NI Modular Instruments Python API

Documentation
Release 1.0.1

National Instruments

Oct 17, 2018

Drivers

Intro 1
Installation 3
Contributing 5
Support / Feedback 7
Bugs / Feature Requests 9
Documentation 11
6.1 Additional Documentation e e e e e e e e e 11
License 13
7.1 nidecpowermoduleo 13
7.1.1 Installation L e e e e e e e e e e e e e e e 13

T1.2 0 USage . . . o o e 13

7.1.3 APIReference e 14
7.1.3.1 nidcpower.Session e e e e e e e e e 14

7132 Enums e e e e e e e e e e 114

7.1.3.3 Exceptions and Warningso oo 119

7.1.34 Examples e e e 120

7.2 nidmmmodule 123
7.2.1 Installationo e e e e e 123

T2.2 0 USAZE . o v v e e e e e e e e e e e e e e e e 123

7.2.3 APIReference e e e e e e e e 123
7.2.3.1 nidmm.SesSion e e e e e e e e e e e e 123

7232 Enums . . .o . e e e e e e e e e e 179

7.2.3.3 Exceptions and Warnings o0t e e e e e 186

7.234 Examples e e e e e e e e e e 187

7.3 nifgenmodule 190
7.3.1 Installation L L L e e e e e e e e e e e e e e e e 190

732 Usage e 191

7.3.3 APIReference e 191
7.3.3.1 nifgen.Session L e e e e 191

7332 Enums e e 280

7.3.3.3 Exceptions and Warnings Lo oo 286

7.3.3.4 Examples e e e e e e e e e e 287

7.4 niscopemodule L L e e e e e e e e e 290
7.4.1 Installation L L e e e e e e e e e e e e e e e 290

TA42 Usage e 290

7.43 APIReference e 293
7.43.1 niscope.Sessionl 293

7432 Enums e e e e e e e e e e 367

7.4.3.3 Exceptions and Warnings oo e e e e e 373

7434 Examples e e e e e e e e 374

7.5 niswitchmodule e e e e 378
7.5.1 Installation L e e e e e e e e e e e 378

752 USAZE . v v v e e e e e e e e e e e e e e e e e 378

7.5.3 APIReference e e e e e e e 379
7.5.3.1 niswitch.Session L. e e e e e e 379

7532 Enums e e e e e e e e 417

7.5.3.3 Exceptions and Warnings 423

7.53.4 Examples e e e e e e e e e e e 424

7.6 nimodinstmodule L L e e e e e e e e e 428
7.6.1 Installation L. e e e e e e e e e e e e e e e 428

7.6.2 Usage e 428

7.6.3 APIReference e 428
7.6.3.1 nimodinst.Session L. e e e e e e e 428

7.6.3.2 Exceptions and Warningst e e e e 433

7.6.3.3 Examples e e e e e e e e e 434

7.7 misemodule e e e e e e e e e e 434
7.77.1 Installation L e e e e e e e e e e 434

TT7.2 USae . . v v i e e e 435

7.7.3 APIReference e e e e e e 435
7.7.3.1 nise.SeSSiOn e e e e e e e e e e e e e e 435

7732 Enums e e e e e e e e e e e e e e 443

7.7.3.3 Exceptions and Warningsol e e e e e 444

7.7.34 Exampleso e e e 445

8 Indices and tables 447
Python Module Index 449

CHAPTER 1

Intro

nimi-python is a collection of Python modules that provide an interface to the underlying NI driver. Currently, the
following drivers are supported:

* NI-DCPower (Python module: nidcpower)
NI-DMM (Python module: nidmm)
NI-FGEN (Python module: nifgen)

* NI-SCOPE (Python module: niscope)

e NI-SWITCH (Python module: niswitch)

* NI-ModInst (Python module: nimodinst)
» NI Switch Executive (Python module: nise)
nimi-python supports all the Operating Systems supported by the underlying driver.

nimi-python supports Python 2.7, 3.4 and later using CPython or PyPy.

NI Modular Instruments Python APl Documentation, Release 1.0.1

2 Chapter 1. Intro

CHAPTER 2

Installation

Driver specific installation instructions can be found on Read The Docs:

nidcpower
nidmm
nifgen
niscope
niswitch
nimodinst

nise

http://nimi-python.readthedocs.io/en/master/nidcpower.html#installation
http://nimi-python.readthedocs.io/en/master/nidmm.html#installation
http://nimi-python.readthedocs.io/en/master/nifgen.html#installation
http://nimi-python.readthedocs.io/en/master/niscope.html#installation
http://nimi-python.readthedocs.io/en/master/niswitch.html#installation
http://nimi-python.readthedocs.io/en/master/nimodinst.html#installation
http://nimi-python.readthedocs.io/en/master/nise.html#installation

NI Modular Instruments Python APl Documentation, Release 1.0.1

4 Chapter 2. Installation

CHAPTER 3

Contributing

We welcome contributions! You can clone the project repository, build it, and install it by following these instructions.

https://github.com/ni/nimi-python/blob/master/CONTRIBUTING.md

NI Modular Instruments Python APl Documentation, Release 1.0.1

6 Chapter 3. Contributing

CHAPTER 4

Support / Feedback

The packages included in nimi-python package are supported by NI. For support, open a request through the NI
support portal at ni.com.

http://www.ni.com

NI Modular Instruments Python APl Documentation, Release 1.0.1

8 Chapter 4. Support / Feedback

CHAPTER B

Bugs / Feature Requests

To report a bug or submit a feature request specific to NI Modular Instruments Python bindings (nimi-python), please
use the GitHub issues page.

Fill in the issue template as completely as possible and we will respond as soon as we can.

For hardware support or any other questions not specific to this GitHub project, please visit [NI Community Fo-
rums](https:/forums.ni.com/).

https://github.com/ni/nimi-python/issues
https://forums.ni.com/

NI Modular Instruments Python APl Documentation, Release 1.0.1

10 Chapter 5. Bugs / Feature Requests

CHAPTER O

Documentation

Documentation is available here.

6.1 Additional Documentation

Refer to your driver documentation for device-specific information and detailed API documentation.

11

http://nimi-python.readthedocs.io

NI Modular Instruments Python APl Documentation, Release 1.0.1

12 Chapter 6. Documentation

CHAPTER /

License

nimi-python is licensed under an MIT-style license (see LICENSE). Other incorporated projects may be licensed
under different licenses. All licenses allow for non-commercial and commercial use.

7.1 nidcpower module

7.1.1 Installation

As a prerequisite to using the nidcpower module, you must install the NI-DCPower runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-DCPower) can be installed with pip:

’$ python -m pip install nidcpower~=1.0.1

Or easy_install from setuptools:

’$ python -m easy_install nidcpower

7.1.2 Usage

The following is a basic example of using the nidcpower module to open a session to a Source Meter Unit and measure
voltage and current.

import nidcpower
Configure the session.

with nidcpower.Session (resource_name='PXI1Slot2', channels='0"') as session:
session.measure_record_length = 20
session.measure_record_length_is_finite = True

session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE

(continues on next page)

13

https://github.com/ni/nimi-python/blob/master/LICENSE
http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

NI Modular Instruments Python APl Documentation, Release 1.0.1

(continued from previous page)

session.voltage_level = 5.0

session.commit ()
print ('Effective measurement rate: {0} S/s'.format (session.measure_record_delta_
—time / 1))

samples_acquired = 0
print (' # Voltage Current In Compliance')
row_format = '{0:3d}: {1:8.6f} {2:8.06f} {3}
with session.initiate():
while samples_acquired < 20:
measurements = session.fetch_multiple (count=session.fetch_backlog)
samples_acquired += len (measurements)
for i in range(len (measurements)) :
print (row_format.format (i, measurements[i].voltage, measurements[i].
—current, measurements[i].in_compliance))

Additional examples for NI-DCPower are located in src/nidcpower/examples/ directory.

7.1.3 API Reference

7.1.3.1 nidcpower.Session

class nidcpower.Session (self, resource_name, channels=None, reset="False, options={})
Creates and returns a new NI-DCPower session to the power supply or SMU specified in resource name to be
used in all subsequent NI-DCPower method calls. With this method, you can optionally set the initial state of
the following session properties:

e nidcpower.Session.simulate
* nidcpower.Session.driver_setup

After calling this method, the session will be in the Uncommitted state. Refer to the Programming States topic
for details about specific software states.

To place the device in a known start-up state when creating a new session, set reset to True. This action is
equivalent to using the nidcpower. Session. reset () method immediately after initializing the session.

To open a session and leave the device in its existing configuration without passing through a transitional output
state, set reset to False. Then configure the device as in the previous session, changing only the desired settings,
and then call the nidcpower.Session.initiate () method.

Related Topics:
Programming States
Parameters

* resource_name (str)— Specifies the resourceName assigned by Measurement & Au-
tomation Explorer (MAX), for example “PXI1Slot3” where “PXI1Slot3” is an instrument’s
resourceName. resourceName can also be a logical IVI name.

* channels (st r)— Specifies which output channel(s) to include in a new session. Specify
multiple channels by using a channel list or a channel range. A channel list is a comma
(,) separated sequence of channel names (for example, 0,2 specifies channels 0 and 2). A
channel range is a lower bound channel followed by a hyphen (-) or colon (:) followed by
an upper bound channel (for example, 0-2 specifies channels 0, 1, and 2). In the Running
state, multiple output channel configurations are performed sequentially based on the order

14 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.0.1

specified in this parameter. If you do not specify any channels, by default all channels on
the device are included in the session.

* reset (bool)— Specifies whether to reset the device during the initialization procedure.

* options (str) — Specifies the initial value of certain properties for the session. The

syntax for options

is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status | False
cache True
simulate False
record_value_coersions False
driver_setup {}
Properties
Property Datatype
aperture_time float
aperture_time_units ApertureTimeUnits
auto_zero AutoZero
auxiliary power_source _available bool
channel_count int

compliance_ limit_symmetry

ComplianceLimitSymmetry

current_compensation frequency float
current_gain_bandwidth float
current_level float
current_level_autorange bool
current_level_range float
current_limit float
current_limit_autorange bool
current_limit_high float
current_limit_Jlow float
current_limit_range float
current_pole zero_ratio float

dc_noise_rejection

DCNoiseRejection

digital_edge _measure_ trigger._input_terminal str
digital_edge pulse trigger_ input_terminal str
digital_edge_sequence_advance_trigger._input_terminal | str
digital_edge source_ trigger_input_terminal str
digital_edge_start_trigger_input_terminal str
driver_setup str
exported_measure_trigger_output_terminal str
exported _pulse_trigger_ output_terminal str
exported_sequence_advance_trigger_output_terminal str

Continued on next page

7.1. nidcpower module

15

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 1 — continued from previous page

Property Datatype
exported_source_trigger_output_terminal str
exported_start_trigger_output_terminal str
fetch_backlog int
instrument_firmware revision str
instrument_manufacturer str
instrument_model str
interlock_input_open bool
io_resource_descriptor str
logical_name str
measure_buffer._size int

measure_complete_event_delay

float in seconds or datetime.timedelta

measure_complete_event_output_terminal

str

measure_complete_event_pulse polarity

Polarity

measure_complete_event_pulse width

float

measure_record_delta time

float in seconds or datetime.timedelta

measure_record_length

int

measure_record _length_1is finite bool
measure_trigger_type TriggerType
measure_when MeasureWhen
output_capacitance OutputCapacitance
output_connected bool
output_enabled bool
output_function OutputFunction
output_resistance float
overranging_enabled bool
ovp_enabled bool
ovp_limit float
power_line frequency float
power_source PowerSource
power_source_in_use PowerSourceInUse
pulse _bias_current_level float
pulse_bias current_limit float
pulse_bias_current_limit_high float
pulse_bias_current_limit_low float
pulse_bias_delay float
pulse_bias_voltage_ level float
pulse_bias_voltage_limit float
pulse_bias_voltage_limit_high float

pulse bias_voltage limit_low float
pulse_complete_event_output_terminal str
pulse_complete_event_pulse_polarity Polarity
pulse_complete_event_pulse width float

pulse_ current_level float
pulse_current_level range float

pulse current_limit float
pulse_current_limit_high float
pulse_current_limit_low float
pulse_current_limit_range float

pulse_off time

float in seconds or datetime.timedelta

Continued on next page

16

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 1 — continued from previous page

Property Datatype
pulse on_time float in seconds or datetime.timedelta
pulse_trigger_type TriggerType
pulse voltage_ level float

pulse _voltage level range float

pulse voltage limit float

pulse voltage_ limit_high float

pulse voltage limit_low float
pulse_voltage_limit_range float
query_instrument_status bool
ready_for_pulse_trigger_event_output_terminal str
ready_for_pulse_trigger_event_pulse polarity Polarity
ready_for_pulse_trigger_event_pulse width float
reset_average_before_measurement

bool

samples_to_average

nt

self calibration_persistence

SelfCalibrationPersistence

sense

Sense

sequence_advance_trigger_type TriggerType
sequence_engine_done_event_output_terminal str
sequence_engine_done_event_pulse_polarity Polarity
sequence_engine_done_event_pulse _width float
sequence_iteration_complete event_output_terminal str
sequence_iteration _complete_event_pulse polarity Polarity
sequence_iteration_complete_event_pulse_width float
sequence_loop_count int
sequence_loop count_1is_finite bool
simulate bool
source_complete_event_output_terminal str
source_complete event_pulse_polarity Polarity
source_complete_event_pulse_width float

source_delay

float in seconds or datetime.timedelta

source_mode

SourceMode

source_trigger_type TriggerType
specific_driver_description str
specific_driver_prefix str

specific _driver revision str
specific_driver._vendor str
start_trigger_type TriggerType
supported_instrument_models str
transient_response TransientResponse
voltage_ compensation_frequency float

voltage gain bandwidth float

voltage level float

voltage level_autorange bool
voltage_level_ range float

voltage limit float

voltage limit_autorange bool
voltage limit_high float

voltage limit_low float
voltage_limit_range float

Continued on next page

7.1. nidcpower module

17

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 1 — continued from previous page

Property

Datatype

voltage _pole zero_ratio

float

Public methods

Method name

abort ()

commit ()

configure_aperture_time ()

disable ()

fetch _multiple()

get__channel_name ()

get_ext_cal_last_date_and time ()

get_ext_cal_last_temp ()

get_ext_cal_recommended_interval ()

get_self cal_ last_date_and _time()

get_self cal_ last_temp()

lock ()

measure ()

measure_multiple ()

query_in _compliance ()

query_max_current_limit ()

query_max_voltage level ()

query_min_current_limit ()

query_output_state()

read_current_temperature ()

reset ()

reset_device ()

reset_with defaults()

self cal/()

self test ()

send_software_edge_trigger()

set__sequence ()

unlock ()

wait_for_ event ()

Properties
aperture_time

nidcpower.Session.ap

erture_time

Specifies the measurement aperture time for the channel configuration. Aperture time is specified in
the units set by the nidcpower. Session.aperture_time_units property. for informa-
tion about supported devices. Refer to the Aperture Time topic in the NI DC Power Supplies and
SMUs Help for more information about how to configure your measurements and for information
about valid values. Default Value: 0.01666666 seconds

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

18

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .aperture_time = var
var = session.channels[0, 1] .aperture_time

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Aperture Time
* C Attribute: NIDCPOWER_ATTR_APERTURE_TIME

aperture_time_units

nidcpower.Session.aperture_time_units
Specifies the units of the nidcpower. Session.aperture_time property for the channel
configuration. for information about supported devices. Refer to the Aperture Time topic in the NI
DC Power Supplies and SMUs Help for more information about how to configure your measure-
ments and for information about valid values. Default Value: SECONDS

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].aperture_time_units = var
var = session.channels[0,1].aperture_time_units

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.ApertureTimeUnits
Permissions read-write

Channel Based | True

Resettable No

7.1. nidcpower module

19

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Measurement:Aperture Time Units
* C Attribute: NIDCPOWER_ATTR_APERTURE_TIME_UNITS

auto_zero

nidcpower.Session.auto_zero
Specifies the auto-zero method to use on the device. Refer to the NI PXI-4132 Measurement Con-
figuration and Timing and Auto Zero topics for more information about how to configure your
measurements. Default Value: The default value for the NI PXI-4132 is ON. The default value for
all other devices is OFF", which is the only supported value for these devices.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].auto_zero = var
var = session.channels[0,1].auto_zero

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.AutoZero
Permissions read-write
Channel Based | True

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Auto Zero
* C Attribute: NIDCPOWER_ATTR_AUTO_ZERO

auxiliary_power_source_available

nidcpower.Session.auxiliary power_source_available
Indicates whether an auxiliary power source is connected to the device. A value of False may indi-
cate that the auxiliary input fuse has blown. Refer to the Detecting Internal/Auxiliary Power topic in
the NI DC Power Supplies and SMUs Help for more information about internal and auxiliary power.
power source to generate power. Use the nidcpower.Session.power_source_in_use
property to retrieve this information.

Note: This property does not necessarily indicate if the device is using the auxiliary

20 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Advanced:Auxiliary Power Source Available
» C Attribute: NIDCPOWER_ATTR_AUXILIARY_POWER_SOURCE_AVAILABLE

channel_count

nidcpower.Session.channel_count
Indicates the number of channels that NI-DCPower supports for the instrument that was chosen
when the current session was opened. For channel-based properties, the IVI engine maintains a
separate cache value for each channel.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Channel Count
» C Attribute: NIDCPOWER_ATTR_CHANNEL_COUNT

compliance_limit_symmetry

nidcpower.Session.compliance_limit_ symmetry

Specifies whether compliance limits for current generation and voltage generation for the device are
applied symmetrically about 0 V and O A or asymmetrically with respect to 0 V and 0 A. When set
to Symmetric, voltage limits and current limits are set using a single property with a positive value.
The resulting range is bounded by this positive value and its opposite. When set to Asymmetric,
you must separately set a limit high and a limit low using distinct properties. For asymmetric limits,
the range bounded by the limit high and limit low must include zero. Default Value: Symmetric
Related Topics: Compliance Ranges Changing Ranges Overranging

Note: Refer to Supported Properties by Device for information about supported devices.

7.1. nidcpower module 21

NI_DC_Power_Supplies_Help.chm::/compliance.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html
NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .compliance_limit_symmetry = var
var = session.channels[0,1].compliance_limit_symmetry

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.ComplianceLimitSymmetry
Permissions read-write

Channel Based | True

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:Compliance Limit Symmetry
e C Attribute: NIDCPOWER_ATTR_COMPLIANCE_LIMIT_SYMMETRY

current_compensation_frequency

nidcpower.Session.current_compensation_ frequency
The frequency at which a pole-zero pair is added to the system when the channel is in Constant
Current mode. for information about supported devices. Default Value: Determined by the value of
the NORMAL setting of the nidcpower.Session.transient_response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].current_compensation_frequency = var
var = session.channels[0,1].current_compensation_frequency

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

22 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Source:Custom Transient Response:Current:Compensation Fre-
quency

* C Attribute: NIDCPOWER_ATTR_CURRENT_COMPENSATION_FREQUENCY

current_gain_bandwidth

nidcpower.Session.current_gain_bandwidth
The frequency at which the unloaded loop gain extrapolates to 0 dB in the absence of additional
poles and zeroes. This property takes effect when the channel is in Constant Current mode. for
information about supported devices. Default Value: Determined by the value of the NORMATL setting
of the nidcpower.Session.transient_response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].current_gain_bandwidth = var
var = session.channels[0,1].current_gain_bandwidth

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Custom Transient Response: Current:Gain Bandwidth
* C Attribute: NIDCPOWER_ATTR_CURRENT_GAIN_BANDWIDTH

current_level

nidcpower.Session.current_level
Specifies the current level, in amps, that the device attempts to generate on the specified channel(s).
This property is applicable only if the nidcpower. Session.output_function property is
set to DC_CURRENT. nidcpower.Session.output_enabled property for more informa-
tion about enabling the output channel. Valid Values: The valid values for this property are defined
by the values to which the nidcpower. Session.current_level_ range property is set.

7.1. nidcpower module 23

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: The channel must be enabled for the specified current level to take effect. Refer to the

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].current_level = var
var = session.channels[0,1].current_level

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Current:Current Level
* C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL

current_level_autorange

nidcpower.Session.current_level_ autorange

Specifies whether NI-DCPower automatically selects the current level range based on the desired
current level for the specified channels. If you set this property to ON, NI-DCPower ignores
any changes you make to the nidcpower.Session.current_level_ range property. If
you change the nidcpower. Session.current_level autorange property from ON to
OFF, NI-DCPower retains the last value the nidcpower. Session.current_level_ range
property was set to (or the default value if the property was never set) and uses that value as
the current level range. Query the nidcpower.Session.current_level range prop-
erty by using the nidcpower.Session._get_attribute_vi_int32 () method for in-
formation about which range NI-DCPower automatically selects. The nidcpower. Session.
current_level autorange property is applicable only if the nidcpower.Session.
output_ function property is set to DC_CURRENT. Default Value: OFF

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .current_level_autorange = var
var = session.channels[0,1].current_level_autorange

24 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Current:Current Level Autorange
» C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_AUTORANGE

current_level_range

nidcpower.Session.current_level_ range

Specifies the current level range, in amps, for the specified channel(s). The range defines
the valid value to which the current level can be set. Use the nidcpower.Session.
current_level_ autorange property to enable automatic selection of the current level
range. The nidcpower. Session.current_level range property is applicable only if the
nidcpower.Session.output_function property is set to DC_CURRENT. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs
Help.

Note: The channel must be enabled for the specified current level range to take effect. Refer to the

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .current_level_range = var
var = session.channels[0,1].current_level_range

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Current:Current Level Range

7.1. nidcpower module 25

NI Modular Instruments Python APl Documentation, Release 1.0.1

* C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_RANGE

current_limit

nidcpower.Session.current_limit

Specifies the current limit, in amps, that the output cannot exceed when generat-
ing the desired voltage level on the specified channel(s). This property is applicable
only if the nidcpower.Session.output_function property is set to DC_VOLTAGE
and the nidcpower.Session.compliance_limit_symmetry property is set to
NIDCPOWER_VAL_SYMMETRIC. nidcpower.Session.output_enabled property for
more information about enabling the output channel. Valid Values: The valid values for this property
are defined by the values to which nidcpower. Session.current_1limit_range property
is set.

