NI Modular Instruments Python API

Documentation
Release 1.4.1

National Instruments

Aug 20, 2021

Drivers

About 1
Installation 3
Contributing 5
Support / Feedback 7
Bugs / Feature Requests 9
Documentation 11
6.1 Additional Documentation e e e e e e e e e e e e e 11
License 13
7.1 nidecpowermoduleo 13
7.1.1 Installation L e e e e e e e e e 13
T1.2 0 USage . . . o o e 13
7.1.3 APIReference e e e e 14
7.2 nidigital module L L e e e e e e e e e 166
7.2.1 Installation L L L e e e e e e e e e e e e e e e e e 166
722 Usage 167
723 APIReference e e e e 168
7.3 nidmmmodule L L L e e e e e e 270
7.3.1 Installation L L e e e e e e e e e e e e e e e 270
T332 USAZE . v v v o e e e e e e e e e e 271
733 APIReference e e e 271
74 nifgenmodule L e e 337
7.4.1 Installation L e e e e e e e e e e e e e e e e 337
TA2 USAZE . o v v o e e e e e e e e e e e e e e e 337
7.43 APIReference e e e e e e e e 338
7.5 miscopemodule L e e e 440
7.5.1 Installation L L e e e e e e e e e 440
752 USAZe . . o vt e e e 440
7.5.3 APIReference e e e e e 442
7.6 niswitchmodule e e e e e 571
7.6.1 Installation L. e e e e e e e e e e e e e e e e e 571
7.6.2 Usage e 571

7.6.3 APIReference e e e e
7.7 misemodule L e e e e e e e
7.7.1 Installation e e e e e e
T2 USage oo e e
773 APIReference e
7.8 nimodinstmodule L e e e e e
7.8.1 Installation L e e e e e e e e e e e e e e e e
T.B.2 USAZE . v v v o e e e e e e e e e e
7.8.3 APIReference e e e e e e e
7.9 nitclkmodule L e e e e e e
7.9.1 Installation e e e e e e e e e e e
T9.2 USAZE . . v v e e e e e e e e e e e e e e e e
7.9.3 APIReference e e e e e
8 Indices and tables
Python Module Index
Index

CHAPTER 1

About

The nimi-python repository generates Python bindings (Application Programming Interface) for interacting with the
Modular Instrument drivers. The following drivers are supported:

NI-DCPower (Python module: nidcpower)
NI-Digital Pattern Driver (Python module: nidigital)
NI-DMM (Python module: nidmm)

NI-FGEN (Python module: nifgen)

NI-ModInst (Python module: nimodinst)
NI-SCOPE (Python module: niscope)

NI Switch Executive (Python module: nise)
NI-SWITCH (Python module: niswitch)

NI-TClk (Python module: nitclk)

It is implemented as a set of Mako templates and per-driver metafiles that produce a Python module for each driver.
The driver is called through its public C API using the ctypes Python library.

nimi-python supports all the Operating Systems supported by the underlying driver.

nimi-python follows Python Software Foundation support policy for different versions. At this time this includes
Python 3.6 and above using CPython.

http://makotemplates.org
https://docs.python.org/2/library/ctypes.html
https://devguide.python.org/#status-of-python-branches

NI Modular Instruments Python APl Documentation, Release 1.4.1

2 Chapter 1. About

CHAPTER 2

Installation

Driver specific installation instructions can be found on Read The Docs:
* nidcpower
* nidigital
* nidmm
* nifgen
* nimodinst
* niscope
* nise
* niswitch

¢ nitclk

http://nimi-python.readthedocs.io/en/master/nidcpower.html#installation
http://nimi-python.readthedocs.io/en/master/nidigital.html#installation
http://nimi-python.readthedocs.io/en/master/nidmm.html#installation
http://nimi-python.readthedocs.io/en/master/nifgen.html#installation
http://nimi-python.readthedocs.io/en/master/nimodinst.html#installation
http://nimi-python.readthedocs.io/en/master/niscope.html#installation
http://nimi-python.readthedocs.io/en/master/nise.html#installation
http://nimi-python.readthedocs.io/en/master/niswitch.html#installation
http://nimi-python.readthedocs.io/en/master/nitclk.html#installation

NI Modular Instruments Python APl Documentation, Release 1.4.1

4 Chapter 2. Installation

CHAPTER 3

Contributing

We welcome contributions! You can clone the project repository, build it, and install it by following these instructions.

https://github.com/ni/nimi-python/blob/master/CONTRIBUTING.md

NI Modular Instruments Python APl Documentation, Release 1.4.1

6 Chapter 3. Contributing

CHAPTER 4

Support / Feedback

The packages included in nimi-python package are supported by NI. For support, open a request through the NI
support portal at ni.com.

http://www.ni.com

NI Modular Instruments Python APl Documentation, Release 1.4.1

8 Chapter 4. Support / Feedback

CHAPTER B

Bugs / Feature Requests

To report a bug or submit a feature request specific to NI Modular Instruments Python bindings (nimi-python), please
use the GitHub issues page.

Fill in the issue template as completely as possible and we will respond as soon as we can.

For hardware support or any other questions not specific to this GitHub project, please visit NI Community Forums.

https://github.com/ni/nimi-python/issues
https://forums.ni.com/

NI Modular Instruments Python APl Documentation, Release 1.4.1

10 Chapter 5. Bugs / Feature Requests

CHAPTER O

Documentation

Documentation is available here.

6.1 Additional Documentation

Refer to your driver documentation for device-specific information and detailed API documentation.

11

http://nimi-python.readthedocs.io

NI Modular Instruments Python APl Documentation, Release 1.4.1

12 Chapter 6. Documentation

CHAPTER /

License

nimi-python is licensed under an MIT-style license (see LICENSE). Other incorporated projects may be licensed
under different licenses. All licenses allow for non-commercial and commercial use.

7.1 nidcpower module

7.1.1 Installation

As a prerequisite to using the nidcpower module, you must install the NI-DCPower runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-DCPower) can be installed with pip:

’$ python -m pip install nidcpower~=1.4.1

Or easy_install from setuptools:

’$ python -m easy_install nidcpower

7.1.2 Usage

The following is a basic example of using the nidcpower module to open a session to a Source Meter Unit and measure
voltage and current.

import nidcpower
Configure the session.

with nidcpower.Session (resource_name='PXI1Slot2/0') as session:
session.measure_record_length = 20
session.measure_record_length_is_finite = True

session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE

(continues on next page)

13

https://github.com/ni/nimi-python/blob/master/LICENSE
http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

NI Modular Instruments Python APl Documentation, Release 1.4.1

(continued from previous page)

session.voltage_level = 5.0

session.commit ()
print ('Effective measurement rate: S/s'.format (session.measure_record_delta_
—time / 1))

samples_acquired = 0
print ('Channel Num Voltage Current In Compliance')
row_format = ' !
with session.initiate():
channel_indices = '0- '.format (session.channel_count - 1)
channels = session.get_channel_names (channel_indices)
for i, channel_name in enumerate (channels) :
samples_acquired = 0
while samples_acquired < 20:
measurements = session.channels[channel name].fetch_
—multiple (count=session.fetch_backloqg)
samples_acquired += len (measurements)
for i in range(len(measurements)) :
print (row_format.format (channel_name, i, measurements[i].voltage,
—measurements[i] .current, measurements[i].in_compliance))

Additional examples for NI-DCPower are located in src/nidcpower/examples/ directory.

7.1.3 API Reference

Session

class nidcpower.Session (self, resource_name, channels=None, reset=False, options={}, indepen-

dent_channels=True)))
Creates and returns a new NI-DCPower session to the instrument(s) and channel(s) specified in resource name

to be used in all subsequent NI-DCPower method calls. With this method, you can optionally set the initial state
of the following session properties:

* nidcpower.Session.simulate
* nidcpower.Session.driver._setup
After calling this method, the specified channel or channels will be in the Uncommitted state.

To place channel(s) in a known start-up state when creating a new session, set reset to True. This action is
equivalent to using the nidcpower. Session. reset () method immediately after initializing the session.

To open a session and leave the channel(s) in an existing configuration without passing through a transitional
output state, set reset to False. Next, configure the channel(s) as in the previous session, change the desired
settings, and then call the nidcpower. Session.initiate () method to write both settings.

Details of Independent Channel Operation

With this method and channel-based NI-DCPower methods and properties, you can use any channels in the
session independently. For example, you can initiate a subset of channels in the session with nidcpower.
Session.initiate (), and the other channels in the session remain in the Uncommitted state.

When you initialize with independent channels, each channel steps through the NI-DCPower programming state
model independently of all other channels, and you can specify a subset of channels for most operations.

Note You can make concurrent calls to a session from multiple threads, but the session executes the calls one
at a time. If you specify multiple channels for a method or property, the session may perform the operation on

14 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

multiple channels in parallel, though this is not guaranteed, and some operations may execute sequentially.
Parameters

* resource_name (str, list, tuple) — Specifies the resource name as seen in
Measurement & Automation Explorer (MAX) or Isni, for example “PXI1Slot3” where
“PXI1Slot3” is an instrument’s resource name. If independent_channels is False, resource
name can also be a logical IVI name.

If independent_channels is True, resource name can be names of the in-
strument(s) and the channel(s) to initialize. Specify the instrument(s) and
channel(s) using the form “PX11Sl1ot3/0,PX11Slot3/2-3,PX11Slot4/2-3 or
PXI1Sl10t3/0,PXI1Slot3/2:3,PX11Slot4/2:3”, where “PXI1Slot3” and “PXI1Slot4” are
instrument resource names followed by channels. If you exclude a channels string after an
instrument resource name, all channels of the instrument(s) are included in the session.

* channels (str, list, range, tuple) — For new applications, use the default
value of None and specify the channels in resource name.

Specifies which output channel(s) to include in a new session. Specify multiple channels by
using a channel list or a channel range. A channel list is a comma (,) separated sequence
of channel names (for example, 0,2 specifies channels 0 and 2). A channel range is a lower
bound channel followed by a hyphen (-) or colon (:) followed by an upper bound channel
(for example, 0-2 specifies channels O, 1, and 2).

If independent_channels is False, this argument specifies which channels to include in a
legacy synchronized channels session. If you do not specify any channels, by default all
channels on the device are included in the session.

If independent_channels is True, this argument combines with resource name to specify
which channels to include in an independent channels session. Initializing an independent
channels session with a channels argument is deprecated.

* reset (bool)— Specifies whether to reset channel(s) during the initialization procedure.

* options (dict) — Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status | False
cache True
simulate False
record_value_coersions False
driver_setup {}

* independent_channels (bool) — Specifies whether to initialize the session with in-
dependent channels. Set this argument to False on legacy applications or if you are unable
to upgrade your NI-DCPower driver runtime to 20.6 or higher.

7.1. nidcpower module 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.4.1

Methods

abort

nidcpower.Session.abort ()
Transitions the specified channel(s) from the Running state to the Uncommitted state. If a sequence
is running, it is stopped. Any configuration methods called after this method are not applied until the
nidcpower.Session.initiate () method is called. If power output is enabled when you
call the nidcpower. Session.abort () method, the output channels remain in their current
state and continue providing power.

Use the nidcpower.Session.ConfigureOutputEnabled () method to disable power
output on a per channel basis. Use the nidcpower.Session.reset () method to disable
output on all channels.

Refer to the Programming States topic in the NI DC Power Supplies and SMUs Help for information
about the specific NI-DCPower software states.

Related Topics:

Programming States

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].abort()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.abort ()

clear_latched_output_cutoff_state

nidcpower.Session.clear_latched_output_cutoff_state (output_cutoff_reason)
Clears the state of an output cutoff that was engaged. To clear the state for all output cutoff reasons,
use ALL.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].clear_latched_output_cutoff_state()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.clear_latched_output_cutoff_state ()

Parameters output_cutoff_reason (nidcpower.OutputCutoffReason) —
Specifies the reasons for which to clear the output cutoff state.

