B] MyRoute & MyRouteGroup & [A->Switch1/r0->B] Refer to
Route Specification Strings in the NI Switch Executive Help for more information.

• multiconnect_mode (nise.MulticonnectMode) – This value sets the
connection mode for the method. The mode might be one of the following:
NISE_VAL_USE_DEFAULT_MODE (-1) - uses the mode selected as the default for
the route in the NI Switch Executive virtual device configuration. If a mode has not
been selected for the route in the NI Switch Executive virtual device, this parameter
defaults to NISE_VAL_MULTICONNECT_ROUTES. NO_MULTICONNECT (0) -
routes specified in the connection specification must be disconnected before they can
be reconnected. Calling Connect on a route that was connected using No Multicon-
nect mode results in an error condition. NISE_VAL_MULTICONNECT_ROUTES
(1) - routes specified in the connection specification can be connected multiple
times. The first call to Connect performs the physical hardware connection. Suc-
cessive calls to Connect increase a connection reference count. Similarly, calls to

7.7. nise module 623

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

Disconnect decrease the reference count. Once it reaches 0, the hardware is physi-
cally disconnected. This behavior is slightly different with SPDT relays. For more
information, refer to the Exclusions and SPDT Relays topic in the NI Switch Execu-
tive Help. Multiconnecting routes applies to entire routes and not to route segments.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

• operation_order (nise.OperationOrder) – Sets the order of the opera-
tion for the method. Defined values are Break Before Make and Break After Make.
BEFORE (1) - The method disconnects the routes specified in the disconnect spec-
ification before connecting the routes specified in the connect specification. This is
the typical mode of operation. AFTER (2) - The method connects the routes spec-
ified in the connection specification before connecting the routes specified in the
disconnection specification. This mode of operation is normally used when you are
switching current and want to ensure that a load is always connected to your source.
The order of operation is to connect first or disconnect first.

• wait_for_debounce (bool) – Waits (if true) for switches to debounce between
its connect and disconnect operations. If false, it immediately begins the second
operation after completing the first. The order of connect and disconnect operation
is set by the Operation Order input.

disconnect

nise.Session.disconnect(disconnect_spec)
Disconnects the routes specified in the Disconnection Specification. If any of the specified
routes were originally connected in a multiconnected mode, the call to nise.Session.
disconnect() reduces the reference count on the route by 1. If the reference count reaches
0, it is disconnected. If a specified route does not exist, it is an error condition. In the event of
an error, the call to nise.Session.disconnect() continues to try to disconnect everything
specified by the route specification string but reports the error on completion.

Parameters disconnect_spec (str) – String describing the disconnections to be
made. The route specification strings are best summarized as a series of routes de-
limited by ampersands. The specified routes may be route names, route group names,
or fully specified route paths delimited by square brackets. Some examples of route
specification strings are: MyRoute MyRouteGroup MyRoute & MyRouteGroup [A-
>Switch1/r0->B] MyRoute & MyRouteGroup & [A->Switch1/r0->B] Refer to Route
Specification Strings in the NI Switch Executive Help for more information.

disconnect_all

nise.Session.disconnect_all()
Disconnects all connections on every IVI switch device managed by the NISE session reference
passed to this method. nise.Session.disconnect_all() ignores all multiconnect modes.
Calling nise.Session.disconnect_all() resets all of the switch states for the system.

624 Chapter 7. License

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

expand_route_spec

nise.Session.expand_route_spec(route_spec, expand_action=nise.ExpandAction.ROUTES,
expanded_route_spec_size=[1024])

Expands a route spec string to yield more information about the routes and route groups within the
spec. The route specification string returned from nise.Session.expand_route_spec()
can be passed to other Switch Executive API methods (such as nise.Session.connect(),
nise.Session.disconnect(), and nise.Session.connect_and_disconnect())
that use route specification strings.

Parameters

• route_spec (str) – String describing the routes and route groups to expand.
The route specification strings are best summarized as a series of routes delimited
by ampersands. The specified routes may be route names, route group names, or
fully specified route paths delimited by square brackets. Some examples of route
specification strings are: MyRoute MyRouteGroup MyRoute & MyRouteGroup
[A->Switch1/r0->B] MyRoute & MyRouteGroup & [A->Switch1/r0->B] Refer to
Route Specification Strings in the NI Switch Executive Help for more information.

• expand_action (nise.ExpandAction) – This value sets the expand action
for the method. The action might be one of the following: ROUTES (0) - expands the
route spec to routes. Converts route groups to their constituent routes. PATHS (1) -
expands the route spec to paths. Converts routes and route groups to their constituent
square bracket route spec strings. Example: [Dev1/c0->Dev1/r0->Dev1/c1]

• expanded_route_spec_size (list of int) – The routeSpecSize is an
ViInt32 that is passed by reference into the method. As an input, it is the size of
the route spec string buffer being passed. If the route spec string is larger than the
string buffer being passed, only the portion of the route spec string that can fit in the
string buffer is copied into it. On return from the method, routeSpecSize holds the
size required to hold the entire route spec string. Note that this size may be larger
than the buffer size as the method always returns the size needed to hold the entire
buffer. You may pass NULL for this parameter if you are not interested in the return
value for routeSpecSize and routeSpec.

Return type str

Returns The expanded route spec. Route specification strings can be directly passed
to nise.Session.connect(), nise.Session.disconnect(), or nise.
Session.connect_and_disconnect() Refer to Route Specification Strings
in the NI Switch Executive Help for more information. You may pass NULL for this
parameter if you are not interested in the return value. To obtain the route specification
string, you should pass a buffer to this parameter. The size of the buffer required may
be obtained by calling the method with NULL for this parameter and a valid ViInt32
to routeSpecSize. The routeSpecSize will contain the size needed to hold the entire
route specification (including the NULL termination character). Common operation is
to call the method twice. The first time you call the method you can determine the size
needed to hold the route specification string. Allocate a buffer of the appropriate size
and then re-call the method to obtain the entire buffer.

find_route

nise.Session.find_route(channel1, channel2, route_spec_size=[1024])
Finds an existing or potential route between channel 1 and channel 2. The returned route specifica-
tion contains the route specification and the route capability determines whether or not the route ex-

7.7. nise module 625

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

isted, is possible, or is not possible for various reasons. The route specification string returned from
nise.Session.find_route() can be passed to other Switch Executive API methods (such
as nise.Session.connect(), nise.Session.disconnect(), and nise.Session.
connect_and_disconnect()) that use route specification strings.

Parameters

• channel1 (str) – Channel name of one of the endpoints of the route to find. The
channel name must either be a channel alias name or a name in the device/ivichannel
syntax. Examples: MyChannel Switch1/R0

• channel2 (str) – Channel name of one of the endpoints of the route to find. The
channel name must either be a channel alias name or a name in the device/ivichannel
syntax. Examples: MyChannel Switch1/R0

• route_spec_size (list of int) – The routeSpecSize is an ViInt32 that is
passed by reference into the method. As an input, it is the size of the route string
buffer being passed. If the route string is larger than the string buffer being passed,
only the portion of the route string that can fit in the string buffer is copied into it.
On return from the method, routeSpecSize holds the size required to hold the entire
route string. Note that this size may be larger than the buffer size as the method
always returns the size needed to hold the entire buffer. You may pass NULL for
this parameter if you are not interested in the return value for routeSpecSize and
routeSpec.

Return type

tuple (route_spec, path_capability)

WHERE

route_spec (str):

The fully specified route path complete with delimiting square brackets if
the route exists or is possible. An example of a fully specified route string
is: [A->Switch1/r0->B] Route specification strings can be directly passed
to nise.Session.connect(), nise.Session.disconnect(), or
nise.Session.connect_and_disconnect() Refer to Route Specifi-
cation Strings in the NI Switch Executive Help for more information. You may
pass NULL for this parameter if you are not interested in the return value. To
obtain the route specification string, you should pass a buffer to this parameter.
The size of the buffer required may be obtained by calling the method with NULL
for this parameter and a valid ViInt32 to routeSpecSize. The routeSpecSize will
contain the size needed to hold the entire route specification (including the NULL
termination character). Common operation is to call the method twice. The first
time you call the method you can determine the size needed to hold the route
specification string. Allocate a buffer of the appropriate size and then re-call the
method to obtain the entire buffer.

path_capability (nise.PathCapability):

The return value which expresses the capability of finding a valid route between
Channel 1 and Channel 2. Refer to the table below for value descriptions. You
may pass NULL for this parameter if you are not interested in the return value.
Route capability might be one of the following: Path Available (1) A path be-
tween channel 1 and channel 2 is available. The route specification parameter
returns a string describing the available path. Path Exists (2) A path between
channel 1 and channel 2 already exists. The route specification parameter returns
a string describing the existing path. Path Unsupported (3) There is no potential

626 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

path between channel 1 and channel 2 given the current configuration. Resource
In Use (4) There is a potential path between channel 1 and channel 2, although a
resource needed to complete the path is already in use. Source Conflict (5) Chan-
nel 1 and channel 2 cannot be connected because their connection would result
in an exclusion violation. Channel Not Available (6) One of the channels is not
useable as an endpoint channel. Make sure that it is not marked as a reserved for
routing. Channels Hardwired (7) The two channels reside on the same hardwire.
An implicit path already exists.

get_all_connections

nise.Session.get_all_connections(route_spec_size=[1024])
Returns the top-level connected routes and route groups. The route specification
string returned from nise.Session.get_all_connections() can be passed to other
Switch Executive API methods (such as nise.Session.connect(), nise.Session.
disconnect(), nise.Session.connect_and_disconnect(), and nise.Session.
expand_route_spec()) that use route specification strings.

Parameters route_spec_size (list of int) – The routeSpecSize is an ViInt32
that is passed by reference into the method. As an input, it is the size of the route spec
string buffer being passed. If the route spec string is larger than the string buffer being
passed, only the portion of the route spec string that can fit in the string buffer is copied
into it. On return from the method, routeSpecSize holds the size required to hold the
entire route spec string. Note that this size may be larger than the buffer size as the
method always returns the size needed to hold the entire buffer. You may pass NULL
for this parameter if you are not interested in the return value for routeSpecSize and
routeSpec.

Return type str

Returns The route spec of all currently connected routes and route
groups. Route specification strings can be directly passed to nise.
Session.connect(), nise.Session.disconnect(), nise.
Session.connect_and_disconnect(), or nise.Session.
expand_route_spec() Refer to Route Specification Strings in the NI Switch
Executive Help for more information. You may pass NULL for this parameter if
you are not interested in the return value. To obtain the route specification string,
you should pass a buffer to this parameter. The size of the buffer required may be
obtained by calling the method with NULL for this parameter and a valid ViInt32 to
routeSpecSize. The routeSpecSize will contain the size needed to hold the entire route
specification (including the NULL termination character). Common operation is to
call the method twice. The first time you call the method you can determine the size
needed to hold the route specification string. Allocate a buffer of the appropriate size
and then re-call the method to obtain the entire buffer.

is_connected

nise.Session.is_connected(route_spec)
Checks whether the specified routes and routes groups are connected. It returns true if connected.

Parameters route_spec (str) – String describing the connections to check. The route
specification strings are best summarized as a series of routes delimited by ampersands.
The specified routes may be route names, route group names, or fully specified route
paths delimited by square brackets. Some examples of route specification strings are:

7.7. nise module 627

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

MyRoute MyRouteGroup MyRoute & MyRouteGroup [A->Switch1/r0->B] MyRoute
& MyRouteGroup & [A->Switch1/r0->B] Refer to Route Specification Strings in the
NI Switch Executive Help for more information.

Return type bool

Returns Returns TRUE if the routes and routes groups are connected or FALSE if they
are not.

is_debounced

nise.Session.is_debounced()
Checks to see if the switching system is debounced or not. This method does not wait for debouncing
to occur. It returns true if the system is fully debounced. This method is similar to the IviSwtch
specific method.

Return type bool

Returns Returns TRUE if the system is fully debounced or FALSE if it is still settling.

wait_for_debounce

nise.Session.wait_for_debounce(maximum_time_ms=hightime.timedelta(milliseconds=-
1))

Waits for all of the switches in the NI Switch Executive virtual device to debounce. This method
does not return until either the switching system is completely debounced and settled or the max-
imum time has elapsed and the system is not yet debounced. In the event that the maximum time
elapses, the method returns an error indicating that a timeout has occurred. To ensure that all of
the switches have settled, NI recommends calling nise.Session.wait_for_debounce()
after a series of connection or disconnection operations and before taking any measurements of the
signals connected to the switching system.

Parameters maximum_time_ms (hightime.timedelta, datetime.
timedelta, or int in milliseconds) – The amount of time to wait
(in milliseconds) for the debounce to complete. A value of 0 checks for debouncing
once and returns an error if the system is not debounced at that time. A value of -1
means to block for an infinite period of time until the system is debounced.

Session

• Session

• Methods

– close

– connect

– connect_and_disconnect

– disconnect

– disconnect_all

– expand_route_spec

– find_route

628 Chapter 7. License

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

– get_all_connections

– is_connected

– is_debounced

– wait_for_debounce

Enums

Enums used in NI Switch Executive

ExpandAction

class nise.ExpandAction

ROUTES
Expand to routes

PATHS
Expand to paths

MulticonnectMode

class nise.MulticonnectMode

DEFAULT
Default

NO_MULTICONNECT
No multiconnect

MULTICONNECT
Multiconnect

OperationOrder

class nise.OperationOrder

BEFORE
Break before make

AFTER
Break after make

PathCapability

class nise.PathCapability

7.7. nise module 629

NI Modular Instruments Python API Documentation, Release 1.4.1

PATH_NEEDS_HARDWIRE
Path needs hardwire

PATH_NEEDS_CONFIG_CHANNEL
Path needs config channel

PATH_AVAILABLE
Path available

PATH_EXISTS
Path exists

PATH_UNSUPPORTED
Path Unsupported

RESOURCE_IN_USE
Resource in use

EXCLUSION_CONFLICT
Exclusion conflict

CHANNEL_NOT_AVAILABLE
Channel not available

CHANNELS_HARDWIRED
Channels hardwired

Exceptions and Warnings

Error

exception nise.errors.Error
Base exception type that all NI Switch Executive exceptions derive from

DriverError

exception nise.errors.DriverError
An error originating from the NI Switch Executive driver

UnsupportedConfigurationError

exception nise.errors.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

DriverNotInstalledError

exception nise.errors.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

InvalidRepeatedCapabilityError

exception nise.errors.InvalidRepeatedCapabilityError
An error due to an invalid character in a repeated capability

630 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

DriverWarning

exception nise.errors.DriverWarning
A warning originating from the NI Switch Executive driver

Examples

You can download all nise examples here

nise_basic_example.py

Listing 20: (nise_basic_example.py)

1 #!/usr/bin/python
2 import argparse
3 import nise
4 import sys
5

6

7 def example(virtual_device_name, connection):
8 with nise.Session(virtual_device_name=virtual_device_name) as session:
9 session.connect(connection)

10 print(connection, ' is now connected.')
11

12

13 def _main(argsv):
14 parser = argparse.ArgumentParser(description='Connects the specified connection

→˓specification', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
15 parser.add_argument('-n', '--virtual-device', default='SwitchExecutiveExample',

→˓help='NI Switch Executive Virtual Device name')
16 parser.add_argument('-c', '--connection', default='DIOToUUT', help='Connection

→˓Specification')
17 args = parser.parse_args(argsv)
18 example(args.virtual_device, args.connection)
19

20

21 def main():
22 _main(sys.argv[1:])
23

24

25 def test_example():
26 example('SwitchExecutiveExample', 'DIOToUUT')
27

28

29 def test_main():
30 cmd_line = []
31 _main(cmd_line)
32

33

34 if __name__ == '__main__':
35 main()
36

37

7.7. nise module 631

https://github.com/ni/nimi-python/releases/download/1.4.1/nise_examples.zip
https://github.com/ni/nimi-python/blob/1.4.1/src/nise/examples/nise_basic_example.py

NI Modular Instruments Python API Documentation, Release 1.4.1

7.8 nimodinst module

7.8.1 Installation

As a prerequisite to using the nimodinst module, you must install the NI-ModInst runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-ModInst) can be installed with pip:

$ python -m pip install nimodinst~=1.4.1

Or easy_install from setuptools:

$ python -m easy_install nimodinst

7.8.2 Usage

The following is a basic example of using the nimodinst module to retrieve information on all High Speed Digitizers
currently in the system.

import nimodinst
with nimodinst.Session("niscope") as session:

for device in session:
print("{: >20} {: >15} {: >10}".format(device.device_name, device.device_

→˓model, device.serial_number))

Additional examples for NI-ModInst are located in src/nimodinst/examples/ directory.

7.8.3 API Reference

Session

class nimodinst.Session(self, driver)
Creates a handle to a list of installed devices supported by the specified driver. Call this method and pass
in the name of a National Instruments instrument driver, such as “NI-SCOPE”. This method searches the
system and constructs a list of all the installed devices that are supported by that driver, and then returns
both a handle to this list and the number of devices found. The handle is used with other methods to query
for properties such as device name and model, and to safely discard the list when finished. Note This han-
dle reflects the system state when the handle is created (that is, when you call this method. If you re-
move devices from the system or rename them in Measurement & Automation Explorer (MAX), this handle
may not refer to an accurate list of devices. You should destroy the handle using nimodinst.Session.
_close_installed_devices_session() and create a new handle using this method.

Parameters driver (str) – A string specifying the driver whose supported devices you want to
find. This string is not case-sensitive. Some examples are: NI-SCOPE niScope NI-FGEN niFgen
NI-HSDIO niHSDIO NI-DMM niDMM NI-SWITCH niSwitch Note If you use the empty string
for this parameter, NI-ModInst creates a list of all Modular Instruments devices installed in the
system.

Methods

632 Chapter 7. License

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python API Documentation, Release 1.4.1

close

nimodinst.Session.close()
Cleans up the NI-ModInst session created by a call to nimodinst.Session.
_open_installed_devices_session(). Call this method when you are finished
using the session handle and do not use this handle again.

Note: This method is not needed when using the session context manager

Properties

bus_number

nimodinst.Session.bus_number
The bus on which the device has been enumerated.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIMODINST_ATTR_BUS_NUMBER

chassis_number

nimodinst.Session.chassis_number
The number of the chassis in which the device is installed. This property can only be queried for
PXI devices installed in a chassis that has been properly identified in MAX.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIMODINST_ATTR_CHASSIS_NUMBER

device_model

nimodinst.Session.device_model
The model of the device (for example, NI PXI-5122)

7.8. nimodinst module 633

NI Modular Instruments Python API Documentation, Release 1.4.1

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIMODINST_ATTR_DEVICE_MODEL

device_name

nimodinst.Session.device_name
The name of the device, which can be used to open an instrument driver session for that device

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIMODINST_ATTR_DEVICE_NAME

max_pciexpress_link_width

nimodinst.Session.max_pciexpress_link_width
MAX_PCIEXPRESS_LINK_WIDTH

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIMODINST_ATTR_MAX_PCIEXPRESS_LINK_WIDTH

pciexpress_link_width

nimodinst.Session.pciexpress_link_width
PCIEXPRESS_LINK_WIDTH

The following table lists the characteristics of this property.

634 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIMODINST_ATTR_PCIEXPRESS_LINK_WIDTH

serial_number

nimodinst.Session.serial_number
The serial number of the device

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIMODINST_ATTR_SERIAL_NUMBER

slot_number

nimodinst.Session.slot_number
The slot (for example, in a PXI chassis) in which the device is installed. This property can only be
queried for PXI devices installed in a chassis that has been properly identified in MAX.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIMODINST_ATTR_SLOT_NUMBER

socket_number

nimodinst.Session.socket_number
The socket number on which the device has been enumerated

The following table lists the characteristics of this property.

7.8. nimodinst module 635

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIMODINST_ATTR_SOCKET_NUMBER

Session

• Session

• Methods

– close

• Properties

– bus_number

– chassis_number

– device_model

– device_name

– max_pciexpress_link_width

– pciexpress_link_width

– serial_number

– slot_number

– socket_number

Exceptions and Warnings

Error

exception nimodinst.errors.Error
Base exception type that all NI-ModInst exceptions derive from

DriverError

exception nimodinst.errors.DriverError
An error originating from the NI-ModInst driver

UnsupportedConfigurationError

exception nimodinst.errors.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

636 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

DriverNotInstalledError

exception nimodinst.errors.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

DriverWarning

exception nimodinst.errors.DriverWarning
A warning originating from the NI-ModInst driver

Examples

You can download all nimodinst examples here

nimodinst_all_devices.py

Listing 21: (nimodinst_all_devices.py)

1 #!/usr/bin/python
2

3 import nimodinst
4

5

6 def example():
7 with nimodinst.Session('') as session:
8 if len(session) > 0:
9 print("%d items" % len(session))

10 print("{: >20} {: >15} {: >10}".format('Name', 'Model', 'S/N'))
11 for d in session:
12 print("{: >20} {: >15} {: >10}".format(d.device_name, d.device_model, d.