Note: The channel must be enabled for the specified current limit to take effect. Refer to the

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].current_limit = var
var = session.channels[0,1].current_limit

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Voltage: Current Limit
» C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT

current_limit_autorange

nidcpower.Session.current_limit_autorange
Specifies whether NI-DCPower automatically selects the current limit range based on the de-

26 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

sired current limit for the specified channel(s). If you set this property to ON, NI-DCPower ig-
nores any changes you make to the nidcpower.Session.current_limit_range prop-
erty. If you change this property from ON to OFF, NI-DCPower retains the last value
the nidcpower.Session.current_limit_range property was set to (or the default
value if the property was never set) and uses that value as the current limit range. Query
the nidcpower.Session.current_limit_range property by using the nidcpower.
Session._get_attribute_vi_int32 () method for information about which range NI-
DCPower automatically selects. The nidcpower.Session.current_limit_autorange
property is applicable only if the nidcpower. Session.output_function property is set to
DC_VOLTAGE. Default Value: OFF

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].current_limit_autorange = var
var = session.channels[0,1].current_limit_autorange

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Voltage: Current Limit Autorange
e C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_AUTORANGE

current_limit_high

nidcpower.Session.current_limit high
Specifies the maximum current, in amps, that the output can produce when generating the desired
voltage on the specified channel(s). This property is applicable only if the Compliance Limit
Symmetry <p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry.html>‘__ property is set to
Asymmetric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__

property is set to DC Voltage. You must also specify a Current
Limit Low <p:py:meth: ‘nidcpower.Session. CurrentLimitLow.html>‘__ to com-
plete the asymmetric range. Valid Values: [1% of Current Limit Range
<p:py:meth: ‘nidcpower.Session. CurrentLimitRange.html>‘__, Current Limit Range

<p:py:meth: ‘nidcpower.Session. CurrentLimitRange.html>‘__] The range bounded by the limit high
and limit low must include zero. Default Value: Refer to Supported Properties by Device for the
default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled

7.1. nidcpower module 27

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.0.1

<p:py:meth: ‘nidcpower.Session.OverrangingEnabled html>‘__ property is set to TRUE.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].current_limit_high = var
var = session.channels[0,1].current_limit_high

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Voltage:Current Limit High
* C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_HIGH

current_limit_low

nidcpower.Session.current_limit low
Specifies the minimum current, in amps, that the output can produce when generating the desired
voltage on the specified channel(s). This property is applicable only if the Compliance Limit
Symmetry <p:py:meth: ‘nidcpower.Session.ComplianceLimitSymmetry.html>°‘__ property is set to
Asymmetric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__

property is set to DC Voltage. You must also specify a Current
Limit High <p:py:meth: ‘nidcpower.Session. CurrentLimitHigh.html>°__ to com-
plete the asymmetric range. Valid Values: [-Current Limit Range

<p:py:meth: ‘nidcpower.Session.CurrentLimitRange.html>‘__, -1% of Current Limit Range
<p:py:meth: ‘nidcpower.Session. CurrentLimitRange.html>‘__] The range bounded by the limit high
and limit low must include zero. Default Value: Refer to Supported Properties by Device for the
default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled html>‘__ property is set to TRUE.

Note: One or more of the referenced methods are not in the Python API for this driver.

28 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].current_limit_low = var
var = session.channels[0,1].current_limit_low

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Voltage: Current Limit Low
e C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_LOW

current_limit_range

nidcpower.Session.current_limit_ range

Specifies the current limit range, in amps, for the specified channel(s). The range defines
the valid value to which the current limit can be set. Use the nidcpower.Session.
current_limit_autorange property to enable automatic selection of the current limit
range. The nidcpower. Session.current_limit_range property is applicable only if the
nidcpower.Session.output_function property is set to DC_VOLTAGE. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs
Help.

Note: The channel must be enabled for the specified current limit to take effect. Refer to the

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].current_limit_range = var
var = session.channels[0,1].current_limit_range

The following table lists the characteristics of this property.

7.1. nidcpower module 29

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Voltage:Current Limit Range
* C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_RANGE

current_pole_zero_ratio

nidcpower.Session.current_pole_zero_ratio
The ratio of the pole frequency to the zero frequency when the channel is in Constant Current mode.
for information about supported devices. Default Value: Determined by the value of the NORMAL
setting of the nidcpower. Session.transient response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .current_pole_zero_ratio = var
var = session.channels[0,1].current_pole_zero_ratio

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Custom Transient Response: Current:Pole-Zero Ratio
* C Attribute: NIDCPOWER_ATTR_CURRENT_POLE_ZERO_RATIO

30 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

dc_noise_rejection

nidcpower.Session.dc_noise_rejection
Determines the relative weighting of samples in a measurement. Refer to the NI PXIe-4140/4141
DC Noise Rejection, NI PXIe-4142/4143 DC Noise Rejection, or NI PXIe-4144/4145 DC Noise
Rejection topic in the NI DC Power Supplies and SMUs Help for more information about noise
rejection. for information about supported devices. Default Value: NORMATL

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.DCNoiseRejection
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Measurement:Advanced:DC Noise Rejection
* C Attribute: NIDCPOWER_ATTR_DC_NOISE_REJECTION

digital_edge_measure_trigger_input_terminal

nidcpower.Session.digital_edge_measure_trigger_input_terminal

Specifies the input terminal for the Measure trigger. This property is used only when the
nidcpower.Session.measure_trigger_ type property is set to DIGITAL EDGE. for
this property. You can specify any valid input terminal for this property. Valid terminals are listed in
Measurement & Automation Explorer under the Device Routes tab. Input terminals can be specified
in one of two ways. If the device is named Dev1l and your terminal is PXI_Trig0, you can specify
the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal
name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you
can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 31

NI Modular Instruments Python APl Documentation, Release 1.0.1

e LabVIEW Property: Triggers:Measure Trigger:Digital Edge:Input Terminal
¢ C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_MEASURE_TRIGGER_INPUT_TERMINAL

digital_edge pulse_trigger_input_terminal

nidcpower.Session.digital_edge_pulse_trigger_ input_terminal

Specifies the input terminal for the Pulse trigger. This property is used only when the nidcpower.
Session.pulse_trigger_type property is set to digital edge. You can specify any valid
input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer
under the Device Routes tab. Input terminals can be specified in one of two ways. If the device is
named Devl and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified
terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input ter-
minal can also be a terminal from another device. For example, you can set the input terminal on
Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Pulse Trigger:Digital Edge:Input Terminal
e C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_PULSE_TRIGGER_INPUT _TERMINAL

digital_edge_sequence_advance_trigger_input_terminal

nidcpower.Session.digital_edge_sequence_advance_trigger_ input_terminal
Specifies the input terminal for the Sequence Advance trigger. Use this property only
when the nidcpower. Session.sequence_advance_trigger_type property is set to
DIGITAL EDGE. the NI DC Power Supplies and SMUs Help for information about supported
devices. You can specify any valid input terminal for this property. Valid terminals are listed in
Measurement & Automation Explorer under the Device Routes tab. Input terminals can be specified
in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify
the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal
name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you
can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic
in

32 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Sequence Advance Trigger:Digital Edge:Input Terminal
* C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SEQUENCE_ADVANCE_TRIGGER_INPUT_TERMIN/

digital_edge_source_trigger_input_terminal

nidcpower.Session.digital_edge_source_trigger_input_terminal
Specifies the input terminal for the Source trigger. Use this property only when the nidcpower.
Session.source_trigger._type property is setto DIGITAL_EDGE. for information about
supported devices. You can specify any valid input terminal for this property. Valid terminals are
listed in Measurement & Automation Explorer under the Device Routes tab. Input terminals can be
specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev 1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For
example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Triggers:Source Trigger:Digital Edge:Input Terminal
» C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SOURCE_TRIGGER_INPUT _TERMINAL

digital_edge_start_trigger_input_terminal

nidcpower.Session.digital_edge_start_trigger_ input_terminal
Specifies the input terminal for the Start trigger. Use this property only when the nidcpower.
Session.start_trigger_type property is set to DIGITAL EDGE. for information about
supported devices. You can specify any valid input terminal for this property. Valid terminals are

7.1. nidcpower module 33

NI Modular Instruments Python APl Documentation, Release 1.0.1

listed in Measurement & Automation Explorer under the Device Routes tab. Input terminals can be
specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev 1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For
example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Start Trigger:Digital Edge:Input Terminal
* C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_START_TRIGGER_INPUT_TERMINAL

driver_setup

nidcpower.Session.driver_setup

Indicates the Driver Setup string that you specified when initializing the driver. Some cases exist
where you must specify the instrument driver options at initialization time. An example of this
case is specifying a particular device model from among a family of devices that the driver sup-
ports. This property is useful when simulating a device. You can specify the driver-specific options
through the DriverSetup keyword in the optionsString parameter in the nidcpower.Session.
__init__ () method or through the IVI Configuration Utility. You can specify driver-specific
options through the DriverSetup keyword in the optionsString parameter in the nidcpower.
Session.__init__ () method. If you do not specify a Driver Setup string, this property returns
an empty string.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Driver Setup
* C Attribute: NIDCPOWER_ATTR_DRIVER_SETUP

34 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

exported_measure_trigger_output_terminal

nidcpower.Session.exported measure_trigger_ output_terminal
Specifies the output terminal for exporting the Measure trigger. Refer to the Device Routes tab
in Measurement & Automation Explorer for a list of the terminals available on your device. for
information about supported devices. Output terminals can be specified in one of two ways. If the
device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully
qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Measure Trigger:Export Output Terminal
* C Attribute: NIDCPOWER_ATTR_EXPORTED _MEASURE_TRIGGER_OUTPUT_TERMINAL

exported_pulse_trigger_output_terminal

nidcpower.Session.exported pulse_trigger_output_terminal
Specifies the output terminal for exporting the Pulse trigger. Refer to the Device Routes tab in
Measurement & Automation Explorer for a list of the terminals available on your device. Output
terminals can be specified in one of two ways. If the device is named Devl and your terminal is
PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Pulse Trigger:Export Output Terminal

7.1. nidcpower module 35

NI Modular Instruments Python APl Documentation, Release 1.0.1

* C Attribute: NIDCPOWER_ATTR_EXPORTED_PULSE_TRIGGER_OUTPUT_TERMINAL

exported_sequence_advance_trigger_output_terminal

nidcpower.Session.exported_sequence_advance_trigger_output_terminal
Specifies the output terminal for exporting the Sequence Advance trigger. Refer to the Device Routes
tab in Measurement & Automation Explorer for a list of the terminals available on your device. for
information about supported devices. Output terminals can be specified in one of two ways. If the
device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully
qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Sequence Advance Trigger:Export Output Terminal
» C Attribute: NIDCPOWER_ATTR_EXPORTED_SEQUENCE_ADVANCE_TRIGGER_OUTPUT_TERMINAL

exported_source_trigger_output_terminal

nidcpower.Session.exported_source_trigger_ output_terminal
Specifies the output terminal for exporting the Source trigger. Refer to the Device Routes tab in
MAX for a list of the terminals available on your device. for information about supported devices.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal
is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

36 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Triggers:Source Trigger:Export Output Terminal
* C Attribute: NIDCPOWER_ATTR_EXPORTED_SOURCE_TRIGGER_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

nidcpower.Session.exported_start_trigger_output_terminal
Specifies the output terminal for exporting the Start trigger. Refer to the Device Routes tab in
Measurement & Automation Explorer (MAX) for a list of the terminals available on your device.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal
is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0. for information about supported devices.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Triggers:Start Trigger:Export Output Terminal
* C Attribute: NIDCPOWER_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

fetch_backlog

nidcpower.Session.fetch_backlog
Returns the number of measurements acquired that have not been fetched yet.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Fetch Backlog

7.1. nidcpower module 37

NI Modular Instruments Python APl Documentation, Release 1.0.1

» C Attribute: NIDCPOWER_ATTR_FETCH_BACKLOG

instrument_firmware_revision

nidcpower.Session.instrument_firmware_ revision
Contains the firmware revision information for the device you are currently using.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Firmware Revision

* C Attribute: NIDCPOWER_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

nidcpower.Session.instrument_manufacturer
Contains the name of the manufacturer for the device you are currently using.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Manufacturer
e C Attribute: NIDCPOWER_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

nidcpower.Session.instrument_model
Contains the model number or name of the device that you are currently using.

The following table lists the characteristics of this property.

38 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Model
* C Attribute: NIDCPOWER_ATTR_INSTRUMENT MODEL

interlock_input_open

nidcpower.Session.interlock_input_open
Indicates whether the safety interlock circuit is open. Refer to the Safety Interlock topic in the NI
DC Power Supplies and SMUs Help for more information about the safety interlock circuit. about
supported devices.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Advanced:Interlock Input Open
e C Attribute: NIDCPOWER_ATTR_INTERLOCK_INPUT_OPEN

io_resource_descriptor

nidcpower.Session.io_resource_descriptor
Indicates the resource descriptor NI-DCPower uses to identify the physical device. If you initialize
NI-DCPower with a logical name, this property contains the resource descriptor that corresponds to
the entry in the IVI Configuration utility. If you initialize NI-DCPower with the resource descriptor,
this property contains that value.

The following table lists the characteristics of this property.

7.1. nidcpower module

39

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Resource De-
scriptor

» C Attribute: NIDCPOWER_ATTR_IO_RESOURCE_DESCRIPTOR

logical_name

nidcpower.Session.logical_name
Contains the logical name you specified when opening the current IVI session. You can pass a logical
name to the nidcpower.Session.__init__ () method. The IVI Configuration utility must
contain an entry for the logical name. The logical name entry refers to a method section in the IVI
Configuration file. The method section specifies a physical device and initial user options.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name
* C Attribute: NIDCPOWER_ATTR_LOGICAL_NAME

measure_buffer_size

nidcpower.Session.measure_buffer size
Specifies the number of samples that the active channel measurement buffer can hold. The default
value is the maximum number of samples that a device is capable of recording in one second. for
information about supported devices. Valid Values: 1000 to 2147483647 Default Value: Varies by
device. Refer to Supported Properties by Device topic in the NI DC Power Supplies and SMUs Help
for more information about default values.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

40 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Measurement:Advanced:Measure Buffer Size
* C Attribute: NIDCPOWER_ATTR_MEASURE_BUFFER_SIZE

measure_complete_event_delay

nidcpower.Session.measure_complete_event_delay
Specifies the amount of time to delay the generation of the Measure Complete event, in seconds.
for information about supported devices. Valid Values: 0 to 167 seconds Default Value: The NI
PX1-4132 and NI PXIe-4140/4141/4142/4143/4144/4145/4154 supports values from O seconds to
167 seconds.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value

Datatype float in seconds or datetime.timedelta
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Measure Complete Event:Event Delay
e C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_DELAY

measure_complete_event_output_terminal

nidcpower.Session.measure_complete_event_output_terminal
Specifies the output terminal for exporting the Measure Complete event. for information about
supported devices. Output terminals can be specified in one of two ways. If the device is named
Devl and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal
name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_TrigO.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

7.1. nidcpower module

41

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Measure Complete Event:Output Terminal
» C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_OUTPUT_TERMINAL

measure_complete_event_pulse_polarity

nidcpower.Session.measure_complete_event_pulse_polarity
Specifies the behavior of the Measure Complete event. for information about supported devices.
Default Value: HIGH

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.Polarity
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Measure Complete Event:Pulse:Polarity
* C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_PULSE_POLARITY

measure_complete_event_pulse_width

nidcpower.Session.measure_complete_event_pulse_width
Specifies the width of the Measure Complete event, in seconds. The minimum event pulse width
value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is
250 ns. The maximum event pulse width value for all devices is 1.6 microseconds. for information
about supported devices. Valid Values: 1.5e-7 to 1.6e-6 Default Value: The default value for PXI
devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

42 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Measure Complete Event:Pulse: Width
* C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_PULSE_WIDTH

measure_record_delta_time

nidcpower.Session.measure_record_delta_time
Queries the amount of time, in seconds, between between the start of two consecutive measurements
in a measure record. Only query this property after the desired measurement settings are committed.
for information about supported devices. two measurements and the rest would differ.

Note: This property is not available when Auto Zero is configured to Once because the amount of
time between the first

The following table lists the characteristics of this property.

Characteristic | Value

Datatype float in seconds or datetime.timedelta
Permissions read only

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Measurement:Measure Record Delta Time
» C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_DELTA_TIME

measure_record_length

nidcpower.Session.measure_record_length
Specifies how many measurements compose a measure record. When this property is set to
a value greater than 1, the nidcpower. Session.measure_when property must be set to
AUTOMATICALLY AFTER SOURCE_COMPLETE or ON_MEASURE_TRIGGER. for information
about supported devices. Valid Values: 1 to 16,777,216 Default Value: 1

7.1. nidcpower module

43

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: This property is not available in a session involving multiple channels.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Measurement:Measure Record Length
» C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH

measure_record_length_is_finite

nidcpower.Session.measure_record_length_is_finite

Specifies whether to take continuous measurements. Call the nidcpower. Session.abort ()
method to stop continuous measurements. When this property is set to False and the nidcpower.
Session.source_mode property is set to SINGLE_POINT, the nidcpower.Session.
measure_when property must be set to AUTOMATICALLY AFTER SOURCE COMPLETE oOr
ON_MEASURE_TRIGGER. When this property is set to False and the nidcpower. Session.
source_mode property is set to SEQUENCE, the nidcpower.Session.measure_when
property must be set to ON_MEASURE_TRIGGER. for information about supported devices. Default
Value: True

Note: This property is not available in a session involving multiple channels.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Measure Record Length Is Finite
e C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH_IS_FINITE

44 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

measure_trigger_type

nidcpower.Session.measure_trigger_type
Specifies the behavior of the Measure trigger. for information about supported devices. Default
Value: DIGITAL EDGE

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.TriggerType
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Measure Trigger:Trigger Type
* C Attribute: NIDCPOWER_ATTR_MEASURE_TRIGGER_TYPE

measure_when

nidcpower.Session.measure_when

Specifies when the measure unit should acquire measurements. Unless this property is con-
figured to ON_MEASURE_TRIGGER, the nidcpower.Session.measure_trigger._type
property is ignored. Refer to the Acquiring Measurements topic in the NI DC Power Sup-
plies and SMUs Help for more information about how to configure your measurements. De-
fault Value: If the nidcpower. Session. source_mode property is set to SINGLE _POINT,
the default value is ON_DEMAND. This value supports only the nidcpower.Session.
measure () method and nidcpower.Session.measure _multiple () method. If the
nidcpower.Session.source_mode property is set to SEQUENCE, the default value is
AUTOMATICALLY AFTER _SOURCE_COMPLETE. This value supports only the nidcpower.
Session.fetch multiple () method.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.MeasureWhen
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Measure When
e C Attribute: NIDCPOWER_ATTR_MEASURE_WHEN

7.1. nidcpower module 45

NI Modular Instruments Python APl Documentation, Release 1.0.1

output_capacitance

nidcpower.Session.output_capacitance
Specifies whether to use a low or high capacitance on the output for the specified channel(s). for
information about supported devices. Refer to the NI PXI-4130 Output Capacitance Selection topic
in the NI DC Power Supplies and SMUs Help for more information about capacitance.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].output_capacitance = var
var = session.channels[0,1].output_capacitance

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.OutputCapacitance
Permissions read-write

Channel Based | True

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Advanced:Output Capacitance
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CAPACITANCE

output_connected

nidcpower.Session.output_connected
Specifies whether the output relay is connected (closed) or disconnected (open). The nidcpower.
Session.output_enabled property does not change based on this property; they are inde-
pendent of each other. about supported devices. Set this property to False to disconnect the output
terminal from the output. to the output terminal might discharge unless the relay is disconnected.
Excessive connecting and disconnecting of the output can cause premature wear on the relay. De-
fault Value: True

Note: Only disconnect the output when disconnecting is necessary for your application. For exam-
ple, a battery connected

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can

46 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .output_connected = var
var = session.channels[0,1].output_connected

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Output Connected
» C Attribute: NIDCPOWER_ATTR_OUTPUT_CONNECTED

output_enabled

nidcpower.Session.output_enabled

Specifies whether the output is enabled (True) or disabled (False). Depending on the value you spec-
ify for the nidcpower. Session.output_ function property, you also must set the voltage
level or current level in addition to enabling the output the nidcpower.Session.initiate ()
method. Refer to the Programming States topic in the NI DC Power Supplies and SMUs Help for
more information about NI-DCPower programming states. Default Value: The default value is True
if you use the nidcpower.Session.__init__ () method to open the session. Otherwise the
default value is False, including when you use a calibration session or the deprecated programming
model.

Note: If the session is in the Committed or Uncommitted states, enabling the output does not take
effect until you call

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .output_enabled = var
var = session.channels[0, 1] .output_enabled

The following table lists the characteristics of this property.

7.1. nidcpower module a7

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Output Enabled
» C Attribute: NIDCPOWER_ATTR_OUTPUT_ENABLED

output_function

nidcpower.Session.output_function

Configures the method to generate on the specified channel(s). @ When DC_VOLTAGE
is selected, the device generates the desired voltage level on the output as long as
the output current is below the current limit. You can use the following properties
to configure the channel when DC _VOLTAGE 1is selected: nidcpower.Session.
voltage_level nidcpower.Session.current_limit nidcpower.Session.
current_1limit_high nidcpower.Session.current_limit_low nidcpower.
Session.voltage level_ range nidcpower.Session.current_limit_range
When DC_CURRENT is selected, the device generates the desired current level on the out-
put as long as the output voltage is below the voltage limit. You can use the following
properties to configure the channel when DC_CURRENT is selected: nidcpower.Session.
current_level nidcpower.Session.voltage limit nidcpower.Session.
voltage_limit_high nidcpower.Session.voltage limit_low nidcpower.
Session.current_level_ range nidcpower.Session.voltage_limit_range
Default Value: DC_VOLTAGE

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels [0, 1] .output_function = var
session.channels[0, 1] .output_function

var

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.OutputFunction
Permissions read-write

Channel Based | True

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Output Function

48 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

» C Attribute: NIDCPOWER_ATTR_OUTPUT_FUNCTION

output_resistance

nidcpower.Session.output_resistance
Specifies the output resistance that the device attempts to generate for the specified channel(s). This
property is available only when you set the nidcpower. Session.output_function prop-
erty on a support device. Refer to a supported device’s topic about output resistance for more infor-
mation about selecting an output resistance. about supported devices. Default Value: 0.0

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic
for information

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .output_resistance = var
var = session.channels[0,1].output_resistance

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Resistance
* C Attribute: NIDCPOWER_ATTR_OUTPUT_RESISTANCE

overranging_enabled

nidcpower.Session.overranging enabled
Specifies whether NI-DCPower allows setting the voltage level, current level, voltage limit and
current limit outside the device specification limits. True means that overranging is enabled. Refer
to the Ranges topic in the NI DC Power Supplies and SMUs Help for more information about
overranging. Default Value: False

The following table lists the characteristics of this property.