16 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

close

commit

ALL Clears all output cutoff conditions
VOLTAGE_OUTP[Cleéarssénitoffs caused when the output exceeded the high cutoff
limit for voltage output

VOLTAGE_oUTPUCleapsicutoffs caused when the output fell below the low cutoff
limit for voltage output

CURRENT_MEAS UKRedtd clifoffs caused when the measured current exceeded the
high cutoff limit for current output

CURRENT MEAS U RAearoeutoffs caused when the measured current fell below the
low cutoff limit for current output
VOLTAGE_CHANGKleatsseutoffs caused when the voltage slew rate increased be-
yond the positive change cutoff for voltage output

VOLTAGE_ CHANGKlgapsicutoffs caused when the voltage slew rate decreased be-
yond the negative change cutoff for voltage output

CURRENT CHANGKleéarsséntoffs caused when the current slew rate increased be-
yond the positive change cutoff for current output
CURRENT_CHANGKl€apsicutoffs caused when the voltage slew rate decreased be-
yond the negative change cutoff for current output

nidcpower.Session.close ()

Closes the session specified in vi and deallocates the resources that NI-DCPower reserves. If power
output is enabled when you call this method, the output channels remain in their existing state and
continue providing power. Use the nidcpower.Session.ConfigureOutputEnabled ()
method to disable power output on a per channel basis. Use the nidcpower.Session.
reset () method to disable power output on all channel(s).

Related Topics:

Programming States

Note: One or more of the referenced methods are not in the Python API for this driver.

Note: This method is not needed when using the session context manager

nidcpower.Session.commit ()

Applies previously configured settings to the specified channel(s). Calling this method moves the
NI-DCPower session from the Uncommitted state into the Committed state. After calling this
method, modifying any property reverts the NI-DCPower session to the Uncommitted state. Use
the nidcpower.Session.initiate () method to transition to the Running state. Refer to
the Programming States topic in the NI DC Power Supplies and SMUs Help for details about the
specific NI-DCPower software states.

Related Topics:

Programming States

7.1. nidcpower module

17

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].commit ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.commit ()

configure_aperture_time

nidcpower.Session.configure_aperture_time (aperture_time,

units=nidcpower.ApertureTimeUnits. SECONDS)
Configures the aperture time on the specified channel(s).

The supported values depend on the units. Refer to the Aperture Time topic for your device in the
NI DC Power Supplies and SMUs Help for more information. In general, devices support discrete
apertureTime values, and if you configure apertureTime to some unsupported value, NI-DCPower
coerces it up to the next supported value.

Refer to the Measurement Configuration and Timing or DC Noise Rejection topic for your device
in the NI DC Power Supplies and SMUs Help for more information about how to configure your
measurements.

Related Topics:

Aperture Time

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_aperture_time ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.configure_aperture_time ()

Parameters

* aperture_time (float) — Specifies the aperture time. Refer to the Aperture
Time topic for your device in the NI DC Power Supplies and SMUs Help for more
information.

* units (nidcpower.ApertureTimeUnits) — Specifies the units for aper-
tureTime. Defined Values:

SECONDS Specifies seconds.
POWER_LINE_CYCLES | Specifies Power Line Cycles.

18 Chapter 7. License

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.1

create_advanced_sequence

nidcpower.Session.create_advanced_sequence (sequence_name, property_names,

set_as_active_sequence=True)
Creates an empty advanced sequence. Call the nidcpower.Session.

create_advanced_sequence_step () method to add steps to the active advanced
sequence.

You can create multiple advanced sequences in a session.
Support for this method
You must set the source mode to Sequence to use this method.

Using the nidcpower. Session. set_sequence () method with Advanced Sequence meth-
ods is unsupported.

Use this method in the Uncommitted or Committed programming states. Refer to the Programming
States topic in the NI DC Power Supplies and SMUs Help for more information about NI-DCPower
programming states.

Related Topics:
Advanced Sequence Mode
Programming States

nidcpower.Session.create_advanced_ sequence_step ()

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.
Example: my_session.channels|] .create_advanced_sequence ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.create_advanced_sequence ()

Parameters
* sequence_name (st r)— Specifies the name of the sequence to create.

* property_names (1list of str)-— Specifies the names of the properties you
reconfigure per step in the advanced sequence. The following table lists which prop-
erties can be configured in an advanced sequence for each NI-DCPower device that
supports advanced sequencing. A Yes indicates that the property can be configured
in advanced sequencing. An No indicates that the property cannot be configured in
advanced sequencing.

Property PXle-4135 | PXle-4136 | PXle-4137 | PXle-4138
nidcpower.Session.dc_noise_rejection Yes No Yes No
nidcpower.Session.aperture_time Yes Yes Yes Yes

7.1. nidcpower module 19

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.1

Table 1 — continued from previous page

Property PXle-4135 | PXle-4136 | PXle-4137 | PXle-4138
nidcpower.Session.measure_record_length Yes Yes Yes Yes
nidcpower.Session.sense Yes Yes Yes Yes
nidcpower.Session.ovp_enabled Yes Yes Yes No
nidcpower.Session.ovp_limit Yes Yes Yes No
nidcpower.Session.pulse _bias _delay Yes Yes Yes Yes
nidcpower.Session.pulse_off_time Yes Yes Yes Yes
nidcpower.Session.pulse _on _time Yes Yes Yes Yes
nidcpower.Session.source_delay Yes Yes Yes Yes
nidcpower.Session.current_compensation_frequency | Yes No Yes No
nidcpower.Session.current_gain_bandwidth Yes No Yes No
nidcpower.Session.current_pole zero_ratio Yes No Yes No
nidcpower.Session.voltage compensation_frequency | Yes No Yes No
nidcpower.Session.voltage gain_bandwidth Yes No Yes No
nidcpower.Session.voltage_pole_zero_ratio Yes No Yes No
nidcpower.Session.current_level Yes Yes Yes Yes
nidcpower.Session.current_level_ range Yes Yes Yes Yes
nidcpower.Session.voltage limit Yes Yes Yes Yes
nidcpower.Session.voltage limit_high Yes Yes Yes Yes
nidcpower.Session.voltage limit_low Yes Yes Yes Yes
nidcpower.Session.voltage limit_range Yes Yes Yes Yes
nidcpower.Session.current_limit Yes Yes Yes Yes
nidcpower.Session.current_limit_high Yes Yes Yes Yes
nidcpower.Session.current_limit_low Yes Yes Yes Yes
nidcpower.Session.current_limit_range Yes Yes Yes Yes
nidcpower.Session.voltage level Yes Yes Yes Yes
nidcpower.Session.voltage level_range Yes Yes Yes Yes
nidcpower.Session.output_enabled Yes Yes Yes Yes
nidcpower.Session.output_function Yes Yes Yes Yes
nidcpower.Session.output_resistance Yes No Yes No
nidcpower.Session.pulse _bias_current_level Yes Yes Yes Yes
nidcpower.Session.pulse_bias_voltage_ limit Yes Yes Yes Yes
nidcpower.Session.pulse _bias voltage_limit_high Yes Yes Yes Yes
nidcpower.Session.pulse_bias_voltage limit_low Yes Yes Yes Yes
nidcpower.Session.pulse current_level Yes Yes Yes Yes
nidcpower.Session.pulse_current_level_range Yes Yes Yes Yes
nidcpower.Session.pulse _voltage limit Yes Yes Yes Yes
nidcpower.Session.pulse_voltage_ limit_high Yes Yes Yes Yes
nidcpower.Session.pulse _voltage limit_low Yes Yes Yes Yes
nidcpower.Session.pulse voltage_ limit_range Yes Yes Yes Yes
nidcpower.Session.pulse_bias_current_limit Yes Yes Yes Yes
nidcpower.Session.pulse bias current_limit_high Yes Yes Yes Yes
nidcpower.Session.pulse_bias_current_limit_low Yes Yes Yes Yes
nidcpower.Session.pulse _bias _voltage_ level Yes Yes Yes Yes
nidcpower.Session.pulse_current_limit Yes Yes Yes Yes
nidcpower.Session.pulse current_limit_high Yes Yes Yes Yes
nidcpower.Session.pulse_current_limit_low Yes Yes Yes Yes
nidcpower.Session.pulse current_limit_range Yes Yes Yes Yes
nidcpower.Session.pulse_voltage level Yes Yes Yes Yes
nidcpower.Session.pulse _voltage_ level_range Yes Yes Yes Yes
20 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Table 1 — continued from previous page

Property PXle-4135 | PXle-4136 | PXle-4137 | PXle-4138

nidcpower.Session.transient_response Yes Yes Yes Yes

* set_as_active_sequence (bool) — Specifies that this current sequence is
active.

create_advanced_sequence_commit_step

nidcpower.Session.create_advanced sequence_commit_step (set_as_active_step=True)
Creates a Commit step in the Active advanced sequence. A Commit step configures channels to a
user-defined known state before starting the advanced sequence. When a Commit step exists in the
Active advanced sequence, you cannot set the output method to Pulse Voltage or Pulse Current in
either the Commit step (-1) or step 0. When you create an advanced sequence step, each property
you passed to the nidcpower. Session.create_advanced_sequence () method is reset
to its default value for that step unless otherwise specified.

Support for this Method
You must set the source mode to Sequence to use this method.

Using the nidcpower. Session.set_sequence () method with Advanced Sequence meth-
ods is unsupported.

Related Topics:
Advanced Sequence Mode
Programming States

nidcpower.Session.create_advanced_ sequence ()

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].create_advanced_sequence_commit_step ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.create_advanced_sequence_commit_step ()

Parameters set_as_active_step (bool)— Specifies whether the step created with
this method is active in the Active advanced sequence.

create_advanced_sequence_step

nidcpower.Session.create_advanced_sequence_step (ser_as_active_step=True)
Creates a new advanced sequence step in the advanced sequence specified by the Active advanced se-
quence. When you create an advanced sequence step, each property you passed to the nidcpower.

7.1. nidcpower module 21

https://docs.python.org/3/library/functions.html#bool
REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.4.1

Session.create_advanced_sequence () method is reset to its default value for that step
unless otherwise specified.

Support for this Method
You must set the source mode to Sequence to use this method.

Using the nidcpower. Session. set_sequence () method with Advanced Sequence meth-
ods is unsupported.

Related Topics:
Advanced Sequence Mode
Programming States

nidcpower.Session.create_advanced_sequence ()

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].create_advanced_sequence_step ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.create_advanced_sequence_step ()

Parameters set_as_active_step (bool) — Specifies whether the step created with
this method is active in the Active advanced sequence.

delete_advanced_sequence

nidcpower.Session.delete_advanced sequence (sequence_name)
Deletes a previously created advanced sequence and all the advanced sequence steps in the advanced
sequence.

Support for this Method
You must set the source mode to Sequence to use this method.

Using the nidcpower. Session. set_sequence () method with Advanced Sequence meth-
ods is unsupported.

Related Topics:
Advanced Sequence Mode

Programming States

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

22 Chapter 7. License

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
https://docs.python.org/3/library/functions.html#bool
REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].delete_advanced_sequence ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.delete_advanced_sequence ()

Parameters sequence_name (st r) — specifies the name of the sequence to delete.

disable

nidcpower.Session.disable ()
This method performs the same actions as the nidcpower. Session. reset () method, except
that this method also immediately sets the nidcpower. Session.output_enabled property
to False.

This method opens the output relay on devices that have an output relay.

export_attribute_configuration_buffer

nidcpower.Session.export_attribute_configuration_buffer ()
Exports the property configuration of the session to the specified configuration buffer.

You can export and import session property configurations only between devices with identical
model numbers and the same number of configured channels.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-DCPower returns an error.

Support for this Method
Calling this method in Sequence Source Mode is unsupported.
Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped to
the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__ () method.

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the import-
ing session:

* The configuration exported from channel O is imported into channel 1.
* The configuration exported from channel 1 is imported into channel 2.
Related Topics:
Using Properties and Properties

Setting Properties and Properties Before Reading Them

7.1. nidcpower module 23

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.1

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

Return type bytes

Returns Specifies the byte array buffer to be populated with the exported property config-
uration.

export_attribute_configuration_file

nidcpower.Session.export_attribute_configuration_file (file_path)
Exports the property configuration of the session to the specified file.