→˓serial_number))
13

14

15 def _main():
16 example()
17

18

19 def test_example():
20 example()
21

22

23 if __name__ == '__main__':
24 _main()
25

26

7.8. nimodinst module 637

https://github.com/ni/nimi-python/releases/download/1.4.1/nimodinst_examples.zip
https://github.com/ni/nimi-python/blob/1.4.1/src/nimodinst/examples/nimodinst_all_devices.py

NI Modular Instruments Python API Documentation, Release 1.4.1

7.9 nitclk module

7.9.1 Installation

As a prerequisite to using the nitclk module, you must install the NI-TClk runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-TClk) can be installed with pip:

$ python -m pip install nitclk~=1.4.1

Or easy_install from setuptools:

$ python -m easy_install nitclk

7.9.2 Usage

The following is a basic example of using the nitclk module

import nitclk

Additional examples for NI-TClk are located in src/nitclk/examples/ directory.

7.9.3 API Reference

Public API

The nitclk module provides synchronization facilites to allow multiple instruments to simultaneously respond to trig-
gers, to align Sample Clocks on multiple instruments, and/or to simultaneously start multiple instruments.

It consists of a set of functions that act on a list of SessionReference objects or instrument Session objects for
drivers that support NI-TClk. SessionReference also has a set of properties for configuration.

with niscope.Session('dev1') as scope1, niscope.Session('dev2') as scope2:
nitclk.configure_for_homogeneous_triggers([scope1, scope2])
nitclk.initiate([scope1, scope2])
wfm1 = scope1.fetch()
wfm2 = scope2.fetch()

configure_for_homogeneous_triggers

nitclk.configure_for_homogeneous_triggers(sessions)
Configures the properties commonly required for the TClk synchronization of device ses-
sions with homogeneous triggers in a single PXI chassis or a single PC. Use nitclk.
configure_for_homogeneous_triggers() to configure the properties for the
reference clocks, start triggers, reference triggers, script triggers, and pause triggers. If
nitclk.configure_for_homogeneous_triggers() cannot perform all the steps
appropriate for the given sessions, it returns an error. If an error is returned, use the in-
strument driver methods and properties for signal routing, along with the following NI-TClk
properties: nitclk.SessionReference.start_trigger_master_session

638 Chapter 7. License

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

NI Modular Instruments Python API Documentation, Release 1.4.1

nitclk.SessionReference.ref_trigger_master_session nitclk.
SessionReference.pause_trigger_master_session nitclk.
configure_for_homogeneous_triggers() affects the following clocks and triggers: -
Reference clocks - Start triggers - Reference triggers - Script triggers - Pause triggers Reference
Clocks nitclk.configure_for_homogeneous_triggers() configures the reference
clocks if they are needed. Specifically, if the internal sample clocks or internal sample clock
timebases are used, and the reference clock source is not configured–or is set to None (no
trigger configured)–nitclk.configure_for_homogeneous_triggers() configures the
following: PXI–The reference clock source on all devices is set to be the 10 MHz PXI backplane
clock (PXI_CLK10). PCI–One of the devices exports its 10 MHz onboard reference clock to RTSI
7. The reference clock source on all devices is set to be RTSI 7. Note: If the reference clock source
is set to a value other than None, nitclk.configure_for_homogeneous_triggers()
cannot configure the reference clock source. Start Triggers If the start trigger is set to None (no
trigger configured) for all sessions, the sessions are configured to share the start trigger. The
start trigger is shared by: - Implicitly exporting the start trigger from one session - Configuring
the other sessions for digital edge start triggers with sources corresponding to the exported start
trigger - Setting nitclk.SessionReference.start_trigger_master_session to
the session that is exporting the trigger for all sessions If the start triggers are None for all except one
session, nitclk.configure_for_homogeneous_triggers() configures the sessions to
share the start trigger from the one excepted session. The start trigger is shared by: - Implicitly
exporting start trigger from the session with the start trigger that is not None - Configuring the
other sessions for digital-edge start triggers with sources corresponding to the exported start
trigger - Setting nitclk.SessionReference.start_trigger_master_session
to the session that is exporting the trigger for all sessions If start triggers are configured for all
sessions, nitclk.configure_for_homogeneous_triggers() does not affect the start
triggers. Start triggers are considered to be configured for all sessions if either of the following
conditions is true: - No session has a start trigger that is None - One session has a start trigger that
is None, and all other sessions have start triggers other than None. The one session with the None
trigger must have nitclk.SessionReference.start_trigger_master_session
set to itself, indicating that the session itself is the start trigger master Reference Triggers
nitclk.configure_for_homogeneous_triggers() configures sessions that support
reference triggers to share the reference triggers if the reference triggers are None (no trigger
configured) for all except one session. The reference triggers are shared by: - Implicitly exporting
the reference trigger from the session whose reference trigger is not None - Configuring the
other sessions that support the reference trigger for digital-edge reference triggers with sources
corresponding to the exported reference trigger - Setting nitclk.SessionReference.
ref_trigger_master_session to the session that is exporting the trigger for all sessions
that support reference trigger If the reference triggers are configured for all sessions that support
reference triggers, nitclk.configure_for_homogeneous_triggers() does not affect
the reference triggers. Reference triggers are considered to be configured for all sessions if either
one or the other of the following conditions is true: - No session has a reference trigger that is None
- One session has a reference trigger that is None, and all other sessions have reference triggers other
than None. The one session with the None trigger must have nitclk.SessionReference.
ref_trigger_master_session set to itself, indicating that the session itself is the reference
trigger master Reference Trigger Holdoffs Acquisition sessions may be configured with the
reference trigger. For acquisition sessions, when the reference trigger is shared, nitclk.
configure_for_homogeneous_triggers() configures the holdoff properties (which are
instrument driver specific) on the reference trigger master session so that the session does not recog-
nize the reference trigger before the other sessions are ready. This condition is only relevant when
the sample clock rates, sample clock timebase rates, sample counts, holdoffs, and/or any delays for
the acquisitions are different. When the sample clock rates, sample clock timebase rates, and/or the
sample counts are different in acquisition sessions sharing the reference trigger, you should also set
the holdoff properties for the reference trigger master using the instrument driver. Pause Triggers
nitclk.configure_for_homogeneous_triggers() configures generation sessions

7.9. nitclk module 639

NI Modular Instruments Python API Documentation, Release 1.4.1

that support pause triggers to share them, if the pause triggers are None (no trigger configured) for
all except one session. The pause triggers are shared by: - Implicitly exporting the pause trigger
from the session whose script trigger is not None - Configuring the other sessions that support
the pause trigger for digital-edge pause triggers with sources corresponding to the exported pause
trigger - Setting nitclk.SessionReference.pause_trigger_master_session
to the session that is exporting the trigger for all sessions that support script triggers If the
pause triggers are configured for all generation sessions that support pause triggers, nitclk.
configure_for_homogeneous_triggers() does not affect pause triggers. Pause triggers
are considered to be configured for all sessions if either one or the other of the following conditions
is true: - No session has a pause trigger that is None - One session has a pause trigger that is
None and all other sessions have pause triggers other than None. The one session with the None
trigger must have nitclk.SessionReference.pause_trigger_master_session set
to itself, indicating that the session itself is the pause trigger master Note: TClk synchronization is
not supported for pause triggers on acquisition sessions.

Parameters sessions (list of instrument-specific sessions or
nitclk.SessionReference instances) – sessions is an array of sessions
that are being synchronized.

finish_sync_pulse_sender_synchronize

nitclk.finish_sync_pulse_sender_synchronize(sessions,
min_time=hightime.timedelta(seconds=0.0))

Finishes synchronizing the Sync Pulse Sender.

Parameters

• sessions (list of instrument-specific sessions or
nitclk.SessionReference instances) – sessions is an array of
sessions that are being synchronized.

• min_time (hightime.timedelta, datetime.timedelta, or
float in seconds) – Minimal period of TClk, expressed in seconds. Sup-
ported values are between 0.0 s and 0.050 s (50 ms). Minimal period for a
single chassis/PC is 200 ns. If the specified value is less than 200 ns, NI-TClk
automatically coerces minTime to 200 ns. For multichassis synchronization, adjust
this value to account for propagation delays through the various devices and cables.

initiate

nitclk.initiate(sessions)
Initiates the acquisition or generation sessions specified, taking into consideration any special re-
quirements needed for synchronization. For example, the session exporting the TClk-synchronized
start trigger is not initiated until after nitclk.initiate() initiates all the sessions that import
the TClk-synchronized start trigger.

Parameters sessions (list of instrument-specific sessions or
nitclk.SessionReference instances) – sessions is an array of sessions
that are being synchronized.

is_done

nitclk.is_done(sessions)
Monitors the progress of the acquisitions and/or generations corresponding to sessions.

640 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

Parameters sessions (list of instrument-specific sessions or
nitclk.SessionReference instances) – sessions is an array of sessions
that are being synchronized.

Return type bool

Returns Indicates that the operation is done. The operation is done when each session has
completed without any errors or when any one of the sessions reports an error.

setup_for_sync_pulse_sender_synchronize

nitclk.setup_for_sync_pulse_sender_synchronize(sessions,
min_time=hightime.timedelta(seconds=0.0))

Configures the TClks on all the devices and prepares the Sync Pulse Sender for synchronization

Parameters

• sessions (list of instrument-specific sessions or
nitclk.SessionReference instances) – sessions is an array of
sessions that are being synchronized.

• min_time (hightime.timedelta, datetime.timedelta, or
float in seconds) – Minimal period of TClk, expressed in seconds. Sup-
ported values are between 0.0 s and 0.050 s (50 ms). Minimal period for a
single chassis/PC is 200 ns. If the specified value is less than 200 ns, NI-TClk
automatically coerces minTime to 200 ns. For multichassis synchronization, adjust
this value to account for propagation delays through the various devices and cables.

synchronize

nitclk.synchronize(sessions, min_tclk_period=hightime.timedelta(seconds=0.0))
Synchronizes the TClk signals on the given sessions. After nitclk.synchronize() executes,
TClk signals from all sessions are synchronized. Note: Before using this NI-TClk method, ver-
ify that your system is configured as specified in the PXI Trigger Lines and RTSI Lines topic of
the NI-TClk Synchronization Help. You can locate this help file at Start>>Programs>>National
Instruments>>NI-TClk.

Parameters

• sessions (list of instrument-specific sessions or
nitclk.SessionReference instances) – sessions is an array of
sessions that are being synchronized.

• min_tclk_period (hightime.timedelta, datetime.timedelta,
or float in seconds) – Minimal period of TClk, expressed in seconds. Sup-
ported values are between 0.0 s and 0.050 s (50 ms). Minimal period for a single
chassis/PC is 200 ns. If the specified value is less than 200 ns, NI-TClk automati-
cally coerces minTime to 200 ns. For multichassis synchronization, adjust this value
to account for propagation delays through the various devices and cables.

synchronize_to_sync_pulse_sender

nitclk.synchronize_to_sync_pulse_sender(sessions,
min_time=hightime.timedelta(seconds=0.0))

Synchronizes the other devices to the Sync Pulse Sender.

7.9. nitclk module 641

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python API Documentation, Release 1.4.1

Parameters

• sessions (list of instrument-specific sessions or
nitclk.SessionReference instances) – sessions is an array of
sessions that are being synchronized.

• min_time (hightime.timedelta, datetime.timedelta, or
float in seconds) – Minimal period of TClk, expressed in seconds. Sup-
ported values are between 0.0 s and 0.050 s (50 ms). Minimal period for a
single chassis/PC is 200 ns. If the specified value is less than 200 ns, NI-TClk
automatically coerces minTime to 200 ns. For multichassis synchronization, adjust
this value to account for propagation delays through the various devices and cables.

wait_until_done

nitclk.wait_until_done(sessions, timeout=hightime.timedelta(seconds=0.0))
Call this method to pause execution of your program until the acquisitions and/or generations
corresponding to sessions are done or until the method returns a timeout error. nitclk.
wait_until_done() is a blocking method that periodically checks the operation status. It
returns control to the calling program if the operation completes successfully or an error occurs
(including a timeout error). This method is most useful for finite data operations that you expect to
complete within a certain time.

Parameters

• sessions (list of instrument-specific sessions or
nitclk.SessionReference instances) – sessions is an array of
sessions that are being synchronized.

• timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) – The amount of time in seconds that nitclk.
wait_until_done() waits for the sessions to complete. If timeout is exceeded,
nitclk.wait_until_done() returns an error.

SessionReference

class nitclk.SessionReference(session_number)
Helper class that contains all NI-TClk properties. This class is what is returned by any nimi-python Session
class tclk attribute when the driver supports NI-TClk

with niscope.Session('dev1') as session:
session.tclk.sample_clock_delay = .42

..note:: Constructing this class is an advanced use case and should not be needed in most circumstances.

Parameters session_number (int, nimi-python Session class,
SessionReference) – nitclk session

exported_sync_pulse_output_terminal

nitclk.SessionReference.exported_sync_pulse_output_terminal
Specifies the destination of the Sync Pulse. This property is most often used when synchronizing a
multichassis system. Values Empty string. Empty string is a valid value, indicating that the signal
is not exported. PXI Devices - ‘PXI_Trig0’ through ‘PXI_Trig7’ and device-specific settings PCI
Devices - ‘RTSI_0’ through ‘RTSI_7’ and device-specific settings Examples of Device-Specific

642 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python API Documentation, Release 1.4.1

Settings - NI PXI-5122 supports ‘PFI0’ and ‘PFI1’ - NI PXI-5421 supports ‘PFI0’, ‘PFI1’, ‘PFI4’,
and ‘PFI5’ - NI PXI-6551/6552 supports ‘PFI0’, ‘PFI1’, ‘PFI2’, and ‘PFI3’ Default Value is empty
string

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Export Sync Pulse Output Terminal

• C Attribute: NITCLK_ATTR_EXPORTED_SYNC_PULSE_OUTPUT_TERMINAL

exported_tclk_output_terminal

nitclk.SessionReference.exported_tclk_output_terminal
Specifies the destination of the device’s TClk signal. Values Empty string. Empty string is a valid
value, indicating that the signal is not exported. PXI Devices - ‘PXI_Trig0’ through ‘PXI_Trig7’
and device-specific settings PCI Devices - ‘RTSI_0’ through ‘RTSI_7’ and device-specific settings
Examples of Device-Specific Settings - NI PXI-5122 supports ‘PFI0’ and ‘PFI1’ - NI PXI-5421
supports ‘PFI0’, ‘PFI1’, ‘PFI4’, and ‘PFI5’ - NI PXI-6551/6552 supports ‘PFI0’, ‘PFI1’, ‘PFI2’,
and ‘PFI3’ Default Value is empty string

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Output Terminal

• C Attribute: NITCLK_ATTR_EXPORTED_TCLK_OUTPUT_TERMINAL

pause_trigger_master_session

nitclk.SessionReference.pause_trigger_master_session
Specifies the pause trigger master session. For external triggers, the session that originally receives
the trigger. For None (no trigger configured) or software triggers, the session that originally gener-
ates the trigger.

The following table lists the characteristics of this property.

7.9. nitclk module 643

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteris-
tic

Value

Datatype instrument-specific session or an instance of nitclk.SessionReference
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Pause Trigger Master Session

• C Attribute: NITCLK_ATTR_PAUSE_TRIGGER_MASTER_SESSION

ref_trigger_master_session

nitclk.SessionReference.ref_trigger_master_session
Specifies the reference trigger master session. For external triggers, the session that originally re-
ceives the trigger. For None (no trigger configured) or software triggers, the session that originally
generates the trigger.

The following table lists the characteristics of this property.

Characteris-
tic

Value

Datatype instrument-specific session or an instance of nitclk.SessionReference
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Reference Trigger Master Session

• C Attribute: NITCLK_ATTR_REF_TRIGGER_MASTER_SESSION

sample_clock_delay

nitclk.SessionReference.sample_clock_delay
Specifies the sample clock delay. Specifies the delay, in seconds, to apply to the session sample clock
relative to the other synchronized sessions. During synchronization, NI-TClk aligns the sample
clocks on the synchronized devices. If you want to delay the sample clocks, set this property before
calling nitclk.synchronize(). not supported for acquisition sessions. Values - Between
minus one and plus one period of the sample clock. One sample clock period is equal to (1/sample
clock rate). For example, for a session with sample rate of 100 MS/s, you can specify sample clock
delays between -10.0 ns and +10.0 ns. Default Value is 0

Note: Sample clock delay is supported for generation sessions only; it is

The following table lists the characteristics of this property.

644 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Sample Clock Delay

• C Attribute: NITCLK_ATTR_SAMPLE_CLOCK_DELAY

sequencer_flag_master_session

nitclk.SessionReference.sequencer_flag_master_session
Specifies the sequencer flag master session. For external triggers, the session that originally re-
ceives the trigger. For None (no trigger configured) or software triggers, the session that originally
generates the trigger.

The following table lists the characteristics of this property.

Characteris-
tic

Value

Datatype instrument-specific session or an instance of nitclk.SessionReference
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Sequencer Flag Master Session

• C Attribute: NITCLK_ATTR_SEQUENCER_FLAG_MASTER_SESSION

start_trigger_master_session

nitclk.SessionReference.start_trigger_master_session
Specifies the start trigger master session. For external triggers, the session that originally receives the
trigger. For None (no trigger configured) or software triggers, the session that originally generates
the trigger.

The following table lists the characteristics of this property.

Characteris-
tic

Value

Datatype instrument-specific session or an instance of nitclk.SessionReference
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.9. nitclk module 645

NI Modular Instruments Python API Documentation, Release 1.4.1

• LabVIEW Property: Start Trigger Master Session

• C Attribute: NITCLK_ATTR_START_TRIGGER_MASTER_SESSION

sync_pulse_clock_source

nitclk.SessionReference.sync_pulse_clock_source
Specifies the Sync Pulse Clock source. This property is typically used to synchronize PCI devices
when you want to control RTSI 7 yourself. Make sure that a 10 MHz clock is driven onto RTSI 7.
Values PCI Devices - ‘RTSI_7’ and ‘None’ PXI Devices - ‘PXI_CLK10’ and ‘None’ Default Value
- ‘None’ directs nitclk.synchronize() to create the necessary routes. For PCI, one of the
synchronized devices drives a 10 MHz clock on RTSI 7 unless that line is already being driven.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Sync Pulse Clock Source

• C Attribute: NITCLK_ATTR_SYNC_PULSE_CLOCK_SOURCE

sync_pulse_sender_sync_pulse_source

nitclk.SessionReference.sync_pulse_sender_sync_pulse_source
Specifies the external sync pulse source for the Sync Pulse Sender. You can use this source to
synchronize the Sync Pulse Sender with an external non-TClk source. Values Empty string. Empty
string is a valid value, indicating that the signal is not exported. PXI Devices - ‘PXI_Trig0’ through
‘PXI_Trig7’ and device-specific settings PCI Devices - ‘RTSI_0’ through ‘RTSI_7’ and device-
specific settings Examples of Device-Specific Settings - NI PXI-5122 supports ‘PFI0’ and ‘PFI1’
- NI PXI-5421 supports ‘PFI0’, ‘PFI1’, ‘PFI4’, and ‘PFI5’ - NI PXI-6551/6552 supports ‘PFI0’,
‘PFI1’, ‘PFI2’, and ‘PFI3’ Default Value is empty string

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: External Pulse Source

• C Attribute: NITCLK_ATTR_SYNC_PULSE_SENDER_SYNC_PULSE_SOURCE

646 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

sync_pulse_source

nitclk.SessionReference.sync_pulse_source
Specifies the Sync Pulse source. This property is most often used when synchronizing a multichassis
system. Values Empty string PXI Devices - ‘PXI_Trig0’ through ‘PXI_Trig7’ and device-specific
settings PCI Devices - ‘RTSI_0’ through ‘RTSI_7’ and device-specific settings Examples of Device-
Specific Settings - NI PXI-5122 supports ‘PFI0’ and ‘PFI1’ - NI PXI-5421 supports ‘PFI0’, ‘PFI1’,
‘PFI2’, and ‘PFI3’ - NI PXI-6551/6552 supports ‘PFI0’, ‘PFI1’, ‘PFI2’, and ‘PFI3’ Default Value -
Empty string. This default value directs nitclk.synchronize() to set this property when all
the synchronized devices are in one PXI chassis. To synchronize a multichassis system, you must
set this property before calling nitclk.synchronize().