7.1. nidcpower module

49

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:Overranging Enabled
* C Attribute: NIDCPOWER_ATTR_OVERRANGING_ENABLED

ovp_enabled

nidcpower.Session.ovp_enabled
Enables (True) or disables (False) overvoltage protection (OVP). Refer to the Output Overvoltage
Protection topic in the NI DC Power Supplies and SMUs Help for more information about overvolt-
age protection. for information about supported devices. Default Value: False

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:OVP Enabled
e C Attribute: NIDCPOWER_ATTR_OVP_ENABLED

ovp_limit

nidcpower.Session.ovp_limit
Determines the voltage limit, in volts, beyond which overvoltage protection (OVP) engages. for
information about supported devices. Valid Values: 2 V to 210 V Default Value: 210 V

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

50 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:OVP Limit
» C Attribute: NIDCPOWER_ATTR_OVP_LIMIT

power_line_frequency

nidcpower.Session.power_line_frequency
Specifies the power line frequency for specified channel(s). NI-DCPower uses this value to select a
timebase for setting the nidcpower. Session.aperture time property in power line cycles
(PLCs). in the NI DC Power Supplies and SMUs Help for information about supported devices.
Default Value: NIDCPOWER_VAIL_60_HERTZ

Note: This property is not supported by all devices. Refer to the Supported Properties by Device
topic

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .power_line_frequency = var
var = session.channels[0, 1] .power_line_frequency

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

¢ LabVIEW Property: Measurement:Power Line Frequency

7.1. nidcpower module 51

NI Modular Instruments Python APl Documentation, Release 1.0.1

» C Attribute: NIDCPOWER_ATTR_POWER_LINE_FREQUENCY

power_source

nidcpower.Session.power_source

Specifies the power source to use. NI-DCPower switches the power source used by the device to
the specified value. Default Value: AUTOMATIC is set to AUTOMATIC. However, if the session is
in the Committed or Uncommitted state when you set this property, the power source selection only

occurs after you call the nidcpower.Session.initiate () method.

Note: Automatic selection is not persistent and occurs only at the time this property

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.PowerSource
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Advanced:Power Source
* C Attribute: NIDCPOWER_ATTR_POWER_SOURCE

power_source_in_use

nidcpower.Session.power_source_in_use
Indicates whether the device is using the internal or auxiliary power source to generate power.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.PowerSourceInUse
Permissions read only

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

* LabVIEW Property: Advanced:Power Source In Use

* C Attribute: NIDCPOWER_ATTR_POWER_SOURCE_IN_USE

52

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

pulse_bias_current_level

nidcpower.Session.pulse_bias_current_level
Specifies the pulse bias current level, in amps, that the device attempts to generate on the specified
channel(s) during the off phase of a pulse. This property is applicable only if the nidcpower.
Session.output_function property is set to PULSE_CURRENT. Valid Values: The valid
values for this property are defined by the values you specify for the nidcpower. Session.
pulse_current_level_ range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .pulse_bias_current_level = var
var = session.channels[0,1] .pulse_bias_current_level

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Current:Pulse Bias Current Level
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LEVEL

pulse_bias_current_limit

nidcpower.Session.pulse_bias_current_limit
Specifies the pulse bias current limit, in amps, that the output cannot exceed when generating the
desired pulse bias voltage on the specified channel(s) during the off phase of a pulse. This prop-
erty is applicable only if the nidcpower. Session.output_function property is set to
PULSE_VOLTAGE. Valid Values: The valid values for this property are defined by the values you
specify for the nidcpower. Session.pulse_current_limit_range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

7.1. nidcpower module 53

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .pulse_bias_current_limit = var
var = session.channels[0,1].pulse_bias_current_limit

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit
e C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT

pulse_bias_current_limit_high

nidcpower.Session.pulse_bias_current_ limit_high
Specifies the maximum current, in amps, that the output can produce when gen-
erating the desired pulse voltage on the specified channel(s) during the off phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry.html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__

property is set to Pulse Voltage. You must also specify a Pulse Bias Current
Limit Low <p:py:meth: ‘nidcpower.Session.PulseBiasCurrentLimitLow.html>‘__ to com-
plete the asymmetric range. Valid Values: [1% of Pulse Current Limit Range

<p:py:meth: ‘nidcpower.Session. PulseCurrentLimitRange.html>‘__, Pulse Current Limit Range
<p:py:meth: ‘nidcpower.Session. PulseCurrentLimitRange.html>‘__] The range bounded by the
limit high and limit low must include zero. Default Value: Refer to Supported Properties by Device
for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled html>‘__ property is set to TRUE or if the
Output Method <p:py:meth: ‘nidcpower.Session. OutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-

54 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.0.1

cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .pulse_bias_current_limit_high = var
var = session.channels[0,1] .pulse_bias_current_limit_high

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit High
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT_HIGH

pulse_bias_current_limit_low

nidcpower.Session.pulse_bias_current_limit_low

Specifies the minimum current, in amps, that the output can produce when gen-
erating the desired pulse voltage on the specified channel(s) during the off phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry. html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__
property is set to Pulse Voltage. You must also specify a Pulse Bias Cur-
rent Limit High <p:py:meth: ‘nidcpower.Session. PulseBiasCurrentLimitHigh.html>‘__
to complete the asymmetric range. Valid Values: [-Pulse Current Limit Range
<p:py:meth: ‘nidcpower.Session. PulseCurrentLimitRange.html>‘__, -1% of Pulse Current Limit
Range <p:py:meth: ‘nidcpower.Session. PulseCurrentLimitRange html>‘__] The range bounded by
the limit high and limit low must include zero. Default Value: Refer to Supported Properties by
Device for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled html>‘__ property is set to TRUE or if the
Output Method <p:py:meth: ‘nidcpower.Session. OutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can

7.1. nidcpower module 55

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.0.1

specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .pulse_bias_current_limit_low = var
var = session.channels[0,1].pulse_bias_current_limit_low

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit Low
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS CURRENT_LIMIT_LOW

pulse_bias_delay

nidcpower.Session.pulse_bias_delay
Determines when, in seconds, the device generates the Pulse Complete event after generating the off
level of a pulse. Valid Values: 0 to 167 seconds Default Value: 16.67 milliseconds

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .pulse_bias_delay = var
var = session.channels[0,1].pulse_bias_delay

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

56 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

* LabVIEW Property: Source:Advanced:Pulse Bias Delay
e C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_DELAY

pulse_bias_voltage_level

nidcpower.Session.pulse_bias_voltage_level
Specifies the pulse bias voltage level, in volts, that the device attempts to generate on the specified
channel(s) during the off phase of a pulse. This property is applicable only if the nidcpower.
Session.output_function property is set to PULSE_VOLTAGE. Valid Values: The valid
values for this property are defined by the values you specify for the nidcpower. Session.
pulse_voltage level range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .pulse_bias_voltage_level = var
var = session.channels[0,1] .pulse_bias_voltage_level

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Voltage:Pulse Bias Voltage Level
» C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LEVEL

pulse_bias_voltage_limit

nidcpower.Session.pulse_bias_voltage_limit
Specifies the pulse voltage limit, in volts, that the output cannot exceed when generating the de-
sired current on the specified channel(s) during the off phase of a pulse. This property is applicable
only if the nidcpower. Session.output_function property is set to PULSE_CURRENT.
Valid Values: The valid values for this property are defined by the values you specify for the
nidcpower.Session.pulse_voltage_limit_range property.

7.1. nidcpower module 57

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .pulse_bias_voltage_limit = var
var = session.channels[0,1] .pulse_bias_voltage_limit

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT

pulse_bias_voltage_limit_high

nidcpower.Session.pulse_bias_voltage limit_high

Specifies the maximum voltage, in volts, that the output can produce when gen-
erating the desired pulse current on the specified channel(s) during the off phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry.html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__
property is set to Pulse Current. You must also specify a Pulse Bias Voltage
Limit Low <p:py:meth: ‘nidcpower.Session.PulseBiasVoltageLimitLow.html>‘__ to com-
plete the asymmetric range. Valid Values: [1% of Pulse Voltage Limit Range
<p:py:meth: ‘nidcpower.Session. PulseVoltageLimitRange.html>‘__, Pulse Voltage Limit Range
<p:py:meth: ‘nidcpower.Session. PulseVoltageLimitRange.html>‘__] The range bounded by the
limit high and limit low must include zero. Default Value: Refer to Supported Properties by Device
for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled html>‘__ property is set to TRUE or if the
Output Method <p:py:meth: ‘nidcpower.Session. OutputFunction.html>‘__ property is set to a puls-
ing method.

58 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .pulse_bias_voltage_limit_high = var
var = session.channels[0,1] .pulse_bias_voltage_limit_high

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit High
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT _HIGH

pulse_bias_voltage_limit_low

nidcpower.Session.pulse_bias_voltage limit_low
Specifies the minimum voltage, in volts, that the output can produce when gen-
erating the desired pulse current on the specified channel(s) during the off phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry.html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__

property is set to Pulse Current. You must also specify a Pulse Bias Volt-
age Limit High <p:py:meth: ‘nidcpower.Session.PulseBiasVoltageLimitHigh.html>‘__
to complete the asymmetric range. Valid Values: [-Pulse Voltage Limit Range

<p:py:meth: ‘nidcpower.Session. PulseVoltageLimitRange.html>‘__, -1% of Pulse Voltage Limit
Range <p:py:meth: ‘nidcpower.Session.PulseVoltageLimitRange.html>‘__] The range bounded by
the limit high and limit low must include zero. Default Value: Refer to Supported Properties by
Device for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled html>‘__ property is set to TRUE or if the
Output Method <p:py:meth: ‘nidcpower.Session. OutputFunction.html>‘__ property is set to a puls-
ing method.

7.1. nidcpower module 59

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .pulse_bias_voltage_limit_low = var
var = session.channels[0,1].pulse_bias_voltage_limit_low

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit Low
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT_LOW

pulse_complete_event_output_terminal

nidcpower.Session.pulse_complete_event_output_terminal
Specifies the output terminal for exporting the Pulse Complete event. Output terminals can be spec-
ified in one of two ways. If the device is named Devl and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0. Default Value:The default value for PXI Express devices is 250 ns.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Pulse Complete Event:Output Terminal

60 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

* C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_OUTPUT_TERMINAL

pulse_complete_event_pulse_polarity

nidcpower.Session.pulse_complete_event_pulse_polarity
Specifies the behavior of the Pulse Complete event. Default Value: H7GH

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.Polarity
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Pulse Complete Event:Pulse:Polarity
e C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT PULSE_POLARITY

pulse_complete_event_pulse_width

nidcpower.Session.pulse_complete_event_pulse_width
Specifies the width of the Pulse Complete event, in seconds. The minimum event pulse width value
for PXI Express devices is 250 ns. The maximum event pulse width value for PXI Express devices
is 1.6 microseconds. Default Value: The default value for PXI Express devices is 250 ns.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Pulse Complete Event:Pulse:Width
* C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_PULSE_WIDTH

7.1. nidcpower module 61

NI Modular Instruments Python APl Documentation, Release 1.0.1

pulse_current_level

nidcpower.Session.pulse_current_level
Specifies the pulse current level, in amps, that the device attempts to generate on the specified
channel(s) during the on phase of a pulse. This property is applicable only if the nidcpower.
Session.output_function property is set to PULSE _CURRENT. Valid Values: The valid
values for this property are defined by the values you specify for the nidcpower. Session.
pulse_current_level range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .pulse_current_level = var
var = session.channels[0,1].pulse_current_level

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Current:Pulse Current Level
* C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LEVEL

pulse_current_level_range

nidcpower.Session.pulse_current_ level_ range
Specifies the pulse current level range, in amps, for the specified channel(s). The range defines
the valid values to which you can set the pulse current level and pulse bias current level. This
property is applicable only if the nidcpower. Session. output_function property is setto
PULSE_CURRENT. For valid ranges, refer to the ranges topic for your device in the NI DC Power
Supplies and SMUs Help.

62 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].pulse_current_level_range = var
var = session.channels[0,1].pulse_current_level_ range

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Current:Pulse Current Level Range
e C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LEVEL_RANGE

pulse_current_limit

nidcpower.Session.pulse_current_limit

Specifies the pulse current limit, in amps, that the output cannot exceed when generating
the desired pulse voltage on the specified channel(s) during the on phase of a pulse. This
property is applicable only if the nidcpower.Session.output_function property is
set to PULSE_VOLTAGE and the nidcpower.Session.compliance_limit_symmetry
property is set to NIDCPOWER_VAL_SYMMETRIC. Valid Values: The valid values for
this property are defined by the values you specify for the nidcpower.Session.
pulse current_limit range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can

7.1. nidcpower module 63

NI Modular Instruments Python APl Documentation, Release 1.0.1

specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .pulse_current_limit = var
var = session.channels[0,1] .pulse_current_limit

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit
» C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT

pulse_current_limit_high

nidcpower.Session.pulse_current_limit_high
Specifies the maximum current, in amps, that the output can produce when gen-
erating the desired pulse voltage on the specified channel(s) during the on phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__

property is set to Pulse Voltage. You must also specify a Pulse Current
Limit Low <p:py:meth: ‘nidcpower.Session. PulseCurrentLimitLow.html>‘__ to com-
plete the asymmetric range. Valid Values: [1% of Pulse Current Limit Range

<p:py:meth: ‘nidcpower.Session. PulseCurrentLimitRange html>‘__, Pulse Current Limit Range
<p:py:meth: ‘nidcpower.Session. PulseCurrentLimitRange.html>‘__] The range bounded by the
limit high and limit low must include zero. Default Value: Refer to Supported Properties by Device
for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled html>‘__ property is set to TRUE or if the
Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

64 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.0.1

session.channels[0, 1] .pulse_current_limit_high = wvar
var = session.channels[0,1].pulse_current_limit_high

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit High
* C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT HIGH

pulse_current_limit_low

nidcpower.Session.pulse_current_limit_low
Specifies the minimum current, in amps, that the output can produce when gen-
erating the desired pulse voltage on the specified channel(s) during the on phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry. html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__

property is set to Pulse Voltage. You must also specify a Pulse Current
Limit High <p:py:meth: ‘nidcpower.Session.PulseCurrentLimitHigh.-html>‘__ to com-
plete the asymmetric range. Valid Values: [-Pulse Current Limit Range

<p:py:meth: ‘nidcpower.Session. PulseCurrentLimitRange.html>‘__, -1% of Pulse Current Limit
Range <p:py:meth: ‘nidcpower.Session.PulseCurrentLimitRange html>‘__] The range bounded by
the limit high and limit low must include zero. Default Value: Refer to Supported Properties by
Device for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled html>‘__ property is set to TRUE or if the
Output Method <p:py:meth: ‘nidcpower.Session. OutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

7.1. nidcpower module 65

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.0.1

session.channels[0, 1] .pulse_current_limit_low = var
var = session.channels[0,1].pulse_current_limit_low

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit Low
e C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_LOW

pulse_current_limit_range

nidcpower.Session.pulse_current_limit_range
Specifies the pulse current limit range, in amps, for the specified channel(s). The range defines
the valid values to which you can set the pulse current limit and pulse bias current limit. This
property is applicable only if the nidcpower. Session.output_function property is set to
PULSE_VOLTAGE. For valid ranges, refer to the ranges topic for your device in the NI DC Power
Supplies and SMUs Help.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .pulse_current_limit_range = var
var = session.channels[0,1].pulse_current_limit_range

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

66 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

e LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit Range
* C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_RANGE

pulse_off_time

nidcpower.Session.pulse_off time
Determines the length, in seconds, of the off phase of a pulse. Valid Values: 10 microseconds to 167
seconds Default Value: 34 milliseconds

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .pulse_off_time = var
var = session.channels[0,1].pulse_off_time

The following table lists the characteristics of this property.

Characteristic | Value

Datatype float in seconds or datetime.timedelta
Permissions read-write

Channel Based | True

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Pulse Off Time
e C Attribute: NIDCPOWER_ATTR_PULSE_OFF_TIME

pulse_on_time

nidcpower.Session.pulse_on_time
Determines the length, in seconds, of the on phase of a pulse. Valid Values: 10 microseconds to 167
seconds Default Value: 34 milliseconds

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

7.1. nidcpower module 67

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .pulse_on_time = var
var = session.channels[0,1].pulse_on_time

The following table lists the characteristics of this property.

Characteristic | Value

Datatype float in seconds or datetime.timedelta
Permissions read-write

Channel Based | True

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Pulse On Time
e C Attribute: NIDCPOWER_ATTR_PULSE_ON_TIME

pulse_trigger_type

nidcpower.Session.pulse_trigger_type
Specifies the behavior of the Pulse trigger. Default Value: NONE

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.TriggerType
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Triggers:Pulse Trigger:Trigger Type
* C Attribute: NIDCPOWER_ATTR_PULSE_TRIGGER_TYPE

68 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

pulse_voltage level

nidcpower.Session.pulse_voltage_level
Specifies the pulse current limit, in amps, that the output cannot exceed when generating the desired
pulse voltage on the specified channel(s) during the on phase of a pulse. This property is applicable
only if the nidcpower. Session.output_function property is set to PULSE_VOLTAGE.
Valid Values: The valid values for this property are defined by the values you specify for the
nidcpower.Session.pulse_current_limit_range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].pulse_voltage_level = var
var = session.channels[0,1] .pulse_voltage_level

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Voltage:Pulse Voltage Level
* C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LEVEL

pulse_voltage level_range

nidcpower.Session.pulse_voltage_level_range
Specifies the pulse voltage level range, in volts, for the specified channel(s). The range defines
the valid values at which you can set the pulse voltage level and pulse bias voltage level. This
property is applicable only if the nidcpower. Session.output_function property is set to
PULSE_VOLTAGE. For valid ranges, refer to the ranges topic for your device in the NI DC Power
Supplies and SMUs Help.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

7.1. nidcpower module 69

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .pulse_voltage_level_range = var
var = session.channels[0,1].pulse_voltage_level_range

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Voltage:Pulse Voltage Level Range
e C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LEVEL_RANGE

pulse_voltage_limit

nidcpower.Session.pulse_voltage_limit

Specifies the pulse voltage limit, in volts, that the output cannot exceed when generating
the desired pulse current on the specified channel(s) during the on phase of a pulse. This
property is applicable only if the nidcpower.Session.output_function property is
set to PULSE_CURRENT and the nidcpower.Session.compliance limit_symmetry
property is set to NIDCPOWER_VAL_SYMMETRIC. Valid Values: The valid values for
this property are defined by the values you specify for the nidcpower.Session.
pulse_voltage_ limit_range property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].pulse_voltage_limit = var
var = session.channels[0,1].pulse_voltage_limit

70 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit
e C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT

pulse_voltage_limit_high

nidcpower.Session.pulse_voltage_limit_high
Specifies the maximum voltage, in volts, that the output can produce when gen-
erating the desired pulse current on the specified channel(s) during the on phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry.html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__

property is set to Pulse Current. You must also specify a Pulse Voltage
Limit Low <p:py:meth: ‘nidcpower.Session.PulseVoltageLimitLow.html>‘__ to com-
plete the asymmetric range. Valid Values: [1% of Pulse Voltage Limit Range

<p:py:meth: ‘nidcpower.Session. PulseVoltageLimitRange.html>‘__, Pulse Voltage Limit Range
<p:py:meth: ‘nidcpower.Session. PulseVoltageLimitRange.html>‘__] The range bounded by the
limit high and limit low must include zero. Default Value: Refer to Supported Properties by Device
for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled html>‘__ property is set to TRUE or if the
Output Method <p:py:meth: ‘nidcpower.Session. OutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .pulse_voltage_limit_high = var
var = session.channels[0,1].pulse_voltage_limit_high

The following table lists the characteristics of this property.

7.1. nidcpower module 4

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit High
* C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_HIGH

pulse_voltage_limit_low

nidcpower.Session.pulse_voltage_limit_low
Specifies the minimum voltage, in volts, that the output can produce when gen-
erating the desired pulse current on the specified channel(s) during the on phase
of a pulse. This property is applicable only if the Compliance Limit Symmetry
<p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry html>‘__ property is set to Asym-
metric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__

property is set to Pulse Current. You must also specify a Pulse Volt-
age Limit High <p:py:meth: ‘nidcpower.Session.PulseVoltageLimitHigh.html>‘__ to
complete the asymmetric range. Valid Values: [-Pulse Voltage Limit Range

<p:py:meth: ‘nidcpower.Session. PulseVoltageLimitRange.html>‘__, -1% of Pulse Voltage Limit
Range <p:py:meth: ‘nidcpower.Session.PulseVoltageLimitRange.html>‘__] The range bounded by
the limit high and limit low must include zero. Default Value: Refer to Supported Properties by
Device for the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled html>‘__ property is set to TRUE or if the
Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__ property is set to a puls-
ing method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .pulse_voltage_limit_low = var
var = session.channels[0,1].pulse_voltage_limit_low

The following table lists the characteristics of this property.

72 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit Low
* C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_LOW

pulse_voltage limit_range

nidcpower.Session.pulse_voltage_limit_range
Specifies the pulse voltage limit range, in volts, for the specified channel(s). The range defines
the valid values to which you can set the pulse voltage limit and pulse bias voltage limit. This
property is applicable only if the nidcpower. Session.output_function property is set to
PULSE_CURRENT. For valid ranges, refer to the ranges topic for your device in the NI DC Power
Supplies and SMUs Help.