You can export and import session property configurations only between devices with identical
model numbers and the same number of configured channels.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-DCPower returns an error.

Support for this Method
Calling this method in Sequence Source Mode is unsupported.
Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped to
the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__ () method.

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the import-
ing session:

* The configuration exported from channel O is imported into channel 1.
* The configuration exported from channel 1 is imported into channel 2.
Related Topics:
Using Properties and Properties

Setting Properties and Properties Before Reading Them

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

Parameters file_path (str) — Specifies the absolute path to the file to contain the
exported property configuration. If you specify an empty or relative path, this method
returns an error. Default file extension: .nidcpowerconfig

fetch_multiple

nidcpower.Session.fetch _multiple (count, timeout=hightime.timedelta(seconds=1.0))
Returns a list of named tuples (Measurement) that were previously taken and are stored in

24 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.1

the NI-DCPower buffer. This method should not be used when the nidcpower.Session.
measure_when property is set to ON_DEMAND. You must first call nidcpower.Session.
initiate () before calling this method.

Fields in Measurement:
* voltage (float)
e current (float)

* in_compliance (bool)

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].fetch multiple()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.fetch_multiple ()

Parameters
* count (int)— Specifies the number of measurements to fetch.

* timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) — Specifies the maximum time allowed for this method to
complete. If the method does not complete within this time interval, NI-DCPower
returns an error.

Note: When setting the timeout interval, ensure you take into account any triggers
so that the timeout interval is long enough for your application.

Return type list of Measurement
Returns
List of named tuples with fields:
* voltage (float)
¢ current (float)

* in_compliance (bool)

get_channel_name

nidcpower.Session.get_channel_name (index)
Retrieves the output channelName that corresponds to the requested index. Use the nidcpower.
Session.channel count property to determine the upper bound of valid values for index.

7.1. nidcpower module 25

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm,supportedfunctions)
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.1

Parameters index (int) — Specifies which output channel name to return. The index
values begin at 1.

Return type str

Returns Returns the output channel name that corresponds to index.

get_channel_names

nidcpower.Session.get_channel_names (indices)
Returns a list of channel names for the given channel indices.

Parameters indices (basic sequence types or str or int) - Index list
for the channels in the session. Valid values are from zero to the total number of chan-
nels in the session minus one. The index string can be one of the following formats:

* A comma-separated list—for example, “0,2,3,1”
* A range using a hyphen—for example, “0-3”
* A range using a colon—for example, “0:3 “

You can combine comma-separated lists and ranges that use a hyphen or colon. Both
out-of-order and repeated indices are supported (“2,3,0,” “1,2,2,3”). White space char-
acters, including spaces, tabs, feeds, and carriage returns, are allowed between charac-
ters. Ranges can be incrementing or decrementing.

Return type list of str

Returns The channel name(s) at the specified indices.

get_ext_cal_last_date_and_time

nidcpower.Session.get_ext_cal_last_date_and time ()
Returns the date and time of the last successful calibration.

Return type hightime.datetime

Returns Indicates date and time of the last calibration.

get_ext_cal_last_temp

nidcpower.Session.get_ext _cal_last_ temp ()
Returns the onboard temperature of the device, in degrees Celsius, during the last successful exter-

nal calibration.
Return type float

Returns Returns the onboard temperature of the device, in degrees Celsius, during the
last successful external calibration.

get_ext_cal_recommended_interval

nidcpower.Session.get_ext_cal_recommended_interval ()
Returns the recommended maximum interval, in months, between external calibrations.

Return type hightime.timedelta

26 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.1

Returns Specifies the recommended maximum interval, in months, between external cal-
ibrations.

get_self _cal_last date_and_time

nidcpower.Session.get_self cal_last_date_and time()
Returns the date and time of the oldest successful self-calibration from among the channels in the
session.

Note: This method is not supported on all devices.

Return type hightime.datetime

Returns Returns the date and time the device was last calibrated.

get_self _cal_last_temp

nidcpower.Session.get_self cal_last_temp ()
Returns the onboard temperature of the device, in degrees Celsius, during the oldest successful self-
calibration from among the channels in the session.

For example, if you have a session using channels 1 and 2, and you perform a self-calibration
on channel 1 with a device temperature of 25 degrees Celsius at 2:00, and a self-calibration was
performed on channel 2 at 27 degrees Celsius at 3:00 on the same day, this method returns 25 for
the temperature parameter.

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Return type float

Returns Returns the onboard temperature of the device, in degrees Celsius, during the
oldest successful calibration.

import_attribute_configuration_buffer

nidcpower.Session.import_attribute_configuration_buffer (configuration)
Imports a property configuration to the session from the specified configuration buffer.

You can export and import session property configurations only between devices with identical
model numbers and the same number of configured channels.

Support for this Method
Calling this method in Sequence Source Mode is unsupported.
Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped to
the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__ () method.

7.1. nidcpower module 27

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.1

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the import-
ing session:

* The configuration exported from channel O is imported into channel 1.
* The configuration exported from channel 1 is imported into channel 2.
Related Topics:
Programming States
Using Properties and Properties

Setting Properties and Properties Before Reading Them

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

Parameters configuration (bytes) — Specifies the byte array buffer that contains
the property configuration to import.

import_attribute_configuration_file

nidcpower.Session.import_attribute_configuration_file (file_path)

Imports a property configuration to the session from the specified file.

You can export and import session property configurations only between devices with identical
model numbers and the same number of configured channels.

Support for this Method
Calling this method in Sequence Source Mode is unsupported.
Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped to
the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__ () method.

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the import-
ing session:

* The configuration exported from channel O is imported into channel 1.
* The configuration exported from channel 1 is imported into channel 2.
Related Topics:
Programming States
Using Properties and Properties

Setting Properties and Properties Before Reading Them

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

28

Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#bytes

NI Modular Instruments Python APl Documentation, Release 1.4.1

Parameters file_path (str) — Specifies the absolute path to the file containing the
property configuration to import. If you specify an empty or relative path, this method
returns an error. Default File Extension: .nidcpowerconfig

initiate

nidcpower.Session.initiate ()
Starts generation or acquisition, causing the specified channel(s) to leave the Uncommitted state
or Committed state and enter the Running state. To return to the Uncommitted state call the
nidcpower.Session.abort () method. Refer to the Programming States topic in the NI DC
Power Supplies and SMUs Help for information about the specific NI-DCPower software states.

Related Topics:

Programming States

Note: This method will return a Python context manager that will initiate on entering and abort on
exit.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].initiate()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.initiate ()

lock

nidcpower.Session.lock ()
Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:
» The application called the nidcpower. Session.lock () method.
* A call to NI-DCPower locked the session.

» After a call to the nidcpower.Session.lock () method returns successfully, no other threads can
access the device session until you call the nidcpower. Session.unlock () method or exit out of
the with block when using lock context manager.

e Use the nidcpower.Session.lock () method and the nidcpower.Session.unlock ()
method around a sequence of calls to instrument driver methods if you require that the device retain its
settings through the end of the sequence.

You can safely make nested calls to the nidcpower. Session. lock () method within the same thread. To
completely unlock the session, you must balance each call to the nidcpower. Session. lock () method
with a call to the nidcpower. Session.unlock () method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

7.1. nidcpower module 29

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.1

measure

with nidcpower.Session('devl') as session:
with session.lock():
Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type context manager

Returns When used in a with statement, nidcpower.Session. lock () acts as a context man-
ager and unlock will be called when the with block is exited

nidcpower.Session.measure (measurement_type)

Returns the measured value of either the voltage or current on the specified output channel. Each call
to this method blocks other method calls until the hardware returns the measurement. To measure
multiple output channels, use the nidcpower. Session.measure_multiple () method.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].measure()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.measure ()

Parameters measurement_type (nidcpower.Measurement Types)— Specifies
whether a voltage or current value is measured. Defined Values:

VOLTAGE | The device measures voltage.
CURRENT | The device measures current.

Return type float

Returns Returns the value of the measurement, either in volts for voltage or amps for
current.

measure_multiple

nidcpower.Session.measure_multiple ()

Returns a list of named tuples (Measurement) containing the measured voltage and current values
on the specified output channel(s). Each call to this method blocks other method calls until the
measurements are returned from the device. The order of the measurements returned in the array
corresponds to the order on the specified output channel(s).

Fields in Measurement:
* voltage (float)

¢ current (float)

30

Chapter 7. License

https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.1

* in_compliance (bool) - Always None

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].measure_multiple ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.measure_multiple ()

Return type list of Measurement
Returns
List of named tuples with fields:
* voltage (float)
e current (float)

* in_compliance (bool) - Always None

query_in_compliance

nidcpower.Session.query_in_compliance ()
Queries the specified output device to determine if it is operating at the compliance limit.

The compliance limit is the current limit when the output method is set to DC_VOLTAGE. If the
output is operating at the compliance limit, the output reaches the current limit before the desired
voltage level. Refer to the nidcpower.Session.ConfigureOutputFunction () method
and the nidcpower.Session.ConfigureCurrentLimit () method for more information
about output method and current limit, respectively.

The compliance limit is the voltage limit when the output method is set to DC_CURRENT. If the
output is operating at the compliance limit, the output reaches the voltage limit before the desired
current level. Refer to the nidcpower.Session.ConfigureOutputFunction () method
and the nidcpower.Session.ConfigureVoltageLimit () method for more information
about output method and voltage limit, respectively.

Related Topics:

Compliance

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

7.1. nidcpower module 31

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm,supportedfunctions)

NI Modular Instruments Python APl Documentation, Release 1.4.1

Example: my_session.channels[...].query_in_compliance ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.query_in_compliance ()

Return type bool

Returns Returns whether the device output channel is in compliance.

query_latched_output_cutoff_state

nidcpower.Session.query_latched_output_cutoff_state (output_cutoff_reason)
Discovers if an output cutoff limit was exceeded for the specified reason. = When an
output cutoff is engaged, the output of the channel(s) is disconnected. If a limit
was exceeded, the state is latched until you clear it with the nidcpower.Session.
clear_ latched output_cutoff state() method or the nidcpower.Session.
reset () method.

outputCutoffReason specifies the conditions for which an output is disconnected.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_latched_output_cutoff_state()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.query_latched_output_cutoff_state ()

Parameters output_cutoff_ reason (nidcpower.OutputCutoffReason) —
Specifies which output cutoff conditions to query.

ALL Any output cutoff condition was met
VOLTAGE_OUTPUT_|HTheoutput exceeded the high cutoff limit for voltage output
VOLTAGE_OUTPUT_|LDhe output fell below the low cutoff limit for voltage output
CURRENT_MEASURE THhe&sineasured current exceeded the high cutoff limit for
current output

CURRENT MEASURE Thevmeasured current fell below the low cutoff limit for
current output

VOLTAGE_CHANGE_|HThgivoltage slew rate increased beyond the positive change
cutoff for voltage output

VOLTAGE_CHANGE_|LDhe voltage slew rate decreased beyond the negative
change cutoff for voltage output
CURRENT_CHANGE_|HThelcurrent slew rate increased beyond the positive change
cutoff for current output

CURRENT_CHANGE_|L'Dhe current slew rate decreased beyond the negative
change cutoff for current output

Return type bool

32 Chapter 7. License

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.4.1

Returns

Specifies whether an output cutoff has engaged.

True | An output cutoff has engaged for the conditions in output cutoff reason.
False | No output cutoff has engaged.

query_max_current_limit

nidcpower.Session.query_max_current_limit (voltage_level)
Queries the maximum current limit on an output channel if the output channel is set to the specified
voltageLevel.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].query_max_current_limit ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.query_max_current_limit ()

Parameters voltage_level (f1oat)— Specifies the voltage level to use when calcu-
lating the maxCurrentLimit.