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Sync Pulse Source

• C Attribute: NITCLK_ATTR_SYNC_PULSE_SOURCE

tclk_actual_period

nitclk.SessionReference.tclk_actual_period
Indicates the computed TClk period that will be used during the acquisition.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Period

• C Attribute: NITCLK_ATTR_TCLK_ACTUAL_PERIOD

nitclk

• Public API

– configure_for_homogeneous_triggers

– finish_sync_pulse_sender_synchronize

– initiate

7.9. nitclk module 647

NI Modular Instruments Python API Documentation, Release 1.4.1

– is_done

– setup_for_sync_pulse_sender_synchronize

– synchronize

– synchronize_to_sync_pulse_sender

– wait_until_done

• SessionReference

– exported_sync_pulse_output_terminal

– exported_tclk_output_terminal

– pause_trigger_master_session

– ref_trigger_master_session

– sample_clock_delay

– sequencer_flag_master_session

– start_trigger_master_session

– sync_pulse_clock_source

– sync_pulse_sender_sync_pulse_source

– sync_pulse_source

– tclk_actual_period

Exceptions and Warnings

Error

exception nitclk.errors.Error
Base exception type that all NI-TClk exceptions derive from

DriverError

exception nitclk.errors.DriverError
An error originating from the NI-TClk driver

UnsupportedConfigurationError

exception nitclk.errors.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

DriverNotInstalledError

exception nitclk.errors.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

648 Chapter 7. License

NI Modular Instruments Python API Documentation, Release 1.4.1

DriverWarning

exception nitclk.errors.DriverWarning
A warning originating from the NI-TClk driver

Examples

You can download all nitclk examples here

nitclk_niscope_synchronize_with_trigger.py

Listing 22: (nitclk_niscope_synchronize_with_trigger.py)

1 import argparse
2 import niscope
3 import nitclk
4 import sys
5 import time
6

7

8 def example(resource_name1, resource_name2, options):
9 with niscope.Session(resource_name=resource_name1, options=options) as session1,

→˓niscope.Session(resource_name=resource_name2, options=options) as session2:
10 session_list = [session1, session2]
11 for session in session_list:
12 session.configure_vertical(range=1.0, coupling=niscope.VerticalCoupling.

→˓DC)
13 session.configure_horizontal_timing(min_sample_rate=50000000, min_num_

→˓pts=1000, ref_position=50.0, num_records=1, enforce_realtime=True)
14 session1.trigger_type = niscope.TriggerType.SOFTWARE
15 nitclk.configure_for_homogeneous_triggers(session_list)
16 nitclk.synchronize(session_list, 200e-9)
17 nitclk.initiate(session_list)
18 time.sleep(100)
19 session1.send_software_trigger_edge(niscope.WhichTrigger.START)
20 waveforms = session2.channels[0].fetch(num_samples=1000)
21 for i in range(len(waveforms)):
22 print('Waveform {0} information:'.format(i))
23 print(str(waveforms[i]) + '\n\n')
24

25

26 def _main(argsv):
27 parser = argparse.ArgumentParser(description='Synchronizes multiple instruments

→˓to one trigger.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
28 parser.add_argument('-n1', '--resource-name1', default='PXI1Slot2', help=

→˓'Resource name of a NI Digitizer')
29 parser.add_argument('-n2', '--resource-name2', default='PXI1Slot3', help=

→˓'Resource name of a NI Digitizer')
30 parser.add_argument('-op', '--option-string', default='', type=str, help='Option

→˓string')
31 args = parser.parse_args(argsv)
32 example(args.resource_name1, args.resource_name2, args.option_string)
33

34

(continues on next page)

7.9. nitclk module 649

https://github.com/ni/nimi-python/releases/download/1.4.1/nitclk_examples.zip
https://github.com/ni/nimi-python/blob/1.4.1/src/nitclk/examples/nitclk_niscope_synchronize_with_trigger.py

NI Modular Instruments Python API Documentation, Release 1.4.1

(continued from previous page)

35 def main():
36 _main(sys.argv[1:])
37

38

39 def test_example():
40 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe

→˓', }, }
41 example('PXI1Slot2', 'PXI1Slot13', options)
42

43

44 def test_main():
45 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe

→˓',]
46 _main(cmd_line)
47

48

49 if __name__ == '__main__':
50 main()
51

650 Chapter 7. License

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

651

NI Modular Instruments Python API Documentation, Release 1.4.1

652 Chapter 8. Indices and tables

Python Module Index

n
nidcpower, 14
nidigital, 168
nidmm, 271
nifgen, 338
nimodinst, 632
niscope, 442
nise, 621
niswitch, 572
nitclk, 638

653

NI Modular Instruments Python API Documentation, Release 1.4.1

654 Python Module Index

Index

A
abort() (in module nidcpower.Session), 16
abort() (in module nidigital.Session), 169
abort() (in module nidmm.Session), 272
abort() (in module nifgen.Session), 339
abort() (in module niscope.Session), 444
abort() (in module niswitch.Session), 575
abort_keep_alive() (in module nidigital.Session),

169
absolute_delay (in module nifgen.Session), 367
absolute_sample_clock_offset (in module nis-

cope.Session), 469
AC (nidmm.WaveformCoupling attribute), 332
AC (niscope.TriggerCoupling attribute), 562
AC (niscope.VerticalCoupling attribute), 564
AC_CURRENT (nidmm.Function attribute), 327
AC_ESTIMATE (niscope.ClearableMeasurement at-

tribute), 555
AC_ESTIMATE (niscope.ScalarMeasurement attribute),

561
ac_max_freq (in module nidmm.Session), 294
ac_min_freq (in module nidmm.Session), 294
AC_PLUS_HF_REJECT (niscope.TriggerCoupling at-

tribute), 562
AC_VOLTS (nidmm.Function attribute), 327
AC_VOLTS_DC_COUPLED (nidmm.Function attribute),

328
accessory_gain (in module niscope.Session), 530
accessory_offset (in module niscope.Session), 531
acq_arm_source (in module niscope.Session), 470
acquisition_start_time (in module nis-

cope.Session), 469
acquisition_status() (in module nis-

cope.Session), 444
acquisition_type (in module niscope.Session), 470
AcquisitionStatus (class in nidmm), 326
AcquisitionStatus (class in niscope), 552
AcquisitionType (class in niscope), 553
active_advanced_sequence (in module nid-

cpower.Session), 39
active_advanced_sequence_step (in module

nidcpower.Session), 40
ACTIVE_LOAD (nidigital.TerminationMode attribute),

259
active_load_ioh (in module nidigital.Session), 201
active_load_iol (in module nidigital.Session), 201
active_load_vcom (in module nidigital.Session),

202
actual_power_allocation (in module nid-

cpower.Session), 40
adc_calibration (in module nidmm.Session), 295
ADCCalibration (class in nidmm), 326
ADD_CHANNELS (niscope.ArrayMeasurement attribute),

553
add_waveform_processing() (in module nis-

cope.Session), 445
adv_trig_src (in module niscope.Session), 471
ADVANCE (niscope.WhichTrigger attribute), 565
advance_trigger_terminal_name (in module

niscope.Session), 471
AFTER (nise.OperationOrder attribute), 629
ALL (nidcpower.OutputCutoffReason attribute), 157
ALL (nidigital.HistoryRAMCyclesToAcquire attribute),

255
all_marker_events_latched_status (in mod-

ule nifgen.Session), 368
all_marker_events_live_status (in module

nifgen.Session), 368
ALL_MEASUREMENTS (niscope.ClearableMeasurement

attribute), 554
allocate_named_waveform() (in module nif-

gen.Session), 340
allocate_waveform() (in module nifgen.Session),

340
allow_more_records_than_memory (in module

niscope.Session), 471
AMPLITUDE (niscope.ClearableMeasurement attribute),

555
AMPLITUDE (niscope.ScalarMeasurement attribute),

655

NI Modular Instruments Python API Documentation, Release 1.4.1

561
analog_bus_sharing_enable (in module

niswitch.Session), 584
analog_data_mask (in module nifgen.Session), 369
ANALOG_DETECTION_CIRCUIT (nis-

cope.RefTriggerDetectorLocation attribute),
559

analog_filter_enabled (in module nif-
gen.Session), 369

analog_path (in module nifgen.Session), 370
analog_static_value (in module nifgen.Session),

370
AnalogPath (class in nifgen), 425
ANY_FIELD (niscope.VideoTriggerEvent attribute), 565
ANY_LINE (niscope.VideoTriggerEvent attribute), 565
aperture_time (in module nidcpower.Session), 41
aperture_time (in module nidmm.Session), 295
aperture_time_units (in module nid-

cpower.Session), 42
aperture_time_units (in module nidmm.Session),

296
ApertureTimeUnits (class in nidcpower), 154
ApertureTimeUnits (class in nidmm), 326
apply_levels_and_timing() (in module nidigi-

tal.Session), 169
apply_tdr_offsets() (in module nidigi-

tal.Session), 170
ARB (nifgen.OutputMode attribute), 426
arb_gain (in module nifgen.Session), 370
arb_marker_position (in module nifgen.Session),

371
arb_offset (in module nifgen.Session), 371
arb_repeat_count (in module nifgen.Session), 372
arb_sample_rate (in module nifgen.Session), 372
arb_sequence_handle (in module nifgen.Session),

373
arb_waveform_handle (in module nifgen.Session),

373
AREA (niscope.ClearableMeasurement attribute), 555
AREA (niscope.ScalarMeasurement attribute), 561
arm_ref_trig_src (in module niscope.Session), 472
ARM_REFERENCE (niscope.WhichTrigger attribute),

565
ARRAY_GAIN (niscope.ArrayMeasurement attribute),

554
ARRAY_INTEGRAL (niscope.ArrayMeasurement at-

tribute), 553
ARRAY_OFFSET (niscope.ArrayMeasurement attribute),

554
ArrayMeasurement (class in niscope), 553
ASYMMETRIC (nidcpower.ComplianceLimitSymmetry

attribute), 155
AT (nifgen.BusType attribute), 425

AUTO (nidcpower.AutorangeApertureTimeMode at-
tribute), 154

AUTO (nidmm.ADCCalibration attribute), 326
AUTO (nidmm.AutoZero attribute), 326
AUTO (nidmm.DCNoiseRejection attribute), 327
AUTO (nidmm.LCCalculationModel attribute), 328
AUTO (niscope.TriggerModifier attribute), 562
AUTO_LEVEL (niscope.TriggerModifier attribute), 562
auto_range_value (in module nidmm.Session), 296
auto_setup() (in module niscope.Session), 445
auto_zero (in module nidcpower.Session), 48
auto_zero (in module nidmm.Session), 297
AUTOMATIC (nidcpower.PowerAllocationMode at-

tribute), 158
AUTOMATIC (nidcpower.PowerSource attribute), 159
AUTOMATIC (nifgen.ClockMode attribute), 426
AUTOMATICALLY_AFTER_SOURCE_COMPLETE

(nidcpower.MeasureWhen attribute), 156
autorange (in module nidcpower.Session), 43
autorange_aperture_time_mode (in module

nidcpower.Session), 43
autorange_behavior (in module nid-

cpower.Session), 44
autorange_minimum_aperture_time (in mod-

ule nidcpower.Session), 45
autorange_minimum_aperture_time_units

(in module nidcpower.Session), 45
autorange_minimum_current_range (in mod-

ule nidcpower.Session), 46
autorange_minimum_voltage_range (in mod-

ule nidcpower.Session), 47
autorange_threshold_mode (in module nid-

cpower.Session), 47
AutorangeApertureTimeMode (class in nid-

cpower), 154
AutorangeBehavior (class in nidcpower), 155
AutorangeThresholdMode (class in nidcpower),

155
AutoZero (class in nidcpower), 154
AutoZero (class in nidmm), 326
aux_power_enabled (in module nifgen.Session), 374
AUX_TRIG1 (nidmm.SampleTrigger attribute), 330
AUX_TRIG1 (nidmm.TriggerSource attribute), 332
AUXILIARY (nidcpower.PowerSource attribute), 159
AUXILIARY (nidcpower.PowerSourceInUse attribute),

159
auxiliary_power_source_available (in mod-

ule nidcpower.Session), 49
AVERAGE_FREQUENCY (nis-

cope.ClearableMeasurement attribute), 555
AVERAGE_FREQUENCY (niscope.ScalarMeasurement

attribute), 561
AVERAGE_PERIOD (niscope.ClearableMeasurement at-

tribute), 555

656 Index

NI Modular Instruments Python API Documentation, Release 1.4.1

AVERAGE_PERIOD (niscope.ScalarMeasurement
attribute), 561

B
B (nidmm.ThermocoupleType attribute), 331
backlog (in module niscope.Session), 472
BANDPASS (niscope.FilterType attribute), 557
bandpass_filter_enabled (in module nis-

cope.Session), 473
BANDSTOP (niscope.FilterType attribute), 557
bandwidth (in module niswitch.Session), 584
BANKED (nidigital.FrequencyMeasurementMode at-

tribute), 255
BASETOP (niscope.PercentageMethod attribute), 559
BEFORE (nise.OperationOrder attribute), 629
BESSEL_FILTER (niscope.ArrayMeasurement at-

tribute), 554
BIG (nifgen.ByteOrder attribute), 425
binary_sample_width (in module niscope.Session),

473
BitOrder (class in nidigital), 254
BLACKMAN (niscope.FIRFilterWindow attribute), 557
BLACKMAN_WINDOW (niscope.ArrayMeasurement at-

tribute), 554
BREAK_AFTER_MAKE (niswitch.ScanMode attribute),

613
BREAK_BEFORE_MAKE (niswitch.ScanMode attribute),

613
BROADCAST (nidigital.SourceDataMapping attribute),

258
buffer_size (in module nidmm.Session), 297
BURST (nifgen.TriggerMode attribute), 430
burst_pattern() (in module nidigital.Session), 170
bus_number (in module nimodinst.Session), 633
bus_type (in module nifgen.Session), 374
BusType (class in nifgen), 425
BUTTERWORTH_FILTER (niscope.ArrayMeasurement

attribute), 554
ByteOrder (class in nifgen), 425

C
cable_comp_type (in module nidmm.Session), 297
cable_sense_mode (in module niscope.Session), 474
cable_sense_signal_enable (in module nis-

cope.Session), 474
cable_sense_voltage (in module niscope.Session),

475
CableCompensationType (class in nidmm), 327
CableSenseMode (class in niscope), 554
cache (in module nidigital.Session), 202
can_connect() (in module niswitch.Session), 575
CAPACITANCE (nidmm.Function attribute), 328
channel_count (in module nidcpower.Session), 49
channel_count (in module nidigital.Session), 203

channel_count (in module nidmm.Session), 298
channel_count (in module nifgen.Session), 405
channel_count (in module niscope.Session), 475
channel_count (in module niswitch.Session), 585
channel_delay (in module nifgen.Session), 375
channel_enabled (in module niscope.Session), 476
CHANNEL_NOT_AVAILABLE (nise.PathCapability at-

tribute), 630
CHANNEL_NOT_AVAILABLE (niswitch.PathCapability

attribute), 610
channel_terminal_configuration (in module

niscope.Session), 476
CHANNELS_HARDWIRED (nise.PathCapability at-

tribute), 630
characteristic_impedance (in module

niswitch.Session), 585
chassis_number (in module nimodinst.Session), 633
CHEBYSHEV_FILTER (niscope.ArrayMeasurement at-

tribute), 554
clear_arb_memory() (in module nifgen.Session),

341
clear_arb_sequence() (in module nifgen.Session),

341
clear_freq_list() (in module nifgen.Session), 341
clear_latched_output_cutoff_state() (in

module nidcpower.Session), 16
clear_user_standard_waveform() (in module

nifgen.Session), 342
clear_waveform_measurement_stats() (in

module niscope.Session), 446
clear_waveform_processing() (in module nis-

cope.Session), 447
ClearableMeasurement (class in niscope), 554
clock_generator_abort() (in module nidigi-

tal.Session), 171
clock_generator_frequency (in module nidigi-

tal.Session), 203
clock_generator_generate_clock() (in mod-

ule nidigital.Session), 171
clock_generator_is_running (in module nidig-

ital.Session), 204
CLOCK_IN (nifgen.ReferenceClockSource attribute), 427
CLOCK_IN (nifgen.SampleClockSource attribute), 427
CLOCK_IN (nifgen.SampleClockTimebaseSource at-

tribute), 428
clock_mode (in module nifgen.Session), 375
ClockMode (class in nifgen), 425
CLOSE (niswitch.RelayAction attribute), 610
close() (in module nidcpower.Session), 17
close() (in module nidigital.Session), 172
close() (in module nidmm.Session), 273
close() (in module nifgen.Session), 342
close() (in module nimodinst.Session), 633
close() (in module niscope.Session), 447

Index 657

NI Modular Instruments Python API Documentation, Release 1.4.1

close() (in module nise.Session), 622
close() (in module niswitch.Session), 576
CLOSED (niswitch.RelayPosition attribute), 611
commit() (in module nidcpower.Session), 17
commit() (in module nidigital.Session), 172
commit() (in module nifgen.Session), 343
commit() (in module niscope.Session), 447
commit() (in module niswitch.Session), 576
common_mode_offset (in module nifgen.Session),

375
COMPARE_STROBE (nidigital.TimeSetEdgeType at-

tribute), 259
COMPARE_STROBE2 (nidigital.TimeSetEdgeType

attribute), 259
COMPLETE (niscope.AcquisitionStatus attribute), 552
compliance_limit_symmetry (in module nid-

cpower.Session), 50
ComplianceLimitSymmetry (class in nidcpower),

155
CONDITIONAL_JUMP (nidigital.SoftwareTrigger

attribute), 258
conditional_jump_trigger_terminal_name

(in module nidigital.Session), 204
conditional_jump_trigger_type (in module

nidigital.Session), 205
configure_active_load_levels() (in module

nidigital.Session), 172
configure_aperture_time() (in module nid-

cpower.Session), 18
configure_arb_sequence() (in module nif-

gen.Session), 343
configure_arb_waveform() (in module nif-

gen.Session), 344
configure_chan_characteristics() (in mod-

ule niscope.Session), 447
configure_equalization_filter_coefficients()

(in module niscope.Session), 448
configure_for_homogeneous_triggers() (in

module nitclk), 638
configure_freq_list() (in module nif-

gen.Session), 345
configure_horizontal_timing() (in module

niscope.Session), 448
configure_measurement_absolute() (in mod-

ule nidmm.Session), 273
configure_measurement_digits() (in module

nidmm.Session), 274
configure_multi_point() (in module

nidmm.Session), 275
configure_pattern_burst_sites() (in mod-

ule nidigital.Session), 172
configure_rtd_custom() (in module

nidmm.Session), 276
configure_rtd_type() (in module

nidmm.Session), 276
configure_standard_waveform() (in module

nifgen.Session), 347
configure_thermistor_custom() (in module

nidmm.Session), 278
configure_thermocouple() (in module

nidmm.Session), 278
configure_time_set_compare_edges_strobe()

(in module nidigital.Session), 173
configure_time_set_compare_edges_strobe2x()

(in module nidigital.Session), 173
configure_time_set_drive_edges() (in mod-

ule nidigital.Session), 174
configure_time_set_drive_edges2x() (in

module nidigital.Session), 175
configure_time_set_drive_format() (in

module nidigital.Session), 176
configure_time_set_edge() (in module nidigi-

tal.Session), 177
configure_time_set_edge_multiplier() (in

module nidigital.Session), 178
configure_time_set_period() (in module ni-

digital.Session), 178
configure_trigger() (in module nidmm.Session),

279
configure_trigger_digital() (in module nis-

cope.Session), 449
configure_trigger_edge() (in module nis-

cope.Session), 450
configure_trigger_hysteresis() (in module

niscope.Session), 451
configure_trigger_immediate() (in module

niscope.Session), 452
configure_trigger_software() (in module nis-

cope.Session), 452
configure_trigger_video() (in module nis-

cope.Session), 453
configure_trigger_window() (in module nis-

cope.Session), 454
configure_vertical() (in module nis-

cope.Session), 455
configure_voltage_levels() (in module nidig-

ital.Session), 178
configure_waveform_acquisition() (in mod-

ule nidmm.Session), 279
connect() (in module nise.Session), 622
connect() (in module niswitch.Session), 576
connect_and_disconnect() (in module

nise.Session), 623
connect_multiple() (in module niswitch.Session),

577
CONTINUOUS (nifgen.TriggerMode attribute), 430
continuous_scan (in module niswitch.Session), 586
create_advanced_arb_sequence() (in module

658 Index

NI Modular Instruments Python API Documentation, Release 1.4.1

nifgen.Session), 349
create_advanced_sequence() (in module nid-

cpower.Session), 19
create_advanced_sequence_commit_step()