Note: The channel must be enabled for the specified current limit to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the
output channel.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .pulse_voltage_limit_range = var
var = session.channels[0,1].pulse_voltage_limit_range

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit Range
* C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_RANGE

7.1. nidcpower module 73

NI Modular Instruments Python APl Documentation, Release 1.0.1

query_instrument_status

nidcpower.Session.query_instrument_status
Specifies whether NI-DCPower queries the device status after each operation. Querying the device
status is useful for debugging. After you validate your program, you can set this property to False
to disable status checking and maximize performance. NI-DCPower ignores status checking for
particular properties regardless of the setting of this property. Use the nidcpower.Session.
__init_ () method to override this value. Default Value: True

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Inherent IVI Attributes:User Options:Query Instrument Status
» C Attribute: NIDCPOWER_ATTR_QUERY_INSTRUMENT_STATUS

ready_for_pulse_trigger_event_output_terminal

nidcpower.Session.ready_ for_pulse_trigger_ event_output_terminal
Specifies the output terminal for exporting the Ready For Pulse Trigger event. Output terminals
can be specified in one of two ways. If the device is named Devl and your terminal is PXI_Trig0,
you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the
shortened terminal name, PXI_Trig0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Ready For Pulse Trigger Event:Output Terminal
* C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_OUTPUT_TERMINAL

74 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

ready_for_pulse_trigger_event_pulse_polarity

nidcpower.Session.ready_for pulse_trigger_ event_pulse_polarity
Specifies the behavior of the Ready For Pulse Trigger event. Default Value: H1GH

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.Polarity
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Events:Ready For Pulse Trigger Event:Pulse:Polarity
* C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_PULSE_POLARITY

ready_for_pulse_trigger_event_pulse_width

nidcpower.Session.ready_ for_pulse trigger_ event_pulse_ width
Specifies the width of the Ready For Pulse Trigger event, in seconds. The minimum event pulse
width value for PXI Express devices is 250 ns. The maximum event pulse width value for all
devices is 1.6 microseconds. Default Value: The default value for PXI Express devices is 250 ns

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information about supported devices.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Ready For Pulse Trigger Event:Pulse:Width
» C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_PULSE_WIDTH

7.1. nidcpower module 75

NI Modular Instruments Python APl Documentation, Release 1.0.1

reset_average_ before_measurement

nidcpower.Session.reset_average_before_measurement

Specifies whether the measurement returned from any measurement call starts with a new mea-
surement call (True) or returns a measurement that has already begun or completed(False).
for information about supported devices. When you set the nidcpower.Session.
samples_to_average property in the Running state, the output channel measurements might
move out of synchronization. While NI-DCPower automatically synchronizes measurements upon
the initialization of a session, you can force a synchronization in the running state before you
run the nidcpower.Session.measure _multiple () method. To force a synchroniza-
tion in the running state, set this property to True, and then run the nidcpower.Session.
measure_multiple () method, specifying all channels in the channel name parameter. You can
setthe nidcpower. Session.reset_average_before measurement property to False
after the nidcpower. Session.measure _multiple () method completes. Default Value:
True

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].reset_average_before_measurement = var
var = session.channels[0,1].reset_average_before_measurement

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Reset Average Before Measurement
e C Attribute: NIDCPOWER_ATTR_RESET_AVERAGE_BEFORE_MEASUREMENT

samples_to_average

nidcpower.Session.samples_to_average
Specifies the number of samples to average when you take a measurement. Increasing the num-
ber of samples to average decreases measurement noise but increases the time required to take a
measurement. Refer to the NI PXI-4110, NI PXI-4130, NI PXI-4132, or NI PXIe-4154 Averag-
ing topic for optional property settings to improve immunity to certain noise types, or refer to the

76 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

NI PXIe-4140/4141 DC Noise Rejection, NI PXIe-4142/4143 DC Noise Rejection, or NI PXIe-
4144/4145 DC Noise Rejection topic for information about improving noise immunity for those
devices. Default Value: NI PXI-4110 or NI PXI-4130—10 NI PX1-4132—1 NI PXIe-4112—1 NI
PXlIe-4113—1 NI PXIe-4140/4141—1 NI PXIe-4142/4143—1 NI PXle-4144/4145—1 NI PXle-
4154—500

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].samples_to_average = var
var = session.channels[0,1].samples_to_average

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Samples To Average
* C Attribute: NIDCPOWER_ATTR_SAMPLES_TO_AVERAGE

self_calibration_persistence

nidcpower.Session.self calibration persistence

Specifies whether the values calculated during self-calibration should be written to hardware
to be used until the next self-calibration or only used until the nidcpower.Session.
reset_device () method is called or the machine is powered down. This property affects the be-
havior of the nidcpower. Session.self cal () method. When set to KEEP_TN_MEMORY,
the values calculated by the nidcpower.Session.self cal () method are used in
the existing session, as well as in all further sessions until you call the nidcpower.
Session.reset_device () method or restart the machine. When you set this property
to WRITE TO_FEEPROM, the values calculated by the nidcpower.Session.self cal ()
method are written to hardware and used in the existing session and in all subsequent sessions
until another call to the nidcpower. Session.self cal () method is made. about supported
devices. Default Value: KEEP TN MEMORY

Note: This property is not supported by all devices. Refer to Supported Properties by Device for
information

The following table lists the characteristics of this property.

7.1. nidcpower module 77

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value

Datatype enums.SelfCalibrationPersistence
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Advanced:Self-Calibration Persistence
» C Attribute: NIDCPOWER_ATTR_SELF_CALIBRATION_PERSISTENCE

sense

nidcpower.Session.sense
Selects either local or remote sensing of the output voltage for the specified channel(s). Refer to the
Local and Remote Sense topic in the NI DC Power Supplies and SMUs Help for more information
about sensing voltage on supported channels and about devices that support local and/or remote
sensing. Default Value: The default value is LOCAL if the device supports local sense. Otherwise,
the default and only supported value is REMOTE.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].sense = var
var = session.channels[0,1].sense

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.Sense
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Measurement:Sense
* C Attribute: NIDCPOWER_ATTR_SENSE

sequence_advance_trigger_type

nidcpower.Session.sequence_advance_trigger_type
Specifies the behavior of the Sequence Advance trigger. for information about supported devices.

78 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Default Value: NONE

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.TriggerType
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Sequence Advance Trigger:Trigger Type
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_ADVANCE_TRIGGER_TYPE

sequence_engine_done_event_output_terminal

nidcpower.Session.sequence_engine_done_event_output_terminal
Specifies the output terminal for exporting the Sequence Engine Done Complete event. for informa-
tion about supported devices. Output terminals can be specified in one of two ways. If the device is
named Devl and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified
terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_TrigO0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Sequence Engine Done Event:Output Terminal
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_OUTPUT_TERMINAL

sequence_engine_done_event_pulse_polarity

nidcpower.Session.sequence_engine_done_event_pulse_polarity
Specifies the behavior of the Sequence Engine Done event. for information about supported devices.
Default Value: HIGH

7.1. nidcpower module 79

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.Polarity
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Events:Sequence Engine Done Event:Pulse:Polarity
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_ PULSE POLARITY

sequence_engine_done_event_pulse_width

nidcpower.Session.sequence_engine_done_event_pulse_width
Specifies the width of the Sequence Engine Done event, in seconds. The minimum event pulse width
value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is
250 ns. The maximum event pulse width value for all devices is 1.6 microseconds. for information
about supported devices. Valid Values: 1.5e-7 to 1.6e-6 seconds Default Value: The default value
for PXI devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Sequence Engine Done Event:Pulse:Width
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_PULSE_WIDTH

sequence_iteration_complete_event_output_terminal

nidcpower.Session.sequence_iteration_complete_event_output_terminal
Specifies the output terminal for exporting the Sequence Iteration Complete event. for information
about supported devices. Output terminals can be specified in one of two ways. If the device is

80 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

named Devl and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified
terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_TrigO0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Sequence Iteration Complete Event:Output Terminal
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_OUTPUT_TERMINAL

sequence_iteration_complete_event_pulse_polarity

nidcpower.Session.sequence_iteration_ complete_event_pulse_ polarity
Specifies the behavior of the Sequence Iteration Complete event. for information about supported
devices. Default Value: HIGH

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.Polarity
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Events:Sequence Iteration Complete Event:Pulse:Polarity
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_PULSE_POLARITY

sequence_iteration_complete_event_pulse_width

nidcpower.Session.sequence_iteration_complete_event_pulse_width
Specifies the width of the Sequence Iteration Complete event, in seconds. The minimum event pulse
width value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express
devices is 250 ns. The maximum event pulse width value for all devices is 1.6 microseconds. the NI

7.1. nidcpower module 81

NI Modular Instruments Python APl Documentation, Release 1.0.1

DC Power Supplies and SMUs Help for information about supported devices. Valid Values: 1.5e-7
to 1.6e-6 seconds Default Value: The default value for PXI devices is 150 ns. The default value for
PXI Express devices is 250 ns.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic
in

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Sequence Iteration Complete Event:Pulse: Width
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_PULSE WIDTH

sequence_loop_count

nidcpower.Session.sequence_loop_count
Specifies the number of times a sequence is run after initiation. Refer to the Sequence Source
Mode topic in the NI DC Power Supplies and SMUs Help for more information about the se-
quence loop count. for information about supported devices. When the nidcpower. Session.
sequence_loop_count_1is_finite property is set to False, the nidcpower. Session.
sequence_loop_count property is ignored. Valid Range: 1 to 134217727 Default Value: 1

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Advanced:Sequence Loop Count
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_LOOP_COUNT

82 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

sequence_loop_count_is_finite

nidcpower.Session.sequence_loop_count_is_finite
Specifies whether a sequence should repeat indefinitely. Refer to the Sequence Source Mode topic
in the NI DC Power Supplies and SMUs Help for more information about infinite sequencing.
nidcpower.Session.sequence_loop_count_is_finite property is set to False, the
nidcpower.Session.sequence_loop_count property is ignored. Default Value: True

Note: This property is not supported by all devices. When the

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Sequence Loop Count Is Finite
» C Attribute: NIDCPOWER_ATTR_SEQUENCE_LOOP_COUNT_IS_FINITE

simulate

nidcpower.Session.simulate
Specifies whether to simulate NI-DCPower I/O operations. True specifies that operation is simu-
lated. Default Value: False

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Inherent IVI Attributes:User Options:Simulate
* C Attribute: NIDCPOWER_ATTR_SIMULATE

source_complete_event_output_terminal

nidcpower.Session.source_complete_event_ output_terminal
Specifies the output terminal for exporting the Source Complete event. for information about sup-

7.1. nidcpower module 83

NI Modular Instruments Python APl Documentation, Release 1.0.1

ported devices. Output terminals can be specified in one of two ways. If the device is named Devl
and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name,
/Dev1/PXI_Trig0, or with the shortened terminal name, PXI_TrigO0.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Source Complete Event:Output Terminal
e C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_OUTPUT_TERMINAL

source_complete_event_pulse_polarity

nidcpower.Session.source_complete event_ pulse_polarity
Specifies the behavior of the Source Complete event. for information about supported devices.
Default Value: HIGH

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.Polarity
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Source Complete Event:Pulse:Polarity
* C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_PULSE_POLARITY

source_complete_event_pulse_width

nidcpower.Session.source_complete_event_pulse_width
Specifies the width of the Source Complete event, in seconds. for information about supported
devices. The minimum event pulse width value for PXI devices is 150 ns, and the minimum event

84 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

pulse width value for PXI Express devices is 250 ns. The maximum event pulse width value for all
devices is 1.6 microseconds Valid Values: 1.5e-7 to 1.6e-6 seconds Default Value: The default value
for PXI devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Events:Source Complete Event:Pulse: Width

e C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_PULSE_WIDTH

source_delay

nidcpower.Session.source_delay
Determines when, in seconds, the device generates the Source Complete event, potentially
starting a measurement if the nidcpower.Session.measure when property is set to
AUTOMATICALLY AFTER _SOURCE_COMPLETE. Refer to the Single Point Source Mode and
Sequence Source Mode topics for more information. Valid Values: 0 to 167 seconds Default Value:

0.01667 seconds

Note: Refer to Supported Properties by Device for information about supported devices.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session

repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .source_delay = var
var = session.channels[0,1].source_delay

The following table lists the characteristics of this property.

Characteristic | Value

Datatype float in seconds or datetime.timedelta
Permissions read-write

Channel Based | True

Resettable No

7.1. nidcpower module

85

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:Source Delay
* C Attribute: NIDCPOWER_ATTR_SOURCE_DELAY

source_mode

nidcpower.Session.source_mode
Specifies whether to run a single output point or a sequence. Refer to the Single Point Source
Mode and Sequence Source Mode topics in the NI DC Power Supplies and SMUs Help for more
information about source modes. Default value: STNGLE POINT

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.SourceMode
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Source Mode
e C Attribute: NIDCPOWER_ATTR_SOURCE_MODE

source_trigger_type

nidcpower.Session.source_trigger_type
Specifies the behavior of the Source trigger. for information about supported devices. Default Value:

NONE

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums. TriggerType
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Source Trigger:Trigger Type
* C Attribute: NIDCPOWER_ATTR_SOURCE_TRIGGER_TYPE

86 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

specific_driver_description

nidcpower.Session.specific_driver_description
Contains a brief description of the specific driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Driver Identification:Description
* C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_prefix

nidcpower.Session.specific_driver prefix
Contains the prefix for NI-DCPower. The name of each user-callable method in NI-DCPower begins
with this prefix.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Prefix
* C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_PREFIX

specific_driver_revision

nidcpower.Session.specific_driver_ revision
Contains additional version information about NI-DCPower.

The following table lists the characteristics of this property.

7.1. nidcpower module 87

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Driver Identification:Revision
* C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

nidcpower.Session.specific_driver_vendor
Contains the name of the vendor that supplies NI-DCPower.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Vendor
* C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_VENDOR

start_trigger_type

nidcpower.Session.start_trigger_type
Specifies the behavior of the Start trigger. for information about supported devices. Default Value:
NONE

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.TriggerType
Permissions read-write

Channel Based | False

Resettable No

88 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Triggers:Start Trigger:Trigger Type
» C Attribute: NIDCPOWER_ATTR_START_TRIGGER_TYPE

supported_instrument_models

nidcpower.Session.supported_instrument_models
Contains a comma-separated (,) list of supported NI-DCPower device models.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Supported Instrument
Models

» C Attribute: NIDCPOWER_ATTR_SUPPORTED_INSTRUMENT_MODELS

transient_response

nidcpower.Session.transient_response
Specifies the transient response. Refer to the Transient Response topic in the NI DC Power Supplies
and SMUs Help for more information about transient response. for information about supported
devices. Default Value: NORMAL

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].transient_response = var
var = session.channels[0,1].transient_response

The following table lists the characteristics of this property.

7.1. nidcpower module 89

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value

Datatype enums.TransientResponse
Permissions read-write

Channel Based | True

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Transient Response
» C Attribute: NIDCPOWER_ATTR_TRANSIENT_RESPONSE

voltage_compensation_frequency

nidcpower.Session.voltage_compensation_frequency
The frequency at which a pole-zero pair is added to the system when the channel is in Constant
Voltage mode. for information about supported devices. Default value: Determined by the value of
the NORMAL setting of the nidcpower. Session.transient response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0, 1] .voltage_compensation_frequency = var
var = session.channels[0,1].voltage_compensation_frequency

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Source:Custom Transient Response:Voltage:Compensation Fre-
quency

» C Attribute: NIDCPOWER_ATTR_VOLTAGE_COMPENSATION_FREQUENCY

90 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

voltage_gain_bandwidth

nidcpower.Session.voltage_gain_bandwidth
The frequency at which the unloaded loop gain extrapolates to O dB in the absence of additional
poles and zeroes. This property takes effect when the channel is in Constant Voltage mode. for
information about supported devices. Default Value: Determined by the value of the NORMAL setting
of the nidcpower. Session.transient_response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].voltage_gain_bandwidth = var
var = session.channels[0,1].voltage_gain_bandwidth

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Custom Transient Response: Voltage: Gain Bandwidth
* C Attribute: NIDCPOWER_ATTR_VOLTAGE_GAIN_BANDWIDTH

voltage_level

nidcpower.Session.voltage_level
Specifies the voltage level, in volts, that the device attempts to generate on the specified channel(s).
This property is applicable only if the nidcpower. Session.output_function property is
set to DC_VOLTAGE. nidcpower.Session.output_enabled property for more informa-
tion about enabling the output channel. Valid Values: The valid values for this property are defined
by the values you specify for the nidcpower. Session.voltage level range property.

Note: The channel must be enabled for the specified voltage level to take effect. Refer to the

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

7.1. nidcpower module 91

NI Modular Instruments Python APl Documentation, Release 1.0.1

session.channels[0,1] .voltage_level = var
var = session.channels[0,1].voltage_level

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Voltage: Voltage Level
* C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL

voltage level autorange

nidcpower.Session.voltage_level_autorange

Specifies whether NI-DCPower automatically selects the voltage level range based on the desired
voltage level for the specified channel(s). If you set this property to ON, NI-DCPower ignores
any changes you make to the nidcpower. Session.voltage_level_ range property. If
you change the nidcpower. Session.voltage_level_ autorange property from ON to
OFF, NI-DCPower retains the last value the nidcpower. Session.voltage level_ range
property was set to (or the default value if the property was never set) and uses that value as
the voltage level range. Query the nidcpower.Session.voltage level_ range prop-
erty by using the nidcpower.Session._get_attribute_vi_int32 () method for in-
formation about which range NI-DCPower automatically selects. The nidcpower. Session.
voltage level autorange property is applicable only if the nidcpower.Session.
output_ function property is set to DC_VOLTAGE. Default Value: OFF

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .voltage_level_autorange = var
var = session.channels[0,1].voltage_level_autorange

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | True
Resettable No

92 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:DC Voltage: Voltage Level Autorange
* C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL_AUTORANGE

voltage level_range

nidcpower.Session.voltage_level_range

Specifies the voltage level range, in volts, for the specified channel(s). The range defines
the valid values to which the voltage level can be set. Use the nidcpower.Session.
voltage level autorange property to enable automatic selection of the voltage level
range. The nidcpower. Session.voltage_level_range property is applicable only if the
nidcpower.Session.output_function property is setto DC_VOLTAGE. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs
Help.

Note: The channel must be enabled for the specified voltage level range to take effect. Refer to the

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .voltage_level_range = var
var = session.channels[0,1].voltage_level_range

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:DC Voltage: Voltage Level Range
* C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL_RANGE

voltage_limit

nidcpower.Session.voltage_limit
Specifies the voltage limit, in volts, that the output cannot exceed when generat-
ing the desired current level on the specified channels. This property is applicable

7.1. nidcpower module 93

NI Modular Instruments Python APl Documentation, Release 1.0.1

only if the nidcpower.Session.output_function property is set to DC_CURRENT
and the nidcpower.Session.compliance_limit_symmetry property is set to
NIDCPOWER_VAL_SYMMETRIC. nidcpower.Session.output_enabled property for
more information about enabling the output channel. Valid Values: The valid values for this prop-
erty are defined by the values to which the nidcpower. Session.voltage_limit_range
property is set.

Note: The channel must be enabled for the specified current level to take effect. Refer to the

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .voltage_limit = var
var = session.channels[0,1].voltage_limit

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Current:Voltage Limit
» C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT

voltage_limit_autorange

nidcpower.Session.voltage_limit_autorange
Specifies whether NI-DCPower automatically selects the voltage limit range based on the desired
voltage limit for the specified channel(s). If this property is set to ON, NI-DCPower ignores
any changes you make to the nidcpower.Session.voltage limit_range property. If
you change the nidcpower. Session.voltage_limit_autorange property from ON to
OFF, NI-DCPower retains the last value the nidcpower. Session.voltage_limit_range
property was set to (or the default value if the property was never set) and uses that value
as the voltage limit range. Query the nidcpower.Session.voltage limit range
property by using the nidcpower.Session._get_attribute_vi_int32 () method
to find out which range NI-DCPower automatically selects. The nidcpower.Session.

94 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

voltage limit_autorange property is applicable only if the nidcpower.Session.
output_ function property is set to DC_CURRENT. Default Value: OFF

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1] .voltage_limit_autorange = var
var = session.channels[0,1].voltage_limit_autorange

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Current:Voltage Limit Autorange
» C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_AUTORANGE

voltage_limit_high

nidcpower.Session.voltage_limit_high
Specifies the maximum voltage, in volts, that the output can produce when generating the desired
current on the specified channel(s). This property is applicable only if the Compliance Limit
Symmetry <p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry.html>‘__ property is set to
Asymmetric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__

property is set to DC Current. You must also specify a Volrage
Limit Low <p:py:meth: ‘nidcpower.Session.VoltageLimitLow.html>*__ to com-
plete the asymmetric range. Valid Values: [1% of Voltage Limit Range

<p:py:meth: ‘nidcpower.Session.VoltageLimitRange html>‘__, Voltage Limit Range
<p:py:meth: ‘nidcpower.Session.VoltageLimitRange html>‘__] The range bounded by the limit
high and limit low must include zero. Default Value: Refer to Supported Properties by Device for
the default value by device. Related Topics: Ranges Changing Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled html>‘__ property is set to TRUE.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can

7.1. nidcpower module 95

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.0.1

specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].voltage_limit_high = var
var = session.channels[0,1].voltage_limit_high

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Current:Voltage Limit High
» C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_HIGH

voltage_limit_low

nidcpower.Session.voltage_limit_low

Specifies the minimum voltage, in volts, that the output can produce when generating the desired
current on the specified channel(s). This property is applicable only if the Compliance Limit
Symmetry <p:py:meth: ‘nidcpower.Session. ComplianceLimitSymmetry.html>‘__ property is set to
Asymmetric and the Output Method <p:py:meth: ‘nidcpower.Session.OutputFunction.html>‘__
property is set to DC Current. You must also specify a Voltage Limit High
<p:py:meth: ‘nidcpower.Session.VoltageLimitHigh.html>‘__ to complete the asymmetric range.
Valid Values: [-Voltage Limit Range <p:py:meth: ‘nidcpower.Session.VoltageLimitRange . html>*__,
-1% of Voltage Limit Range <p:py:meth: ‘nidcpower.Session.VoltageLimitRange.html>‘__] The
range bounded by the limit high and limit low must include zero. Default Value: Refer to Sup-
ported Properties by Device for the default value by device. Related Topics: Ranges Changing
Ranges Overranging

Note: The limit may be extended beyond the selected limit range if the Overranging Enabled
<p:py:meth: ‘nidcpower.Session.OverrangingEnabled . html>‘__ property is set to TRUE.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].voltage_limit_low = var
var = session.channels[0,1].voltage_limit_low

96 Chapter 7. License

NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/SupportedProperties.html
NI_DC_Power_Supplies_Help.chm::/ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/changing_ranges.html
NI_DC_Power_Supplies_Help.chm::/overranging.html

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Current:Voltage Limit Low
e C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_LOW

voltage_limit_range

nidcpower.Session.voltage_limit_range

Specifies the voltage limit range, in volts, for the specified channel(s). The range defines
the valid values to which the voltage limit can be set. Use the nidcpower.Session.
voltage limit_autorange property to enable automatic selection of the voltage limit
range. The nidcpower. Session.voltage limit_range property is applicable only if the
nidcpower.Session.output_function property is set to DC_CURRENT. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs
Help.

Note: The channel must be enabled for the specified voltage limit range to take effect. Refer to the

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].voltage_limit_range = var
var = session.channels[0,1].voltage_limit_range

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 97

NI Modular Instruments Python APl Documentation, Release 1.0.1

e LabVIEW Property: Source:DC Current:Voltage Limit Range
* C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_RANGE

voltage_pole_zero_ratio

nidcpower.Session.voltage_pole_zero_ratio
The ratio of the pole frequency to the zero frequency when the channel is in Constant Voltage mode.
for information about supported devices. Default value: Determined by the value of the NORMAL
setting of the nidcpower.Session.transient_response property.

Note: This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip: This property can use repeated capabilities (channels). If set or get directly on the nid-
cpower.Session object, then the set/get will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling set/get value on the result.:

session.channels[0,1].voltage_pole_zero_ratio = var
var = session.channels[0,1].voltage_pole_zero_ratio

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | True
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Custom Transient Response: Voltage:Pole-Zero Ratio
e C Attribute: NIDCPOWER_ATTR_VOLTAGE_POLE_ZERO_RATIO

Methods

abort

nidcpower.Session.abort ()
Transitions the NI-DCPower session from the Running state to the Committed state. If a sequence is
running, it is stopped. Any configuration methods called after this method are not applied until the
nidcpower.Session.initiate () method is called. If power output is enabled when you
call the nidcpower. Session.abort () method, the output channels remain in their current
state and continue providing power.

98 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Use the nidcpower.Session.ConfigureOutputEnabled () method to disable power
output on a per channel basis. Use the nidcpower.Session.reset () method to disable
output on all channels.