Return type float

Returns Returns the maximum current limit that can be set with the specified volt-
agelLevel.

query_max_voltage level

nidcpower.Session.query_max_voltage_ level (current_limit)
Queries the maximum voltage level on an output channel if the output channel is set to the specified
currentLimit.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].query_max_voltage_level ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.query_max_voltage_level ()

Parameters current_limit (float)— Specifies the current limit to use when calcu-
lating the maxVoltageLevel.

Return type float

Returns Returns the maximum voltage level that can be set on an output channel with the
specified currentLimit.

7.1. nidcpower module 33

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.1

query_min_current_limit

nidcpower.Session.query _min_ current_limit (voltage_level)
Queries the minimum current limit on an output channel if the output channel is set to the specified
voltageLevel.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].query_min_current_limit ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.query_min_current_limit ()

Parameters voltage_level (f1oat)— Specifies the voltage level to use when calcu-
lating the minCurrentLimit.

Return type float

Returns Returns the minimum current limit that can be set on an output channel with the
specified voltageLevel.

query_output_state

nidcpower.Session.query_output_state (output_state)
Queries the specified output channel to determine if the output channel is currently in the state
specified by outputState.

Related Topics:

Compliance

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].query_output_state ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.query_output_state ()

Parameters output_state (nidcpower.OutputStates) — Specifies the output
state of the output channel that is being queried. Defined Values:

VOLTAGE | The device maintains a constant voltage by adjusting the current.
CURRENT | The device maintains a constant current by adjusting the voltage.

Return type bool

Returns Returns whether the device output channel is in the specified output state.

34 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.4.1

read_current_temperature

nidcpower.Session.read_current_temperature ()
Returns the current onboard temperature, in degrees Celsius, of the device.

Return type float

Returns Returns the onboard temperature, in degrees Celsius, of the device.

reset

nidcpower.Session.reset ()
Resets the specified channel(s) to a known state. This method disables power generation, resets
session properties to their default values, commits the session properties, and leaves the session
in the Uncommitted state. Refer to the Programming States topic for more information about NI-
DCPower software states.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].reset()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.reset ()

reset_device

nidcpower.Session.reset_device ()
Resets the device to a known state. The method disables power generation, resets session properties
to their default values, clears errors such as overtemperature and unexpected loss of auxiliary power,
commits the session properties, and leaves the session in the Uncommitted state. This method also
performs a hard reset on the device and driver software. This method has the same functionality
as using reset in Measurement & Automation Explorer. Refer to the Programming States topic for
more information about NI-DCPower software states.

This will also open the output relay on devices that have an output relay.

reset_with_defaults

nidcpower.Session.reset_with_defaults ()
Resets the device to a known state. This method disables power generation, resets session properties
to their default values, commits the session properties, and leaves the session in the Running state. In
addition to exhibiting the behavior of the nidcpower. Session. reset () method, this method
can assign user-defined default values for configurable properties from the IVI configuration.

self_cal

nidcpower.Session.self_cal ()
Performs a self-calibration upon the specified channel(s).

7.1. nidcpower module

35

https://docs.python.org/3/library/functions.html#float
javascript:LaunchHelp('NI_DC_Power_Supplies_Help.chm::/programmingStates.html#running')

NI Modular Instruments Python APl Documentation, Release 1.4.1

This method disables the output, performs several internal calculations, and updates calibration
values. The updated calibration values are written to the device hardware if the nidcpower.
Session.self calibration_persistence property issetto WRITE TO_ EEPROM. Re-
fer to the nidcpower.Session.self calibration_persistence property topic for
more information about the settings for this property.

When calling nidcpower. Session.self cal () with the PXIe-4162/4163, specify all chan-
nels of your PXIe-4162/4163 with the channelName input. You cannot self-calibrate a subset of
PXIe-4162/4163 channels.

Refer to the Self-Calibration topic for more information about this method.
Related Topics:
Self-Calibration

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].self_cal()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.self_cal ()

self _test

nidcpower.Session.self_ test ()
Performs the device self-test routine and returns the test result(s). Calling this method implicitly
calls the nidcpower. Session.reset () method.

When calling nidcpower.Session.self test () with the PXle-4162/4163, specify
all channels of your PXIe-4162/4163 with the channels input of nidcpower.Session.
__init__ (). You cannot self test a subset of PXIe-4162/4163 channels.

Raises SelfTestError on self test failure. Properties on exception object:
e code - failure code from driver

* message - status message from driver

Self-Test Code | Description
0 Self test passed.
1 Self test failed.

send_software_edge_trigger

nidcpower.Session.send_software_edge_trigger (frigger)
Asserts the specified trigger. This method can override an external edge trigger.

36 Chapter 7. License

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)

NI Modular Instruments Python APl Documentation, Release 1.4.1

Related Topics:
Triggers

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].send_software_edge_trigger ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.send_software_edge_trigger ()

Parameters trigger (nidcpower.SendSoftwareEdgeTriggerType)— Spec-
ifies which trigger to assert. Defined Values:

NIDCPOWER_VAL_START_TRIGGER Asserts the Start trigger.
NIDCPOWER_VAL_SOURCE_TRIGGER Asserts the Source trigger.
NIDCPOWER_VAL_MEASURE_TRIGGER Asserts the Measure trigger.
NIDCPOWER_VAL_SEQUENCE_ADVANCE_TRIAGERs the Sequence Advance
trigger.
NIDCPOWER_VAL_PULSE_TRIGGER Asserts the Pulse trigger.
NIDCPOWER_ VAL _ SHUTDOWN_ TRIGGER Asserts the Shutdown trigger.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

set_sequence

nidcpower.Session.set_sequence (values, source_delays)
Configures a series of voltage or current outputs and corresponding source delays. The source mode
must be set to Sequence for this method to take effect.

Refer to the Configuring the Source Unit topic in the NI DC Power Supplies and SMUs Help for
more information about how to configure your device.

Use this method in the Uncommitted or Committed programming states. Refer to the Programming
States topic in the NI DC Power Supplies and SMUs Help for more information about NI-DCPower
programming states.

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

7.1. nidcpower module 37

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].set_sequence()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.set_sequence ()

Parameters

* values (1ist of float) — Specifies the series of voltage levels or current
levels, depending on the configured output method. Valid values: The valid values
for this parameter are defined by the voltage level range or current level range.

* source_delays (list of float) — Specifies the source delay that follows
the configuration of each value in the sequence. Valid Values: The valid values are
between 0 and 167 seconds.

unlock

nidcpower.Session.unlock ()
Releases a lock that you acquired on an device session using nidcpower.Session.lock (). Refer to
nidcpower.Session.unlock () for additional information on session locks.

wait_for_event

nidcpower.Session.wait_for_event (event_id, timeout=hightime.timedelta(seconds=10.0))
Waits until the specified channel(s) have generated the specified event.

The session monitors whether each type of event has occurred at least once since the last time this
method or the nidcpower. Session.initiate () method were called. If an event has only
been generated once and you call this method successively, the method times out. Individual events
must be generated between separate calls of this method.

Note: Refer to Supported Methods by Device for more information about supported devices.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].wait_for_event ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.wait_for_event ()

Parameters

38 Chapter 7. License

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)

NI Modular Instruments Python APl Documentation, Release 1.4.1

* event_id (nidcpower.Event) — Specifies which event to wait for. Defined
Values:

NIDCPOWER_VAL_SOURCE_COMPLETE_EYVBMits for the Source Complete
event.
NIDCPOWER_VAL_MEASURE_COMPLETE_EWR® for the Measure Com-
plete event.
NIDCPOWER_VAL_SEQUENCE_ITERATION WalMHaRTE SEqieNde [teration
Complete event.
NIDCPOWER_VAI_SEQUENCE_ENGINE_DONWaiBVieNThe Sequence Engine
Done event.
NIDCPOWER_VAL_PULSE_COMPLETE_EVEMWaits for the Pulse Complete
event.
NIDCPOWER_VAL_READY_FOR_PULSE_TRMW@EBR{OFE A& Ready for Pulse
Trigger event.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

* timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) — Specifies the maximum time allowed for this method to
complete, in seconds. If the method does not complete within this time interval,
NI-DCPower returns an error.

Note: When setting the timeout interval, ensure you take into account any triggers
so that the timeout interval is long enough for your application.

Properties

active_advanced_sequence

nidcpower.Session.active_advanced_sequence
Specifies the advanced sequence to configure or generate.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].active_advanced_sequence
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.active_advanced_sequence

The following table lists the characteristics of this property.

7.1. nidcpower module

39

https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.1

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Active Advanced Sequence
* C Attribute: NIDCPOWER_ATTR_ACTIVE_ADVANCED_SEQUENCE

active_advanced_sequence_step

nidcpower.Session.active_advanced_sequence_step
Specifies the advanced sequence step to configure.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].active_advanced_sequence_step
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.active_advanced_sequence_step

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:Active Advanced Sequence Step
* C Attribute: NIDCPOWER_ATTR_ACTIVE_ADVANCED_SEQUENCE_STEP

actual_power_allocation

nidcpower.Session.actual_power_allocation
Returns the power, in watts, the device is sourcing on each active channel if the nidcpower.
Session.power_allocation _mode property is setto AUTOMATIC or MANUAL.

40 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Valid Values: [0, device per-channel maximum power]

Default Value: Refer to the Supported Properties by Device topic for the default value by
device.

Note: This property is not supported by all devices. Refer to the Supported Properties by Device
topic for information about supported devices.

This property returns -1 when the nidcpower. Session.power _allocation _mode prop-
erty is set to DISABLED.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].actual_power_allocation
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.actual_power_allocation

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:Actual Power Allocation
* C Attribute: NIDCPOWER_ATTR_ACTUAL_POWER_ALLOCATION

aperture_time

nidcpower.Session.aperture_time
Specifies the measurement aperture time for the channel configuration. Aperture time is specified in
the units set by the nidcpower. Session.aperture_time_units property. for informa-
tion about supported devices. Refer to the Aperture Time topic in the NI DC Power Supplies and
SMUs Help for more information about how to configure your measurements and for information
about valid values. Default Value: 0.01666666 seconds

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].aperture_time

7.1. nidcpower module a1

NI Modular Instruments Python APl Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.aperture_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Measurement:Aperture Time
* C Attribute: NIDCPOWER_ATTR_APERTURE_TIME

aperture_time_units

nidcpower.Session.aperture_time_units
Specifies the units of the nidcpower. Session.aperture_ time property for the channel
configuration. for information about supported devices. Refer to the Aperture Time topic in the NI
DC Power Supplies and SMUs Help for more information about how to configure your measure-
ments and for information about valid values. Default Value: SECONDS

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

set.

Example: my_session.channels|

] .aperture_time_units

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.aperture_time_units

The following table lists the characteristics of this property.

Characteristic

Value

Datatype

enums.Aperture TimeUnits

Permissions

read-write

Repeated Capabilities

channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

* LabVIEW Property: Measurement:Aperture Time Units
e C Attribute: NIDCPOWER_ATTR_APERTURE_TIME_UNITS

42

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

autorange

nidcpower.Session.autorange
Specifies whether the hardware automatically selects the best range to measure the signal.
Note the highest range the algorithm uses is dependent on the corresponding limit range prop-
erty. The algorithm the hardware uses can be controlled using the nidcpower.Session.
autorange_aperture_ time mode property.

Note: Autoranging begins at module startup and remains active until the module is reconfigured or
reset. This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Autorange
» C Attribute: NIDCPOWER_ATTR_AUTORANGE

autorange_aperture_time_mode

nidcpower.Session.autorange_aperture_time_mode
Specifies whether the aperture time used for the measurement autorange algo-
rithm is determined automatically or customized using the nidcpower.Session.
autorange_minimum_aperture_time property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].autorange_aperture_time_mode

7.1. nidcpower module 43

NI Modular Instruments Python APl Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_aperture_time_mode

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.AutorangeApertureTimeMode
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Autorange Aperture Time Mode
* C Attribute: NIDCPOWER_ATTR_AUTORANGE_APERTURE_TIME_MODE

autorange_behavior

nidcpower.Session.autorange_behavior
Specifies the algorithm the hardware uses for measurement autoranging.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange_behavior
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_behavior

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.AutorangeBehavior
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Autorange Behavior
* C Attribute: NIDCPOWER_ATTR_AUTORANGE_BEHAVIOR

44 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

autorange_minimum_aperture_time

nidcpower.Session.autorange_minimum_aperture_time
Specifies the measurement autorange aperture time used for the measurement autorange al-
gorithm. The aperture time is specified in the units set by the nidcpower.Session.
autorange_minimum_ aperture_time_units property. This value will typically be
smaller than the aperture time used for measurements.