(in module nidcpower.Session), 21
create_advanced_sequence_step() (in mod-

ule nidcpower.Session), 21
create_arb_sequence() (in module nif-

gen.Session), 351
create_capture_waveform_from_file_digicapture()

(in module nidigital.Session), 179
create_capture_waveform_parallel() (in

module nidigital.Session), 179
create_capture_waveform_serial() (in mod-

ule nidigital.Session), 180
create_freq_list() (in module nifgen.Session),

352
create_source_waveform_from_file_tdms()

(in module nidigital.Session), 180
create_source_waveform_parallel() (in

module nidigital.Session), 181
create_source_waveform_serial() (in mod-

ule nidigital.Session), 181
create_time_set() (in module nidigital.Session),

182
create_waveform_from_file_f64() (in mod-

ule nifgen.Session), 353
create_waveform_from_file_i16() (in mod-

ule nifgen.Session), 354
create_waveform_numpy() (in module nif-

gen.Session), 355
CURRENT (nidcpower.MeasurementTypes attribute), 156
CURRENT (nidcpower.OutputStates attribute), 158
CURRENT (nidigital.PPMUMeasurementType attribute),

256
CURRENT (nidigital.PPMUOutputFunction attribute),

256
CURRENT (nifgen.RelativeTo attribute), 427
CURRENT_CHANGE_HIGH (nid-

cpower.OutputCutoffReason attribute), 157
CURRENT_CHANGE_LOW (nid-

cpower.OutputCutoffReason attribute), 157
current_compensation_frequency (in module

nidcpower.Session), 50
current_gain_bandwidth (in module nid-

cpower.Session), 51
current_level (in module nidcpower.Session), 52
current_level_autorange (in module nid-

cpower.Session), 52
current_level_range (in module nid-

cpower.Session), 53
current_limit (in module nidcpower.Session), 54
current_limit_autorange (in module nid-

cpower.Session), 55

current_limit_behavior (in module nid-
cpower.Session), 55

current_limit_high (in module nid-
cpower.Session), 56

current_limit_low (in module nidcpower.Session),
57

current_limit_range (in module nid-
cpower.Session), 58

CURRENT_MEASURE_HIGH (nid-
cpower.OutputCutoffReason attribute), 157

CURRENT_MEASURE_LOW (nid-
cpower.OutputCutoffReason attribute), 157

current_pole_zero_ratio (in module nid-
cpower.Session), 58

current_source (in module nidmm.Session), 298
CUSTOM (nidcpower.AutorangeApertureTimeMode at-

tribute), 155
CUSTOM (nidcpower.TransientResponse attribute), 160
CUSTOM (nidmm.RTDType attribute), 329
CUSTOM (nidmm.ThermistorType attribute), 330
CYCLE_AREA (niscope.ClearableMeasurement at-

tribute), 555
CYCLE_AREA (niscope.ScalarMeasurement attribute),

561
CYCLE_NUMBER (nidigital.HistoryRAMTriggerType at-

tribute), 255
cycle_number_history_ram_trigger_cycle_number

(in module nidigital.Session), 205

D
D (nidigital.PinState attribute), 257
data_marker_event_data_bit_number (in

module nifgen.Session), 376
data_marker_event_level_polarity (in mod-

ule nifgen.Session), 377
data_marker_event_output_terminal (in

module nifgen.Session), 377
data_marker_events_count (in module nif-

gen.Session), 376
data_transfer_block_size (in module nif-

gen.Session), 377
data_transfer_block_size (in module nis-

cope.Session), 477
data_transfer_maximum_bandwidth (in mod-

ule nifgen.Session), 378
data_transfer_maximum_bandwidth (in mod-

ule niscope.Session), 477
data_transfer_maximum_in_flight_reads

(in module nifgen.Session), 378
data_transfer_preferred_packet_size (in

module nifgen.Session), 379
data_transfer_preferred_packet_size (in

module niscope.Session), 478

Index 659

NI Modular Instruments Python API Documentation, Release 1.4.1

DataMarkerEventLevelPolarity (class in nif-
gen), 426

DC (nidmm.WaveformCoupling attribute), 332
DC (nifgen.Waveform attribute), 431
DC (niscope.TriggerCoupling attribute), 562
DC (niscope.VerticalCoupling attribute), 564
dc_bias (in module nidmm.Session), 299
DC_CURRENT (nidcpower.OutputFunction attribute),

157
DC_CURRENT (nidmm.Function attribute), 327
DC_ESTIMATE (niscope.ClearableMeasurement at-

tribute), 555
DC_ESTIMATE (niscope.ScalarMeasurement attribute),

561
dc_noise_rejection (in module nid-

cpower.Session), 59
dc_noise_rejection (in module nidmm.Session),

299
DC_VOLTAGE (nidcpower.OutputFunction attribute),

157
DC_VOLTS (nidmm.Function attribute), 327
DCNoiseRejection (class in nidcpower), 156
DCNoiseRejection (class in nidmm), 327
DDC (niscope.AcquisitionType attribute), 553
DDC_CLOCK_IN (nifgen.SampleClockSource attribute),

427
DDC_OUTPUT (niscope.RefTriggerDetectorLocation at-

tribute), 560
DEFAULT (nise.MulticonnectMode attribute), 629
define_user_standard_waveform() (in mod-

ule nifgen.Session), 355
delete_advanced_sequence() (in module nid-

cpower.Session), 22
delete_all_time_sets() (in module nidigi-

tal.Session), 182
delete_script() (in module nifgen.Session), 356
delete_waveform() (in module nifgen.Session), 356
DERIVATIVE (niscope.ArrayMeasurement attribute),

553
device_model (in module nimodinst.Session), 633
device_name (in module nimodinst.Session), 634
device_temperature (in module niscope.Session),

478
DIFFERENTIAL (nifgen.TerminalConfiguration at-

tribute), 429
DIFFERENTIAL (niscope.TerminalConfiguration

attribute), 562
DIGITAL (nidigital.SelectedFunction attribute), 257
DIGITAL (niscope.TriggerType attribute), 563
digital_data_mask (in module nifgen.Session), 379
DIGITAL_EDGE (nidcpower.TriggerType attribute), 160
DIGITAL_EDGE (nidigital.TriggerType attribute), 260
DIGITAL_EDGE (nifgen.ScriptTriggerType attribute),

428

DIGITAL_EDGE (nifgen.StartTriggerType attribute),
429

digital_edge_conditional_jump_trigger_edge
(in module nidigital.Session), 206

digital_edge_conditional_jump_trigger_source
(in module nidigital.Session), 206

digital_edge_measure_trigger_input_terminal
(in module nidcpower.Session), 60

digital_edge_pulse_trigger_input_terminal
(in module nidcpower.Session), 60

digital_edge_rio_trigger_edge (in module
nidigital.Session), 207

digital_edge_rio_trigger_source (in mod-
ule nidigital.Session), 208

digital_edge_script_trigger_edge (in mod-
ule nifgen.Session), 380

digital_edge_script_trigger_source (in
module nifgen.Session), 380

digital_edge_sequence_advance_trigger_input_terminal
(in module nidcpower.Session), 61

digital_edge_shutdown_trigger_input_terminal
(in module nidcpower.Session), 62

digital_edge_source_trigger_input_terminal
(in module nidcpower.Session), 63

digital_edge_start_trigger_edge (in mod-
ule nidigital.Session), 209

digital_edge_start_trigger_edge (in mod-
ule nifgen.Session), 381

digital_edge_start_trigger_input_terminal
(in module nidcpower.Session), 64

digital_edge_start_trigger_source (in
module nidigital.Session), 209

digital_edge_start_trigger_source (in
module nifgen.Session), 381

digital_filter_enable (in module
niswitch.Session), 586

digital_filter_enabled (in module nif-
gen.Session), 381

digital_filter_interpolation_factor (in
module nifgen.Session), 382

digital_gain (in module nifgen.Session), 382
DIGITAL_LEVEL (nifgen.ScriptTriggerType attribute),

429
digital_pattern_enabled (in module nif-

gen.Session), 383
digital_static_value (in module nifgen.Session),

383
DigitalEdge (class in nidigital), 254
DIODE (nidmm.Function attribute), 328
DIRECT (nifgen.AnalogPath attribute), 425
disable() (in module nidcpower.Session), 23
disable() (in module nidmm.Session), 280
disable() (in module nifgen.Session), 357
disable() (in module niscope.Session), 455

660 Index

NI Modular Instruments Python API Documentation, Release 1.4.1

disable() (in module niswitch.Session), 577
disable_sites() (in module nidigital.Session), 182
DISABLED (nidcpower.PowerAllocationMode attribute),

158
DISABLED (niscope.CableSenseMode attribute), 554
DISCONNECT (nidigital.SelectedFunction attribute),

257
disconnect() (in module nise.Session), 624
disconnect() (in module niswitch.Session), 577
disconnect_all() (in module nise.Session), 624
disconnect_all() (in module niswitch.Session),

578
disconnect_multiple() (in module

niswitch.Session), 578
DIVIDE_CHANNELS (niscope.ArrayMeasurement at-

tribute), 554
DIVIDE_DOWN (nifgen.ClockMode attribute), 426
DONE (nifgen.HardwareState attribute), 426
done_event_output_terminal (in module nif-

gen.Session), 384
DRIVE_DATA (nidigital.TimeSetEdgeType attribute),

259
DRIVE_DATA2 (nidigital.TimeSetEdgeType attribute),

259
DRIVE_OFF (nidigital.TimeSetEdgeType attribute), 259
DRIVE_ON (nidigital.TimeSetEdgeType attribute), 259
DRIVE_RETURN (nidigital.TimeSetEdgeType attribute),

259
DRIVE_RETURN2 (nidigital.TimeSetEdgeType at-

tribute), 259
DriveFormat (class in nidigital), 254
driver_setup (in module nidcpower.Session), 64
driver_setup (in module nidigital.Session), 210
driver_setup (in module nidmm.Session), 299
driver_setup (in module nifgen.Session), 384
driver_setup (in module niswitch.Session), 587
DriverError, 161, 260, 333, 431, 566, 616, 630, 636,

648
DriverNotInstalledError, 161, 260, 333, 431,

566, 616, 630, 637, 648
DriverWarning, 161, 261, 333, 432, 567, 616, 631,

637, 649
DUTY_CYCLE_NEG (niscope.ClearableMeasurement at-

tribute), 555
DUTY_CYCLE_NEG (niscope.ScalarMeasurement

attribute), 561
DUTY_CYCLE_POS (niscope.ClearableMeasurement at-

tribute), 555
DUTY_CYCLE_POS (niscope.ScalarMeasurement

attribute), 561

E
E (nidigital.PinState attribute), 257
E (nidmm.ThermocoupleType attribute), 331

EDGE (niscope.TriggerType attribute), 563
EIGHT_TAP_HANNING (nis-

cope.FlexFIRAntialiasFilterType attribute),
558

EITHER (niscope.GlitchPolarity attribute), 558
EITHER (niscope.RuntPolarity attribute), 560
EITHER (niscope.WidthPolarity attribute), 566
enable_dc_restore (in module niscope.Session),

479
enable_sites() (in module nidigital.Session), 183
enable_time_interleaved_sampling (in mod-

ule niscope.Session), 479
enabled_channels (in module niscope.Session), 479
end_of_acquisition_event_output_terminal

(in module niscope.Session), 480
end_of_acquisition_event_terminal_name

(in module niscope.Session), 480
end_of_record_event_output_terminal (in

module niscope.Session), 481
end_of_record_event_terminal_name (in

module niscope.Session), 481
end_of_record_to_advance_trigger_holdoff

(in module niscope.Session), 482
ENTERING (niscope.TriggerWindowMode attribute),

563
ENTERING_OR_LEAVING (nis-

cope.TriggerWindowMode attribute), 564
equalization_filter_enabled (in module nis-

cope.Session), 482
equalization_num_coefficients (in module

niscope.Session), 483
Error, 161, 260, 333, 431, 566, 616, 630, 636, 648
Event (class in nidcpower), 156
EXACT_NUM_AVERAGES (niscope.RISMethod at-

tribute), 559
EXCLUSION_CONFLICT (nise.PathCapability at-

tribute), 630
expand_route_spec() (in module nise.Session),

625
ExpandAction (class in nise), 629
export_attribute_configuration_buffer()

(in module nidcpower.Session), 23
export_attribute_configuration_buffer()

(in module nidmm.Session), 280
export_attribute_configuration_buffer()

(in module nifgen.Session), 357
export_attribute_configuration_buffer()

(in module niscope.Session), 455
export_attribute_configuration_file()

(in module nidcpower.Session), 24
export_attribute_configuration_file()

(in module nidmm.Session), 281
export_attribute_configuration_file()

(in module nifgen.Session), 357

Index 661

NI Modular Instruments Python API Documentation, Release 1.4.1

export_attribute_configuration_file()
(in module niscope.Session), 456

exported_advance_trigger_output_terminal
(in module niscope.Session), 483

exported_conditional_jump_trigger_output_terminal
(in module nidigital.Session), 210

exported_measure_trigger_output_terminal
(in module nidcpower.Session), 65

exported_onboard_reference_clock_output_terminal
(in module nifgen.Session), 384

exported_pattern_opcode_event_output_terminal
(in module nidigital.Session), 211

exported_pulse_trigger_output_terminal
(in module nidcpower.Session), 66

exported_ref_trigger_output_terminal (in
module niscope.Session), 484

exported_reference_clock_output_terminal
(in module nifgen.Session), 385

exported_rio_event_output_terminal (in
module nidigital.Session), 212

exported_sample_clock_divisor (in module
nifgen.Session), 385

exported_sample_clock_output_terminal
(in module nifgen.Session), 386

exported_sample_clock_timebase_divisor
(in module nifgen.Session), 386

exported_sample_clock_timebase_output_terminal
(in module nifgen.Session), 386

exported_script_trigger_output_terminal
(in module nifgen.Session), 387

exported_sequence_advance_trigger_output_terminal
(in module nidcpower.Session), 66

exported_source_trigger_output_terminal
(in module nidcpower.Session), 67

exported_start_trigger_output_terminal
(in module nidcpower.Session), 68

exported_start_trigger_output_terminal
(in module nidigital.Session), 212

exported_start_trigger_output_terminal
(in module nifgen.Session), 387

exported_start_trigger_output_terminal
(in module niscope.Session), 484

exported_sync_pulse_output_terminal (in
module nitclk.SessionReference), 642

exported_tclk_output_terminal (in module
nitclk.SessionReference), 643

EXTERNAL (nidmm.MeasurementCompleteDest at-
tribute), 328

EXTERNAL (nidmm.SampleTrigger attribute), 330
EXTERNAL (nidmm.TriggerSource attribute), 332
EXTERNAL (niswitch.ScanAdvancedOutput attribute),

611
EXTERNAL (niswitch.TriggerInput attribute), 613
external_clock_delay_binary_value (in

module nifgen.Session), 388
external_sample_clock_multiplier (in mod-

ule nifgen.Session), 388

F
FAILED (nidigital.HistoryRAMCyclesToAcquire at-

tribute), 255
FALL_SLEW_RATE (niscope.ClearableMeasurement at-

tribute), 555
FALL_SLEW_RATE (niscope.ScalarMeasurement

attribute), 561
FALL_TIME (niscope.ClearableMeasurement attribute),

555
FALL_TIME (niscope.ScalarMeasurement attribute),

560
FALLING (nidigital.DigitalEdge attribute), 254
FALLING (nifgen.ScriptTriggerDigitalEdgeEdge at-

tribute), 428
FALLING (nifgen.StartTriggerDigitalEdgeEdge at-

tribute), 429
FALLING (niswitch.ScanAdvancedPolarity attribute),

613
FALLING (niswitch.TriggerInputPolarity attribute), 615
FAST (nidcpower.TransientResponse attribute), 160
FAST_STEP (nidcpower.AutorangeThresholdMode at-

tribute), 155
fetch() (in module nidmm.Session), 282
fetch() (in module niscope.Session), 456
fetch_array_measurement() (in module nis-

cope.Session), 458
fetch_backlog (in module nidcpower.Session), 68
fetch_capture_waveform() (in module nidigi-

tal.Session), 183
fetch_history_ram_cycle_information()

(in module nidigital.Session), 184
fetch_into() (in module niscope.Session), 459
fetch_measurement_stats() (in module nis-

cope.Session), 461
fetch_multi_point() (in module nidmm.Session),

282
fetch_multiple() (in module nidcpower.Session),

24
fetch_waveform() (in module nidmm.Session), 283
fetch_waveform_into() (in module

nidmm.Session), 284
FetchRelativeTo (class in niscope), 557
FFT_AMP_SPECTRUM_DB (niscope.ArrayMeasurement

attribute), 554
FFT_AMP_SPECTRUM_VOLTS_RMS (nis-

cope.ArrayMeasurement attribute), 553
FFT_AMPLITUDE (niscope.ClearableMeasurement at-

tribute), 555
FFT_AMPLITUDE (niscope.ScalarMeasurement at-

tribute), 561

662 Index

NI Modular Instruments Python API Documentation, Release 1.4.1

FFT_FREQUENCY (niscope.ClearableMeasurement at-
tribute), 555

FFT_FREQUENCY (niscope.ScalarMeasurement at-
tribute), 561

FFT_PHASE_SPECTRUM (niscope.ArrayMeasurement
attribute), 553

FIELD1 (niscope.VideoTriggerEvent attribute), 565
FIELD2 (niscope.VideoTriggerEvent attribute), 565
file_transfer_block_size (in module nif-

gen.Session), 389
filter_correction_frequency (in module nif-

gen.Session), 389
FilterType (class in niscope), 557
find_route() (in module nise.Session), 625
finish_sync_pulse_sender_synchronize()

(in module nitclk), 640
FINISHED_WITH_BACKLOG

(nidmm.AcquisitionStatus attribute), 326
FINISHED_WITH_NO_BACKLOG

(nidmm.AcquisitionStatus attribute), 326
FIRFilterWindow (class in niscope), 556
FIRST_FAILURE (nidigital.HistoryRAMTriggerType

attribute), 255
FIXED (nidmm.ThermocoupleReferenceJunctionType at-

tribute), 331
FIXED_HIGH_GAIN (nifgen.AnalogPath attribute), 425
FIXED_LOW_GAIN (nifgen.AnalogPath attribute), 425
FLAG0 (nidigital.SequencerFlag attribute), 257
FLAG1 (nidigital.SequencerFlag attribute), 257
FLAG2 (nidigital.SequencerFlag attribute), 257
FLAG3 (nidigital.SequencerFlag attribute), 257
FLAT_TOP (niscope.FIRFilterWindow attribute), 557
FLAT_TOP_WINDOW (niscope.ArrayMeasurement at-

tribute), 553
flatness_correction_enabled (in module nif-

gen.Session), 389
flex_fir_antialias_filter_type (in module

niscope.Session), 484
FlexFIRAntialiasFilterType (class in niscope),

558
FLEXRES (niscope.AcquisitionType attribute), 553
FOUR_WIRE_RES (nidmm.Function attribute), 328
FOUR_WIRE_RTD (nidmm.TransducerType attribute),

332
FOURTYEIGHT_TAP_HANNING (nis-

cope.FlexFIRAntialiasFilterType attribute),
558

FOURTYEIGHT_TAP_STANDARD (nis-
cope.FlexFIRAntialiasFilterType attribute),
558

fpga_bitfile_path (in module nifgen.Session), 390
fpga_bitfile_path (in module niscope.Session),

485
FREQ (nidmm.Function attribute), 328

FREQ_LIST (nifgen.OutputMode attribute), 427
freq_list_duration_quantum (in module nif-

gen.Session), 390
freq_list_handle (in module nifgen.Session), 391
freq_voltage_auto_range (in module

nidmm.Session), 300
freq_voltage_range (in module nidmm.Session),

300
FREQUENCY (niscope.ClearableMeasurement attribute),

555
FREQUENCY (niscope.ScalarMeasurement attribute),

560
frequency_counter_hysteresis_enabled (in

module nidigital.Session), 213
frequency_counter_measure_frequency()