Refer to the Programming States topic in the NI DC Power Supplies and SMUs Help for information
about the specific NI-DCPower software states.

Related Topics:

Programming States

Note: One or more of the referenced methods are not in the Python API for this driver.

commit

nidcpower.Session.commit ()
Applies previously configured settings to the device. Calling this method moves the NI-DCPower
session from the Uncommitted state into the Committed state. After calling this method, modifying
any property reverts the NI-DCPower session to the Uncommitted state. Use the nidcpower.
Session.initiate () method to transition to the Running state. Refer to the Programming
States topic in the NI DC Power Supplies and SMUs Help for details about the specific NI-DCPower
software states.

Related Topics:

Programming States

configure_aperture_time

nidcpower.Session.configure_aperture_time (aperture_time,

units=nidcpower.ApertureTime Units. SECONDS)
Configures the aperture time on the specified channel(s).

The supported values depend on the units. Refer to the Aperture Time topic for your device in the
NI DC Power Supplies and SMUs Help for more information. In general, devices support discrete
apertureTime values, and if you configure apertureTime to some unsupported value, NI-DCPower
coerces it up to the next supported value.

Refer to the Measurement Configuration and Timing or DC Noise Rejection topic for your device
in the NI DC Power Supplies and SMUs Help for more information about how to configure your
measurements.

Related Topics:

Aperture Time

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method requires repeated capabilities (channels). If called directly on the nid-
cpower.Session object, then the method will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling this method on the result.:

7.1. nidcpower module 99

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)

NI Modular Instruments Python APl Documentation, Release 1.0.1

session.channels[0,1].configure_aperture_time (aperture_time,
—units=nidcpower.ApertureTimeUnits.SECONDS)

Parameters

* aperture_time (float) — Specifies the aperture time. Refer to the Aperture
Time topic for your device in the NI DC Power Supplies and SMUs Help for more
information.

* units (nidcpower.ApertureTimeUnits) — Specifies the units for aper-
tureTime. Defined Values:

SECONDS (1028) Specifies seconds.
POWER_LINE_CYCLES (1029) | Specifies Power Line Cycles.

disable

nidcpower.Session.disable ()
This method performs the same actions as the nidcpower. Session. reset () method, except
that this method also immediately sets the nidcpower. Session.output_enabled property
to False.

This method opens the output relay on devices that have an output relay.

fetch_multiple

nidcpower.Session.fetch_multiple (count, timeout=datetime.timedelta(seconds=1.0))
Returns a list of named tuples (Measurement) that were previously taken and are stored in
the NI-DCPower buffer. This method should not be used when the nidcpower. Session.
measure_when property is set to ON_DEMAND. You must first call nidcpower.Session.
initiate () before calling this method.

Fields in Measurement:
* voltage (float)
¢ current (float)

¢ in_compliance (bool)

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method requires repeated capabilities (channels). If called directly on the nid-
cpower.Session object, then the method will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling this method on the result.:

session.channels[0,1].fetch_multiple (count, timeout=datetime.
—~timedelta (seconds=1.0))

100 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm,supportedfunctions)

NI Modular Instruments Python APl Documentation, Release 1.0.1

Parameters

e count (int)— Specifies the number of measurements to fetch.

* timeout (float in seconds or datetime.timedelta) — Specifies
the maximum time allowed for this method to complete. If the method does not
complete within this time interval, NI-DCPower returns an error.

Note: When setting the timeout interval, ensure you take into account any triggers
so that the timeout interval is long enough for your application.

Return type list of Measurement
Returns
List of named tuples with fields:
* voltage (float)
¢ current (float)

* in_compliance (bool)
get_channel_name

nidcpower.Session.get_channel_name (index)
Retrieves the output channelName that corresponds to the requested index. Use the nidcpower.
Session.channel_count property to determine the upper bound of valid values for index.

Tip: This method requires repeated capabilities (channels). If called directly on the nid-
cpower.Session object, then the method will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling this method on the result.:

session.channels[0,1].get_channel_name (index)

Parameters index (int) — Specifies which output channel name to return. The index
values begin at 1.

get_ext_cal_last_date_and_time

nidcpower.Session.get_ext_cal_last_date_and time()
Returns the date and time of the last successful calibration.

Return type datetime.datetime

Returns Indicates date and time of the last calibration.
get_ext_cal_last_temp

nidcpower.Session.get_ext_cal_last_temp ()

Returns the onboard temperature of the device, in degrees Celsius, during the last successful exter-
nal calibration.

7.1. nidcpower module 101

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime

NI Modular Instruments Python APl Documentation, Release 1.0.1

Return type float

Returns Returns the onboard temperature of the device, in degrees Celsius, during the
last successful external calibration.

get_ext_cal_recommended_interval

nidcpower.Session.get_ext_cal_recommended interval ()
Returns the recommended maximum interval, in months, between external calibrations.

Return type datetime.timedelta

Returns Specifies the recommended maximum interval, in months, between external cal-
ibrations.

get_self_cal_last date_and_time

nidcpower.Session.get_self cal_last_date_and time()
Returns the date and time of the oldest successful self-calibration from among the channels in the
session.

Note: This method is not supported on all devices.

Return type datetime.datetime

Returns Returns the date and time the device was last calibrated.

get_self _cal_last_temp

nidcpower.Session.get_self cal_last_temp ()
Returns the onboard temperature of the device, in degrees Celsius, during the oldest successful self-
calibration from among the channels in the session.

For example, if you have a session using channels 1 and 2, and you perform a self-calibration
on channel 1 with a device temperature of 25 degrees Celsius at 2:00, and a self-calibration was
performed on channel 2 at 27 degrees Celsius at 3:00 on the same day, this method returns 25 for
the temperature parameter.

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Return type float

Returns Returns the onboard temperature of the device, in degrees Celsius, during the
oldest successful calibration.

102 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

lock

nidcpower.Session.lock ()
Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:
* The application called the nidcpower. Session.lock () method.

¢ A call to NI-DCPower locked the session.

e After a call to the nidcpower. Session. lock () method returns successfully, no other threads can
access the device session until you call the nidcpower. Session.unlock () method or exit out of
the with block when using lock context manager.

e Use the nidcpower.Session.lock () method and the nidcpower.Session.unlock ()
method around a sequence of calls to instrument driver methods if you require that the device retain its
settings through the end of the sequence.

You can safely make nested calls to the nidcpower. Session. lock () method within the same thread. To
completely unlock the session, you must balance each call to the nidcpower. Session. lock () method
with a call to the nidcpower. Session.unlock () method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

with nidcpower.Session('devl') as session:
with session.lock():

Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type context manager

Returns When used in a with statement, nidcpower.Session. lock () acts as a context man-
ager and unlock will be called when the with block is exited

measure

nidcpower.Session.measure (measurement_type)
Returns the measured value of either the voltage or current on the specified output channel. Each call
to this method blocks other method calls until the hardware returns the measurement. To measure
multiple output channels, use the nidcpower. Session.measure_multiple () method.

Tip: This method requires repeated capabilities (channels). If called directly on the nid-
cpower.Session object, then the method will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling this method on the result.:

session.channels[0,1] .measure (measurement_type)

Parameters measurement_type (nidcpower.Measurement Types)— Specifies
whether a voltage or current value is measured. Defined Values:

7.1. nidcpower module 103

NI Modular Instruments Python APl Documentation, Release 1.0.1

VOLTAGE (1) | The device measures voltage.
CURRENT (0) | The device measures current.

Return type float

Returns Returns the value of the measurement, either in volts for voltage or amps for
current.

measure_multiple

nidcpower.Session.measure_multiple ()
Returns a list of named tuples (Measurement) containing the measured voltage and current values
on the specified output channel(s). Each call to this method blocks other method calls until the
measurements are returned from the device. The order of the measurements returned in the array
corresponds to the order on the specified output channel(s).

Fields in Measurement:
* voltage (float)
¢ current (float)

¢ in_compliance (bool) - Always None

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method requires repeated capabilities (channels). If called directly on the nid-
cpower.Session object, then the method will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling this method on the result.:

session.channels[0,1] .measure_multiple ()

Return type list of Measurement
Returns
List of named tuples with fields:
* voltage (float)
¢ current (float)

¢ in_compliance (bool) - Always None

query_in_compliance

nidcpower.Session.query_in_compliance ()
Queries the specified output device to determine if it is operating at the compliance limit.

The compliance limit is the current limit when the output method is set to DC_VOLTAGE. If the
output is operating at the compliance limit, the output reaches the current limit before the desired

104 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm,supportedfunctions)

NI Modular Instruments Python APl Documentation, Release 1.0.1

voltage level. Refer to the nidcpower.Session.ConfigureOutputFunction () method
and the nidcpower.Session.ConfigureCurrentLimit () method for more information
about output method and current limit, respectively.

The compliance limit is the voltage limit when the output method is set to DC_CURRENT. If the
output is operating at the compliance limit, the output reaches the voltage limit before the desired
current level. Refer to the nidcpower.Session.ConfigureOutputFunction () method
and the nidcpower.Session.ConfigureVoltageLimit () method for more information
about output method and voltage limit, respectively.

Related Topics:

Compliance

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This method requires repeated capabilities (channels). If called directly on the nid-
cpower.Session object, then the method will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling this method on the result.:

session.channels[0,1] .query_in_compliance ()

Return type bool

Returns Returns whether the device output channel is in compliance.

query_max_current_limit

nidcpower.Session.query_max_current_limit (voltage_level)
Queries the maximum current limit on an output channel if the output channel is set to the specified
voltageLevel.

Tip: This method requires repeated capabilities (channels). If called directly on the nid-
cpower.Session object, then the method will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling this method on the result.:

session.channels[0,1].query_max_current_limit (voltage_level)

Parameters voltage_level (float)— Specifies the voltage level to use when calcu-
lating the maxCurrentLimit.

Return type float

Returns Returns the maximum current limit that can be set with the specified volt-
ageLevel.

7.1. nidcpower module 105

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

query_max_voltage level

nidcpower.Session.query_max voltage_ level (current_limit)
Queries the maximum voltage level on an output channel if the output channel is set to the specified
currentLimit.

Tip: This method requires repeated capabilities (channels). If called directly on the nid-
cpower.Session object, then the method will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling this method on the result.:

session.channels[0, 1] .query_max_voltage_level (current_limit)

Parameters current_1limit (float)— Specifies the current limit to use when calcu-
lating the maxVoltageLevel.

Return type float

Returns Returns the maximum voltage level that can be set on an output channel with the
specified currentLimit.

query_min_current_limit

nidcpower.Session.query_min_current_limit (voltage_level)
Queries the minimum current limit on an output channel if the output channel is set to the specified
voltageLevel.

Tip: This method requires repeated capabilities (channels). If called directly on the nid-
cpower.Session object, then the method will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling this method on the result.:

session.channels[0,1] .query_min_current_limit (voltage_level)

Parameters voltage_level (f1oat)— Specifies the voltage level to use when calcu-
lating the minCurrentLimit.

Return type float

Returns Returns the minimum current limit that can be set on an output channel with the
specified voltageLevel.

query_output_state

nidcpower.Session.query_output_state (outpur_state)
Queries the specified output channel to determine if the output channel is currently in the state
specified by outputState.

Related Topics:

Compliance

106 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This method requires repeated capabilities (channels).
cpower.Session object, then the method will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session

repeated capabilities container, and calling this method on the result.:

If called directly on the nid-

session.channels[0, 1] .query_output_state (output_state)

Parameters output_state (nidcpower.OutputStates) — Specifies the output

state of the output channel that is being queried. Defined Values:

VOLTAGE (0)

The device maintains a constant voltage by adjusting the current.

CURRENT (1)

The device maintains a constant current by adjusting the voltage.

Return type bool

Returns Returns whether the device output channel is in the specified output state.

read_current_temperature

nidcpower.Session.read_ current_temperature ()
Returns the current onboard temperature, in degrees Celsius, of the device.

Return type float

Returns Returns the onboard temperature, in degrees Celsius, of the device.

reset

nidcpower.Session.reset ()

Resets the device to a known state. This method disables power generation, resets session properties
to their default values, commits the session properties, and leaves the session in the Uncommitted
state. Refer to the Programming States topic for more information about NI-DCPower software

states.

reset_device

nidcpower.Session.reset_device ()

Resets the device to a known state. The method disables power generation, resets session properties
to their default values, clears errors such as overtemperature and unexpected loss of auxiliary power,
commits the session properties, and leaves the session in the Uncommitted state. This method also
performs a hard reset on the device and driver software. This method has the same functionality
as using reset in Measurement & Automation Explorer. Refer to the Programming States topic for

more information about NI-DCPower software states.

This will also open the output relay on devices that have an output relay.

7.1. nidcpower module

107

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

reset_with_defaults

nidcpower.Session.reset_with_defaults ()
Resets the device to a known state. This method disables power generation, resets session properties
to their default values, commits the session properties, and leaves the session in the Running state. In
addition to exhibiting the behavior of the nidcpower. Session. reset () method, this method
can assign user-defined default values for configurable properties from the IVI configuration.

self_cal

nidcpower.Session.self cal ()
Performs a self-calibration upon the specified channel(s).

This method disables the output, performs several internal calculations, and updates calibration
values. The updated calibration values are written to the device hardware if the nidcpower.
Session.self calibration_persistence property issetto WRITE TO_ EEPROM. Re-
fer to the nidcpower.Session.self calibration_persistence property topic for
more information about the settings for this property.

When calling nidcpower. Session.self_cal () with the PXIe-4162/4163, specify all chan-
nels of your PXIe-4162/4163 with the channelName input. You cannot self-calibrate a subset of
PXIe-4162/4163 channels.

Refer to the Self-Calibration topic for more information about this method.
Related Topics:
Self-Calibration

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method requires repeated capabilities (channels). If called directly on the nid-
cpower.Session object, then the method will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling this method on the result.:

session.channels[0,1].self_cal()

self_test

nidcpower.Session.self_ test ()
Performs the device self-test routine and returns the test result(s). Calling this method implicitly
calls the nidcpower. Session.reset () method.

When calling nidcpower.Session.self test () with the PXle-4162/4163, specify
all channels of your PXIe-4162/4163 with the channels input of nidcpower.Session.
__init__ (). You cannot self test a subset of PXIe-4162/4163 channels.

Raises SelfTestError on self test failure. Properties on exception object:

¢ code - failure code from driver

108 Chapter 7. License

javascript:LaunchHelp('NI_DC_Power_Supplies_Help.chm::/programmingStates.html#running')
REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)

NI Modular Instruments Python APl Documentation, Release 1.0.1

* message - status message from driver

Self-Test Code | Description
0 Self test passed.
1 Self test failed.

send_software_edge_trigger

nidcpower.Session.send_software_edge_trigger (frigger)
Asserts the specified trigger. This method can override an external edge trigger.

Related Topics:

Triggers

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Parameters trigger (nidcpower.SendSoftwareEdgeTriggerType)— Spec-
ifies which trigger to assert. Defined Values:

NIDCPOWER_VAL_START_TRIGGER (1034) Asserts the Start trigger.
NIDCPOWER_VAL_SOURCE_TRIGGER (1035) | Asserts the Source trigger.
NIDCPOWER_VAL_MEASURE_TRIGGER Asserts the Measure trigger.
(1036)

NIDCPOWER_VAL_SEQUENCE_ADVANCE_TRIG@BRerts the Sequence Ad-
(1037) vance trigger.
NIDCPOWER_VAL_PULSE_TRIGGER (1053 Asserts the Pulse trigger.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

set_sequence

nidcpower.Session.set_sequence (values, source_delays)
Configures a series of voltage or current outputs and corresponding source delays. The source mode
must be set to Sequence for this method to take effect.

Refer to the Configuring the Source Unit topic in the NI DC Power Supplies and SMUs Help for
more information about how to configure your device.

Use this method in the Uncommitted or Committed programming states. Refer to the Programming
States topic in the NI DC Power Supplies and SMUs Help for more information about NI-DCPower
programming states.

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

7.1. nidcpower module 109

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This method requires repeated capabilities (channels). If called directly on the nid-
cpower.Session object, then the method will use all repeated capabilities in the session. You can
specify a subset of repeated capabilities using the Python index notation on an nidcpower.Session
repeated capabilities container, and calling this method on the result.:

session.channels[0,1].set_sequence (values, source_delays)

Parameters

* values (1ist of float) — Specifies the series of voltage levels or current
levels, depending on the configured output method. Valid values: The valid values
for this parameter are defined by the voltage level range or current level range.

* source_delays (list of float) — Specifies the source delay that follows
the configuration of each value in the sequence. Valid Values: The valid values are
between 0 and 167 seconds.

unlock

nidcpower.Session.unlock ()
Releases a lock that you acquired on an device session using nidcpower.Session.lock (). Refer to
nidcpower.Session.unlock () for additional information on session locks.

wait_for_event

nidcpower.Session.wait_for_event (event_id, timeout=datetime.timedelta(seconds=10.0))
Waits until the device has generated the specified event.

The session monitors whether each type of event has occurred at least once since the last time this
method or the nidcpower.Session.initiate () method were called. If an event has only
been generated once and you call this method successively, the method times out. Individual events
must be generated between separate calls of this method.

Note: Refer to Supported Methods by Device for more information about supported devices.

Parameters

* event_id (nidcpower.Event) — Specifies which event to wait for. Defined
Values:

110 Chapter 7. License

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)

NI Modular Instruments Python APl Documentation, Release 1.0.1

NIDCPOWER_VAL_SOURCE_COMPLETE_EVENWaits for the Source Com-
(1030) plete event.

NIDCPOWER_VAL_MEASURE_COMPLETE_EVEWEits for the Measure Com-
(1031) plete event.

NIDCPOWER_VAL_SEQUENCE_ITERATI ON__CWMKL‘R)TEQ&ESWHCG Itera-
(1032) tion Complete event.

NIDCPOWER_VAL_SEQUENCE_ENGINE_DONEWAEKA the Sequence En-
(1033) gine Done event.

NIDCPOWER_VAIL_PULSE_COMPLETE_EVENTWaits for the Pulse Complete
(1051) event.

NIDCPOWER_VAI_READY_FOR_PULSE_TRIGWaIR fovieIReady for Pulse
(1052) Trigger event.

Note:

One or more of the referenced values are not in the Python API for this

driver. Enums that only define values, or represent True/False, have been removed.

* timeout (float in seconds or datetime.timedelta) — Specifies
the maximum time allowed for this method to complete, in seconds. If the method
does not complete within this time interval, NI-DCPower returns an error.

Note:

When setting the timeout interval, ensure you take into account any triggers

so that the timeout interval is long enough for your application.

Properties

Property Datatype
nidcpower.Session.aperture_time float
nidcpower.Session.aperture_time_units ApertureTimeUnits
nidcpower.Session.auto_zero AutoZero
nidcpower.Session.auxiliary power_source _available bool
nidcpower.Session.channel_count int
nidcpower.Session.compliance_limit_symmetry ComplianceLimitSy
nidcpower.Session.current_compensation frequency float
nidcpower.Session.current_gain_bandwidth float
nidcpower.Session.current_level float
nidcpower.Session.current_level_ autorange bool
nidcpower.Session.current_level_ range float
nidcpower.Session.current_limit float
nidcpower.Session.current_limit_autorange bool
nidcpower.Session.current_limit_high float
nidcpower.Session.current_limit_low float
nidcpower.Session.current_limit_range float
nidcpower.Session.current_pole zero_ratio float
nidcpower.Session.dc_noise_rejection DCNoiseRejection
nidcpower.Session.digital_edge _measure_trigger_input_terminal str
nidcpower.Session.digital_edge pulse_trigger_ input_terminal str

Continued ©

7.1. nidcpower module 111

https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 2 — continued from previous page

Property Datatype
nidcpower.Session.digital_edge sequence_advance_trigger._ input_terminal | str
nidcpower.Session.digital_edge_source_trigger_input_terminal str
nidcpower.Session.digital_edge start_trigger_ input_terminal str
nidcpower.Session.driver._setup str
nidcpower.Session.exported measure trigger._output_terminal str
nidcpower.Session.exported_pulse_trigger_output_terminal str
nidcpower.Session.exported _sequence_advance_trigger_output_terminal str
nidcpower.Session.exported_source_trigger._output_terminal str
nidcpower.Session.exported _start_trigger_output_terminal str
nidcpower.Session.fetch _backlog int
nidcpower.Session.instrument_firmware revision str
nidcpower.Session.instrument_manufacturer str
nidcpower.Session.instrument_model str
nidcpower.Session.interlock_input_open bool
nidcpower.Session.io_resource_descriptor str
nidcpower.Session.logical_ name str
nidcpower.Session.measure_buffer_size int
nidcpower.Session.measure complete event_delay float in seconds or datetin
nidcpower.Session.measure_complete event_output_terminal str
nidcpower.Session.measure_complete _event_pulse_polarity Polarity
nidcpower.Session.measure_complete _event_pulse_width float
nidcpower.Session.measure record _delta_time float in seconds or datetin
nidcpower.Session.measure_record_length int
nidcpower.Session.measure_record _length is_finite bool
nidcpower.Session.measure_trigger._type TriggerType
nidcpower.Session.measure_when MeasureWhen
nidcpower.Session.output__capacitance OutputCapacitance
nidcpower.Session.output_connected bool
nidcpower.Session.output_enabled bool
nidcpower.Session.output_function OutputFunction
nidcpower.Session.output_resistance float
nidcpower.Session.overranging enabled bool
nidcpower.Session.ovp_enabled bool
nidcpower.Session.ovp_limit float
nidcpower.Session.power._line frequency float
nidcpower.Session.power._source PowerSource
nidcpower.Session.power_source_in_use PowerSourcelInUse
nidcpower.Session.pulse_bias_current_level float
nidcpower.Session.pulse_bias_current_limit float
nidcpower.Session.pulse_bias_current_limit_high float
nidcpower.Session.pulse_bias_current_limit_low float
nidcpower.Session.pulse_bias_delay float
nidcpower.Session.pulse _bias_voltage level float
nidcpower.Session.pulse_bias_voltage_limit float
nidcpower.Session.pulse_bias_voltage_ limit_high float
nidcpower.Session.pulse_bias_voltage_limit_low float
nidcpower.Session.pulse _complete_event_output_terminal str
nidcpower.Session.pulse_complete_event_pulse _polarity Polarity
nidcpower.Session.pulse_complete_event_pulse width float
Continued c
112 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 2 — continued from previous page