Note: For smaller ranges, the value is scaled up to account for noise. The factor used to scale the
value is derived from the module capabilities. This property is not supported by all devices. Refer
to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].autorange_minimum_aperture_time
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_minimum_aperture_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Autorange Minimum Aperture Time
* C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_APERTURE_TIME

autorange_minimum_aperture_time_units

nidcpower.Session.autorange_minimum aperture_time_units
Specifies the units of the nidcpower. Session.autorange_minimum aperture_time

property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange_minimum_aperture_time_units

7.1. nidcpower module 45

NI Modular Instruments Python APl Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_minimum_aperture_time_units

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.ApertureTimeUnits
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Autorange Minimum Aperture Time Units
* C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_APERTURE_TIME_UNITS

autorange_minimum_current_range

nidcpower.Session.autorange_minimum current_range

Specifies the lowest range used during measurement autoranging. Limiting the lowest range used
during autoranging can improve the speed of the autoranging algorithm and minimize frequent and
unpredictable range changes for noisy signals.

Note: The maximum range used is the range that includes the value specified in the compliance
limit property, nidcpower.Session.voltage_limit_range property or nidcpower.
Session.current_limit_range property, depending on the selected nidcpower.
Session.output_function. This property is not supported by all devices. Refer to Supported
Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].autorange_minimum_current_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_minimum_current_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

46

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

e LabVIEW Property: Measurement:Advanced:Autorange Minimum Current Range
* C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_CURRENT_RANGE

autorange_minimum_voltage range

nidcpower.Session.autorange_minimum voltage_range
Specifies the lowest range used during measurement autoranging. The maximum range used is range
that includes the value specified in the compliance limit property. Limiting the lowest range used
during autoranging can improve the speed of the autoranging algorithm and/or minimize thrashing
between ranges for noisy signals.

Note: The maximum range used is the range that includes the value specified in the compliance
limit property, nidcpower.Session.voltage limit_ range property or nidcpower.
Session.current_limit_range property, depending on the selected nidcpower.
Session.output_function. This property is not supported by all devices. Refer to Supported
Properties by Device topic.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].autorange_minimum voltage_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_minimum_voltage_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Autorange Minimum Voltage Range
* C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_VOLTAGE_RANGE

autorange_threshold_mode

nidcpower.Session.autorange_threshold mode
Specifies thresholds used during autoranging to determine when range changing occurs.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic.

7.1. nidcpower module a7

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].autorange_threshold_mode
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_threshold_mode

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.AutorangeThresholdMode
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Autorange Threshold Mode
* C Attribute: NIDCPOWER_ATTR_AUTORANGE_THRESHOLD_MODE

auto_zero

nidcpower.Session.auto_zero
Specifies the auto-zero method to use on the device. Refer to the NI PXI-4132 Measurement Con-
figuration and Timing and Auto Zero topics for more information about how to configure your
measurements. Default Value: The default value for the NI PXI-4132 is ON. The default value for
all other devices is OFF, which is the only supported value for these devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].auto_zero
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.auto_zero

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.AutoZero
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Measurement:Auto Zero

48 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

» C Attribute: NIDCPOWER_ATTR_AUTO_ZERO

auxiliary_power_source_available

nidcpower.Session.auxiliary power_source_available
Indicates whether an auxiliary power source is connected to the device. A value of False may indi-
cate that the auxiliary input fuse has blown. Refer to the Detecting Internal/Auxiliary Power topic in
the NI DC Power Supplies and SMUs Help for more information about internal and auxiliary power.
power source to generate power. Use the nidcpower. Session.power_source_in_use
property to retrieve this information.

Note: This property does not necessarily indicate if the device is using the auxiliary

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Advanced:Auxiliary Power Source Available
* C Attribute: NIDCPOWER_ATTR_AUXILIARY_POWER_SOURCE_AVAILABLE

channel_count

nidcpower.Session.channel_count
Indicates the number of channels that NI-DCPower supports for the instrument that was chosen
when the current session was opened. For channel-based properties, the IVI engine maintains a
separate cache value for each channel.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Channel Count
» C Attribute: NIDCPOWER_ATTR_CHANNEL_COUNT

7.1. nidcpower module 49

NI Modular Instruments Python APl Documentation, Release 1.4.1

compliance_limit_symmetry

nidcpower.Session.compliance_limit_symmetry

Specifies whether compliance limits for current generation and voltage generation for the device are
applied symmetrically about 0 V and 0 A or asymmetrically with respect to 0 V and O A. When set
to Symmetric, voltage limits and current limits are set using a single property with a positive value.
The resulting range is bounded by this positive value and its opposite. When set to Asymmetric,
you must separately set a limit high and a limit low using distinct properties. For asymmetric limits,
the range bounded by the limit high and limit low must include zero. Default Value: Symmetric
Related Topics: Compliance Ranges Changing Ranges Overranging

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].compliance_limit_symmetry
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.compliance_limit_symmetry

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.ComplianceLimitSymmetry
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Compliance Limit Symmetry
* C Attribute: NIDCPOWER_ATTR_COMPLIANCE_LIMIT SYMMETRY

current_compensation_frequency

nidcpower.Session.current_compensation_ frequency
The frequency at which a pole-zero pair is added to the system when the channel is in Constant
Current mode. for information about supported devices. Default Value: Determined by the value of
the NORMAL setting of the nidcpower. Session.transient_response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

50 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/compliance.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html
NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html

NI Modular Instruments Python APl Documentation, Release 1.4.1

Example: my_session.channels[...].current_compensation_frequency
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_compensation_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Source:Custom Transient Response:Current:Compensation Fre-
quency

» C Attribute: NIDCPOWER_ATTR_CURRENT_COMPENSATION_FREQUENCY

current_gain_bandwidth

nidcpower.Session.current_gain_bandwidth
The frequency at which the unloaded loop gain extrapolates to O dB in the absence of additional
poles and zeroes. This property takes effect when the channel is in Constant Current mode. for
information about supported devices. Default Value: Determined by the value of the NORMAL setting
of the nidcpower. Session.transient_response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_gain_bandwidth
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_gain_bandwidth

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Custom Transient Response: Current:Gain Bandwidth

7.1. nidcpower module 51

NI Modular Instruments Python APl Documentation, Release 1.4.1

» C Attribute: NIDCPOWER_ATTR_CURRENT_GAIN_BANDWIDTH

current_level

nidcpower.Session.current_level
Specifies the current level, in amps, that the device attempts to generate on the specified channel(s).
This property is applicable only if the nidcpower. Session.output_function property is
set to DC_CURRENT. nidcpower.Session.output_enabled property for more informa-
tion about enabling the output channel. Valid Values: The valid values for this property are defined
by the values to which the nidcpower. Session.current_level_ range property is set.

Note: The channel must be enabled for the specified current level to take effect. Refer to the

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].current_level
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Current:Current Level
* C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL

current_level_autorange

nidcpower.Session.current_level autorange
Specifies whether NI-DCPower automatically selects the current level range based on the desired
current level for the specified channels. If you set this property to ON, NI-DCPower ignores
any changes you make to the nidcpower. Session.current_level_range property. If
you change the nidcpower. Session.current_level_ autorange property from ON to
OFF, NI-DCPower retains the last value the nidcpower. Session.current_level range
property was set to (or the default value if the property was never set) and uses that value as
the current level range. Query the nidcpower.Session.current_level_ range prop-
erty by using the nidcpower.Session._get_attribute_vi_int32 () method for in-
formation about which range NI-DCPower automatically selects. The nidcpower.Session.

52 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

current_level_ autorange property is applicable only if the nidcpower.Session.
output_ function property is set to DC_CURRENT. Default Value: OFF

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_level_ autorange
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_level_autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Current:Current Level Autorange
» C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_AUTORANGE

current_level_range

nidcpower.Session.current_level_range

Specifies the current level range, in amps, for the specified channel(s). The range defines
the valid value to which the current level can be set. Use the nidcpower.Session.
current_level autorange property to enable automatic selection of the current level
range. The nidcpower. Session.current_level_range property is applicable only if the
nidcpower.Session.output_function property is set to DC_CURRENT. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs
Help.

Note: The channel must be enabled for the specified current level range to take effect. Refer to the

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_level_ range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_level_range

The following table lists the characteristics of this property.

7.1. nidcpower module 53

NI Modular Instruments Python APl Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Current:Current Level Range
e C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_RANGE

current_limit

nidcpower.Session.current_limit

Specifies the current limit, in amps, that the output cannot exceed when generating the desired
voltage level on the specified channel(s). This property is applicable only if the nidcpower.
Session.output_function property is set to DC_VOLTAGE and the nidcpower.
Session.compliance_limit_symmetry property is set to SYMMETRIC. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
Valid Values: The valid values for this property are defined by the values to which nidcpower.
Session.current_limit_range property is set.

Note: The channel must be enabled for the specified current limit to take effect. Refer to the

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_limit
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Voltage: Current Limit
» C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT

54 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

current_limit_autorange

nidcpower.Session.current_limit_autorange

Specifies whether NI-DCPower automatically selects the current limit range based on the de-
sired current limit for the specified channel(s). If you set this property to ON, NI-DCPower ig-
nores any changes you make to the nidcpower.Session.current_limit_range prop-
erty. If you change this property from ON to OFF, NI-DCPower retains the last value
the nidcpower.Session.current_limit_range property was set to (or the default
value if the property was never set) and uses that value as the current limit range. Query
the nidcpower.Session.current_limit_range property by using the nidcpower.
Session._get_attribute_vi_int32 () method for information about which range NI-
DCPower automatically selects. The nidcpower.Session.current_limit_autorange
property is applicable only if the nidcpower. Session.output_function property is set to
DC_VOLTAGE. Default Value: OFF

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_limit_autorange
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_limit_autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Voltage: Current Limit Autorange
* C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_AUTORANGE

current_limit_behavior

nidcpower.Session.current_limit behavior

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].current_limit_behavior
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_limit_behavior

7.1. nidcpower module 55

NI Modular Instruments Python APl Documentation, Release 1.4.1

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_BEHAVIOR

current_limit_high

nidcpower.Session.current_limit high
Specifies the maximum current, in amps, that the output can produce when generating the desired
voltage on the specified channel(s). This property is applicable only if the Compliance Limit
Symmetry <p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry.html>‘__ property is set to
Asymmetric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__

property is set to DC Voltage. You must also specify a Current
Limit Low <p:py:meth: ‘nidcpower.Session. CurrentLimitLow.html>‘__ to com-
plete the asymmetric range. Valid Values: [1% of Current Limit Range
<p:py:meth: ‘nidcpower.Session. CurrentLimitRange.html>‘__, Current Limit Range

<p:py:meth: ‘nidcpower.Session. CurrentLimitRange.html>‘__] The range bounded by the limit high
and limit low must include zero. Default Value: Refer to Supported Properties by Device for the
default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled . html>‘__ property is set to TRUE.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

56 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Voltage: Current Limit High
o C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_HIGH

current_limit_low

nidcpower.Session.current_limit_low
Specifies the minimum current, in amps, that the output can produce when generating the desired
voltage on the specified channel(s). This property is applicable only if the Compliance Limit
Symmetry <p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry.html>‘__ property is set to
Asymmetric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__

property is set to DC Voltage. You must also specify a Current
Limit High <p:py:meth: ‘nidcpower.Session. CurrentLimitHigh.html>‘__ to com-
plete the asymmetric range. Valid Values: [-Current Limit Range

<p:py:meth: ‘nidcpower.Session.CurrentLimitRange.html>‘__, -1% of Current Limit Range
<p:py:meth: ‘nidcpower.Session. CurrentLimitRange.html>‘__] The range bounded by the limit high
and limit low must include zero. Default Value: Refer to Supported Properties by Device for the
default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled html>‘__ property is set to TRUE.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Voltage:Current Limit Low
* C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_LOW

7.1. nidcpower module 57

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.4.1

current_limit_range

nidcpower.Session.current_limit_range

Specifies the current limit range, in amps, for the specified channel(s). The range defines
the valid value to which the current limit can be set. Use the nidcpower.Session.
current_limit_autorange property to enable automatic selection of the current limit
range. The nidcpower. Session.current_limit_range property is applicable only if the
nidcpower.Session.output_function property is setto DC_VOLTAGE. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs
Help.