(in module nidigital.Session), 185
frequency_counter_measurement_mode (in

module nidigital.Session), 213
frequency_counter_measurement_time (in

module nidigital.Session), 214
FrequencyMeasurementMode (class in nidigital),

255
FRONTCONNECTOR (niswitch.ScanAdvancedOutput at-

tribute), 611
FRONTCONNECTOR (niswitch.TriggerInput attribute),

614
FRONTCONNECTOR_MODULE1

(niswitch.ScanAdvancedOutput attribute),
612

FRONTCONNECTOR_MODULE1 (niswitch.TriggerInput
attribute), 615

FRONTCONNECTOR_MODULE10
(niswitch.ScanAdvancedOutput attribute),
612

FRONTCONNECTOR_MODULE10 (niswitch.TriggerInput
attribute), 615

FRONTCONNECTOR_MODULE11
(niswitch.ScanAdvancedOutput attribute),
613

FRONTCONNECTOR_MODULE11 (niswitch.TriggerInput
attribute), 615

FRONTCONNECTOR_MODULE12
(niswitch.ScanAdvancedOutput attribute),
613

FRONTCONNECTOR_MODULE12 (niswitch.TriggerInput
attribute), 615

FRONTCONNECTOR_MODULE2
(niswitch.ScanAdvancedOutput attribute),
612

FRONTCONNECTOR_MODULE2 (niswitch.TriggerInput
attribute), 615

FRONTCONNECTOR_MODULE3
(niswitch.ScanAdvancedOutput attribute),
612

Index 663

NI Modular Instruments Python API Documentation, Release 1.4.1

FRONTCONNECTOR_MODULE3 (niswitch.TriggerInput
attribute), 615

FRONTCONNECTOR_MODULE4
(niswitch.ScanAdvancedOutput attribute),
612

FRONTCONNECTOR_MODULE4 (niswitch.TriggerInput
attribute), 615

FRONTCONNECTOR_MODULE5
(niswitch.ScanAdvancedOutput attribute),
612

FRONTCONNECTOR_MODULE5 (niswitch.TriggerInput
attribute), 615

FRONTCONNECTOR_MODULE6
(niswitch.ScanAdvancedOutput attribute),
612

FRONTCONNECTOR_MODULE6 (niswitch.TriggerInput
attribute), 615

FRONTCONNECTOR_MODULE7
(niswitch.ScanAdvancedOutput attribute),
612

FRONTCONNECTOR_MODULE7 (niswitch.TriggerInput
attribute), 615

FRONTCONNECTOR_MODULE8
(niswitch.ScanAdvancedOutput attribute),
612

FRONTCONNECTOR_MODULE8 (niswitch.TriggerInput
attribute), 615

FRONTCONNECTOR_MODULE9
(niswitch.ScanAdvancedOutput attribute),
612

FRONTCONNECTOR_MODULE9 (niswitch.TriggerInput
attribute), 615

FUNC (nifgen.OutputMode attribute), 426
func_amplitude (in module nifgen.Session), 391
func_buffer_size (in module nifgen.Session), 391
func_dc_offset (in module nifgen.Session), 392
func_duty_cycle_high (in module nifgen.Session),

392
func_frequency (in module nifgen.Session), 393
func_max_buffer_size (in module nifgen.Session),

393
func_start_phase (in module nifgen.Session), 394
func_waveform (in module nifgen.Session), 394
Function (class in nidmm), 327
function (in module nidmm.Session), 300

G
get_all_connections() (in module nise.Session),

627
get_cal_date_and_time() (in module

nidmm.Session), 285
get_channel_name() (in module nid-

cpower.Session), 25

get_channel_name() (in module nifgen.Session),
358

get_channel_name() (in module niswitch.Session),
578

get_channel_names() (in module nid-
cpower.Session), 26

get_channel_names() (in module nidigi-
tal.Session), 186

get_dev_temp() (in module nidmm.Session), 285
get_equalization_filter_coefficients()

(in module niscope.Session), 462
get_ext_cal_last_date_and_time() (in mod-

ule nidcpower.Session), 26
get_ext_cal_last_date_and_time() (in mod-

ule nifgen.Session), 358
get_ext_cal_last_date_and_time() (in mod-

ule niscope.Session), 462
get_ext_cal_last_temp() (in module nid-

cpower.Session), 26
get_ext_cal_last_temp() (in module nif-

gen.Session), 358
get_ext_cal_last_temp() (in module nis-

cope.Session), 462
get_ext_cal_recommended_interval() (in

module nidcpower.Session), 26
get_ext_cal_recommended_interval() (in

module nidmm.Session), 285
get_ext_cal_recommended_interval() (in

module nifgen.Session), 358
get_fail_count() (in module nidigital.Session),

186
get_hardware_state() (in module nifgen.Session),

358
get_history_ram_sample_count() (in module

nidigital.Session), 187
get_last_cal_temp() (in module nidmm.Session),

286
get_path() (in module niswitch.Session), 578
get_pattern_pin_names() (in module nidigi-

tal.Session), 187
get_pin_results_pin_information() (in

module nidigital.Session), 188
get_relay_count() (in module niswitch.Session),

579
get_relay_name() (in module niswitch.Session),

579
get_relay_position() (in module

niswitch.Session), 579
get_self_cal_last_date_and_time() (in

module nidcpower.Session), 27
get_self_cal_last_date_and_time() (in

module nifgen.Session), 359
get_self_cal_last_date_and_time() (in

module niscope.Session), 463

664 Index

NI Modular Instruments Python API Documentation, Release 1.4.1

get_self_cal_last_temp() (in module nid-
cpower.Session), 27

get_self_cal_last_temp() (in module nif-
gen.Session), 359

get_self_cal_last_temp() (in module nis-
cope.Session), 463

get_self_cal_supported() (in module
nidmm.Session), 286

get_self_cal_supported() (in module nif-
gen.Session), 359

get_site_pass_fail() (in module nidigi-
tal.Session), 188

get_time_set_drive_format() (in module ni-
digital.Session), 189

get_time_set_edge() (in module nidigi-
tal.Session), 189

get_time_set_edge_multiplier() (in module
nidigital.Session), 190

get_time_set_period() (in module nidigi-
tal.Session), 190

GLITCH (niscope.TriggerType attribute), 563
glitch_condition (in module niscope.Session), 485
glitch_polarity (in module niscope.Session), 486
glitch_width (in module niscope.Session), 486
GlitchCondition (class in niscope), 558
GlitchPolarity (class in niscope), 558
GND (niscope.VerticalCoupling attribute), 564
GREATER (niscope.GlitchCondition attribute), 558
group_capabilities (in module nidigital.Session),

215

H
H (nidigital.PinState attribute), 256
halt_on_keep_alive_opcode (in module nidigi-

tal.Session), 215
HAMMING (niscope.FIRFilterWindow attribute), 557
HAMMING_WINDOW (niscope.ArrayMeasurement at-

tribute), 554
handshaking_initiation (in module

niswitch.Session), 587
HandshakingInitiation (class in niswitch), 610
HANNING (niscope.FIRFilterWindow attribute), 556
HANNING_WINDOW (niscope.ArrayMeasurement at-

tribute), 553
HARDWARE_ERROR (nifgen.HardwareState attribute),

426
HardwareState (class in nifgen), 426
HF_REJECT (niscope.TriggerCoupling attribute), 562
HIGH (nidcpower.OutputCapacitance attribute), 157
HIGH (nidcpower.Polarity attribute), 158
HIGH (nifgen.DataMarkerEventLevelPolarity attribute),

426
HIGH_HYSTERESIS (nid-

cpower.AutorangeThresholdMode attribute),

155
HIGH_ORDER (nidmm.DCNoiseRejection attribute), 327
high_pass_filter_frequency (in module nis-

cope.Session), 487
HIGH_REF_VOLTS (niscope.ClearableMeasurement at-

tribute), 556
HIGH_REF_VOLTS (niscope.ScalarMeasurement

attribute), 561
HIGH_RESOLUTION (nifgen.ClockMode attribute), 425
HIGH_Z (nidigital.TerminationMode attribute), 259
HIGHPASS (niscope.FilterType attribute), 557
history_ram_buffer_size_per_site (in mod-

ule nidigital.Session), 215
history_ram_cycles_to_acquire (in module

nidigital.Session), 216
history_ram_max_samples_to_acquire_per_site

(in module nidigital.Session), 216
history_ram_number_of_samples_is_finite

(in module nidigital.Session), 217
history_ram_pretrigger_samples (in module

nidigital.Session), 217
history_ram_trigger_type (in module nidigi-

tal.Session), 218
HistoryRAMCyclesToAcquire (class in nidigital),

255
HistoryRAMTriggerType (class in nidigital), 255
HOLD (nidcpower.AutorangeThresholdMode attribute),

155
HOLD_LAST (nifgen.IdleBehavior attribute), 426
HOLD_LAST (nifgen.WaitBehavior attribute), 430
horz_enforce_realtime (in module nis-

cope.Session), 487
horz_min_num_pts (in module niscope.Session), 488
horz_num_records (in module niscope.Session), 488
horz_record_length (in module niscope.Session),

488
horz_record_ref_position (in module nis-

cope.Session), 489
horz_sample_rate (in module niscope.Session), 489
horz_time_per_record (in module nis-

cope.Session), 490
HYSTERESIS (niscope.TriggerType attribute), 563

I
IDLE (nifgen.HardwareState attribute), 426
idle_behavior (in module nifgen.Session), 395
idle_value (in module nifgen.Session), 395
IdleBehavior (class in nifgen), 426
IMMEDIATE (nidmm.SampleTrigger attribute), 330
IMMEDIATE (nidmm.TriggerSource attribute), 332
IMMEDIATE (niscope.TriggerType attribute), 563
IMMEDIATE (niswitch.TriggerInput attribute), 613
import_attribute_configuration_buffer()

(in module nidcpower.Session), 27

Index 665

NI Modular Instruments Python API Documentation, Release 1.4.1

import_attribute_configuration_buffer()
(in module nidmm.Session), 286

import_attribute_configuration_buffer()
(in module nifgen.Session), 359

import_attribute_configuration_buffer()
(in module niscope.Session), 463

import_attribute_configuration_file()
(in module nidcpower.Session), 28

import_attribute_configuration_file()
(in module nidmm.Session), 287

import_attribute_configuration_file()
(in module nifgen.Session), 360

import_attribute_configuration_file()
(in module niscope.Session), 464

IN_PROGRESS (niscope.AcquisitionStatus attribute),
552

INCOMPLETE (niscope.RISMethod attribute), 559
INDUCTANCE (nidmm.Function attribute), 328
initiate() (in module nidcpower.Session), 29
initiate() (in module nidigital.Session), 190
initiate() (in module nidmm.Session), 288
initiate() (in module nifgen.Session), 360
initiate() (in module niscope.Session), 464
initiate() (in module niswitch.Session), 580
initiate() (in module nitclk), 640
input_clock_source (in module niscope.Session),

490
input_impedance (in module niscope.Session), 490
input_resistance (in module nidmm.Session), 301
instrument_firmware_revision (in module

nidcpower.Session), 69
instrument_firmware_revision (in module ni-

digital.Session), 218
instrument_firmware_revision (in module

nidmm.Session), 301
instrument_firmware_revision (in module nif-

gen.Session), 396
instrument_firmware_revision (in module nis-

cope.Session), 491
instrument_firmware_revision (in module

niswitch.Session), 588
instrument_manufacturer (in module nid-

cpower.Session), 69
instrument_manufacturer (in module nidigi-

tal.Session), 219
instrument_manufacturer (in module

nidmm.Session), 302
instrument_manufacturer (in module nif-

gen.Session), 396
instrument_manufacturer (in module nis-

cope.Session), 492
instrument_manufacturer (in module

niswitch.Session), 588
instrument_model (in module nidcpower.Session),

70
instrument_model (in module nidigital.Session),

219
instrument_model (in module nidmm.Session), 302
instrument_model (in module nifgen.Session), 396
instrument_model (in module niscope.Session), 492
instrument_model (in module niswitch.Session),

588
instrument_product_id (in module

nidmm.Session), 302
INTEGRAL (niscope.ClearableMeasurement attribute),

555
INTEGRAL (niscope.ScalarMeasurement attribute), 561
interchange_check (in module nidigital.Session),

219
interleaving_offset_correction_enabled

(in module niscope.Session), 492
interlock_input_open (in module nid-

cpower.Session), 71
INTERNAL (nidcpower.PowerSource attribute), 159
INTERNAL (nidcpower.PowerSourceInUse attribute),

159
INTERVAL (nidmm.SampleTrigger attribute), 330
INVALID (nifgen.BusType attribute), 425
InvalidRepeatedCapabilityError, 161, 261,

333, 432, 567, 616, 630
INVERSE (niscope.ArrayMeasurement attribute), 553
io_resource_descriptor (in module nid-

cpower.Session), 71
io_resource_descriptor (in module nidigi-

tal.Session), 220
io_resource_descriptor (in module

nidmm.Session), 303
io_resource_descriptor (in module nif-

gen.Session), 397
io_resource_descriptor (in module nis-

cope.Session), 493
io_resource_descriptor (in module

niswitch.Session), 589
is_configuration_channel (in module

niswitch.Session), 589
is_connected() (in module nise.Session), 627
is_debounced (in module niswitch.Session), 590
is_debounced() (in module nise.Session), 628
is_done() (in module nidigital.Session), 190
is_done() (in module nifgen.Session), 360
is_done() (in module nitclk), 640
is_keep_alive_active (in module nidigi-

tal.Session), 220
is_probe_comp_on (in module niscope.Session), 493
is_scanning (in module niswitch.Session), 590
is_site_enabled() (in module nidigital.Session),

191
is_source_channel (in module niswitch.Session),

666 Index

NI Modular Instruments Python API Documentation, Release 1.4.1

591
is_waiting_for_trig (in module

niswitch.Session), 591
IVIDMM (nidmm.OperationMode attribute), 329

J
J (nidmm.ThermocoupleType attribute), 331
JUMP_TO (nifgen.IdleBehavior attribute), 426
JUMP_TO (nifgen.WaitBehavior attribute), 430

K
K (nidmm.ThermocoupleType attribute), 331
KEEP_IN_MEMORY (nid-

cpower.SelfCalibrationPersistence attribute),
159

L
L (nidigital.PinState attribute), 256
LAST_ACQ_HISTOGRAM (niscope.ArrayMeasurement

attribute), 553
LBR_TRIG0 (nidmm.MeasurementCompleteDest at-

tribute), 329
LBR_TRIG1 (nidmm.SampleTrigger attribute), 330
LBR_TRIG1 (nidmm.TriggerSource attribute), 332
lc_calculation_model (in module

nidmm.Session), 303
lc_number_meas_to_average (in module

nidmm.Session), 304
LCCalculationModel (class in nidmm), 328
LEAVING (niscope.TriggerWindowMode attribute), 563
LESS (niscope.GlitchCondition attribute), 558
LF_REJECT (niscope.TriggerCoupling attribute), 562
LIMITED_BIN_WIDTH (niscope.RISMethod attribute),

559
LINE_NUMBER (niscope.VideoTriggerEvent attribute),

565
LITTLE (nifgen.ByteOrder attribute), 425
load_impedance (in module nifgen.Session), 397
load_pattern() (in module nidigital.Session), 191
load_pin_map() (in module nidigital.Session), 191
load_specifications_levels_and_timing()

(in module nidigital.Session), 192
LOCAL (nidcpower.Sense attribute), 160
lock() (in module nidcpower.Session), 29
lock() (in module nidigital.Session), 192
lock() (in module nidmm.Session), 288
lock() (in module nifgen.Session), 361
lock() (in module niscope.Session), 464
lock() (in module niswitch.Session), 580
logical_name (in module nidcpower.Session), 72
logical_name (in module nidigital.Session), 220
logical_name (in module nidmm.Session), 304
logical_name (in module nifgen.Session), 398
logical_name (in module niscope.Session), 494

logical_name (in module niswitch.Session), 592
LOW (nidcpower.OutputCapacitance attribute), 157
LOW (nidcpower.Polarity attribute), 158
LOW (nifgen.DataMarkerEventLevelPolarity attribute),

426
LOW_REF_VOLTS (niscope.ClearableMeasurement at-

tribute), 556
LOW_REF_VOLTS (niscope.ScalarMeasurement at-

tribute), 561
LOWHIGH (niscope.PercentageMethod attribute), 559
LOWPASS (niscope.FilterType attribute), 557
LSB (nidigital.BitOrder attribute), 254

M
M (nidigital.PinState attribute), 256
M_PAL (niscope.VideoSignalFormat attribute), 564
MAIN (nifgen.AnalogPath attribute), 425
major_version (in module nifgen.Session), 412
MANUAL (nidcpower.PowerAllocationMode attribute),

158
marker_event_output_terminal (in module nif-

gen.Session), 399
marker_events_count (in module nifgen.Session),

398
mask_compare (in module nidigital.Session), 221
master_enable (in module niscope.Session), 495
max_ac_voltage (in module niswitch.Session), 592
max_carry_ac_current (in module

niswitch.Session), 593
max_carry_ac_power (in module niswitch.Session),

593
max_carry_dc_current (in module

niswitch.Session), 594
max_carry_dc_power (in module niswitch.Session),

595
max_dc_voltage (in module niswitch.Session), 595
max_freq_list_duration (in module nif-

gen.Session), 399
max_freq_list_length (in module nifgen.Session),

399
max_input_frequency (in module niscope.Session),

495
max_loop_count (in module nifgen.Session), 400
max_num_freq_lists (in module nifgen.Session),

400
max_num_sequences (in module nifgen.Session), 401
max_num_waveforms (in module nifgen.Session), 401
max_pciexpress_link_width (in module ni-

modinst.Session), 634
max_real_time_sampling_rate (in module nis-

cope.Session), 496
max_ris_rate (in module niscope.Session), 496
max_sequence_length (in module nifgen.Session),

401

Index 667

NI Modular Instruments Python API Documentation, Release 1.4.1

max_switching_ac_current (in module
niswitch.Session), 596

max_switching_ac_power (in module
niswitch.Session), 596

max_switching_dc_current (in module
niswitch.Session), 597

max_switching_dc_power (in module
niswitch.Session), 597

max_waveform_size (in module nifgen.Session), 402
meas_array_gain (in module niscope.Session), 496
meas_array_offset (in module niscope.Session),

497
meas_chan_high_ref_level (in module nis-

cope.Session), 498
meas_chan_low_ref_level (in module nis-

cope.Session), 498
meas_chan_mid_ref_level (in module nis-

cope.Session), 499
meas_complete_dest (in module nidmm.Session),

304
meas_filter_center_freq (in module nis-

cope.Session), 499
meas_filter_cutoff_freq (in module nis-

cope.Session), 500
meas_filter_order (in module niscope.Session),

501
meas_filter_ripple (in module niscope.Session),

501
meas_filter_taps (in module niscope.Session), 502
meas_filter_transient_waveform_percent

(in module niscope.Session), 502
meas_filter_type (in module niscope.Session), 503
meas_filter_width (in module niscope.Session),

504
meas_fir_filter_window (in module nis-

cope.Session), 504
meas_high_ref (in module niscope.Session), 505
meas_hysteresis_percent (in module nis-

cope.Session), 505
meas_interpolation_sampling_factor (in

module niscope.Session), 506
meas_last_acq_histogram_size (in module nis-

cope.Session), 506
meas_low_ref (in module niscope.Session), 507
meas_mid_ref (in module niscope.Session), 507
meas_other_channel (in module niscope.Session),

507
meas_percentage_method (in module nis-

cope.Session), 508
meas_polynomial_interpolation_order (in

module niscope.Session), 509
meas_ref_level_units (in module nis-

cope.Session), 509
meas_time_histogram_high_time (in module

niscope.Session), 510
meas_time_histogram_high_volts (in module

niscope.Session), 510
meas_time_histogram_low_time (in module nis-

cope.Session), 511
meas_time_histogram_low_volts (in module

niscope.Session), 512
meas_time_histogram_size (in module nis-

cope.Session), 512
meas_voltage_histogram_high_volts (in

module niscope.Session), 513
meas_voltage_histogram_low_volts (in mod-

ule niscope.Session), 513
meas_voltage_histogram_size (in module nis-

cope.Session), 514
MEASURE (nidcpower.SendSoftwareEdgeTriggerType at-

tribute), 159
measure() (in module nidcpower.Session), 30
measure_buffer_size (in module nid-

cpower.Session), 72
MEASURE_COMPLETE (nidcpower.Event attribute), 156
measure_complete_event_delay (in module

nidcpower.Session), 73
measure_complete_event_output_terminal

(in module nidcpower.Session), 73
measure_complete_event_pulse_polarity

(in module nidcpower.Session), 74
measure_complete_event_pulse_width (in

module nidcpower.Session), 75
measure_multiple() (in module nid-

cpower.Session), 30
measure_record_delta_time (in module nid-

cpower.Session), 76
measure_record_length (in module nid-

cpower.Session), 76
measure_record_length_is_finite (in mod-

ule nidcpower.Session), 77
measure_trigger_type (in module nid-

cpower.Session), 78
measure_when (in module nidcpower.Session), 78
MEASUREMENT_DEVICE