Property Datatype
nidcpower.Session.pulse_current_level float
nidcpower.Session.pulse_current_level_range float
nidcpower.Session.pulse_current_limit float
nidcpower.Session.pulse current_limit_high float
nidcpower.Session.pulse current_limit_low float
nidcpower.Session.pulse_current_limit_range float

nidcpower.Session

.pulse_off time

float in seconds or datetin

nidcpower.Session

.pulse_on_time

float in seconds or datetin

nidcpower.Session.pulse_trigger_ type TriggerType
nidcpower.Session.pulse_voltage_ level float
nidcpower.Session.pulse_voltage level range float
nidcpower.Session.pulse_voltage_ limit float
nidcpower.Session.pulse_voltage_limit_high float
nidcpower.Session.pulse_voltage limit_low float
nidcpower.Session.pulse_voltage limit_range float
nidcpower.Session.query_instrument_status bool
nidcpower.Session.ready_for_pulse_trigger_event_output_terminal str
nidcpower.Session.ready for pulse trigger event_ _pulse polarity Polarity
nidcpower.Session.ready_for_pulse trigger_event_pulse_width float
nidcpower.Session.reset_average before_measurement bool
nidcpower.Session.samples_to_average int
nidcpower.Session.self calibration persistence SelfCalibrationPe
nidcpower.Session.sense Sense
nidcpower.Session.sequence_advance_trigger._type TriggerType
nidcpower.Session.sequence_engine_done_event_output_terminal str
nidcpower.Session.sequence_engine_done_event_pulse_polarity Polarity
nidcpower.Session.sequence_engine_done_event_pulse width float
nidcpower.Session.sequence_iteration_complete event_output_terminal str
nidcpower.Session.sequence_iteration_complete_event_pulse_polarity Polarity
nidcpower.Session.sequence_iteration_complete_event_pulse_width float
nidcpower.Session.sequence_loop_count int
nidcpower.Session.sequence_loop_count_is _finite bool
nidcpower.Session.simulate bool
nidcpower.Session.source_complete_event_output_terminal str
nidcpower.Session.source_complete event_pulse_polarity Polarity
nidcpower.Session.source_complete_event_pulse_width float
nidcpower.Session.source_delay float in seconds or datetin
nidcpower.Session.source_mode SourceMode
nidcpower.Session.source_trigger._type TriggerType
nidcpower.Session.specific_driver_description str
nidcpower.Session.specific _driver prefix str
nidcpower.Session.specific _driver_revision str
nidcpower.Session.specific _driver._vendor str
nidcpower.Session.start_trigger_type TriggerType
nidcpower.Session.supported_instrument_models str

nidcpower.Session.

transient_response

TransientResponse

nidcpower.Session.

voltage_compensation frequency

float

nidcpower.Session.voltage _gain_bandwidth float
nidcpower.Session.voltage_ level float
Continued c
7.1. nidcpower module 113

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 2 — continued from previous page

Property Datatype
nidcpower.Session.voltage level_ autorange bool
nidcpower.Session.voltage_ level_ range float
nidcpower.Session.voltage limit float
nidcpower.Session.voltage limit_autorange bool
nidcpower.Session.voltage_limit_high float
nidcpower.Session.voltage limit_low float
nidcpower.Session.voltage_limit_range float
nidcpower.Session.voltage pole zero_ratio float
Methods
Method name
nidcpower.Session.abort ()
nidcpower.Session.commit ()
nidcpower.Session.configure_aperture_time ()
nidcpower.Session.disable ()
nidcpower.Session.fetch multiple ()
nidcpower.Session.get_channel_name ()
nidcpower.Session.get_ext_cal_last_date_and_time ()
nidcpower.Session.get_ext_cal_last_temp ()
nidcpower.Session.get_ext_cal_ recommended_interval ()
nidcpower.Session.get_self_cal_last_date_and_time ()
nidcpower.Session.get_self cal_last_temp ()
nidcpower.Session.lock ()
nidcpower.Session.measure ()
nidcpower.Session.measure _multiple ()
nidcpower.Session.query_in_compliance ()
nidcpower.Session.query_max_current_limit ()
nidcpower.Session.query_max_voltage_level ()
nidcpower.Session.query_min_current_limit ()
nidcpower.Session.query_output_state()
nidcpower.Session.read current_temperature ()
nidcpower.Session.reset ()
nidcpower.Session.reset_device ()
nidcpower.Session.reset_with_defaults()
nidcpower.Session.self cal/()
nidcpower.Session.self_ _test ()
nidcpower.Session.send_software_edge_trigger ()
nidcpower.Session.set_sequence ()
nidcpower.Session.unlock ()
nidcpower.Session.wait_for._event ()
7.1.3.2 Enums

Enums used in NI-DCPower

114

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

ApertureTimeUnits

class nidcpower.ApertureTimeUnits

SECONDS
Specifies aperture time in seconds.

POWER_LINE_CYCLES
Specifies aperture time in power line cycles (PLCs).

AutoZero

class nidcpower.AutoZero

OFF
Disables auto zero.

ON
Makes zero conversions for every measurement.

ONCE
Makes zero conversions following the first measurement after initiating the device. The device uses these
zero conversions for the preceding measurement and future measurements until the device is reinitiated.

ComplianceLimitSymmetry

class nidcpower.ComplianceLimitSymmetry

SYMMETRIC
Compliance limits are specified symmetrically about 0.

ASYMMETRIC
Compliance limits can be specified asymmetrically with respect to 0.

DCNoiseRejection

class nidcpower .DCNoiseRejection
SECOND_ORDER

Second-order rejection of DC noise.

NORMAL
Normal rejection of DC noise.

Event

class nidcpower.Event

SOURCE_COMPLETE

7.1. nidcpower module 115

NI Modular Instruments Python APl Documentation, Release 1.0.1

MEASURE_COMPLETE
SEQUENCE_ITERATION COMPLETE
SEQUENCE_ENGINE_DONE
PULSE_COMPLETE

READY FOR_PULSE_TRIGGER

MeasureWhen

class nidcpower.MeasureWhen

AUTOMATICALLY AFTER_SOURCE_COMPLETE
Acquires a measurement after each Source Complete event completes.

ON_DEMAND

Acquires a measurement when the nidcpower.Session.measure () method or nidcpower.
Session.measure_multiple () method is called.

ON_MEASURE_TRIGGER
Acquires a measurement when a Measure trigger is received.

MeasurementTypes
class nidcpower.MeasurementTypes

CURRENT
The device measures current.

VOLTAGE
The device measures voltage.

OutputCapacitance
class nidcpower.OutputCapacitance

LOW
Output Capacitance is low.

HIGH
Output Capacitance is high.

OutputFunction
class nidcpower.OutputFunction

DC_VOLTAGE
Sets the output method to DC voltage.

DC_CURRENT
Sets the output method to DC current.

116 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

PULSE_VOLTAGE
Sets the output method to pulse voltage.

PULSE_CURRENT
Sets the output method to pulse current.

OutputStates

class nidcpower.OutputStates

VOLTAGE
The device maintains a constant voltage by adjusting the current

CURRENT
The device maintains a constant current by adjusting the voltage.

Polarity

class nidcpower.Polarity

HIGH
A high pulse occurs when the event is generated. The exported signal is low level both before and after the
event is generated.

LOW
A low pulse occurs when the event is generated. The exported signal is high level both before and after the
event is generated.

PowerSource

class nidcpower.PowerSource

INTERNAL
Uses the PXI chassis power source.

AUXILIARY
Uses the auxiliary power source connected to the device.

AUTOMATIC
Uses the auxiliary power source if it is available; otherwise uses the PXI chassis power source.

PowerSourcelnUse

class nidcpower.PowerSourceInUse

INTERNAL
Uses the PXIT chassis power source.

7.1. nidcpower module 117

NI Modular Instruments Python APl Documentation, Release 1.0.1

AUXILIARY
Uses the auxiliary power source connected to the device. Only the NI PXI-4110, NI PXIe-4112, NI PXIe-

4113, and NI PXI-4130 support this value. This is the only supported value for the NI PXIe-4112 and NI
PXle-4113.

SelfCalibrationPersistence

class nidcpower.SelfCalibrationPersistence

KEEP_IN_MEMORY
Keep new self calibration values in memory only.

WRITE_TO_ EEPROM
Write new self calibration values to hardware.

SendSoftwareEdgeTriggerType

class nidcpower.SendSoftwareEdgeTriggerType

START

SOURCE

MEASURE
SEQUENCE_ADVANCE

PULSE

Sense

class nidcpower.Sense

LOCAL
Local sensing is selected.

REMOTE
Remote sensing is selected.

SourceMode

class nidcpower.SourceMode

SINGLE_POINT
The source unit applies a single source configuration.

SEQUENCE
The source unit applies a list of voltage or current configurations sequentially.

118 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

TransientResponse
class nidcpower.TransientResponse

NORMAL
The output responds to changes in load at a normal speed.

FAST
The output responds to changes in load quickly.

SLOW
The output responds to changes in load slowly.

CUSTOM
The output responds to changes in load based on specified values.

TriggerType
class nidcpower.TriggerType

NONE
No trigger is configured.

DIGITAL_EDGE
The data operation starts when a digital edge is detected.

SOFTWARE_EDGE
The data operation starts when a software trigger occurs.

7.1.3.3 Exceptions and Warnings

DriverError

exception nidcpower.DriverError
An error originating from the NI-DCPower driver

UnsupportedConfigurationError

exception nidcpower.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

DriverNotInstalledError

exception nidcpower.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

InvalidRepeatedCapabilityError

exception nidcpower.InvalidRepeatedCapabilityError
An error due to an invalid character in a repeated capability

7.1. nidcpower module 119

20

21

22

23

24

25

26

27

28

29

NI Modular Instruments Python APl Documentation, Release 1.0.1

SelfTestError

exception nidcpower.SelfTestError
An error due to a failed self-test

DriverWarning

exception nidcpower.DriverWarning
A warning originating from the NI-DCPower driver

7.1.3.4 Examples

nidcpower_measure_record.py

Listing 1: (nidcpower_measure_record.py)

#!/usr/bin/python

import argparse
import nidcpower
import sys

def example (resource_name, channels, options, voltage, length):
with nidcpower.Session (resource_name=resource_name, channels=channels,
—options=options) as session:

Configure the session.

session.measure_record_length = length

session.measure_record_length_is_finite = True

session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_
—~COMPLETE

session.voltage_level = voltage

session.commit ()
print ('Effective measurement rate: {0} S/s'.format (session.measure_record_
—~delta_time / 1))

samples_acquired = 0
print (' # Voltage Current In Compliance')
row_format = '{0:3d}: {1:8.6f} {2:8.6f} {3}

with session.initiate():
while samples_acquired < length:
measurements = session.fetch_multiple (count=session.fetch_backloqg)
samples_acquired += len (measurements)
for i in range(len(measurements)) :
print (row_format.format (i, measurements[i].voltage,
—measurements[i] .current, measurements[i].in_compliance))

def _main(argsv):

parser = argparse.ArgumentParser (description='Outputs the specified voltage, then_
—takes the specified number of voltage and current readings.', formatter_
—class=argparse.ArgumentDefaultsHelpFormatter)

(continues on next page)

120 Chapter 7. License

https://github.com/ni/nimi-python/blob/master/src/nidcpower/examples/nidcpower_measure_record.py

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

NI Modular Instruments Python APl Documentation, Release 1.0.1

(continued from previous page)

parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2', help='Resource,
—name of a National Instruments SMU')

parser.add_argument ('-c', '—--channels', default='0"', help='Channel(s) to use')

parser.add_argument ('-1', '—--length', default='20"', type=int, help='Measure
—record length'")

parser.add_argument ('-v', '—--voltage', default=5.0, type=float, help='Voltage,
—level (V) ')

parser.add_argument ('-op', '—--option-string', default='"', type=str, help='Option_
—string')

args = parser.parse_args (argsv)
example (args.resource_name, args.channels, args.option_string, args.voltage, args.
—length)

def main() :
_main(sys.argv([l:])

def test_example():
options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe
‘—"l }r }

example ('PXI1Slot2', '0', options, 5.0, 20)

def test_main():
cmd_line = ['—--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe
‘—"l]

_main (cmd_line)

if name == '__main__ ':

main ()

nidcpower_source_delay_measure.py

Listing 2: (nidcpower_source_delay_measure.py)

#!/usr/bin/python

import argparse
import datetime
import nidcpower
import sys

def print_fetched_measurements (measurements) :

print (' Voltage : {:f} V'.format (measurements[0].voltage))
print (' Current: {:f} A'.format (measurements[0].current))
print (' In compliance: {0}'.format (measurements[0].in_compliance))

def example (resource_name, channels, options, voltagel, voltage2, delay):

(continues on next page)

7.1. nidcpower module 121

https://github.com/ni/nimi-python/blob/master/src/nidcpower/examples/nidcpower_source_delay_measure.py

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

56

58

59

NI Modular Instruments Python APl Documentation, Release 1.0.1

(continued from previous page)

timeout = datetime.timedelta (seconds=(delay + 1.0))

with nidcpower.Session (resource_name=resource_name, channels=channels,
—options=options) as session:

Configure the session.
session.source_mode = nidcpower.SourceMode.SINGLE_POINT
session.output_function = nidcpower.OutputFunction.DC_VOLTAGE

session.current_limit = .06

session.voltage_level_range = 5.0
session.current_limit_range = .06

session.source_delay = datetime.timedelta (seconds=delay)

session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_
—COMPLETE
session.voltage_level = voltagel

with session.initiate():

print ('Voltage 1:")

print_fetched_measurements (session.fetch_multiple (count=1,
—timeout=timeout))

session.voltage_level = voltage2 # on-the-fly set

print ('Voltage 2:')

print_fetched_measurements (session.fetch_multiple (count=1,
—timeout=timeout))

session.output_enabled = False

def _main(argsv):

parser = argparse.ArgumentParser (description='Outputs voltage 1, waits for source
—~delay, and then takes a measurement. Then orepeat with voltage 2.', formatter_
—class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2', help='Resource
—name of a National Instruments SMU')

parser.add_argument ('-c', '—-channels', default='0", help='Channel (s) to use')

parser.add_argument ('-v1l', '--voltagel', default=1.0, type=float, help='Voltage,
—level 1 (V) 1")

parser.add_argument ('-v2', '—--voltage2', default=2.0, type=float, help='Voltage_
—level 2 (V) ')

parser.add_argument ('-d', '--delay', default=0.05, type=float, help='Source delay,,
—(s)")

parser.add_argument ('-op', '—--option-string', default='', type=str, help='Option_
—string')

args = parser.parse_args (argsv)
example (args.resource_name, args.channels, args.option_string, args.voltagel, |
—args.voltage2, args.delay)

def main() :
_main(sys.argv([1l:])

def test_main():
cmd_line = ['--option-string', 'Simulate=1l, DriverSetup=Model:4162; BoardType:PXIe
|l
-]

_main(cmd_line)

(continues on next page)

122 Chapter 7. License

60

61

62

63

64

65

66

67

68

NI Modular Instruments Python APl Documentation, Release 1.0.1

(continued from previous page)

def test_example():
options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe
‘—>'/ }I }

example ('PXI1Slot2', '0', options, 1.0, 2.0, 0.05)

7.2 nidmm module

7.2.1 Installation

As a prerequisite to using the nidmm module, you must install the NI-DMM runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-DMM) can be installed with pip:

’$ python -m pip install nidmm~=1.0.1

Or easy_install from setuptools:

’$ python -m easy_install nidmm

7.2.2 Usage

The following is a basic example of using the nidmm module to open a session to a DMM and perform a 5.5 digits of
resolution voltage measurement in the 10 V range.

import nidmm

with nidmm.Session("Devl") as session:
session.configureMeasurementDigits (nidmm.Function.DC_VOLTS, 10, 5.5)
print ("Measurement: " + str(session.read()))

Additional examples for NI-DMM are located in src/nidmm/examples/ directory.

7.2.3 API Reference

7.2.3.1 nidmm.Session

class nidmm.Session (self, resource_name, id_query=False, reset_device=False, options={})
This method completes the following tasks:

e Creates a new IVI instrument driver session and, optionally, sets the initial state of the
following session properties: nidmm.Session.range_check, nidmm.Session.
QUERY_INSTR_STATUS, nidmm.Session.cache, nidmm.Session.simulate, nidmm.
Session.record_coercions.

7.2. nidmm module 123

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

NI Modular Instruments Python APl Documentation, Release 1.0.1

* Opens a session to the device you specify for the Resource_Name parameter. If the ID_Query parameter
is set to True, this method queries the instrument ID and checks that it is valid for this instrument driver.

« If the Reset_Device parameter is set to True, this method resets the instrument to a known state. Sends
initialization commands to set the instrument to the state necessary for the operation of the instrument
driver.

¢ Returns a ViSession handle that you use to identify the instrument in all subsequent instrument driver
method calls.

Note: One or more of the referenced properties are not in the Python API for this driver.

Parameters

* resource_name (str)—

Caution: All IVI names for the Resource_Name, such as logical names or virtual
names, are case-sensitive. If you use logical names, driver session names, or virtual
names in your program, you must make sure that the name you use matches the name
in the IVI Configuration Store file exactly, without any variations in the case of the
characters in the name.

Contains the resource_name of the device to initialize. The resource_name is assigned in
Measurement & Automation Explorer (MAX). Refer to Related Documentation for the NI
Digital Multimeters Getting Started Guide for more information about configuring and
testing the DMM in MAX.

Valid Syntax:

NI-DAQmx name
DAQ::NI-DAQmx name[::INSTR]
DAQ::Traditional NI-DAQ device number[::INSTR]

IVI logical name

* id_query (bool) — Verifies that the device you initialize is one that the driver supports.
NI-DMM automatically performs this query, so setting this parameter is not necessary. De-
fined Values:

True (default) Perform ID Query
False 0 | Skip ID Query

—_

* reset_device (bool) — Specifies whether to reset the instrument during the initializa-
tion procedure. Defined Values:

—

True (default) Reset Device
False 0 | Don’t Reset

* options (str) — Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned value. For example:

124 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/related_documentation/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.0.1

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,

‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status | False
cache True
simulate False
record_value_coersions False
driver_setup {}
Properties

Property Datatype

ac_max_freq float

ac_min_freq float

adc_calibration ADCCalibration

aperture_time float

aperture_time_units ApertureTimeUnits

auto_range_value float

auto_zero AutoZero

buffer_size int

cable comp_type CableCompensationType

channel_count int

current_source float

dc_bias bool

dc_noise_rejection DCNoiseRejection

driver_setup str

freq voltage_auto_range float

freq voltage_range float

function Function

input_resistance float

instrument_firmware revision str

instrument_manufacturer str

instrument_model str

instrument_product_id int

io_resource_descriptor str

lc calculation model LCCalculationModel

lc_number_meas_to_average int

logical_name str

meas_complete_dest MeasurementCompleteDest

number._of_averages int

offset_comp_ohms bool

open_cable_ comp_conductance float

open_cable_comp_susceptance float

operation_mode OperationMode

powerline_freq float

Continued on next page

7.2. nidmm module

125

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 3 — continued from previous page

Property Datatype
range float
resolution_absolute float
resolution_digits

float

sample_count

nt

sample_interval

float in seconds or datetime.timedelta

sample_trigger

SampleTrigger

serial_ number

str

settle time

float in seconds or datetime.timedelta

short_cable comp_reactance

float

short_cable_comp_resistance float

simulate bool

specific _driver_description str

specific driver_major_version | int

specific _driver_minor_version | int
specific_driver_revision str
specific_driver._vendor str
supported_instrument_models str

temp_rtd_a float

temp_rtd_b float

temp_rtd_c float
temp_rtd_res float

temp rtd type RTDType
temp_tc fixed ref junc float
temp_tc_ref_ junc_type ThermocoupleReferencedunctionType
temp_tc_type ThermocoupleType
temp_thermistor_a float
temp_thermistor_b float
temp_thermistor_c float
temp_thermistor_type ThermistorType
temp_transducer_type TransducerType

trigger._count

int

trigger_delay

float in seconds or datetime.timedelta

trigger._source

TriggerSource

waveform coupling

waveformCoupling

waveform points

int

waveform rate

float

Public methods

Method name

abort ()

configure _measurement_absolute ()

configure_measurement_digits ()

configure multi_point ()

configure_rtd_custom()

configure_ rtd type()

configure_thermistor_custom()

configure_ thermocouple ()

configure_trigger ()

Continued on next page

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 4 — continued from previous page
Method name
configure waveform acquisition ()
disable ()
fetch ()
fetch_multi_point ()
fetch_waveform()
fetch _waveform into ()
get_cal_date _and _time ()
get_dev_temp ()
get_ext_cal_recommended _interval ()
get_last_cal_temp()
get_self_cal_supported()
lock ()
perform_open_cable_comp ()
perform _short_cable_ comp ()
read/()
read_multi_point ()
read_status ()
read_waveform()
reset ()
reset_with defaults()
self _cal()
self test ()
send_software_trigger ()
unlock ()

Properties
ac_max_freq

nidmm.Session.ac_max freq
Specifies the maximum frequency component of the input signal for AC measurements. This prop-
erty is used only for error checking and verifies that the value of this parameter is less than the
maximum frequency of the device. This property affects the DMM only when you set the nidmm.
Session.method property to AC measurements. The valid range is 1 Hz-300 kHz for the NI
4070/4071/4072, 10 Hz-100 kHz for the NI 4065, and 20 Hz-25 kHz for the NI 4050 and NI 4060.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Measurement Options:Max Frequency
e C Attribute: NIDMM_ATTR_AC_MAX_FREQ

7.2. nidmm module 127

NI Modular Instruments Python APl Documentation, Release 1.0.1

ac_min_freq

nidmm.Session.ac_min_freq
Specifies the minimum frequency component of the input signal for AC measurements. This prop-
erty affects the DMM only when you set the nidmm. Session.method property to AC measure-
ments. The valid range is 1 Hz-300 kHz for the NI 4070/4071/4072, 10 Hz-100 kHz for the NI 4065,
and 20 Hz-25 kHz for the NI 4050 and NI 4060.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Measurement Options:Min Frequency
* C Attribute: NIDMM_ATTR_AC_MIN_FREQ

adc_calibration

nidmm.Session.adec_calibration
For the NI 4070/4071/4072 only, specifies the ADC calibration mode.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.ADCCalibration
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Measurement Options:ADC Calibration
* C Attribute: NIDMM_ATTR_ADC_CALIBRATION

aperture_time

nidmm. Session.aperture_time
Specifies the measurement aperture time for the current configuration. Aperture time
is specified in units set by nidmm.Session.aperture_ time_units. To override
the default aperture, set this property to the desired aperture time after calling nidmm.
Session.ConfigureMeasurement (). To return to the default, set this property to
NIDMM_VAL_APERTURE_TIME_AUTO (-1). On the NI 4070/4071/4072, the minimum aperture

128 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

time is 8.89 usec, and the maximum aperture time is 149 sec. Any number of powerline cycles
(PLCs) within the minimum and maximum ranges is allowed on the NI 4070/4071/4072. On the NI
4065 the minimum aperture time is 333 ps, and the maximum aperture time is 78.2 s. If setting the
number of averages directly, the total measurement time is aperture time X the number of averages,
which must be less than 72.8 s. The aperture times allowed are 333 ps, 667 ps, or multiples of 1.11
ms-for example 1.11 ms, 2.22 ms, 3.33 ms, and so on. If you set an aperture time other than 333
us, 667 us, or multiples of 1.11 ms, the value will be coerced up to the next supported aperture time.
On the NI 4060, when the powerline frequency is 60 Hz, the PLCs allowed are 1 PLC, 6 PLC, 12
PLC, and 120 PLC. When the powerline frequency is 50 Hz, the PLCs allowed are 1 PLC, 5 PLC,
10 PLC, and 100 PLC.