Note: The channel must be enabled for the specified current limit to take effect. Refer to the

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_limit_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_limit_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:DC Voltage: Current Limit Range
* C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_RANGE

current_pole_zero_ratio

nidcpower.Session.current_pole_zero_ratio
The ratio of the pole frequency to the zero frequency when the channel is in Constant Current mode.
for information about supported devices. Default Value: Determined by the value of the NORMAL
setting of the nidcpower. Session.transient_response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

58 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

set.
Example: my_session.channels[...].current_pole_zero_ratio
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_pole_zero_ratio

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Custom Transient Response: Current:Pole-Zero Ratio

* C Attribute: NIDCPOWER_ATTR_CURRENT_POLE_ZERO_RATIO

dc_noise_rejection

nidcpower.Session.dc_noise_rejection
Determines the relative weighting of samples in a measurement. Refer to the NI PXIe-4140/4141
DC Noise Rejection, NI PXIe-4142/4143 DC Noise Rejection, or NI PXIe-4144/4145 DC Noise
Rejection topic in the NI DC Power Supplies and SMUs Help for more information about noise
rejection. for information about supported devices. Default Value: NORMAL

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].dc_noise_rejection
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.dc_noise_rejection

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.DCNoiseRejection
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 59

NI Modular Instruments Python APl Documentation, Release 1.4.1

e LabVIEW Property: Measurement:Advanced:DC Noise Rejection
* C Attribute: NIDCPOWER_ATTR_DC_NOISE_REJECTION

digital_edge_measure_trigger_input_terminal

nidcpower.Session.digital_edge_measure_trigger_input_terminal

Specifies the input terminal for the Measure trigger. This property is used only when the
nidcpower.Session.measure_trigger_type property is set to DIGITAIL EDGE. for
this property. You can specify any valid input terminal for this property. Valid terminals are listed in
Measurement & Automation Explorer under the Device Routes tab. Input terminals can be specified
in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify
the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal
name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you
can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_measure_trigger_input_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.digital_edge_measure_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Measure Trigger:Digital Edge:Input Terminal
* C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_MEASURE_TRIGGER_INPUT_TERMINAL

digital_edge pulse_trigger_input_terminal

nidcpower.Session.digital_edge_pulse_trigger_ input_terminal
Specifies the input terminal for the Pulse trigger. This property is used only when the nidcpower.
Session.pulse_trigger_type property is set to digital edge. You can specify any valid
input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer
under the Device Routes tab. Input terminals can be specified in one of two ways. If the device is
named Devl and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified

60

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input ter-
minal can also be a terminal from another device. For example, you can set the input terminal on
Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_pulse_trigger_input_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.digital_edge_pulse_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Triggers:Pulse Trigger:Digital Edge:Input Terminal
 C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_PULSE_TRIGGER_INPUT_TERMINAL

digital_edge_sequence_advance_trigger_input_terminal

nidcpower.Session.digital_edge_sequence_advance_trigger_ input_terminal
Specifies the input terminal for the Sequence Advance trigger. Use this property only
when the nidcpower. Session.sequence_advance_ trigger_type property is set to
DIGITAL EDGE. the NI DC Power Supplies and SMUs Help for information about supported
devices. You can specify any valid input terminal for this property. Valid terminals are listed in
Measurement & Automation Explorer under the Device Routes tab. Input terminals can be specified
in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify
the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal
name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you
can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic
in

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

7.1. nidcpower module 61

NI Modular Instruments Python APl Documentation, Release 1.4.1

set.
Example: my_session.channels[...].digital_edge_sequence_advance_trigger_input_term]
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.digital_edge_sequence_advance_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Triggers:Sequence Advance Trigger:Digital Edge:Input Terminal
* C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SEQUENCE_ADVANCE_TRIGGER_INPUT_TERMIN/

digital_edge_ shutdown_trigger_input_terminal

nidcpower.Session.digital_edge_shutdown_trigger_input_terminal

Specifies the input terminal for the Shutdown trigger. This property is used only when the
nidcpower.Session.shutdown_trigger_type property is set to digital edge. You can
specify any valid input terminal for this property. Valid terminals are listed in Measurement & Au-
tomation Explorer under the Device Routes tab. Input terminals can be specified in one of two ways.
If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the
fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.
The input terminal can also be a terminal from another device. For example, you can set the input
terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_shutdown_trigger_input_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.digital_edge_shutdown_trigger_input_terminal

The following table lists the characteristics of this property.

62

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Shutdown Trigger:Digital Edge:Input Terminal
* C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SHUTDOWN_TRIGGER_INPUT_TERMINAL

digital_edge_source_trigger_input_terminal

nidcpower.Session.digital_edge_source_trigger_ input_terminal
Specifies the input terminal for the Source trigger. Use this property only when the nidcpower.
Session.source_trigger_type property is setto DIGITAL_EDGE. for information about
supported devices. You can specify any valid input terminal for this property. Valid terminals are
listed in Measurement & Automation Explorer under the Device Routes tab. Input terminals can be
specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For
example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_source_trigger_input_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.digital_edge_source_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Source Trigger:Digital Edge:Input Terminal
e C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SOURCE_TRIGGER_INPUT_TERMINAL

7.1. nidcpower module 63

NI Modular Instruments Python APl Documentation, Release 1.4.1

digital_edge_start_trigger_input_terminal

nidcpower.Session.digital_edge_start_trigger_ input_terminal

Specifies the input terminal for the Start trigger. Use this property only when the nidcpower.
Session.start_trigger._type property is set to DIGITAL EDGE. for information about
supported devices. You can specify any valid input terminal for this property. Valid terminals are
listed in Measurement & Automation Explorer under the Device Routes tab. Input terminals can be
specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For
example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_start_trigger_input_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.digital_edge_start_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Start Trigger:Digital Edge:Input Terminal
* C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_START_TRIGGER_INPUT _TERMINAL

driver_setup

nidcpower.Session.driver_setup

Indicates the Driver Setup string that you specified when initializing the driver. Some cases exist
where you must specify the instrument driver options at initialization time. An example of this
case is specifying a particular device model from among a family of devices that the driver sup-
ports. This property is useful when simulating a device. You can specify the driver-specific options
through the DriverSetup keyword in the optionsString parameter in the nidcpower.Session.
__init__ () method or through the IVI Configuration Utility. You can specify driver-specific
options through the DriverSetup keyword in the optionsString parameter in the nidcpower.
Session.__init__ () method. If you do not specify a Driver Setup string, this property returns
an empty string.

The following table lists the characteristics of this property.

64 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Driver Setup
* C Attribute: NIDCPOWER_ATTR_DRIVER_SETUP

exported_measure_trigger_output_terminal

nidcpower.Session.exported measure_ trigger_ output_terminal
Specifies the output terminal for exporting the Measure trigger. Refer to the Device Routes tab
in Measurement & Automation Explorer for a list of the terminals available on your device. for
information about supported devices. Output terminals can be specified in one of two ways. If the
device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully
qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].exported_measure_trigger_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.exported_measure_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Measure Trigger:Export Output Terminal
* C Attribute: NIDCPOWER_ATTR_EXPORTED _MEASURE_TRIGGER_OUTPUT_TERMINAL

7.1. nidcpower module 65

NI Modular Instruments Python APl Documentation, Release 1.4.1

exported_pulse_trigger_output_terminal

nidcpower.Session.exported pulse_trigger_output_terminal
Specifies the output terminal for exporting the Pulse trigger. Refer to the Device Routes tab in
Measurement & Automation Explorer for a list of the terminals available on your device. Output
terminals can be specified in one of two ways. If the device is named Devl and your terminal is
PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].exported_pulse_trigger_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.exported_pulse_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Pulse Trigger:Export Output Terminal
e C Attribute: NIDCPOWER_ATTR_EXPORTED_PULSE_TRIGGER_OUTPUT_TERMINAL

exported_sequence_advance_trigger_output_terminal

nidcpower.Session.exported_sequence_advance_trigger_output_terminal
Specifies the output terminal for exporting the Sequence Advance trigger. Refer to the Device Routes
tab in Measurement & Automation Explorer for a list of the terminals available on your device. for
information about supported devices. Output terminals can be specified in one of two ways. If the
device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully
qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

66

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

set.
Example: my_session.channels[...].exported_sequence_advance_trigger_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.exported_sequence_advance_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Triggers:Sequence Advance Trigger:Export Output Terminal
» C Attribute: NIDCPOWER_ATTR_EXPORTED_SEQUENCE_ADVANCE_TRIGGER_OUTPUT_TERMINAL

exported_source_trigger_output_terminal

nidcpower.Session.exported_source_trigger_ output_terminal
Specifies the output terminal for exporting the Source trigger. Refer to the Device Routes tab in
MAX for a list of the terminals available on your device. for information about supported devices.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal
is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].exported_source_trigger_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.exported_source_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 67

NI Modular Instruments Python APl Documentation, Release 1.4.1

e LabVIEW Property: Triggers:Source Trigger:Export Output Terminal
e C Attribute: NIDCPOWER_ATTR_EXPORTED_SOURCE_TRIGGER_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

nidcpower.Session.exported_start_trigger_ output_terminal
Specifies the output terminal for exporting the Start trigger. Refer to the Device Routes tab in
Measurement & Automation Explorer (MAX) for a list of the terminals available on your device.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal
is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0. for information about supported devices.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].exported_start_trigger_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.exported_start_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Start Trigger:Export Output Terminal
* C Attribute: NIDCPOWER_ATTR_EXPORTED_START TRIGGER_OUTPUT_TERMINAL

fetch_backlog

nidcpower.Session.fetch_backlog
Returns the number of measurements acquired that have not been fetched yet.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].fetch_backlog

68 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.fetch_backlog

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Measurement:Fetch Backlog
* C Attribute: NIDCPOWER_ATTR_FETCH_BACKLOG

instrument_firmware_revision

nidcpower.Session.instrument_ firmware_ revision
Contains the firmware revision information for the device you are currently using.

Tip: This property can be set/get on specific instruments within your nidcpower. Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments|[...].instrument_firmware_revision
To set/get on all instruments, you can call the property directly on the nidcpower. Session.

Example: my_session.instrument_firmware_revision

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Firmware Revision
* C Attribute: NIDCPOWER_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

nidcpower.Session.instrument_manufacturer
Contains the name of the manufacturer for the device you are currently using.

7.1. nidcpower module 69

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This property can be set/get on specific instruments within your nidcpower. Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].instrument_manufacturer
To set/get on all instruments, you can call the property directly on the nidcpower. Session.

Example: my_session.instrument_manufacturer

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Manufacturer
* C Attribute: NIDCPOWER_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

nidcpower.Session.instrument_model
Contains the model number or name of the device that you are currently using.

Tip: This property can be set/get on specific instruments within your nidcpower. Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].instrument_model
To set/get on all instruments, you can call the property directly on the nidcpower. Session.