(niswitch.HandshakingInitiation attribute),
610

MeasurementCompleteDest (class in nidmm), 328
MeasurementTypes (class in nidcpower), 156
MeasureWhen (class in nidcpower), 156
MEDIUM_HYSTERESIS (nid-

cpower.AutorangeThresholdMode attribute),
155

memory_size (in module nifgen.Session), 402
merged_channels (in module nidcpower.Session), 79
MID_REF_VOLTS (niscope.ClearableMeasurement at-

tribute), 556
MID_REF_VOLTS (niscope.ScalarMeasurement at-

668 Index

NI Modular Instruments Python API Documentation, Release 1.4.1

tribute), 561
min_freq_list_duration (in module nif-

gen.Session), 403
min_freq_list_length (in module nifgen.Session),

403
MIN_NUM_AVERAGES (niscope.RISMethod attribute),

559
min_sample_rate (in module niscope.Session), 514
min_sequence_length (in module nifgen.Session),

403
min_waveform_size (in module nifgen.Session), 404
MINMAX (niscope.PercentageMethod attribute), 559
minor_version (in module nifgen.Session), 412
module_revision (in module nifgen.Session), 404
MSB (nidigital.BitOrder attribute), 254
MULTI_ACQ_AVERAGE (niscope.ArrayMeasurement

attribute), 554
MULTI_ACQ_AVERAGE (nis-

cope.ClearableMeasurement attribute), 555
MULTI_ACQ_TIME_HISTOGRAM (nis-

cope.ArrayMeasurement attribute), 553
MULTI_ACQ_TIME_HISTOGRAM (nis-

cope.ClearableMeasurement attribute), 555
MULTI_ACQ_VOLTAGE_HISTOGRAM (nis-

cope.ArrayMeasurement attribute), 553
MULTI_ACQ_VOLTAGE_HISTOGRAM (nis-

cope.ClearableMeasurement attribute), 554
MULTICONNECT (nise.MulticonnectMode attribute),

629
MulticonnectMode (class in nise), 629
MULTIPLY_CHANNELS (niscope.ArrayMeasurement

attribute), 553

N
N (nidmm.ThermocoupleType attribute), 331
NEGATIVE (niscope.GlitchPolarity attribute), 558
NEGATIVE (niscope.RuntPolarity attribute), 560
NEGATIVE (niscope.TriggerSlope attribute), 562
NEGATIVE (niscope.VideoPolarity attribute), 564
NEGATIVE (niscope.WidthPolarity attribute), 566
nidcpower (module), 14
nidigital (module), 168
nidmm (module), 271
nifgen (module), 338
nimodinst (module), 632
niscope (module), 442
nise (module), 621
niswitch (module), 572
nitclk (module), 638
NO_ACQUISITION_IN_PROGRESS

(nidmm.AcquisitionStatus attribute), 326
NO_MEASUREMENT (niscope.ArrayMeasurement at-

tribute), 553

NO_MEASUREMENT (niscope.ScalarMeasurement
attribute), 560

NO_MULTICONNECT (nise.MulticonnectMode at-
tribute), 629

NO_TRIGGER_MOD (niscope.TriggerModifier attribute),
562

NOISE (nifgen.Waveform attribute), 431
NONE (nidcpower.TriggerType attribute), 160
NONE (nidigital.TriggerType attribute), 260
NONE (nidmm.CableCompensationType attribute), 327
NONE (nidmm.MeasurementCompleteDest attribute), 328
NONE (nifgen.ReferenceClockSource attribute), 427
NONE (niscope.FIRFilterWindow attribute), 556
NONE (niscope.RuntTimeCondition attribute), 560
NONE (niswitch.ScanAdvancedOutput attribute), 611
NONE (niswitch.ScanMode attribute), 613
NORMAL (nidcpower.AutorangeThresholdMode at-

tribute), 155
NORMAL (nidcpower.DCNoiseRejection attribute), 156
NORMAL (nidcpower.TransientResponse attribute), 160
NORMAL (nidmm.DCNoiseRejection attribute), 327
NORMAL (niscope.AcquisitionType attribute), 553
NOT_A_PIN_STATE (nidigital.PinState attribute), 257
NOW (niscope.FetchRelativeTo attribute), 557
NR (nidigital.DriveFormat attribute), 254
NTSC (niscope.VideoSignalFormat attribute), 564
num_of_columns (in module niswitch.Session), 598
num_of_rows (in module niswitch.Session), 599
number_of_averages (in module nidmm.Session),

305
number_of_relays (in module niswitch.Session),

598

O
OFF (nidcpower.AutoZero attribute), 154
OFF (nidigital.SelectedFunction attribute), 257
OFF (nidmm.ADCCalibration attribute), 326
OFF (nidmm.AutoZero attribute), 326
offset_comp_ohms (in module nidmm.Session), 305
ON (nidcpower.AutoZero attribute), 154
ON (nidmm.ADCCalibration attribute), 326
ON (nidmm.AutoZero attribute), 326
ON_DEMAND (nidcpower.MeasureWhen attribute), 156
ON_DEMAND (niscope.CableSenseMode attribute), 554
ON_MEASURE_TRIGGER (nidcpower.MeasureWhen at-

tribute), 156
ONBOARD_CLOCK (nifgen.SampleClockSource at-

tribute), 427
ONBOARD_CLOCK (nifgen.SampleClockTimebaseSource

attribute), 428
onboard_memory_size (in module niscope.Session),

515
ONBOARD_REFERENCE_CLOCK (nif-

gen.ReferenceClockSource attribute), 427

Index 669

NI Modular Instruments Python API Documentation, Release 1.4.1

ONCE (nidcpower.AutoZero attribute), 154
ONCE (nidmm.AutoZero attribute), 327
ONE (nidigital.PinState attribute), 256
ONE (nidigital.WriteStaticPinState attribute), 260
OPEN (nidigital.TDREndpointTermination attribute), 259
OPEN (nidmm.CableCompensationType attribute), 327
OPEN (niswitch.RelayAction attribute), 610
OPEN (niswitch.RelayPosition attribute), 611
OPEN_AND_SHORT (nidmm.CableCompensationType

attribute), 327
open_cable_comp_conductance (in module

nidmm.Session), 305
open_cable_comp_susceptance (in module

nidmm.Session), 306
operation_mode (in module nidmm.Session), 306
OperationMode (class in nidmm), 329
OperationOrder (class in nise), 629
Option (class in niscope), 558
output_capacitance (in module nid-

cpower.Session), 80
output_clock_source (in module niscope.Session),

515
output_connected (in module nidcpower.Session),

80
output_cutoff_current_change_limit_high

(in module nidcpower.Session), 81
output_cutoff_current_change_limit_low

(in module nidcpower.Session), 82
output_cutoff_current_measure_limit_high

(in module nidcpower.Session), 83
output_cutoff_current_measure_limit_low

(in module nidcpower.Session), 83
output_cutoff_current_overrange_enabled

(in module nidcpower.Session), 84
output_cutoff_delay (in module nid-

cpower.Session), 85
output_cutoff_enabled (in module nid-

cpower.Session), 85
output_cutoff_voltage_change_limit_high

(in module nidcpower.Session), 86
output_cutoff_voltage_change_limit_low

(in module nidcpower.Session), 87
output_cutoff_voltage_output_limit_high

(in module nidcpower.Session), 87
output_cutoff_voltage_output_limit_low

(in module nidcpower.Session), 88
output_enabled (in module nidcpower.Session), 89
output_enabled (in module nifgen.Session), 405
output_function (in module nidcpower.Session), 90
output_impedance (in module nifgen.Session), 405
output_mode (in module nifgen.Session), 406
output_resistance (in module nidcpower.Session),

90
OutputCapacitance (class in nidcpower), 157

OutputCutoffReason (class in nidcpower), 157
OutputFunction (class in nidcpower), 157
OutputMode (class in nifgen), 426
OutputStates (class in nidcpower), 158
OUTSIDE (niscope.RuntTimeCondition attribute), 560
OUTSIDE (niscope.WidthCondition attribute), 566
overranging_enabled (in module nid-

cpower.Session), 91
OVERSHOOT (niscope.ClearableMeasurement attribute),

555
OVERSHOOT (niscope.ScalarMeasurement attribute),

561
ovp_enabled (in module nidcpower.Session), 92
ovp_limit (in module nidcpower.Session), 92

P
P2P_ENDPOINT_FULLNESS (nifgen.StartTriggerType

attribute), 429
PAL (niscope.VideoSignalFormat attribute), 564
PARALLEL (nidigital.FrequencyMeasurementMode at-

tribute), 255
PARALLEL (nidmm.LCCalculationModel attribute), 328
PATH_AVAILABLE (nise.PathCapability attribute), 630
PATH_AVAILABLE (niswitch.PathCapability attribute),

610
PATH_EXISTS (nise.PathCapability attribute), 630
PATH_EXISTS (niswitch.PathCapability attribute), 610
PATH_NEEDS_CONFIG_CHANNEL

(nise.PathCapability attribute), 630
PATH_NEEDS_HARDWIRE (nise.PathCapability at-

tribute), 629
PATH_UNSUPPORTED (nise.PathCapability attribute),

630
PATH_UNSUPPORTED (niswitch.PathCapability at-

tribute), 610
PathCapability (class in nise), 629
PathCapability (class in niswitch), 610
PATHS (nise.ExpandAction attribute), 629
PATTERN_LABEL (nidigital.HistoryRAMTriggerType

attribute), 255
pattern_label_history_ram_trigger_cycle_offset

(in module nidigital.Session), 221
pattern_label_history_ram_trigger_label

(in module nidigital.Session), 222
pattern_label_history_ram_trigger_vector_offset

(in module nidigital.Session), 222
pattern_opcode_event_terminal_name (in

module nidigital.Session), 222
pause_trigger_master_session (in module nit-

clk.SessionReference), 643
PAUSED (nidmm.AcquisitionStatus attribute), 326
PCI (nifgen.BusType attribute), 425
pciexpress_link_width (in module ni-

modinst.Session), 634

670 Index

NI Modular Instruments Python API Documentation, Release 1.4.1

PCMCIA (nifgen.BusType attribute), 425
PERCENTAGE (niscope.RefLevelUnits attribute), 559
PercentageMethod (class in niscope), 559
perform_open_cable_comp() (in module

nidmm.Session), 289
perform_short_cable_comp() (in module

nidmm.Session), 289
PERIOD (nidmm.Function attribute), 328
PERIOD (niscope.ClearableMeasurement attribute), 555
PERIOD (niscope.ScalarMeasurement attribute), 560
PHASE_DELAY (niscope.ClearableMeasurement at-

tribute), 556
PHASE_DELAY (niscope.ScalarMeasurement attribute),

561
PIN_STATE_NOT_ACQUIRED (nidigital.PinState at-

tribute), 257
PinState (class in nidigital), 256
pll_lock_status (in module niscope.Session), 516
points_done (in module niscope.Session), 516
Polarity (class in nidcpower), 158
poll_interval (in module niscope.Session), 517
POLYNOMIAL_INTERPOLATION (nis-

cope.ArrayMeasurement attribute), 553
POSITIVE (niscope.GlitchPolarity attribute), 558
POSITIVE (niscope.RuntPolarity attribute), 560
POSITIVE (niscope.TriggerSlope attribute), 562
POSITIVE (niscope.VideoPolarity attribute), 564
POSITIVE (niscope.WidthPolarity attribute), 566
power_allocation_mode (in module nid-

cpower.Session), 93
power_down_latching_relays_after_debounce

(in module niswitch.Session), 599
POWER_LINE_CYCLES (nidcpower.ApertureTimeUnits

attribute), 154
POWER_LINE_CYCLES (nidmm.ApertureTimeUnits at-

tribute), 326
power_line_frequency (in module nid-

cpower.Session), 94
power_source (in module nidcpower.Session), 95
power_source_in_use (in module nid-

cpower.Session), 95
PowerAllocationMode (class in nidcpower), 158
powerline_freq (in module nidmm.Session), 307
PowerSource (class in nidcpower), 159
PowerSourceInUse (class in nidcpower), 159
PPMU (nidigital.SelectedFunction attribute), 257
ppmu_allow_extended_voltage_range (in

module nidigital.Session), 223
ppmu_aperture_time (in module nidigital.Session),

224
ppmu_aperture_time_units (in module nidigi-

tal.Session), 224
ppmu_current_level (in module nidigital.Session),

225

ppmu_current_level_range (in module nidigi-
tal.Session), 226

ppmu_current_limit (in module nidigital.Session),
226

ppmu_current_limit_behavior (in module ni-
digital.Session), 227

ppmu_current_limit_range (in module nidigi-
tal.Session), 227

ppmu_current_limit_supported (in module ni-
digital.Session), 228

ppmu_measure() (in module nidigital.Session), 193
ppmu_output_function (in module nidigi-

tal.Session), 229
ppmu_source() (in module nidigital.Session), 193
ppmu_voltage_level (in module nidigital.Session),

229
ppmu_voltage_limit_high (in module nidigi-

tal.Session), 230
ppmu_voltage_limit_low (in module nidigi-

tal.Session), 230
PPMUApertureTimeUnits (class in nidigital), 255
PPMUCurrentLimitBehavior (class in nidigital),

256
PPMUMeasurementType (class in nidigital), 256
PPMUOutputFunction (class in nidigital), 256
PRESHOOT (niscope.ClearableMeasurement attribute),

555
PRESHOOT (niscope.ScalarMeasurement attribute), 561
PRETRIGGER (niscope.FetchRelativeTo attribute), 557
probe_attenuation (in module niscope.Session),

517
probe_compensation_signal_start() (in

module niscope.Session), 465
probe_compensation_signal_stop() (in mod-

ule niscope.Session), 465
PT3750 (nidmm.RTDType attribute), 329
PT3851 (nidmm.RTDType attribute), 329
PT3911 (nidmm.RTDType attribute), 329
PT3916 (nidmm.RTDType attribute), 329
PT3920 (nidmm.RTDType attribute), 329
PT3928 (nidmm.RTDType attribute), 329
PULSE (nidcpower.SendSoftwareEdgeTriggerType

attribute), 159
pulse_bias_current_level (in module nid-

cpower.Session), 96
pulse_bias_current_limit (in module nid-

cpower.Session), 96
pulse_bias_current_limit_high (in module

nidcpower.Session), 97
pulse_bias_current_limit_low (in module

nidcpower.Session), 98
pulse_bias_delay (in module nidcpower.Session),

99
pulse_bias_voltage_level (in module nid-

Index 671

NI Modular Instruments Python API Documentation, Release 1.4.1

cpower.Session), 100
pulse_bias_voltage_limit (in module nid-

cpower.Session), 100
pulse_bias_voltage_limit_high (in module

nidcpower.Session), 101
pulse_bias_voltage_limit_low (in module

nidcpower.Session), 102
PULSE_COMPLETE (nidcpower.Event attribute), 156
pulse_complete_event_output_terminal (in

module nidcpower.Session), 103
pulse_complete_event_pulse_polarity (in

module nidcpower.Session), 104
pulse_complete_event_pulse_width (in mod-

ule nidcpower.Session), 104
PULSE_CURRENT (nidcpower.OutputFunction at-

tribute), 158
pulse_current_level (in module nid-

cpower.Session), 105
pulse_current_level_range (in module nid-

cpower.Session), 106
pulse_current_limit (in module nid-

cpower.Session), 106
pulse_current_limit_high (in module nid-

cpower.Session), 107
pulse_current_limit_low (in module nid-

cpower.Session), 108
pulse_current_limit_range (in module nid-

cpower.Session), 109
pulse_off_time (in module nidcpower.Session), 110
pulse_on_time (in module nidcpower.Session), 110
pulse_trigger_type (in module nid-

cpower.Session), 111
PULSE_VOLTAGE (nidcpower.OutputFunction at-

tribute), 158
pulse_voltage_level (in module nid-

cpower.Session), 112
pulse_voltage_level_range (in module nid-

cpower.Session), 113
pulse_voltage_limit (in module nid-

cpower.Session), 113
pulse_voltage_limit_high (in module nid-

cpower.Session), 114
pulse_voltage_limit_low (in module nid-

cpower.Session), 115
pulse_voltage_limit_range (in module nid-

cpower.Session), 116
PXI (nifgen.BusType attribute), 425
PXI_CLOCK (nifgen.ReferenceClockSource attribute),

427
PXI_STAR (nidmm.SampleTrigger attribute), 330
PXI_STAR (nidmm.TriggerSource attribute), 332
PXI_STAR (niswitch.ScanAdvancedOutput attribute),

611
PXI_STAR (niswitch.TriggerInput attribute), 614

PXI_STAR_LINE (nifgen.SampleClockSource at-
tribute), 427

PXI_TRIG0 (nidmm.MeasurementCompleteDest at-
tribute), 328

PXI_TRIG0 (nidmm.SampleTrigger attribute), 330
PXI_TRIG0 (nidmm.TriggerSource attribute), 332
PXI_TRIG1 (nidmm.MeasurementCompleteDest at-

tribute), 329
PXI_TRIG1 (nidmm.SampleTrigger attribute), 330
PXI_TRIG1 (nidmm.TriggerSource attribute), 332
PXI_TRIG2 (nidmm.MeasurementCompleteDest at-

tribute), 329
PXI_TRIG2 (nidmm.SampleTrigger attribute), 330
PXI_TRIG2 (nidmm.TriggerSource attribute), 332
PXI_TRIG3 (nidmm.MeasurementCompleteDest at-

tribute), 329
PXI_TRIG3 (nidmm.SampleTrigger attribute), 330
PXI_TRIG3 (nidmm.TriggerSource attribute), 332
PXI_TRIG4 (nidmm.MeasurementCompleteDest at-

tribute), 329
PXI_TRIG4 (nidmm.SampleTrigger attribute), 330
PXI_TRIG4 (nidmm.TriggerSource attribute), 332
PXI_TRIG5 (nidmm.MeasurementCompleteDest at-

tribute), 329
PXI_TRIG5 (nidmm.SampleTrigger attribute), 330
PXI_TRIG5 (nidmm.TriggerSource attribute), 332
PXI_TRIG6 (nidmm.MeasurementCompleteDest at-

tribute), 329
PXI_TRIG6 (nidmm.SampleTrigger attribute), 330
PXI_TRIG6 (nidmm.TriggerSource attribute), 332
PXI_TRIG7 (nidmm.MeasurementCompleteDest at-

tribute), 329
PXI_TRIG7 (nidmm.SampleTrigger attribute), 330
PXI_TRIG7 (nidmm.TriggerSource attribute), 332
PXI_TRIGGER_LINE_0_RTSI_0 (nif-

gen.SampleClockSource attribute), 428
PXI_TRIGGER_LINE_1_RTSI_1 (nif-

gen.SampleClockSource attribute), 428
PXI_TRIGGER_LINE_2_RTSI_2 (nif-

gen.SampleClockSource attribute), 428
PXI_TRIGGER_LINE_3_RTSI_3 (nif-

gen.SampleClockSource attribute), 428
PXI_TRIGGER_LINE_4_RTSI_4 (nif-

gen.SampleClockSource attribute), 428
PXI_TRIGGER_LINE_5_RTSI_5 (nif-

gen.SampleClockSource attribute), 428
PXI_TRIGGER_LINE_6_RTSI_6 (nif-

gen.SampleClockSource attribute), 428
PXI_TRIGGER_LINE_7_RTSI_7 (nif-

gen.SampleClockSource attribute), 428
PXIE (nifgen.BusType attribute), 425

Q
query_arb_seq_capabilities() (in module nif-

672 Index

NI Modular Instruments Python API Documentation, Release 1.4.1

gen.Session), 361
query_arb_wfm_capabilities() (in module nif-

gen.Session), 362
query_freq_list_capabilities() (in module

nifgen.Session), 363
query_in_compliance() (in module nid-

cpower.Session), 31
query_instrument_status (in module nid-

cpower.Session), 117
query_instrument_status (in module nidigi-

tal.Session), 231
query_latched_output_cutoff_state() (in

module nidcpower.Session), 32
query_max_current_limit() (in module nid-

cpower.Session), 33
query_max_voltage_level() (in module nid-

cpower.Session), 33
query_min_current_limit() (in module nid-

cpower.Session), 34
query_output_state() (in module nid-

cpower.Session), 34

R
R (nidmm.ThermocoupleType attribute), 331
RAMP_DOWN (nifgen.Waveform attribute), 431
RAMP_UP (nifgen.Waveform attribute), 431
range (in module nidmm.Session), 307
range_check (in module nidigital.Session), 231
read() (in module nidmm.Session), 290
read() (in module niscope.Session), 465
read_current_temperature() (in module nid-

cpower.Session), 35
read_current_temperature() (in module nif-

gen.Session), 364
read_multi_point() (in module nidmm.Session),

290
READ_POINTER (niscope.FetchRelativeTo attribute),

557
read_sequencer_flag() (in module nidigi-

tal.Session), 194
read_sequencer_register() (in module nidigi-

tal.Session), 194
read_static() (in module nidigital.Session), 195
read_status() (in module nidmm.Session), 291
read_waveform() (in module nidmm.Session), 292
ready_for_advance_event_output_terminal