Note: One or more of the referenced methods are not in the Python API for this driver.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Advanced:Aperture Time
» C Attribute: NIDMM_ATTR_APERTURE_TIME

aperture_time_units

nidmm.Session.aperture_time units
Specifies the units of aperture time for the current configuration. The NI 4060 does not support an
aperture time set in seconds.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.ApertureTimeUnits
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Advanced:Aperture Time Units
e C Attribute: NIDMM_ATTR_APERTURE_TIME_UNITS

7.2. nidmm module 129

NI Modular Instruments Python APl Documentation, Release 1.0.1

auto_range_value

nidmm. Session.auto_range_value
Specifies the value of the range. If auto ranging, shows the actual value of the active range. The
value of this property is set during a read operation.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Auto Range Value
* C Attribute: NIDMM_ATTR_AUTO_RANGE_VALUE

auto_zero

nidmm.Session.auto_zero

Specifies the AutoZero mode. The NI 4050 is not supported.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.AutoZero
Permissions read-write
Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

* LabVIEW Property: Configuration:Measurement Options:Auto Zero

* C Attribute: NIDMM_ATTR_AUTO_ZERO

buffer_size

nidmm.Session.buffer_ size
Size in samples of the internal data buffer. Maximum is 134,217,727 (OX7FFFFFF) samples. When
set to NIDMM_VAL_BUFFER_SIZE_AUTO (-1), NI-DMM chooses the buffer size.

130

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Multi Point Acquisition:Advanced:Buffer Size
* C Attribute: NIDMM_ATTR_BUFFER_SIZE

cable_comp_type

nidmm. Session.cable_comp_type
For the NI 4072 only, the type of cable compensation that is applied to the current capacitance or
inductance measurement for the current range. Changing the method or the range through this prop-
erty or through nidmm. Session.configure_measurement_digits () resets the value of
this property to the default value.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.CableCompensationType
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Cable Compensation Type

e C Attribute: NIDMM_ATTR_CABLE_COMP_TYPE

channel_count

nidmm.Session.channel_ count
Indicates the number of channels that the specific instrument driver supports. For each property for
which the IVI_VAL_MULTI_CHANNEL flag property is set, the IVI engine maintains a separate
cache value for each channel.

The following table lists the characteristics of this property.

7.2. nidmm module 131

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Instrument Capabilities:Channel Count
* C Attribute: NIDMM_ATTR_CHANNEL_COUNT

current_source

nidmm.Session.current_source
Specifies the current source provided during diode measurements. The NI 4050 and NI 4060 are not
supported.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Measurement Options: Current Source
* C Attribute: NIDMM_ATTR_CURRENT_SOURCE

dc_bias

nidmm.Session.dec_bias
For the NI 4072 only, controls the available DC bias for capacitance measurements.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

132 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Advanced:DC Bias

* C Attribute: NIDMM_ATTR_DC_BIAS

dc_noise_rejection

nidmm.Session.dc_noise_rejection
Specifies the DC noise rejection mode. The NI 4050 and NI 4060 are not supported.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.DCNoiseRejection
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Measurement Options:DC Noise Rejection
* C Attribute: NIDMM_ATTR_DC_NOISE_REJECTION

driver_setup

nidmm. Session.driver_setup
This property indicates the Driver Setup string that the user specified when initializing the driver.
Some cases exist where the end-user must specify instrument driver options at initialization time. An
example of this is specifying a particular instrument model from among a family of instruments that
the driver supports. This is useful when using simulation. The end-user can specify driver-specific
options through the DriverSetup keyword in the optionsString parameter to the niDMM Init With
Options.vi. If the user does not specify a Driver Setup string, this property returns an empty string.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:User Options:Driver Setup
* C Attribute: NIDMM_ATTR_DRIVER_SETUP

7.2. nidmm module 133

NI Modular Instruments Python APl Documentation, Release 1.0.1

freq_voltage_auto_range

nidmm.Session.freq voltage_auto_range
For the N14070/4071/4072 only, specifies the value of the frequency voltage range. If Auto Ranging,
shows the actual value of the active frequency voltage range. If not Auto Ranging, the value of this
property is the same as that of nidmm. Session. freq voltage range.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

¢ LabVIEW Property: Configuration:Measurement Options:Frequency Voltage Auto Range
Value

» C Attribute: NIDMM_ATTR_FREQ_VOLTAGE_AUTO_RANGE

freq_voltage_range

nidmm. Session.freq voltage_range
Specifies the maximum amplitude of the input signal for frequency measurements.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Measurement Options:Frequency Voltage Range
» C Attribute: NIDMM_ATTR_FREQ_VOLTAGE_RANGE

function

nidmm.Session.function
Specifies the measurement method. Refer to the nidmm. Session.method topic in the NI Dig-
ital Multimeters Help for device-specific information. If you are setting this property directly,
you must also set the nidmm. Session.operation_mode property, which controls whether
the DMM takes standard single or multipoint measurements, or acquires a waveform. If you are

134 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

programming properties directly, you must set the nidmm. Session.operation_mode prop-
erty before setting other configuration properties. If the nidmm. Session.operation mode
property is set to WAVEFORM, the only valid method types are WAVEFORM_VOLTAGE and
WAVEFORM_CURRENT. Set the nidmm. Session.operation_mode property to IVIDMM to
set all other method values.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.Function
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Function
» C Attribute: NIDMM_ATTR_FUNCTION

input_resistance

nidmm. Session.input_resistance
Specifies the input resistance of the instrument. The NI 4050 and NI 4060 are not supported.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Measurement Options:Input Resistance
* C Attribute: NIDMM_ATTR_INPUT_RESISTANCE

instrument_firmware_revision

nidmm.Session.instrument_ firmware_ revision
A string containing the instrument firmware revision number.

The following table lists the characteristics of this property.

7.2. nidmm module 135

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument
Firmware Revision

» C Attribute: NIDMM_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

nidmm.Session.instrument_manufacturer
A string containing the manufacturer of the instrument.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Manu-
facturer

» C Attribute: NIDMM_ATTR_INSTRUMENT MANUFACTURER

instrument_model

nidmm.Session.instrument_model
A string containing the instrument model.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

136 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Model
* C Attribute: NIDMM_ATTR_INSTRUMENT _MODEL

instrument_product_id

nidmm.Session.instrument_product_id
The PCI product ID.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Prod-
uct ID

e C Attribute: NIDMM_ATTR_INSTRUMENT_PRODUCT_ID

io_resource_descriptor

nidmm.Session.io_resource_descriptor
A string containing the resource descriptor of the instrument.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:I/O Resource
Descriptor

» C Attribute: NIDMM_ATTR_I0_RESOURCE_DESCRIPTOR

Ic_calculation_model

nidmm.Session.lc_calculation model
For the NI 4072 only, specifies the type of algorithm that the measurement processing uses for
capacitance and inductance measurements.

7.2. nidmm module 137

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.LCCalculationModel
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Advanced:Calculation Model

* C Attribute: NIDMM_ATTR_LC_CALCULATION_MODEL

Ic_number_meas_to_average

nidmm.Session.lc_number meas_to_average
For the NI 4072 only, specifies the number of LC measurements that are averaged to produce one

reading.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Number of LC Measurements To Average

e C Attribute: NIDMM_ATTR_LC_NUMBER_MEAS_TO_AVERAGE

logical_name

nidmm.Session.logical_name
A string containing the logical name of the instrument.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

138 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name
* C Attribute: NIDMM_ATTR_LOGICAL_NAME

meas_complete_dest

nidmm.Session.meas_complete_dest
Specifies the destination of the measurement complete (MC) signal. The NI 4050 is not supported.
To determine which values are supported by each device, refer to the LabWindows/CVI Trigger
Routing section in the NI Digital Multimeters Help.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.MeasurementCompleteDest
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Trigger:Measurement Complete Dest
* C Attribute: NIDMM_ATTR_MEAS_COMPLETE_DEST

number_of_averages

nidmm. Session.number_of_averages
Specifies the number of averages to perform in a measurement. For the NI 4070/4071/4072, applies
only when the aperture time is not set to AUTO and Auto Zero is ON. The default is 1. The NI 4050
and NI 4060 are not supported.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Advanced:Number Of Averages
* C Attribute: NIDMM_ATTR_NUMBER_OF_AVERAGES

7.2. nidmm module 139

NI Modular Instruments Python APl Documentation, Release 1.0.1

offset_comp_ohms

nidmm.Session.offset_comp_ohms
For the NI 4070/4071/4072 only, enables or disables offset compensated ohms.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Measurement Options:Offset Compensated Ohms
e C Attribute: NIDMM_ATTR_OFFSET_COMP_OHMS

open_cable_comp_conductance

nidmm.Session.open_cable_comp_conductance
For the NI 4072 only, specifies the active part (conductance) of the open cable compensation. The
valid range is any real number greater than 0. The default value (-1.0) indicates that compensation
has not taken place. Changing the method or the range through this property or through nidmm.
Session.configure_measurement_digits () resets the value of this property to the de-
fault value.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Open Cable Compensation Values:Conductance

» C Attribute: NIDMM_ATTR_OPEN_CABLE_COMP_CONDUCTANCE

open_cable_comp_susceptance

nidmm. Session.open_cable_comp_susceptance
For the NI 4072 only, specifies the reactive part (susceptance) of the open cable compensation.
The valid range is any real number greater than 0. The default value (-1.0) indicates that com-
pensation has not taken place. Changing the method or the range through this property or through

140 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

nidmm.Session.configure_measurement_digits () resets the value of this property
to the default value.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Open Cable Compensation Values:Susceptance

» C Attribute: NIDMM_ATTR_OPEN_CABLE_COMP_SUSCEPTANCE

operation_mode

nidmm.Session.operation_mode
Specifies how the NI 4065 and NI 4070/4071/4072 acquire data. When you call nidmm.
Session.configure_measurement_digits (), NI-DMM sets this property to ITVIDMM.
When you call nidmm. Session.configure _waveform acquisition (), NI-DMM sets
this property to WAVEFORM. If you are programming properties directly, you must set this property
before setting other configuration properties.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.OperationMode
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Advanced:Operation Mode
* C Attribute: NIDMM_ATTR_OPERATION_MODE

powerline_freq

nidmm. Session.powerline_freq
Specifies the powerline frequency. The NI 4050 and NI 4060 use this value to select an aperture
time to reject powerline noise by selecting the appropriate internal sample clock and filter. The NI
4065 and NI 4070/4071/4072 use this value to select a timebase for setting the nidmm. Session.
aperture_time property in powerline cycles (PLCs). After configuring powerline frequency, set
the nidmm. Session.aperture_time_units property to PLCs. When setting the nidmm.
Session.aperture_time property, select the number of PLCs for the powerline frequency.

7.2. nidmm module 141

NI Modular Instruments Python APl Documentation, Release 1.0.1

For example, if powerline frequency = 50 Hz (or 20ms) and aperture time in PLCs = 5, then aperture
time in Seconds = 20ms * 5 PLCs = 100 ms. Similarly, if powerline frequency = 60 Hz (or 16.667
ms) and aperture time in PLCs = 6, then aperture time in Seconds = 16.667 ms * 6 PLCs = 100 ms.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Measurement Options:Powerline Frequency
* C Attribute: NIDMM_ATTR_POWERLINE_FREQ

range

nidmm.Session.range

Specifies the measurement range. Use positive values to represent the absolute value of
the maximum expected measurement. The value is in units appropriate for the current
value of the nidmm.Session.method property. For example, if nidmm.Session.
method is set to NIDMM_VAIL_VOLTS, the units are volts. The NI 4050 and NI 4060
only support Auto Range when the trigger and sample trigger is set to IMMEDIATE.
NIDMM_VAL_AUTO_RANGE_ON -1.0 NI-DMM performs an Auto Range before acquiring the
measurement. NIDMM_VAL_AUTO_RANGE_OFF -2.0 NI-DMM sets the Range to the current
nidmm.Session.auto_range_value and uses this range for all subsequent measurements
until the measurement configuration is changed. NIDMM_VAL_AUTO_RANGE_ONCE -3.0 NI-
DMM performs an Auto Range before acquiring the next measurement. The nidmm. Session.
auto_range_value is stored and used for all subsequent measurements until the measurement
configuration is changed.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Range
* C Attribute: NIDMM_ATTR_RANGE

142 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

resolution_absolute

nidmm.Session.resolution_absolute
Specifies the measurement resolution in absolute units. Setting this property to higher values in-
creases the measurement accuracy. Setting this property to lower values increases the measure-
ment speed. NI-DMM ignores this property for capacitance and inductance measurements on
the NI 4072. To achieve better resolution for such measurements, use the nidmm. Session.
lc_number _meas_to_average property.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Absolute Resolution
e C Attribute: NIDMM_ATTR_RESOLUTION_ABSOLUTE

resolution_digits

nidmm.Session.resolution_digits
Specifies the measurement resolution in digits. Setting this property to higher values increases
the measurement accuracy. Setting this property to lower values increases the measurement
speed. NI-DMM ignores this property for capacitance and inductance measurements on the
NI 4072. To achieve better resolution for such measurements, use the nidmm.Session.
lc_number meas_to_average property.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Digits Resolution
e C Attribute: NIDMM_ATTR_RESOLUTION_DIGITS

7.2. nidmm module 143

NI Modular Instruments Python APl Documentation, Release 1.0.1

sample_count

nidmm.Session.sample_count
Specifies the number of measurements the DMM takes each time it receives a trigger in a multiple
point acquisition.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Multi Point Acquisition:Sample Count
* C Attribute: NIDMM_ATTR_SAMPLE_COUNT

sample_interval

nidmm.Session.sample_interval

Specifies the amount of time in seconds the DMM waits between measurement cycles. This property
only applies when the nidmm. Session.sample trigger property is set to INTERVAL. On
the NI 4060, the value for this property is used as the settling time. When this property is set to 0, the
NI 4060 does not settle between measurement cycles. The onboard timing resolution is 1 ps on the
NI 4060. The NI 4065 and NI 4070/4071/4072 use the value specified in this property as additional
delay. On the NI 4065 and NI 4070/4071/4072, the onboard timing resolution is 34.72 ns and the
valid range is 0-149 s. Only positive values are valid when setting the sample interval. The NI 4050
is not supported.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype float in seconds or datetime.timedelta
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Multi Point Acquisition:Sample Interval
* C Attribute: NIDMM_ATTR_SAMPLE_INTERVAL

sample_trigger

nidmm.Session.sample_trigger
Specifies the sample trigger source. To determine which values are supported by each device, refer

144 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

to the LabWindows/CVI Trigger Routing section in the NI Digital Multimeters Help.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.SampleTrigger
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Multi Point Acquisition:Sample Trigger
e C Attribute: NIDMM_ATTR_SAMPLE_TRIGGER

serial_number

nidmm.Session.serial number
A string containing the serial number of the instrument. This property corresponds to the serial
number label that is attached to most products.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Serial
Number

e C Attribute: NIDMM_ATTR_SERIAL_NUMBER

settle_time

nidmm.Session.settle_time
Specifies the settling time in seconds. To override the default settling time, set this property. To
return to the default, set this property to NIDMM_VAL_SETTLE_TIME_AUTO (-1). The NI 4050
and NI 4060 are not supported.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

7.2. nidmm module

145

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value

Datatype float in seconds or datetime.timedelta
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Advanced:Settle Time
* C Attribute: NIDMM_ATTR_SETTLE_TIME

short_cable_comp_reactance

nidmm.Session.short_cable_comp_reactance
For the NI 4072 only, represents the reactive part (reactance) of the short cable compensation. The
valid range is any real number greater than 0. The default value (-1) indicates that compensation
has not taken place. Changing the method or the range through this property or through nidmm.
Session.configure_measurement_digits () resets the value of this property to the de-
fault value.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Short Cable Compensation Values:Reactance

e C Attribute: NIDMM_ATTR_SHORT_CABLE_COMP_REACTANCE

short_cable_comp_resistance

nidmm.Session.short_cable_ comp_resistance
For the NI 4072 only, represents the active part (resistance) of the short cable compensation. The
valid range is any real number greater than 0. The default value (-1) indicates that compensation
has not taken place. Changing the method or the range through this property or through nidmm.
Session.configure_measurement_digits () resets the value of this property to the de-
fault value.

The following table lists the characteristics of this property.

146 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Short Cable Compensation Values:Resistance

* C Attribute: NIDMM_ATTR_SHORT_CABLE_COMP_RESISTANCE

simulate

nidmm. Session.simulate
Specifies whether or not to simulate instrument driver I/O operations. If simulation is enabled,
instrument driver methods perform range checking and call IVI Get and Set methods, but they do
not perform instrument I/O. For output parameters that represent instrument data, the instrument
driver methods return calculated values. The default value is False (0). Use the nidmm. Session.
__init__ () method to override this setting. Simulate can only be set within the InitWithOptions
method. The property value cannot be changed outside of the method.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Inherent IVI Attributes:User Options:Simulate
* C Attribute: NIDMM_ATTR_SIMULATE

specific_driver_description

nidmm. Session.specific_driver_description
A string containing a description of the specific driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

7.2. nidmm module 147

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Specific Driver Identification:Specific Driver
Description

» C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_major_version

nidmm. Session.specific_driver_major_version
Returns the major version number of this instrument driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes: Version Info:Specific Driver Major Version
* C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_MAJOR_VERSION

specific_driver_minor_version

nidmm.Session.specific_driver minor_ version
The minor version number of this instrument driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes: Version Info:Specific Driver Minor Version
* C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_MINOR_VERSION

148 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

specific_driver_revision

nidmm.Session.specific_driver_ revision
A string that contains additional version information about this specific instrument driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes: Version Info:Specific Driver Revision
* C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

nidmm.Session.specific_driver_vendor
A string containing the vendor of the specific driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

* LabVIEW Property: Inherent IVI Attributes:Specific Driver Identification:Specific Driver
Vendor

* C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_VENDOR

supported_instrument_models

nidmm. Session.supported_instrument_models
A string containing the instrument models supported by the specific driver.

The following table lists the characteristics of this property.

7.2. nidmm module

149

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Specific Driver Capabilities:Supported In-
strument Models

» C Attribute: NIDMM_ATTR_SUPPORTED_INSTRUMENT_MODELS

temp_rtd_a

nidmm. Session.temp_rtd_a
Specifies the Callendar-Van Dusen A coefficient for RTD scaling when the RTD Type property is
set to Custom. The default value is 3.9083e-3 (Pt3851).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD A

* C Attribute: NIDMM_ATTR_TEMP_RTD_A

temp_rtd_b

nidmm.Session.temp_rtd b
Specifies the Callendar-Van Dusen B coefficient for RTD scaling when the RTD Type property is set
to Custom. The default value is -5.775e-7(Pt3851).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

150 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD B

* C Attribute: NIDMM_ATTR_TEMP_RTD_B

temp_rtd_c

nidmm. Session.temp_rtd_c
Specifies the Callendar-Van Dusen C coefficient for RTD scaling when the RTD Type property is set
to Custom. The default value is -4.183e-12(Pt3851).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD C

* C Attribute: NIDMM_ATTR_TEMP_RTD_C

temp_rtd_res

nidmm.Session.temp_rtd_res
Specifies the RTD resistance at 0 degrees Celsius. This applies to all supported RTDs, including
custom RTDs. The default value is 100 (?).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD Resistance

* C Attribute: NIDMM_ATTR_TEMP_RTD_RES

7.2. nidmm module 151

NI Modular Instruments Python APl Documentation, Release 1.0.1

temp_rtd_type

nidmm.Session.temp_rtd_type
Specifies the type of RTD used to measure temperature. The default value is PT3851. Refer to
the nidmm. Session.temp_rtd_type topic in the NI Digital Multimeters Help for additional
information about defined values.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.RTDType
Permissions read-write
Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD Type

» C Attribute: NIDMM_ATTR_TEMP_RTD_TYPE

temp_tc_fixed_ref_junc

nidmm.Session.temp_tc_fixed ref junc
Specifies the reference junction temperature when a fixed reference junction is used to take a ther-
mocouple measurement. The default value is 25.0 (°C).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Op-
tions: Temperature:Thermocouple:Fixed Reference Junction

» C Attribute: NIDMM_ATTR_TEMP_TC_FIXED_REF_JUNC

temp_tc_ref junc_type

nidmm.Session.temp_tc_ref junc_type
Specifies the type of reference junction to be used in the reference junction compensation of a
thermocouple. The only supported value, NIDMM_VAL_TEMP_REF_JUNC_FIXED, is fixed.

152 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.ThermocoupleReferenceJunctionType
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Op-
tions:Temperature: Thermocouple:Reference Junction Type

» C Attribute: NIDMM_ATTR_TEMP_TC_REF_JUNC_TYPE

temp_tc_type

nidmm. Session.temp_tc_type
Specifies the type of thermocouple used to measure the temperature. The default value is J.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.ThermocoupleType
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Op-
tions:Temperature: Thermocouple:Thermocouple Type

» C Attribute: NIDMM_ATTR_TEMP_TC_TYPE

temp_thermistor_a

nidmm. Session.temp_thermistor_a
Specifies the Steinhart-Hart A coefficient for thermistor scaling when the Thermistor Type property
is set to Custom. The default value is 0.0010295 (44006).

The following table lists the characteristics of this property.