Example: my_session.instrument_model

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Model
e C Attribute: NIDCPOWER_ATTR_INSTRUMENT _MODEL

70 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

interlock_input_open

nidcpower.Session.interlock_input_open
Indicates whether the safety interlock circuit is open. Refer to the Safety Interlock topic in the NI
DC Power Supplies and SMUs Help for more information about the safety interlock circuit. about
supported devices.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information

Tip: This property can be set/get on specific instruments within your nidcpower.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments|[...].interlock_input_open
To set/get on all instruments, you can call the property directly on the nidcpower. Session.

Example: my_session.interlock_input_open

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities | instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Advanced:Interlock Input Open
* C Attribute: NIDCPOWER_ATTR_INTERLOCK_INPUT_OPEN

io_resource_descriptor

nidcpower.Session.io_resource_descriptor
Indicates the resource descriptor NI-DCPower uses to identify the physical device. If you initialize
NI-DCPower with a logical name, this property contains the resource descriptor that corresponds to
the entry in the IVI Configuration utility. If you initialize NI-DCPower with the resource descriptor,
this property contains that value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 4

NI Modular Instruments Python APl Documentation, Release 1.4.1

e LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Resource De-
scriptor

* C Attribute: NIDCPOWER_ATTR_IO_RESOURCE_DESCRIPTOR

logical_name

nidcpower.Session.logical_name
Contains the logical name you specified when opening the current IVI session. You can pass a logical
name to the nidcpower.Session.__init__ () method. The IVI Configuration utility must
contain an entry for the logical name. The logical name entry refers to a method section in the IVI
Configuration file. The method section specifies a physical device and initial user options.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name
* C Attribute: NIDCPOWER_ATTR_LOGICAL_NAME

measure_buffer_size

nidcpower.Session.measure_buffer size
Specifies the number of samples that the active channel measurement buffer can hold. The default
value is the maximum number of samples that a device is capable of recording in one second. for
information about supported devices. Valid Values: 1000 to 2147483647 Default Value: Varies by
device. Refer to Supported Properties by Device topic in the NI DC Power Supplies and SMUs Help
for more information about default values.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_buffer_size
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_buffer_size

The following table lists the characteristics of this property.

72 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Measurement:Advanced:Measure Buffer Size
* C Attribute: NIDCPOWER_ATTR_MEASURE_BUFFER_SIZE

measure_complete_event_delay

nidcpower.Session.measure_complete_event_delay
Specifies the amount of time to delay the generation of the Measure Complete event, in seconds.
for information about supported devices. Valid Values: O to 167 seconds Default Value: The NI
PX1-4132 and NI PXIe-4140/4141/4142/4143/4144/4145/4154 supports values from O seconds to
167 seconds.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].measure_complete_event_delay
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_complete_event_delay

The following table lists the characteristics of this property.

Characteristic Value

Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Measure Complete Event:Event Delay
e C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_DELAY

measure_complete_event_output_terminal

nidcpower.Session.measure_complete_event_output_terminal
Specifies the output terminal for exporting the Measure Complete event. for information about

7.1. nidcpower module 73

NI Modular Instruments Python APl Documentation, Release 1.4.1

supported devices. Output terminals can be specified in one of two ways. If the device is named
Devl1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal
name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_TrigO.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_complete_event_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_complete_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Measure Complete Event:Output Terminal
* C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT OUTPUT _TERMINAL

measure_complete_event_pulse_polarity

nidcpower.Session.measure_complete_event_pulse_polarity

Specifies the behavior of the Measure Complete event. for information about supported devices.
Default Value: HTGH

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_complete_event_pulse_polarity
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_complete_event_pulse_polarity

The following table lists the characteristics of this property.

74

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Measure Complete Event:Pulse:Polarity
e C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_PULSE_POLARITY

measure_complete_event_pulse_width

nidcpower.Session.measure_complete_event_ pulse_width
Specifies the width of the Measure Complete event, in seconds. The minimum event pulse width
value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is
250 ns. The maximum event pulse width value for all devices is 1.6 microseconds. for information
about supported devices. Valid Values: 1.5e-7 to 1.6e-6 Default Value: The default value for PXI
devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_complete_event_pulse_width
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_complete_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Events:Measure Complete Event:Pulse: Width
* C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT PULSE WIDTH

7.1. nidcpower module 75

NI Modular Instruments Python APl Documentation, Release 1.4.1

measure_record_delta time

nidcpower.Session.measure_record_delta_ time
Queries the amount of time, in seconds, between between the start of two consecutive measurements
in a measure record. Only query this property after the desired measurement settings are committed.
for information about supported devices. two measurements and the rest would differ.

Note: This property is not available when Auto Zero is configured to Once because the amount of

time between the first

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

set.

Example: my_session.channels[...].measure_record_delta_time

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_record_delta_time

The following table lists the characteristics of this property.

Characteristic Value

Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read only

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Measurement:Measure Record Delta Time
» C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_DELTA_TIME

measure_record_length

nidcpower.Session.measure_record_length
Specifies how many measurements compose a measure record. When this property is set to
a value greater than 1, the nidcpower. Session.measure_when property must be set to
AUTOMATICALLY AFTER SOURCE_COMPLETE or ON_MEASURE_TRIGGER. for information
about supported devices. Valid Values: 1 to 16,777,216 Default Value: 1

Note: This property is not available in a session involving multiple channels.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

set.

Example: my_session.channels[...].measure_record_length

76

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_record_length

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Measurement:Measure Record Length
* C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH

measure_record_length_is_finite

nidcpower.Session.measure_record_length is_ finite

Specifies whether to take continuous measurements. Call the nidcpower. Session.abort ()
method to stop continuous measurements. When this property is set to False and the nidcpower.
Session.source_mode property is set to SINGLE_POINT, the nidcpower.Session.
measure_when property must be set to AUTOMATICALLY AFTER_SOURCE_COMPLETE or
ON_MEASURE_TRIGGER. When this property is set to False and the nidcpower.Session.
source_mode property is set to SEQUENCE, the nidcpower.Session.measure_when
property must be set to ON_MEASURE__ TRIGGER. for information about supported devices. Default
Value: True

Note: This property is not available in a session involving multiple channels.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_record_length is_finite
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_record_length_is_finite

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 77

NI Modular Instruments Python APl Documentation, Release 1.4.1

e LabVIEW Property: Measurement:Measure Record Length Is Finite
* C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH_IS_FINITE

measure_trigger_type

nidcpower.Session.measure_trigger_ type
Specifies the behavior of the Measure trigger. for information about supported devices. Default
Value: DIGITAL EDGE

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].measure_trigger_type
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_trigger_type

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Measure Trigger:Trigger Type
* C Attribute: NIDCPOWER_ATTR_MEASURE_TRIGGER_TYPE

measure_when

nidcpower.Session.measure_when

Specifies when the measure unit should acquire measurements. Unless this property is con-
figured to ON_MEASURE_TRIGGER, the nidcpower.Session.measure_trigger._type
property is ignored. Refer to the Acquiring Measurements topic in the NI DC Power Sup-
plies and SMUs Help for more information about how to configure your measurements. De-
fault Value: If the nidcpower. Session. source_mode property is set to SINGLE _POINT,
the default value is ON_DEMAND. This value supports only the nidcpower.Session.
measure () method and nidcpower.Session.measure_multiple () method. If the
nidcpower.Session.source_mode property is set to SEQUENCE, the default value is
AUTOMATICALLY AFTER _SOURCE_COMPLETE. This value supports only the nidcpower.
Session.fetch multiple () method.

78 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].measure_when
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_when

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.MeasureWhen
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Measure When
* C Attribute: NIDCPOWER_ATTR_MEASURE_WHEN

merged_channels

nidcpower.Session.merged channels
Specifies the channel(s) to merge with a designated primary channel of an SMU in order to increase
the maximum current you can source from the SMU. This property designates the merge channels
to combine with a primary channel. To designate the primary channel, initialize the session to the
primary channel only. Note: You cannot change the merge configuration with this property when
the session is in the Running state. For complete information on using merged channels with this
property, refer to Merged Channels in the NI DC Power Supplies and SMUs Help.

Note: This property is not supported by all devices. Refer to Supported Properties by Device
for information about supported devices. Devices that do not support this property behave as if no
channels were merged. Default Value: Refer to the Supported Properties by Device topic for the
default value by device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].merged_channels
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.merged_channels

The following table lists the characteristics of this property.

7.1. nidcpower module 79

NI Modular Instruments Python APl Documentation, Release 1.4.1

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Merged Channels
* C Attribute: NIDCPOWER_ATTR_MERGED_CHANNELS

output_capacitance

nidcpower.Session.output_capacitance
Specifies whether to use a low or high capacitance on the output for the specified channel(s). for
information about supported devices. Refer to the NI PXI-4130 Output Capacitance Selection topic
in the NI DC Power Supplies and SMUs Help for more information about capacitance.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].output_capacitance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_capacitance

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.OutputCapacitance
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:Output Capacitance
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CAPACITANCE

output_connected

nidcpower.Session.output_connected
Specifies whether the output relay is connected (closed) or disconnected (open). The nidcpower.

80 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Session.output_enabled property does not change based on this property; they are inde-
pendent of each other. about supported devices. Set this property to False to disconnect the output
terminal from the output. to the output terminal might discharge unless the relay is disconnected.
Excessive connecting and disconnecting of the output can cause premature wear on the relay. De-
fault Value: True

Note: Only disconnect the output when disconnecting is necessary for your application. For exam-
ple, a battery connected

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].output_connected
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_connected

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Connected
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CONNECTED

output_cutoff_current_change_limit_high

nidcpower.Session.output_cutoff current_change_limit_ high
Specifies a limit for positive current slew rate, in amps per microsecond, for output cutoff. If the
current increases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched output_cutoff state () method with CURRENT CHANGE_HIGH as
the output cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_change_limit_high

7.1. nidcpower module 81

NI Modular Instruments Python APl Documentation, Release 1.4.1

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_current_change_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff:Current Change Limit High
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_CHANGE_LIMIT_HIGH

output_cutoff_current_change_limit_low

nidcpower.Session.output_cutoff current_change_ limit_ low
Specifies a limit for negative current slew rate, in amps per microsecond, for output cutoff. If the
current decreases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_ latched output_cutoff state () method with CURRENT CHANGE_ LOW as the
output cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_change_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_current_change_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff: Current Change Limit Low

82 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

* C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_CHANGE_LIMIT_LOW

output_cutoff_current_measure_limit_high

nidcpower.Session.output_cutoff current_measure_limit_ high
Specifies a high limit current value, in amps, for output cutoff. If the measured current exceeds this
limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched output_cutoff state () method with CURRENT MEASURE_HIGH as
the output cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_measure_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_current_measure_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Output Cutoff: Current Measure Limit High
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_MEASURE_LIMIT_HIGH

output_cutoff_current_measure_limit_low

nidcpower.Session.output_cutoff current measure_ limit low
Specifies a low limit current value, in amps, for output cutoff. If the measured current falls below
this limit, the output is disconnected.

To find out whether an output has fallen below this limit, call the nidcpower.Session.
query_latched output_cutoff state () method with CURRENT MEASURE_LOW as
the output cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

7.1. nidcpower module 83

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_measure_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_ current_measure_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff: Current Measure Limit Low
e C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_MEASURE_LIMIT_LOW

output_cutoff_current_overrange_enabled

nidcpower.Session.output_cutoff current_overrange_enabled
Enables or disables current overrange functionality for output cutoff. If enabled, the output is dis-
connected when the measured current saturates the current range.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched output_cutoff state () method with VOLTAGE OUTPUT_HIGH as
the output cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_overrange_enabled
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_current_overrange_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

84 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Output Cutoff:Current Overrange Enabled
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_OVERRANGE_ENABLED

output_cutoff_delay

nidcpower.Session.output_cutoff delay
Delays disconnecting the output by the time you specify, in seconds, when a limit is exceeded.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].output_cutoff_delay
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_delay

The following table lists the characteristics of this property.