(in module niscope.Session), 518
ready_for_advance_event_terminal_name

(in module niscope.Session), 518
READY_FOR_PULSE_TRIGGER (nidcpower.Event at-

tribute), 156
ready_for_pulse_trigger_event_output_terminal

(in module nidcpower.Session), 117

ready_for_pulse_trigger_event_pulse_polarity
(in module nidcpower.Session), 118

ready_for_pulse_trigger_event_pulse_width
(in module nidcpower.Session), 118

ready_for_ref_event_output_terminal (in
module niscope.Session), 519

ready_for_ref_event_terminal_name (in
module niscope.Session), 519

ready_for_start_event_output_terminal
(in module nifgen.Session), 406

ready_for_start_event_output_terminal
(in module niscope.Session), 519

ready_for_start_event_terminal_name (in
module niscope.Session), 520

REARCONNECTOR (niswitch.ScanAdvancedOutput at-
tribute), 611

REARCONNECTOR (niswitch.TriggerInput attribute), 614
REARCONNECTOR_MODULE1

(niswitch.ScanAdvancedOutput attribute),
611

REARCONNECTOR_MODULE1 (niswitch.TriggerInput
attribute), 614

REARCONNECTOR_MODULE10
(niswitch.ScanAdvancedOutput attribute),
612

REARCONNECTOR_MODULE10 (niswitch.TriggerInput
attribute), 615

REARCONNECTOR_MODULE11
(niswitch.ScanAdvancedOutput attribute),
612

REARCONNECTOR_MODULE11 (niswitch.TriggerInput
attribute), 615

REARCONNECTOR_MODULE12
(niswitch.ScanAdvancedOutput attribute),
612

REARCONNECTOR_MODULE12 (niswitch.TriggerInput
attribute), 615

REARCONNECTOR_MODULE2
(niswitch.ScanAdvancedOutput attribute),
612

REARCONNECTOR_MODULE2 (niswitch.TriggerInput
attribute), 614

REARCONNECTOR_MODULE3
(niswitch.ScanAdvancedOutput attribute),
612

REARCONNECTOR_MODULE3 (niswitch.TriggerInput
attribute), 614

REARCONNECTOR_MODULE4
(niswitch.ScanAdvancedOutput attribute),
612

REARCONNECTOR_MODULE4 (niswitch.TriggerInput
attribute), 614

REARCONNECTOR_MODULE5
(niswitch.ScanAdvancedOutput attribute),

Index 673

NI Modular Instruments Python API Documentation, Release 1.4.1

612
REARCONNECTOR_MODULE5 (niswitch.TriggerInput

attribute), 614
REARCONNECTOR_MODULE6

(niswitch.ScanAdvancedOutput attribute),
612

REARCONNECTOR_MODULE6 (niswitch.TriggerInput
attribute), 614

REARCONNECTOR_MODULE7
(niswitch.ScanAdvancedOutput attribute),
612

REARCONNECTOR_MODULE7 (niswitch.TriggerInput
attribute), 614

REARCONNECTOR_MODULE8
(niswitch.ScanAdvancedOutput attribute),
612

REARCONNECTOR_MODULE8 (niswitch.TriggerInput
attribute), 614

REARCONNECTOR_MODULE9
(niswitch.ScanAdvancedOutput attribute),
612

REARCONNECTOR_MODULE9 (niswitch.TriggerInput
attribute), 614

record_arm_source (in module niscope.Session),
521

record_coercions (in module nidigital.Session),
232

records_done (in module niscope.Session), 520
ref_clk_rate (in module niscope.Session), 521
ref_clock_frequency (in module nifgen.Session),

407
ref_trig_tdc_enable (in module niscope.Session),

523
ref_trigger_detector_location (in module

niscope.Session), 521
ref_trigger_master_session (in module nit-

clk.SessionReference), 644
ref_trigger_minimum_quiet_time (in module

niscope.Session), 522
ref_trigger_terminal_name (in module nis-

cope.Session), 522
REFERENCE (niscope.WhichTrigger attribute), 565
reference_clock_source (in module nif-

gen.Session), 407
ReferenceClockSource (class in nifgen), 427
RefLevelUnits (class in niscope), 559
RefTriggerDetectorLocation (class in niscope),

559
REGISTER0 (nidigital.SequencerRegister attribute), 258
REGISTER1 (nidigital.SequencerRegister attribute), 258
REGISTER10 (nidigital.SequencerRegister attribute),

258
REGISTER11 (nidigital.SequencerRegister attribute),

258

REGISTER12 (nidigital.SequencerRegister attribute),
258

REGISTER13 (nidigital.SequencerRegister attribute),
258

REGISTER14 (nidigital.SequencerRegister attribute),
258

REGISTER15 (nidigital.SequencerRegister attribute),
258

REGISTER2 (nidigital.SequencerRegister attribute), 258
REGISTER3 (nidigital.SequencerRegister attribute), 258
REGISTER4 (nidigital.SequencerRegister attribute), 258
REGISTER5 (nidigital.SequencerRegister attribute), 258
REGISTER6 (nidigital.SequencerRegister attribute), 258
REGISTER7 (nidigital.SequencerRegister attribute), 258
REGISTER8 (nidigital.SequencerRegister attribute), 258
REGISTER9 (nidigital.SequencerRegister attribute), 258
REGULATE (nidigital.PPMUCurrentLimitBehavior at-

tribute), 256
RelativeTo (class in nifgen), 427
relay_control() (in module niswitch.Session), 581
RelayAction (class in niswitch), 610
RelayPosition (class in niswitch), 611
REMOTE (nidcpower.Sense attribute), 160
requested_power_allocation (in module nid-

cpower.Session), 119
reset() (in module nidcpower.Session), 35
reset() (in module nidigital.Session), 195
reset() (in module nidmm.Session), 292
reset() (in module nifgen.Session), 364
reset() (in module niscope.Session), 467
reset() (in module niswitch.Session), 581
reset_average_before_measurement (in mod-

ule nidcpower.Session), 120
reset_device() (in module nidcpower.Session), 35
reset_device() (in module nidigital.Session), 195
reset_device() (in module nifgen.Session), 364
reset_device() (in module niscope.Session), 467
reset_with_defaults() (in module nid-

cpower.Session), 35
reset_with_defaults() (in module

nidmm.Session), 293
reset_with_defaults() (in module nif-

gen.Session), 364
reset_with_defaults() (in module nis-

cope.Session), 467
reset_with_defaults() (in module

niswitch.Session), 581
resolution (in module niscope.Session), 523
resolution_absolute (in module nidmm.Session),

308
resolution_digits (in module nidmm.Session),

308
RESOURCE_IN_USE (nise.PathCapability attribute),

630

674 Index

NI Modular Instruments Python API Documentation, Release 1.4.1

RESOURCE_IN_USE (niswitch.PathCapability at-
tribute), 610

RESTORE_EXTERNAL_CALIBRATION (nis-
cope.Option attribute), 558

RH (nidigital.DriveFormat attribute), 255
RIO (nidigital.SelectedFunction attribute), 257
rio_event_terminal_name (in module nidigi-

tal.Session), 232
rio_trigger_terminal_name (in module nidigi-

tal.Session), 233
rio_trigger_type (in module nidigital.Session),

233
ris_in_auto_setup_enable (in module nis-

cope.Session), 523
ris_method (in module niscope.Session), 524
ris_num_averages (in module niscope.Session), 524
RISE_SLEW_RATE (niscope.ClearableMeasurement at-

tribute), 555
RISE_SLEW_RATE (niscope.ScalarMeasurement

attribute), 561
RISE_TIME (niscope.ClearableMeasurement attribute),

555
RISE_TIME (niscope.ScalarMeasurement attribute),

560
RISING (nidigital.DigitalEdge attribute), 254
RISING (nifgen.ScriptTriggerDigitalEdgeEdge at-

tribute), 428
RISING (nifgen.StartTriggerDigitalEdgeEdge attribute),

429
RISING (niswitch.ScanAdvancedPolarity attribute), 613
RISING (niswitch.TriggerInputPolarity attribute), 615
RISMethod (class in niscope), 559
RL (nidigital.DriveFormat attribute), 254
route_scan_advanced_output() (in module

niswitch.Session), 581
route_trigger_input() (in module

niswitch.Session), 582
ROUTES (nise.ExpandAction attribute), 629
RTDType (class in nidmm), 329
RTSI_7 (nifgen.ReferenceClockSource attribute), 427
RUNNING (nidmm.AcquisitionStatus attribute), 326
RUNNING (nifgen.HardwareState attribute), 426
RUNT (niscope.TriggerType attribute), 563
runt_high_threshold (in module niscope.Session),

525
runt_low_threshold (in module niscope.Session),

525
runt_polarity (in module niscope.Session), 525
runt_time_condition (in module niscope.Session),

526
runt_time_high_limit (in module nis-

cope.Session), 526
runt_time_low_limit (in module niscope.Session),

527

RuntPolarity (class in niscope), 560
RuntTimeCondition (class in niscope), 560

S
S (nidmm.ThermocoupleType attribute), 331
samp_clk_timebase_div (in module nis-

cope.Session), 528
samp_clk_timebase_rate (in module nis-

cope.Session), 529
samp_clk_timebase_src (in module nis-

cope.Session), 529
sample_clock_delay (in module nit-

clk.SessionReference), 644
sample_clock_source (in module nifgen.Session),

408
sample_clock_timebase_multiplier (in mod-

ule niscope.Session), 528
sample_clock_timebase_rate (in module nif-

gen.Session), 408
sample_clock_timebase_source (in module nif-

gen.Session), 409
sample_count (in module nidmm.Session), 309
sample_interval (in module nidmm.Session), 309
sample_mode (in module niscope.Session), 527
sample_trigger (in module nidmm.Session), 310
SampleClockSource (class in nifgen), 427
SampleClockTimebaseSource (class in nifgen),

428
samples_to_average (in module nid-

cpower.Session), 121
SampleTrigger (class in nidmm), 330
SBC (nidigital.DriveFormat attribute), 255
ScalarMeasurement (class in niscope), 560
scan_advanced_output (in module

niswitch.Session), 600
scan_advanced_polarity (in module

niswitch.Session), 600
scan_delay (in module niswitch.Session), 600
scan_list (in module niswitch.Session), 601
scan_mode (in module niswitch.Session), 601
ScanAdvancedOutput (class in niswitch), 611
ScanAdvancedPolarity (class in niswitch), 613
ScanMode (class in niswitch), 613
SCRIPT (nifgen.OutputMode attribute), 427
SCRIPT (nifgen.Trigger attribute), 429
script_to_generate (in module nifgen.Session),

409
script_trigger_type (in module nifgen.Session),

410
script_triggers_count (in module nif-

gen.Session), 410
ScriptTriggerDigitalEdgeEdge (class in nif-

gen), 428
ScriptTriggerType (class in nifgen), 428

Index 675

NI Modular Instruments Python API Documentation, Release 1.4.1

SECAM (niscope.VideoSignalFormat attribute), 564
SECOND_ORDER (nidcpower.DCNoiseRejection at-

tribute), 156
SECOND_ORDER (nidmm.DCNoiseRejection attribute),

327
SECONDS (nidcpower.ApertureTimeUnits attribute), 154
SECONDS (nidigital.PPMUApertureTimeUnits attribute),

255
SECONDS (nidmm.ApertureTimeUnits attribute), 326
selected_function (in module nidigital.Session),

234
SelectedFunction (class in nidigital), 257
self_cal() (in module nidcpower.Session), 35
self_cal() (in module nidmm.Session), 293
self_cal() (in module nifgen.Session), 364
self_cal() (in module niscope.Session), 467
self_calibrate() (in module nidigital.Session),

196
SELF_CALIBRATE_ALL_CHANNELS (niscope.Option

attribute), 558
self_calibration_persistence (in module

nidcpower.Session), 122
self_test() (in module nidcpower.Session), 36
self_test() (in module nidigital.Session), 196
self_test() (in module nidmm.Session), 293
self_test() (in module nifgen.Session), 365
self_test() (in module niscope.Session), 468
self_test() (in module niswitch.Session), 582
SelfCalibrationPersistence (class in nid-

cpower), 159
SelfTestError, 161, 261, 333, 432, 567, 616
send_software_edge_trigger() (in module

nidcpower.Session), 36
send_software_edge_trigger() (in module ni-

digital.Session), 196
send_software_edge_trigger() (in module nif-

gen.Session), 365
send_software_trigger() (in module

nidmm.Session), 293
send_software_trigger() (in module

niswitch.Session), 583
send_software_trigger_edge() (in module nis-

cope.Session), 468
SendSoftwareEdgeTriggerType (class in nid-

cpower), 159
Sense (class in nidcpower), 160
sense (in module nidcpower.Session), 122
SEQ (nifgen.OutputMode attribute), 427
SEQUENCE (nidcpower.SourceMode attribute), 160
SEQUENCE_ADVANCE (nid-

cpower.SendSoftwareEdgeTriggerType at-
tribute), 159

sequence_advance_trigger_type (in module
nidcpower.Session), 123

SEQUENCE_ENGINE_DONE (nidcpower.Event at-
tribute), 156

sequence_engine_done_event_output_terminal
(in module nidcpower.Session), 124

sequence_engine_done_event_pulse_polarity
(in module nidcpower.Session), 124

sequence_engine_done_event_pulse_width
(in module nidcpower.Session), 125

SEQUENCE_ITERATION_COMPLETE (nid-
cpower.Event attribute), 156

sequence_iteration_complete_event_output_terminal
(in module nidcpower.Session), 126

sequence_iteration_complete_event_pulse_polarity
(in module nidcpower.Session), 126

sequence_iteration_complete_event_pulse_width
(in module nidcpower.Session), 127

sequence_loop_count (in module nid-
cpower.Session), 128

sequence_loop_count_is_finite (in module
nidcpower.Session), 129

sequence_step_delta_time (in module nid-
cpower.Session), 129

sequence_step_delta_time_enabled (in mod-
ule nidcpower.Session), 130

sequencer_flag_master_session (in module
nitclk.SessionReference), 645

sequencer_flag_terminal_name (in module ni-
digital.Session), 235

SequencerFlag (class in nidigital), 257
SequencerRegister (class in nidigital), 258
serial_number (in module nidcpower.Session), 130
serial_number (in module nidigital.Session), 235
serial_number (in module nidmm.Session), 310
serial_number (in module nifgen.Session), 410
serial_number (in module nimodinst.Session), 635
serial_number (in module niscope.Session), 529
serial_number (in module niswitch.Session), 602
SERIES (nidmm.LCCalculationModel attribute), 328
Session (class in nidcpower), 14
Session (class in nidigital), 168
Session (class in nidmm), 271
Session (class in nifgen), 338
Session (class in nimodinst), 632
Session (class in niscope), 442
Session (class in nise), 621
Session (class in niswitch), 572
SessionReference (class in nitclk), 642
set_next_write_position() (in module nif-

gen.Session), 365
set_path() (in module niswitch.Session), 583
set_sequence() (in module nidcpower.Session), 37
settle_time (in module nidmm.Session), 310
settling_time (in module niswitch.Session), 602
setup_for_sync_pulse_sender_synchronize()

676 Index

NI Modular Instruments Python API Documentation, Release 1.4.1

(in module nitclk), 641
SHORT (nidmm.CableCompensationType attribute), 327
short_cable_comp_reactance (in module

nidmm.Session), 311
short_cable_comp_resistance (in module

nidmm.Session), 311
SHORT_TO_GROUND (nidigi-

tal.TDREndpointTermination attribute),
259

SHUTDOWN (nidcpower.SendSoftwareEdgeTriggerType
attribute), 159

shutdown_trigger_type (in module nid-
cpower.Session), 131

simulate (in module nidcpower.Session), 132
simulate (in module nidigital.Session), 236
simulate (in module nidmm.Session), 312
simulate (in module nifgen.Session), 411
simulate (in module niscope.Session), 531
simulate (in module niswitch.Session), 603
SINE (nifgen.Waveform attribute), 431
SINGLE (nifgen.TriggerMode attribute), 430
SINGLE_ENDED (nifgen.TerminalConfiguration at-

tribute), 429
SINGLE_ENDED (niscope.TerminalConfiguration

attribute), 562
SINGLE_POINT (nidcpower.SourceMode attribute),

160
SITE_UNIQUE (nidigital.SourceDataMapping at-

tribute), 258
SIXTEEN_TAP_HANNING (nis-

cope.FlexFIRAntialiasFilterType attribute),
558

SLOPE_EITHER (niscope.TriggerSlope attribute), 562
slot_number (in module nimodinst.Session), 635
SLOW (nidcpower.TransientResponse attribute), 160
socket_number (in module nimodinst.Session), 635
SOFTWARE (nidigital.TriggerType attribute), 260
SOFTWARE (niscope.TriggerType attribute), 563
SOFTWARE_EDGE (nidcpower.TriggerType attribute),

160
SOFTWARE_EDGE (nifgen.ScriptTriggerType attribute),

429
SOFTWARE_EDGE (nifgen.StartTriggerType attribute),

429
SOFTWARE_TRIG (nidmm.SampleTrigger attribute),

330
SOFTWARE_TRIG (nidmm.TriggerSource attribute), 332
SOFTWARE_TRIG (niswitch.TriggerInput attribute), 613
SoftwareTrigger (class in nidigital), 258
SOURCE (nidcpower.SendSoftwareEdgeTriggerType at-

tribute), 159
SOURCE_COMPLETE (nidcpower.Event attribute), 156
source_complete_event_output_terminal

(in module nidcpower.Session), 132

source_complete_event_pulse_polarity (in
module nidcpower.Session), 133

source_complete_event_pulse_width (in
module nidcpower.Session), 133

SOURCE_CONFLICT (niswitch.PathCapability at-
tribute), 610

source_delay (in module nidcpower.Session), 134
source_mode (in module nidcpower.Session), 135
source_trigger_type (in module nid-

cpower.Session), 135
SourceDataMapping (class in nidigital), 258
SourceMode (class in nidcpower), 160
specific_driver_class_spec_major_version

(in module nidigital.Session), 236
specific_driver_class_spec_minor_version

(in module nidigital.Session), 237
specific_driver_description (in module nid-

cpower.Session), 136
specific_driver_description (in module ni-

digital.Session), 237
specific_driver_description (in module

nidmm.Session), 312
specific_driver_description (in module nif-

gen.Session), 411
specific_driver_description (in module nis-

cope.Session), 532
specific_driver_description (in module

niswitch.Session), 604
specific_driver_major_version (in module

nidmm.Session), 313
specific_driver_minor_version (in module

nidmm.Session), 313
specific_driver_prefix (in module nid-

cpower.Session), 136
specific_driver_prefix (in module nidigi-

tal.Session), 237
specific_driver_revision (in module nid-

cpower.Session), 137
specific_driver_revision (in module nidigi-

tal.Session), 238
specific_driver_revision (in module

nidmm.Session), 313
specific_driver_revision (in module nif-

gen.Session), 412
specific_driver_revision (in module nis-

cope.Session), 532
specific_driver_revision (in module

niswitch.Session), 604
specific_driver_vendor (in module nid-

cpower.Session), 137
specific_driver_vendor (in module nidigi-

tal.Session), 238
specific_driver_vendor (in module

nidmm.Session), 314

Index 677

NI Modular Instruments Python API Documentation, Release 1.4.1

specific_driver_vendor (in module nif-
gen.Session), 413

specific_driver_vendor (in module nis-
cope.Session), 532

specific_driver_vendor (in module
niswitch.Session), 604

SQUARE (nifgen.Waveform attribute), 431
START (nidcpower.SendSoftwareEdgeTriggerType

attribute), 159
START (nidigital.SoftwareTrigger attribute), 258
START (nifgen.RelativeTo attribute), 427
START (nifgen.Trigger attribute), 429
START (niscope.FetchRelativeTo attribute), 557
START (niscope.WhichTrigger attribute), 565
start_label (in module nidigital.Session), 239
start_to_ref_trigger_holdoff (in module nis-

cope.Session), 533
start_trigger_master_session (in module nit-

clk.SessionReference), 645
start_trigger_terminal_name (in module ni-

digital.Session), 239
start_trigger_terminal_name (in module nis-

cope.Session), 533
start_trigger_type (in module nid-

cpower.Session), 137
start_trigger_type (in module nidigital.Session),

239
start_trigger_type (in module nifgen.Session),

413
started_event_output_terminal (in module

nifgen.Session), 413
StartTriggerDigitalEdgeEdge (class in nifgen),

429
StartTriggerType (class in nifgen), 429
STATUS_UNKNOWN (niscope.AcquisitionStatus at-

tribute), 552
STEPPED (nifgen.TriggerMode attribute), 430
streaming_space_available_in_waveform