Characteristic Value

Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff:Delay
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_DELAY

output_cutoff_enabled

nidcpower.Session.output_cutoff enabled
Enables or disables output cutoff functionality. If enabled, you can define output cutoffs that, if
exceeded, cause the output of the specified channel(s) to be disconnected. When this property is
disabled, all other output cutoff properties are ignored.

Note: Refer to Supported Properties by Device for information about supported devices. Instru-
ments that do not support this property behave as if this property were set to False.

7.1. nidcpower module 85

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_enabled
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Output Cutoff:Enabled
e C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_ENABLED

output_cutoff_voltage_change_limit_high

nidcpower.Session.output_cutoff voltage_change_limit high
Specifies a limit for positive voltage slew rate, in volts per microsecond, for output cutoff. If the
voltage increases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched output_cutoff state () with VOLTAGE_CHANGE_HIGH as the out-
put cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_voltage_change_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_voltage_change_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

86 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Output Cutoff: Voltage Change Limit High
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_CHANGE_LIMIT HIGH

output_cutoff _voltage change_limit_low

nidcpower.Session.output_cutoff_ voltage_change_limit_low
Specifies a limit for negative voltage slew rate, in volts per microsecond, for output cutoff. If the
voltage decreases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched output_cutoff _state () with VOLTAGE _CHANGE_LOW as the output
cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_voltage_change_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_voltage_change_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Output Cutoff:Voltage Change Limit Low
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_CHANGE_LIMIT_LOW

output_cutoff_voltage_output_limit_high

nidcpower.Session.output_cutoff voltage_output_limit high
Specifies a high limit voltage value, in volts, for output cutoff. If the voltage output exceeds this
limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched output_cutoff state () method with VOLTAGE OUTPUT_HIGH as
the output cutoff reason.

7.1. nidcpower module 87

NI Modular Instruments Python APl Documentation, Release 1.4.1

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_voltage_output_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_voltage_output_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff: Voltage Output Limit High
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_OUTPUT_LIMIT_HIGH

output_cutoff_voltage output_limit_low

nidcpower.Session.output_cutoff voltage_output_limit_ low
Specifies a low limit voltage value, in volts, for output cutoff. If the voltage output falls below this
limit, the output is disconnected.

To find out whether an output has fallen below this limit, call the nidcpower.Session.
query_ latched output_cutoff state () method with VOLTAGE _OUTPUT_LOW as the
output cutoff reason.

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_voltage_output_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_voltage_output_limit_low

The following table lists the characteristics of this property.

88 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff: Voltage Output Limit Low
e C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_OUTPUT_LIMIT_LOW

output_enabled

nidcpower.Session.output_enabled
Specifies whether the output is enabled (True) or disabled (False). Depending on the value you spec-
ify for the nidcpower. Session.output_function property, you also must set the voltage
level or current level in addition to enabling the output the nidcpower. Session.initiate ()
method. Refer to the Programming States topic in the NI DC Power Supplies and SMUs Help for
more information about NI-DCPower programming states. Default Value: The default value is True

if you use the nidcpower.Session.__init__ () method to open the session. Otherwise the
default value is False, including when you use a calibration session or the deprecated programming
model.

Note: If the session is in the Committed or Uncommitted states, enabling the output does not take
effect until you call

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].output_enabled
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Enabled
e C Attribute: NIDCPOWER_ATTR_OUTPUT_ENABLED

7.1. nidcpower module 89

NI Modular Instruments Python APl Documentation, Release 1.4.1

output_function

nidcpower.Session.output_function
Configures the method to generate on the specified channel(s). @ When DC_VOLTAGE
is selected, the device generates the desired voltage level on the output as long as
the output current is below the current limit. You can use the following properties
to configure the channel when DC VOLTAGE 1is selected: nidcpower.Session.
voltage_level nidcpower.Session.current_limit nidcpower.Session.
current_limit_high nidcpower.Session.current_limit_low nidcpower.
Session.voltage _level_ range nidcpower.Session.current_limit_range

nidcpower.Session.compliance_limit__symmetry When DC_CURRENT
is selected, the device generates the desired current level on the output as long as
the output voltage is below the voltage limit. You can use the following properties

to configure the channel when DC_CURRENT is selected: nidcpower.Session.
current_level nidcpower.Session.voltage limit nidcpower.Session.
voltage_limit_high nidcpower.Session.voltage limit_low nidcpower.
Session.current_level range nidcpower.Session.voltage_limit_ range
nidcpower.Session.compliance_limit_symmetry

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_function
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_function

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.OutputFunction
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Function
* C Attribute: NIDCPOWER_ATTR_OUTPUT_FUNCTION

output_resistance

nidcpower.Session.output_resistance
Specifies the output resistance that the device attempts to generate for the specified channel(s). This
property is available only when you set the nidcpower. Session.output_function prop-
erty on a support device. Refer to a supported device’s topic about output resistance for more infor-
mation about selecting an output resistance. about supported devices. Default Value: 0.0

90 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic
for information

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_resistance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_resistance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Resistance
* C Attribute: NIDCPOWER_ATTR_OUTPUT_RESISTANCE

overranging_enabled

nidcpower.Session.overranging_ enabled
Specifies whether NI-DCPower allows setting the voltage level, current level, voltage limit and
current limit outside the device specification limits. True means that overranging is enabled. Refer
to the Ranges topic in the NI DC Power Supplies and SMUs Help for more information about
overranging. Default Value: False

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].overranging_enabled
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.overranging_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

7.1. nidcpower module 91

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Overranging Enabled
* C Attribute: NIDCPOWER_ATTR_OVERRANGING_ENABLED

ovp_enabled

nidcpower.Session.ovp_enabled
Enables (True) or disables (False) overvoltage protection (OVP). Refer to the Output Overvoltage
Protection topic in the NI DC Power Supplies and SMUs Help for more information about overvolt-
age protection. for information about supported devices. Default Value: False

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].ovp_enabled
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.ovp_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:OVP Enabled
» C Attribute: NIDCPOWER_ATTR_OVP_ENABLED

ovp_limit

nidcpower.Session.ovp_limit
Determines the voltage limit, in volts, beyond which overvoltage protection (OVP) engages. for
information about supported devices. Valid Values: 2 V to 210 V Default Value: 210 V

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

92 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].ovp_limit
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.ovp_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:OVP Limit
e C Attribute: NIDCPOWER_ATTR_OVP_LIMIT

power_allocation_mode

nidcpower.Session.power_allocation_mode
Determines whether the device sources the power its source configuration requires or a specific
wattage you request; determines whether NI-DCPower proactively checks that this sourcing power
is within the maximum per-channel and overall sourcing power of the device.

When this property configures NI-DCPower to perform a sourcing power check, a device
is not permitted to source power in excess of its maximum per-channel or overall sourcing
power. If the check determines a source configuration or power request would require the
device to do so, NI-DCPower returns an error.

When this property does not configure NI-DCPower to perform a sourcing power check,
a device can attempt to fulfill source configurations that would require it to source power
in excess of its maximum per-channel or overall sourcing power and may shut down to
prevent damage.

Default Value: Refer to the Supported Properties by Device topic for the default value by
device.

Note: This property is not supported by all devices. Refer to the Supported Properties by Device
topic for information about supported devices. Devices that do not support this property behave as
if this property were set to DTSABLED.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

7.1. nidcpower module 93

NI Modular Instruments Python APl Documentation, Release 1.4.1

Example: my_session.channels[...].power_allocation_mode
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.power_allocation_mode

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.PowerAllocationMode
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:Power Allocation Mode
* C Attribute: NIDCPOWER_ATTR_POWER_ALLOCATION_MODE

power_line_frequency

nidcpower.Session.power_line_frequency
Specifies the power line frequency for specified channel(s). NI-DCPower uses this value to select a
timebase for setting the nidcpower. Session.aperture_time property in power line cycles
(PLCs). in the NI DC Power Supplies and SMUs Help for information about supported devices.
Default Value: NIDCPOWER_VAL_60_HERTZ

Note: This property is not supported by all devices. Refer to the Supported Properties by Device
topic

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].power_line_frequency
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.power_line_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

94 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Power Line Frequency
* C Attribute: NIDCPOWER_ATTR_POWER_LINE_FREQUENCY

power_source

nidcpower.Session.power_source
Specifies the power source to use. NI-DCPower switches the power source used by the device to
the specified value. Default Value: AUTOMATIC is set to AUTOMATIC. However, if the session is
in the Committed or Uncommitted state when you set this property, the power source selection only
occurs after you call the nidcpower. Session.initiate () method.

Note: Automatic selection is not persistent and occurs only at the time this property

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.PowerSource
Permissions read-write

Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Advanced:Power Source
» C Attribute: NIDCPOWER_ATTR_POWER_SOURCE

power_source_in_use

nidcpower.Session.power_source_in_use
Indicates whether the device is using the internal or auxiliary power source to generate power.

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.PowerSourcelnUse
Permissions read only

Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Advanced:Power Source In Use
* C Attribute: NIDCPOWER_ATTR_POWER_SOURCE_IN_USE

7.1. nidcpower module 95

NI Modular Instruments Python APl Documentation, Release 1.4.1

pulse_bias_current_level

nidcpower.Session.pulse_bias_current_level
Specifies the pulse bias current level, in amps, that the device attempts to generate on the specified
channel(s) during the off phase of a pulse. This property is applicable only if the nidcpower.
Session.output_function property is set to PULSE_CURRENT. Valid Values: The valid
values for this property are defined by the values you specify for the nidcpower. Session.
pulse_current_level_ range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_bias_current_level
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_bias_current_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Current:Pulse Bias Current Level
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LEVEL

pulse_bias_current_limit

nidcpower.Session.pulse_bias_current_limit
Specifies the pulse bias current limit, in amps, that the output cannot exceed when generating the
desired pulse bias voltage on the specified channel(s) during the off phase of a pulse. This prop-
erty is applicable only if the nidcpower. Session.output_function property is set to
PULSE_VOLTAGE. Valid Values: The valid values for this property are defined by the values you
specify for the nidcpower. Session.pulse_current_limit_range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

96 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.1

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_bias_current_limit
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_bias_current_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit
e C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT

pulse_bias_current_limit_high

nidcpower.Session.pulse_bias_current_ limit_high
Specifies the maximum current, in amps, that the output can produce when gen-
erating the desired pulse voltage on the specified channel(s) during the off phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry.html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__

property is set to Pulse Voltage. You must also specify a Pulse Bias Current
Limit Low <p:py:meth: ‘nidcpower.Session.PulseBiasCurrentLimitLow.html>‘__ to com-
plete the asymmetric range. Valid Values: [1% of Pulse Current Limit Range

<p:py:meth: ‘nidcpower.Session. PulseCurrentLimitRange.html>‘__, Pulse Current Limit Range
<p:py:meth: ‘nidcpower.Session. PulseCurrentLimitRange.html>‘__] The range bounded by the
limit high and limit low must include zero. Default Value: Refer to Supported Properties by Device
for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled html>‘__ property is set to TRUE or if the
Output Method <p:py:meth: ‘nidcpower.Session. OQutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

7.1. nidcpower module 97

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.4.1

set.
Example: my_session.channels|[...].pulse_bias_current_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_bias_current_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit High
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT_HIGH

pulse_bias_current_limit_low

nidcpower.Session.pulse_bias_current_limit_low

Specifies the minimum current, in amps, that the output can produce when gen-
erating the desired pulse voltage on the specified channel(s) during the off phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry. html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__
property is set to Pulse Voltage. You must also specify a Pulse Bias Cur-
rent Limit High <p:py:meth: ‘nidcpower.Session.PulseBiasCurrentLimitHigh.html>__
to complete the asymmetric range. Valid Values: [-Pulse Current Limit Range
<p:py:meth: ‘nidcpower.Session. PulseCurrentLimitRange.html>‘__, -1% of Pulse Current Limit
Range <p:py:meth: ‘nidcpower.Session.PulseCurrentLimitRange html>‘__] The range bounded by
the limit high and limit low must include zero. Default Value: Refer to Supported Properties by
Device for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.Ove