(in module nifgen.Session), 414
streaming_waveform_handle (in module nif-

gen.Session), 414
streaming_waveform_name (in module nif-

gen.Session), 415
streaming_write_timeout (in module nif-

gen.Session), 415
SUBTRACT_CHANNELS (niscope.ArrayMeasurement

attribute), 554
supported_instrument_models (in module nid-

cpower.Session), 138
supported_instrument_models (in module ni-

digital.Session), 240
supported_instrument_models (in module

nidmm.Session), 314
supported_instrument_models (in module nif-

gen.Session), 416
supported_instrument_models (in module nis-

cope.Session), 534
supported_instrument_models (in module

niswitch.Session), 605
SWITCH (niswitch.HandshakingInitiation attribute), 610
SYMMETRIC (nidcpower.ComplianceLimitSymmetry at-

tribute), 155
sync_pulse_clock_source (in module nit-

clk.SessionReference), 646
sync_pulse_sender_sync_pulse_source (in

module nitclk.SessionReference), 646
sync_pulse_source (in module nit-

clk.SessionReference), 647
synchronize() (in module nitclk), 641
synchronize_to_sync_pulse_sender() (in

module nitclk), 641

T
T (nidmm.ThermocoupleType attribute), 331
tclk (in module nidigital.Session), 246
tclk (in module nifgen.Session), 418
tclk (in module niscope.Session), 545
tclk_actual_period (in module nit-

clk.SessionReference), 647
tdr() (in module nidigital.Session), 197
tdr_endpoint_termination (in module nidigi-

tal.Session), 241
tdr_offset (in module nidigital.Session), 241
TDREndpointTermination (class in nidigital), 259
temp_rtd_a (in module nidmm.Session), 314
temp_rtd_b (in module nidmm.Session), 315
temp_rtd_c (in module nidmm.Session), 315
temp_rtd_res (in module nidmm.Session), 316
temp_rtd_type (in module nidmm.Session), 316
temp_tc_fixed_ref_junc (in module

nidmm.Session), 316
temp_tc_ref_junc_type (in module

nidmm.Session), 317
temp_tc_type (in module nidmm.Session), 317
temp_thermistor_a (in module nidmm.Session),

318
temp_thermistor_b (in module nidmm.Session),

318
temp_thermistor_c (in module nidmm.Session),

318
temp_thermistor_type (in module

nidmm.Session), 319
temp_transducer_type (in module

nidmm.Session), 319
temperature (in module niswitch.Session), 605
TEMPERATURE (nidmm.Function attribute), 328
terminal_configuration (in module nif-

gen.Session), 416

678 Index

NI Modular Instruments Python API Documentation, Release 1.4.1

TerminalConfiguration (class in nifgen), 429
TerminalConfiguration (class in niscope), 562
termination_mode (in module nidigital.Session),

241
TerminationMode (class in nidigital), 259
THERMISTOR (nidmm.TransducerType attribute), 331
THERMISTOR_44004 (nidmm.ThermistorType at-

tribute), 330
THERMISTOR_44006 (nidmm.ThermistorType at-

tribute), 331
THERMISTOR_44007 (nidmm.ThermistorType at-

tribute), 331
ThermistorType (class in nidmm), 330
THERMOCOUPLE (nidmm.TransducerType attribute),

331
ThermocoupleReferenceJunctionType (class

in nidmm), 331
ThermocoupleType (class in nidmm), 331
TIME_DELAY (niscope.ClearableMeasurement at-

tribute), 556
TIME_DELAY (niscope.ScalarMeasurement attribute),

561
TIME_HISTOGRAM_HITS (nis-

cope.ClearableMeasurement attribute), 556
TIME_HISTOGRAM_MAX (nis-

cope.ClearableMeasurement attribute), 556
TIME_HISTOGRAM_MEAN (nis-

cope.ClearableMeasurement attribute), 556
TIME_HISTOGRAM_MEAN_PLUS_2_STDEV (nis-

cope.ClearableMeasurement attribute), 556
TIME_HISTOGRAM_MEAN_PLUS_3_STDEV (nis-

cope.ClearableMeasurement attribute), 556
TIME_HISTOGRAM_MEAN_PLUS_STDEV (nis-

cope.ClearableMeasurement attribute), 556
TIME_HISTOGRAM_MEDIAN (nis-

cope.ClearableMeasurement attribute), 556
TIME_HISTOGRAM_MIN (nis-

cope.ClearableMeasurement attribute), 556
TIME_HISTOGRAM_MODE (nis-

cope.ClearableMeasurement attribute), 556
TIME_HISTOGRAM_NEW_HITS (nis-

cope.ClearableMeasurement attribute), 556
TIME_HISTOGRAM_PEAK_TO_PEAK (nis-

cope.ClearableMeasurement attribute), 556
TIME_HISTOGRAM_STDEV (nis-

cope.ClearableMeasurement attribute), 556
TimeSetEdgeType (class in nidigital), 259
timing_absolute_delay (in module nidigi-

tal.Session), 242
timing_absolute_delay_enabled (in module

nidigital.Session), 243
TransducerType (class in nidmm), 331
transient_response (in module nid-

cpower.Session), 138

TransientResponse (class in nidcpower), 160
TRIANGLE (nifgen.Waveform attribute), 431
TRIANGLE (niscope.FIRFilterWindow attribute), 557
TRIANGLE_WINDOW (niscope.ArrayMeasurement at-

tribute), 554
TRIG_NONE (nifgen.ScriptTriggerType attribute), 428
TRIG_NONE (nifgen.StartTriggerType attribute), 429
Trigger (class in nifgen), 429
TRIGGER (niscope.FetchRelativeTo attribute), 557
trigger_auto_triggered (in module nis-

cope.Session), 534
trigger_count (in module nidmm.Session), 320
trigger_coupling (in module niscope.Session), 534
trigger_delay (in module nidmm.Session), 320
trigger_delay_time (in module niscope.Session),

535
trigger_holdoff (in module niscope.Session), 535
trigger_hysteresis (in module niscope.Session),

536
trigger_impedance (in module niscope.Session),

536
trigger_input (in module niswitch.Session), 605
trigger_input_polarity (in module

niswitch.Session), 606
trigger_level (in module niscope.Session), 537
trigger_mode (in module nifgen.Session), 416
trigger_modifier (in module niscope.Session), 537
trigger_slope (in module niscope.Session), 537
trigger_source (in module nidmm.Session), 321
trigger_source (in module niscope.Session), 538
trigger_type (in module niscope.Session), 538
trigger_window_high_level (in module nis-

cope.Session), 539
trigger_window_low_level (in module nis-

cope.Session), 539
trigger_window_mode (in module niscope.Session),

540
TriggerCoupling (class in niscope), 562
TriggerInput (class in niswitch), 613
TriggerInputPolarity (class in niswitch), 615
TriggerMode (class in nifgen), 430
TriggerModifier (class in niscope), 562
TriggerSlope (class in niscope), 562
TriggerSource (class in nidmm), 332
TriggerType (class in nidcpower), 160
TriggerType (class in nidigital), 260
TriggerType (class in niscope), 563
TriggerWindowMode (class in niscope), 563
TTL0 (niswitch.ScanAdvancedOutput attribute), 611
TTL0 (niswitch.TriggerInput attribute), 613
TTL1 (niswitch.ScanAdvancedOutput attribute), 611
TTL1 (niswitch.TriggerInput attribute), 613
TTL2 (niswitch.ScanAdvancedOutput attribute), 611
TTL2 (niswitch.TriggerInput attribute), 614

Index 679

NI Modular Instruments Python API Documentation, Release 1.4.1

TTL3 (niswitch.ScanAdvancedOutput attribute), 611
TTL3 (niswitch.TriggerInput attribute), 614
TTL4 (niswitch.ScanAdvancedOutput attribute), 611
TTL4 (niswitch.TriggerInput attribute), 614
TTL5 (niswitch.ScanAdvancedOutput attribute), 611
TTL5 (niswitch.TriggerInput attribute), 614
TTL6 (niswitch.ScanAdvancedOutput attribute), 611
TTL6 (niswitch.TriggerInput attribute), 614
TTL7 (niswitch.ScanAdvancedOutput attribute), 611
TTL7 (niswitch.TriggerInput attribute), 614
TV (niscope.TriggerType attribute), 563
tv_trigger_event (in module niscope.Session), 540
tv_trigger_line_number (in module nis-

cope.Session), 540
tv_trigger_polarity (in module niscope.Session),

541
tv_trigger_signal_format (in module nis-

cope.Session), 541
TWO_WIRE_RES (nidmm.Function attribute), 328
TWO_WIRE_RTD (nidmm.TransducerType attribute),

331

U
UNBALANCED_DIFFERENTIAL (nis-

cope.TerminalConfiguration attribute), 562
unload_all_patterns() (in module nidigi-

tal.Session), 197
unload_specifications() (in module nidigi-

tal.Session), 197
unlock() (in module nidcpower.Session), 38
unlock() (in module nidigital.Session), 198
unlock() (in module nidmm.Session), 294
unlock() (in module nifgen.Session), 366
unlock() (in module niscope.Session), 468
unlock() (in module niswitch.Session), 583
UnsupportedConfigurationError, 161, 260,

333, 431, 566, 616, 630, 636, 648
UP (nidcpower.AutorangeBehavior attribute), 155
UP_AND_DOWN (nidcpower.AutorangeBehavior at-

tribute), 155
UP_TO_LIMIT_THEN_DOWN (nid-

cpower.AutorangeBehavior attribute), 155
use_spec_initial_x (in module niscope.Session),

542
USER (nifgen.Waveform attribute), 431

V
V (nidigital.PinState attribute), 257
vertical_coupling (in module niscope.Session),

542
vertical_offset (in module niscope.Session), 543
vertical_range (in module niscope.Session), 543
VerticalCoupling (class in niscope), 564

VIDEO_1080I_50_FIELDS_PER_SECOND (nis-
cope.VideoSignalFormat attribute), 565

VIDEO_1080I_59_94_FIELDS_PER_SECOND
(niscope.VideoSignalFormat attribute), 565

VIDEO_1080I_60_FIELDS_PER_SECOND (nis-
cope.VideoSignalFormat attribute), 565

VIDEO_1080P_24_FRAMES_PER_SECOND (nis-
cope.VideoSignalFormat attribute), 565

VIDEO_480I_59_94_FIELDS_PER_SECOND (nis-
cope.VideoSignalFormat attribute), 564

VIDEO_480I_60_FIELDS_PER_SECOND (nis-
cope.VideoSignalFormat attribute), 564

VIDEO_480P_59_94_FRAMES_PER_SECOND (nis-
cope.VideoSignalFormat attribute), 564

VIDEO_480P_60_FRAMES_PER_SECOND (nis-
cope.VideoSignalFormat attribute), 564

VIDEO_576I_50_FIELDS_PER_SECOND (nis-
cope.VideoSignalFormat attribute), 564

VIDEO_576P_50_FRAMES_PER_SECOND (nis-
cope.VideoSignalFormat attribute), 565

VIDEO_720P_50_FRAMES_PER_SECOND (nis-
cope.VideoSignalFormat attribute), 565

VIDEO_720P_59_94_FRAMES_PER_SECOND (nis-
cope.VideoSignalFormat attribute), 565

VIDEO_720P_60_FRAMES_PER_SECOND (nis-
cope.VideoSignalFormat attribute), 565

VideoPolarity (class in niscope), 564
VideoSignalFormat (class in niscope), 564
VideoTriggerEvent (class in niscope), 565
vih (in module nidigital.Session), 244
vil (in module nidigital.Session), 244
voh (in module nidigital.Session), 245
vol (in module nidigital.Session), 245
VOLTAGE (nidcpower.MeasurementTypes attribute), 156
VOLTAGE (nidcpower.OutputStates attribute), 158
VOLTAGE (nidigital.PPMUMeasurementType attribute),

256
VOLTAGE (nidigital.PPMUOutputFunction attribute),

256
VOLTAGE_AVERAGE (niscope.ClearableMeasurement

attribute), 555
VOLTAGE_AVERAGE (niscope.ScalarMeasurement at-

tribute), 561
VOLTAGE_BASE (niscope.ClearableMeasurement at-

tribute), 555
VOLTAGE_BASE (niscope.ScalarMeasurement at-

tribute), 561
VOLTAGE_BASE_TO_TOP (nis-

cope.ClearableMeasurement attribute), 555
VOLTAGE_BASE_TO_TOP (nis-

cope.ScalarMeasurement attribute), 561
VOLTAGE_CHANGE_HIGH (nid-

cpower.OutputCutoffReason attribute), 157
VOLTAGE_CHANGE_LOW (nid-

680 Index

NI Modular Instruments Python API Documentation, Release 1.4.1

cpower.OutputCutoffReason attribute), 157
voltage_compensation_frequency (in module

nidcpower.Session), 139
VOLTAGE_CYCLE_AVERAGE (nis-

cope.ClearableMeasurement attribute), 555
VOLTAGE_CYCLE_AVERAGE (nis-

cope.ScalarMeasurement attribute), 561
VOLTAGE_CYCLE_RMS (nis-

cope.ClearableMeasurement attribute), 555
VOLTAGE_CYCLE_RMS (niscope.ScalarMeasurement

attribute), 561
voltage_gain_bandwidth (in module nid-

cpower.Session), 140
VOLTAGE_HIGH (niscope.ClearableMeasurement at-

tribute), 555
VOLTAGE_HIGH (niscope.ScalarMeasurement at-

tribute), 561
VOLTAGE_HISTOGRAM_HITS (nis-

cope.ClearableMeasurement attribute), 556
VOLTAGE_HISTOGRAM_MAX (nis-

cope.ClearableMeasurement attribute), 556
VOLTAGE_HISTOGRAM_MEAN (nis-

cope.ClearableMeasurement attribute), 556
VOLTAGE_HISTOGRAM_MEAN_PLUS_2_STDEV

(niscope.ClearableMeasurement attribute), 556
VOLTAGE_HISTOGRAM_MEAN_PLUS_3_STDEV

(niscope.ClearableMeasurement attribute), 556
VOLTAGE_HISTOGRAM_MEAN_PLUS_STDEV (nis-

cope.ClearableMeasurement attribute), 556
VOLTAGE_HISTOGRAM_MEDIAN (nis-

cope.ClearableMeasurement attribute), 556
VOLTAGE_HISTOGRAM_MIN (nis-

cope.ClearableMeasurement attribute), 556
VOLTAGE_HISTOGRAM_MODE (nis-

cope.ClearableMeasurement attribute), 556
VOLTAGE_HISTOGRAM_NEW_HITS (nis-

cope.ClearableMeasurement attribute), 556
VOLTAGE_HISTOGRAM_PEAK_TO_PEAK (nis-

cope.ClearableMeasurement attribute), 556
VOLTAGE_HISTOGRAM_STDEV (nis-

cope.ClearableMeasurement attribute), 556
voltage_level (in module nidcpower.Session), 141
voltage_level_autorange (in module nid-

cpower.Session), 141
voltage_level_range (in module nid-

cpower.Session), 142
voltage_limit (in module nidcpower.Session), 143
voltage_limit_autorange (in module nid-

cpower.Session), 144
voltage_limit_high (in module nid-

cpower.Session), 144
voltage_limit_low (in module nidcpower.Session),

145
voltage_limit_range (in module nid-

cpower.Session), 146
VOLTAGE_LOW (niscope.ClearableMeasurement at-

tribute), 555
VOLTAGE_LOW (niscope.ScalarMeasurement attribute),

561
VOLTAGE_MAX (niscope.ClearableMeasurement at-

tribute), 555
VOLTAGE_MAX (niscope.ScalarMeasurement attribute),

560
VOLTAGE_MIN (niscope.ClearableMeasurement at-

tribute), 555
VOLTAGE_MIN (niscope.ScalarMeasurement attribute),

561
VOLTAGE_OUTPUT_HIGH (nid-

cpower.OutputCutoffReason attribute), 157
VOLTAGE_OUTPUT_LOW (nid-

cpower.OutputCutoffReason attribute), 157
VOLTAGE_PEAK_TO_PEAK (nis-

cope.ClearableMeasurement attribute), 555
VOLTAGE_PEAK_TO_PEAK (nis-

cope.ScalarMeasurement attribute), 560
voltage_pole_zero_ratio (in module nid-

cpower.Session), 147
VOLTAGE_RMS (niscope.ClearableMeasurement at-

tribute), 555
VOLTAGE_RMS (niscope.ScalarMeasurement attribute),

560
VOLTAGE_TOP (niscope.ClearableMeasurement at-

tribute), 555
VOLTAGE_TOP (niscope.ScalarMeasurement attribute),

561
VOLTS (niscope.RefLevelUnits attribute), 559
vterm (in module nidigital.Session), 246
VTERM (nidigital.TerminationMode attribute), 259
VXI (nifgen.BusType attribute), 425

W
wait_behavior (in module nifgen.Session), 417
wait_for_debounce() (in module nise.Session),

628
wait_for_debounce() (in module

niswitch.Session), 583
wait_for_event() (in module nidcpower.Session),

38
wait_for_scan_complete() (in module

niswitch.Session), 583
wait_until_done() (in module nidigital.Session),

198
wait_until_done() (in module nifgen.Session), 366
wait_until_done() (in module nitclk), 642
wait_value (in module nifgen.Session), 417
WaitBehavior (class in nifgen), 430
WAITING_FOR_START_TRIGGER (nif-

gen.HardwareState attribute), 426

Index 681

NI Modular Instruments Python API Documentation, Release 1.4.1

Waveform (class in nifgen), 431
WAVEFORM (nidmm.OperationMode attribute), 329
waveform_coupling (in module nidmm.Session),

321
WAVEFORM_CURRENT (nidmm.Function attribute), 328
waveform_points (in module nidmm.Session), 321
waveform_quantum (in module nifgen.Session), 418
waveform_rate (in module nidmm.Session), 322
WAVEFORM_VOLTAGE (nidmm.Function attribute), 328
WaveformCoupling (class in nidmm), 332
WhichTrigger (class in niscope), 565
WIDTH (niscope.TriggerType attribute), 563
width_condition (in module niscope.Session), 544
width_high_threshold (in module nis-

cope.Session), 544
width_low_threshold (in module niscope.Session),

545
WIDTH_NEG (niscope.ClearableMeasurement attribute),

555
WIDTH_NEG (niscope.ScalarMeasurement attribute),

561
width_polarity (in module niscope.Session), 545
WIDTH_POS (niscope.ClearableMeasurement attribute),

555
WIDTH_POS (niscope.ScalarMeasurement attribute),

561
WidthCondition (class in niscope), 566
WidthPolarity (class in niscope), 566
WINDOW (niscope.TriggerType attribute), 563
WINDOWED_FIR_FILTER (niscope.ArrayMeasurement

attribute), 554
wire_mode (in module niswitch.Session), 606
WITHIN (niscope.RuntTimeCondition attribute), 560
WITHIN (niscope.WidthCondition attribute), 566
write_script() (in module nifgen.Session), 366
write_sequencer_flag() (in module nidigi-

tal.Session), 198
write_sequencer_register() (in module nidig-

ital.Session), 198
write_source_waveform_broadcast() (in

module nidigital.Session), 199
write_source_waveform_data_from_file_tdms()

(in module nidigital.Session), 199
write_source_waveform_site_unique() (in

module nidigital.Session), 200
write_static() (in module nidigital.Session), 200
WRITE_TO_EEPROM (nid-

cpower.SelfCalibrationPersistence attribute),
159

write_waveform() (in module nifgen.Session), 367
WriteStaticPinState (class in nidigital), 260

X
X (nidigital.PinState attribute), 256

X (nidigital.WriteStaticPinState attribute), 260

Z
ZERO (nidigital.PinState attribute), 256
ZERO (nidigital.WriteStaticPinState attribute), 260

682 Index

	About
	Installation
	Contributing
	Support / Feedback
	Bugs / Feature Requests
	Documentation
	Additional Documentation

	License
	nidcpower module
	Installation
	Usage
	API Reference

	nidigital module
	Installation
	Usage
	API Reference

	nidmm module
	Installation
	Usage
	API Reference

	nifgen module
	Installation
	Usage
	API Reference

	niscope module
	Installation
	Usage
	API Reference

	niswitch module
	Installation
	Usage
	API Reference

	nise module
	Installation
	Usage
	API Reference

	nimodinst module
	Installation
	Usage
	API Reference

	nitclk module
	Installation
	Usage
	API Reference

	Indices and tables
	Python Module Index
	Index