7.2. nidmm module 153

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Op-
tions: Temperature: Thermistor: Thermistor A

» C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_A

temp_thermistor_b

nidmm. Session.temp_thermistor_b
Specifies the Steinhart-Hart B coefficient for thermistor scaling when the Thermistor Type proerty
is set to Custom. The default value is 0.0002391 (44006).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Op-
tions:Temperature: Thermistor:Thermistor B

» C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_B

temp_thermistor_c

nidmm. Session.temp_thermistor_c
Specifies the Steinhart-Hart C coefficient for thermistor scaling when the Thermistor Type property
is set to Custom. The default value is 1.568e-7 (44006).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

154 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Op-
tions: Temperature: Thermistor: Thermistor C

» C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_C

temp_thermistor_type

nidmm. Session.temp_thermistor_type
Specifies the type of thermistor used to measure the temperature. The default value is
THERMISTOR_44006. Refer to the nidmm.Session.temp_thermistor_type topic in
the NI Digital Multimeters Help for additional information about defined values.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.ThermistorType
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Op-
tions:Temperature: Thermistor:Thermistor Type

* C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_TYPE

temp_transducer_type

nidmm. Session.temp_transducer_type
Specifies the type of device used to measure the temperature. The default value is
NIDMM_VAL_4_THERMOCOUPLE.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.TransducerType
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.2. nidmm module 155

NI Modular Instruments Python APl Documentation, Release 1.0.1

e LabVIEW Property: Configuration:Measurement Options:Temperature:Transducer Type
¢ C Attribute: NIDMM_ATTR_TEMP_TRANSDUCER_TYPE

trigger_count

nidmm.Session.trigger_count
Specifies the number of triggers the DMM receives before returning to the Idle state. This property
can be set to any positive Vilnt32 value for the NI 4065 and NI 4070/4071/4072. The NI 4050 and
NI 4060 support this property being set to 1. Refer to the Multiple Point Acquisitions section of the
NI Digital Multimeters Help for more information.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Multi Point Acquisition:Trigger Count
* C Attribute: NIDMM_ATTR_TRIGGER_COUNT

trigger_delay

nidmm. Session.trigger_delay

Specifies the time (in seconds) that the DMM waits after it has received a trigger before taking
a measurement. The default value is AUTO DELAY (-1), which means that the DMM waits an
appropriate settling time before taking the measurement. (-1) signifies that AUTO DELAY is on,
and (-2) signifies that AUTO DELAY is off. The NI 4065 and NI 4070/4071/4072 use the value
specified in this property as additional settling time. For the The NI 4065 and NI 4070/4071/4072,
the valid range for Trigger Delay is AUTO DELAY (-1) or 0.0-149.0 seconds and the onboard
timing resolution is 34.72 ns. On the NI 4060, if this property is set to 0, the DMM does not
settle before taking the measurement. On the NI 4060, the valid range for AUTO DELAY (-1)
is 0.0-12.0 seconds and the onboard timing resolution is 100 ms. When using the NI 4050, this
property must be set to AUTO DELAY (-1). Use positive values to set the trigger delay in seconds.
Valid Range: NIDMM_VAL_AUTO_DELAY (-1.0), 0.0-12.0 seconds (NI 4060 only) Default Value:
NIDMM_ VAL_AUTO_DELAY

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

156 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value

Datatype float in seconds or datetime.timedelta
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Trigger:Trigger Delay
» C Attribute: NIDMM_ATTR_TRIGGER_DELAY

trigger_source

nidmm.Session.trigger_source

Specifies the trigger source. When nidmm. Session._initiate () is called, the DMM waits
for the trigger specified with this property. After it receives the trigger, the DMM waits the length
of time specified with the nidmm. Session.trigger_delay property. The DMM then takes
a measurement. This property is not supported on the NI 4050. To determine which values are
supported by each device, refer to the LabWindows/CVI Trigger Routing section in the NI Digital
Multimeters Help.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.TriggerSource
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Trigger:Trigger Source
e C Attribute: NIDMM_ATTR_TRIGGER_SOURCE

waveform_coupling

nidmm.Session.waveform coupling

For the NI 4070/4071/4072 only, specifies the coupling during a waveform acquisition.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums. WaveformCoupling
Permissions read-write

Channel Based | False

Resettable No

7.2. nidmm module

157

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Waveform Acquisition: Waveform Coupling
* C Attribute: NIDMM_ATTR_WAVEFORM_COUPLING

waveform_points

nidmm.Session.waveform points
For the N14070/4071/4072 only, specifies the number of points to acquire in a waveform acquisition.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Waveform Acquisition: Waveform Points
e C Attribute: NIDMM_ATTR_WAVEFORM_POINTS

waveform_rate

nidmm. Session.waveform rate
For the NI 4070/4071/4072 only, specifies the rate of the waveform acquisition in Samples per
second (S/s). The valid Range is 10.0-1,800,000 S/s. Values are coerced to the closest integer
divisor of 1,800,000. The default value is 1,800,000.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Waveform Acquisition: Waveform Rate
e C Attribute: NIDMM_ATTR_WAVEFORM_RATE

158 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Methods
abort

nidmm.Session.abort ()
Aborts a previously initiated measurement and returns the DMM to the Idle state.

configure_measurement_absolute

nidmm.Session.configure_measurement_absolute (measurement_function, range,

resolution_absolute)
Configures the common properties of the measurement. These properties include

nidmm.Session.method, nidmm.Session.range, and nidmm.Session.
resolution_absolute.

Parameters

* measurement_function (nidmm.Function) — Specifies the measure-
ment_function used to acquire the measurement. The driver sets nidmm.
Session.method to this value.

* range (float) — Specifies the range for the method specified in the Mea-
surement_Function parameter. When frequency is specified in the Measure-
ment_Function parameter, you must supply the minimum frequency expected in
the range parameter. For example, you must type in 100 Hz if you are measuring
101 Hz or higher. For all other methods, you must supply a range that exceeds the
value that you are measuring. For example, you must type in 10 V if you are measur-
ing 9 V. range values are coerced up to the closest input range. Refer to the Devices
Overview for a list of valid ranges. The driver sets nidmm. Session.range to
this value. The default is 0.02 V.

NIDMM_VAL- AUTINIRBNIM_madforms an Auto Range before acquiring the
1.0 | measurement.

NIDMM_VAL- AUTONIRDNIM setE the Range to the current nidmm. Session.
2.0 | auto_range_value and uses this range for all subse-
quent measurements until the measurement configuration is

changed.
NIDMM_VAI- AUTONIRBNIMI_Giécforms an Auto Range before acquir-
3.0 | ing the measurement. The nidmm.Session.

auto_range_value is stored and used for all sub-
sequent measurements until the measurement configuration
is changed.

Note: The NI 4050, NI 4060, and NI 4065 only support Auto Range when the
trigger and sample trigger are set to IMMEDIATE.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

* resolution_absolute (float) — Specifies the absolute resolution for the
measurement. NI-DMM sets nidmm.Session.resolution_absolute to

7.2. nidmm module 159

https://docs.python.org/3/library/functions.html#float
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/devices/
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/devices/
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

this value. This parameter is ignored when the Range parameter is set to
NIDMM_VAL_AUTO_RANGE_ON (-1.0) or NIDMM_VAIL_AUTO_RANGE_ONCE (-
3.0). The default is 0.001 V.

Note: NI-DMM ignores this parameter for capacitance and inductance measure-
ments on the NI 4072. To achieve better resolution for such measurements, use the
nidmm.Session.lc _number _meas_to_average property.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

configure_measurement_digits

nidmm.Session.configure_measurement_digits (measurement_function, range, res-

olution_digits)
Configures the common properties of the measurement. These properties include

nidmm.Session.method, nidmm.Session.range, and nidmm.Session.
resolution_digits.

Parameters

* measurement_function (nidmm.Function) — Specifies the measure-
ment_function used to acquire the measurement. The driver sets nidmm.
Session.method to this value.

* range (float) — Specifies the range for the method specified in the Mea-
surement_Function parameter. When frequency is specified in the Measure-
ment_Function parameter, you must supply the minimum frequency expected in
the range parameter. For example, you must type in 100 Hz if you are measuring
101 Hz or higher. For all other methods, you must supply a range that exceeds the
value that you are measuring. For example, you must type in 10 V if you are measur-
ing 9 V. range values are coerced up to the closest input range. Refer to the Devices
Overview for a list of valid ranges. The driver sets nidmm. Session.range to
this value. The default is 0.02 V.

NIDMM_VAL:- AUTONIRBNIM_geforms an Auto Range before acquiring the
1.0 | measurement.

NIDMM_VAIL- AUTONIRBNIM sefFhe Range to the current nidmm. Session.
2.0 | auto_range_value and uses this range for all subse-
quent measurements until the measurement configuration is

changed.
NIDMM_VAI- AUTONIRBNIM_Giéeforms an Auto Range before acquir-
3.0 | ing the measurement. The nidmm.Session.

auto_range_value is stored and used for all sub-
sequent measurements until the measurement configuration
is changed.

Note: The NI 4050, NI 4060, and NI 4065 only support Auto Range when the
trigger and sample trigger are set to IMMEDIATE.

160 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/devices/
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/devices/

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

* resolution_digits (float)— Specifies the resolution of the measurement in
digits. The driver sets the Devices Overview for a list of valid ranges. The driver sets
nidmm.Session.resolution_digits property to this value. This parame-
ter is ignored when the Range parameter is set to NIDMM_VAL_AUTO_RANGE_ON
(-1.0) or NIDMM_VAL_AUTO_RANGE_ONCE (-3.0). The default is 5%.

Note: NI-DMM ignores this parameter for capacitance and inductance measure-
ments on the NI 4072. To achieve better resolution for such measurements, use the
nidmm.Session.lc_number_meas_to_average property.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

configure_multi_point

nidmm. Session.configure_multi_point (trigger_count, sample_count, sam-
ple_trigger=nidmm.SampleTrigger IMMEDIATE,
sample_interval=datetime.timedelta(seconds=-

1))
Configures the properties for multipoint measurements. These properties include nidmm.

Session.trigger._count, nidmm.Session.sample_ count, nidmm.Session.
sample_trigger,and nidmm.Session.sample_ interval.

For continuous acquisitions, set nidmm.Session.trigger_count or nidmm.Session.
sample_ count to zero. For more information, refer to Multiple Point Acquisitions, Triggering,
and Using Switches.

Parameters

* trigger_count (int) — Sets the number of triggers you want the DMM to
receive before returning to the Idle state. The driver sets nidmm. Session.
trigger_count to this value. The default value is 1.

¢ sample_count (int) — Sets the number of measurements the DMM makes
in each measurement sequence initiated by a trigger. The driver sets nidmm.
Session.sample_ count to this value. The default value is 1.

e sample_trigger (nidmm.SampleTrigger)— Specifies the sample_trigger
source you want to use. The driver sets nidmm. Session.sample_trigger
to this value. The default is Immediate.

Note: To determine which values are supported by each device, refer to the Lab-
Windows/CVI Trigger Routing section.

* sample_interval (float in seconds or datetime.timedelta)
— Sets the amount of time in seconds the DMM waits between measurement cycles.
The driver sets nidmm. Session.sample_interval to this value. Specify a

7.2. nidmm module 161

https://docs.python.org/3/library/functions.html#float
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/devices/
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/multi_point/
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/trigger/
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/switch_selection/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/cvitrigger_routing/
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/cvitrigger_routing/
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.0.1

sample interval to add settling time between measurement cycles or to decrease the
measurement rate. sample_interval only applies when the Sample_Trigger is set
to INTERVAL.

On the NI 4060, the sample_interval value is used as the settling time. When sam-
ple interval is set to 0, the DMM does not settle between measurement cycles. The
NI 4065 and NI 4070/4071/4072 use the value specified in sample_interval as addi-
tional delay. The default value (-1) ensures that the DMM settles for a recommended
time. This is the same as using an Immediate trigger.

Note: This property is not used on the NI 4080/4081/4082 and the NI 4050.

configure_rtd_custom

nidmm.Session.configure_rtd_custom (rtd_a, rtd_b, rtd_c)
Configures the A, B, and C parameters for a custom RTD.

Parameters

e rtd_a (float) — Specifies the Callendar-Van Dusen A coefficient for RTD
scaling when RTD Type parameter is set to Custom in the nidmm. Session.
configure_ rtd_ type () method. The default is 3.9083e-3 (Pt3851)

e rtd_b (float) — Specifies the Callendar-Van Dusen B coefficient for RTD
scaling when RTD Type parameter is set to Custom in the nidmm. Session.
configure_rtd_type () method. The default is -5.775e-7 (Pt3851).

e rtd_c (float) — Specifies the Callendar-Van Dusen C coefficient for RTD
scaling when RTD Type parameter is set to Custom in the nidmm.Session.
configure_rtd_type () method. The default is -4.183e-12 (Pt3851).

configure_rtd_type

nidmm.Session.configure_rtd_type (rtd_type, rtd_resistance)
Configures the RTD Type and RTD Resistance parameters for an RTD.

Parameters

e rtd_type (nidmm.RTDType) — Specifies the type of RTD used to measure the
temperature resistance. NI-DMM uses this value to set the RTD Type property. The
defaultis PT3851.

162 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

Enum Standards Ma- | TCR| Typ- | Notes
te- | (a) | ical
rial Ro
(©2)
Callendar-
Van
Dusen
Coeffi-
cient
PT3851 | IEC-751 Plat-| .003§5100 | A = 3.9083 | Most
DIN 43760 | inum Q x 1032 B = | com-
BS 1904 1000 | —5.775%10:sup:—7 | mon
ASTM-E1137 Q C = | RTDs
EN-60751 —4.183%10:sup:—12
PT3750 | Low-cost ven- | Plat-| .003750000| A = 3.81 | Low-
dor compliant | inum Q x 102 B = | cost
RTD* —6.02x10:sup:=7 | RTD
C =
—6.0x10:sup:—12
PT3916 | JISC 1604 Plat-| .00391600 | A = 3.9739 | Used in
inum Q x 102 B = | primar-
—5.870x10:sup:—7 | ily in
C=-44x10" Japan
PT3920 | US Industrial | Plat-| .00392000 | A = 3.9787 | Low-
Standard D- | inum Q x 10% B = cost
100 American -5.8686x10:sup:—7] RTD
C = 4167
x10712
pPT3911 | US Indus- | Plat-| .00391100 | A = 3.9692 | Low-
trial Standard | inum| Q x 103 B = | cost
American —-5.8495%10:sup:—7] RTD
C = 4233
x10712
pPT3928 | ITS-90 Plat-| .00392800 | A = 3.9888 | The
inum Q x 103 B = | defini-
—5.915%10:sup:—7 | tion of
C=-3.85x10""2 | temper-
ature
*No
stan-
dard.
Check
the
TCR.

* rtd_resistance (float) — Specifies the RTD resistance in ohms at 0 °C. NI-

DMM uses this value to set the RTD Resistance property. The default is 100 (£2).

7.2. nidmm module

163

https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

configure_thermistor_custom

nidmm.Session.configure_thermistor_custom (thermistor_a, thermistor_b, thermis-
th_c)
Configures the A, B, and C parameters for a custom thermistor.
Parameters

* thermistor_a (float) — Specifies the Steinhart-Hart A coefficient for ther-
mistor scaling when Thermistor Type is set to Custom in the nidmm. Session.
ConfigureThermistorType () method. The default is 1.0295¢e-3 (44006).

Note: One or more of the referenced methods are not in the Python API for this
driver.

* thermistor_b (float) — Specifies the Steinhart-Hart B coefficient for ther-
mistor scaling when Thermistor Type is set to Custom in the nidmm. Session.
ConfigureThermistorType () method. The default is 2.391e-4 (44006).

Note: One or more of the referenced methods are not in the Python API for this
driver.

* thermistor_c (float) — Specifies the Steinhart-Hart C coefficient for ther-
mistor scaling when Thermistor Type is set to Custom in the nidmm.Session.
ConfigureThermistorType () method. The default is 1.568e-7 (44006).

Note: One or more of the referenced methods are not in the Python API for this
driver.

configure_thermocouple

nidmm.Session.configure_thermocouple (thermocouple_type, refer-
ence_junction_type=nidmm.ThermocoupleReferenceJunctionType. FIXED
Configures the thermocouple type and reference junction type for a chosen thermocouple.

Parameters

* thermocouple_type (nidmm. ThermocoupleType)— Specifies the type of
thermocouple used to measure the temperature. NI-DMM uses this value to set the
Thermocouple Type property. The default is J.

Thermocouple type B
Thermocouple type E
Thermocouple type J

Thermocouple type K
Thermocouple type N
Thermocouple type R
Thermocouple type S

Thermocouple type T

Hlh ™| =X G| EH D

164 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

* reference_junction_type (nidmm. ThermocoupleReferencedJunctionType)
— Specifies the type of reference junction to be used in the reference junc-
tion compensation of a thermocouple measurement. NI-DMM uses this value
to set the Reference Junction Type property. The only supported value is
NIDMM_VAL_TEMP_REF_JUNC_FIXED.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

configure_trigger

nidmm.Session.configure_ trigger (trigger_source, trigger_delay=datetime.timedelta(seconds=-
1))
Configures the DMM Trigger_Source and Trigger_Delay. Refer to Triggering and Using Switches
for more information.

Parameters

* trigger_source (nidmm.TriggerSource) - Specifies the trig-
ger_source that initiates the acquisition. The driver sets nidmm.Session.
trigger._source to this value. Software configures the DMM to wait until
nidmm.Session.send_software trigger () is called before triggering
the DMM.

Note: To determine which values are supported by each device, refer to the Lab-
Windows/CVI Trigger Routing section.

* trigger_delay (float in seconds or datetime.timedelta) —
Specifies the time that the DMM waits after it has received a trigger before taking a
measurement. The driver sets the nidmm. Session. trigger_delay property
to this value. By default, trigger_delay is NIDMM_VAIL_AUTO_DELAY (-1), which
means the DMM waits an appropriate settling time before taking the measurement.
On the NI 4060, if you set trigger_delay to 0, the DMM does not settle before tak-
ing the measurement. The NI 4065 and NI 4070/4071/4072 use the value specified
in trigger_delay as additional settling time.

Note: When using the NI 4050, Trigger_Delay must be set to
NIDMM_VAL_AUTO_DELAY (-1).

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

configure_waveform_acquisition

nidmm.Session.configure_waveform_acquisition (measurement_function, range,

rate, waveform_points)
Configures the DMM for waveform acquisitions. This feature is supported on the NI

4080/4081/4082 and the NI 4070/4071/4072.

7.2. nidmm module 165

http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/trigger/
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/switch_selection/
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/cvitrigger_routing/
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/cvitrigger_routing/
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.0.1

disable

Parameters

* measurement_function (nidmm.Function) — Specifies the measure-
ment_function used in a waveform acquisition. The driver sets nidmm.
Session.method to this value.

WAVEFORM_VOLTAGE (default) | 1003 | Voltage Waveform
WAVEFORM_CURRENT 1004 | Current Waveform

* range (float) — Specifies the expected maximum amplitude of the input sig-
nal and sets the range for the Measurement_Function. NI-DMM sets nidmm.
Session.range to this value. range values are coerced up to the closest input
range. The default is 10.0.

For valid ranges refer to the topics in Devices.
Auto-ranging is not supported during waveform acquisitions.

* rate (float) — Specifies the rate of the acquisition in samples per second. NI-
DMM sets nidmm. Session.waveform rate to this value.

The valid Range is 10.0-1,800,000 S/s. rate values are coerced to the closest integer
divisor of 1,800,000. The default value is 1,800,000.

* waveform points (int) — Specifies the number of points to acquire be-
fore the waveform acquisition completes. NI-DMM sets nidmm.Session.
waveform_points to this value.

To calculate the maximum and minimum number of waveform points that you can
acquire in one acquisition, refer to the Waveform Acquisition Measurement Cycle.

The default value is 500.

nidmm.Session.disable ()

fetch

Places the instrument in a quiescent state where it has minimal or no impact on the system to which
it is connected. If a measurement is in progress when this method is called, the measurement is

nidmm. Session. fetch (maximum_time=datetime.timedelta(milliseconds=-1))

Returns the value from a previously initiated measurement. You must call nidmm. Session.
_initiate () before calling this method.

Parameters maximum_time (float in seconds or datetime.

timedelta) — Specifies the maximum_time allowed for this method to complete
in milliseconds. If the method does not complete within this time interval, the method
returns the NIDMM_ERROR_MAX_TIME_EXCEEDED error code. This may
happen if an external trigger has not been received, or if the specified timeout is not
long enough for the acquisition to complete.

The valid range is 0-86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

166

Chapter 7. License

https://docs.python.org/3/library/functions.html#float
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/devices/
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
http://zone.ni.com/reference/en-XX/help/370384T-01/dmm/waveform_cycle/
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

Return type float

Returns The measured value returned from the DMM.

fetch_multi_point

nidmm.Session.fetch_multi_point (array_size, maximum_time=datetime.timedelta(milliseconds=-

1))
Returns an array of values from a previously initiated multipoint measurement. The number of

measurements the DMM makes is determined by the values you specify for the Trigger_Count and
Sample_Count parameters of nidmm.Session.configure multi_point (). You must
first call nidmm. Session._initiate () to initiate a measurement before calling this method.

Parameters

* array_size (int)- Specifies the number of measurements to acquire. The max-
imum number of measurements for a finite acquisition is the (Trigger Count x Sam-
ple Count) parameters in nidmm. Session.configure_multi_point ().

For continuous acquisitions, up to 100,000 points can be returned at once. The
number of measurements can be a subset. The valid range is any positive Vilnt32.
The default value is 1.

e maximum_time (float in seconds or datetime.timedelta) -
Specifies the maximum_time allowed for this method to complete in milliseconds.
If the method does not complete within this time interval, the method returns the
NIDMM_ERROR_MAX_TIME_EXCEEDED error code. This may happen if an
external trigger has not been received, or if the specified timeout is not long enough
for the acquisition to complete.

The valid range is 0-86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type
tuple (reading_array, actual_number_of_points)
WHERE
reading_array (array.array(“d”)):

An array of measurement values.

Note: The size of the Reading_Array must be at least the size that you specify
for the Array_Size parameter.

actual_number_of_points (int):

7.2. nidmm module 167

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.0.1

Indicates the number of measured values actually retrieved from the DMM.

fetch_waveform

nidmm.Session. fetch_waveform (array_size, maximum_time=datetime.timedelta(milliseconds=-
1))
For the NI 4080/4081/4082 and the NI 4070/4071/4072, returns an array of values from a previously
initiated waveform acquisition. You must call nidmm. Session._initiate () before calling
this method.

Parameters

* array_ size (int) — Specifies the number of waveform points to return. You
specify the total number of points that the DMM acquires in the Waveform Points
parameter of nidmm. Session.configure_waveform acquisition ().
The default value is 1.

e maximum time (float in seconds or datetime.timedelta) -
Specifies the maximum_time allowed for this method to complete in milliseconds.
If the method does not complete within this time interval, the method returns the
NIDMM_ERROR_MAX_TIME_EXCEEDED error code. This may happen if an
external trigger has not been received, or if the specified timeout is not long enough
for the acquisition to complete.

The valid range is 0-86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type
tuple (waveform_array, actual_number_of_points)
WHERE
waveform_array (array.array(“d”)):

Waveform Array is an array of measurement values stored in waveform data
type.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

fetch_waveform_into

nidmm.Session.fetch_waveform_into (array_size, maximum_time=datetime.timedelta(milliseconds=-
1))
For the NI 4080/4081/4082 and the NI 4070/4071/4072, returns an array of values from a previously
initiated waveform acquisition. You must call nidmm. Session._initiate () before calling
this method.

Parameters

168 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.0.1

* waveform_array (numpy.array (dtype=numpy.floaté64)) — Wave-
form Array is an array of measurement values stored in waveform data type.

* maximum time (float in seconds or datetime.timedelta) -
Specifies the maximum_time allowed for this method to complete in milliseconds.
If the method does not complete within this time interval, the method returns the
NIDMM_ERROR_MAX_TIME_EXCEEDED error code. This may happen if an
external trigger has not been received, or if the specified timeout is not long enough
for the acquisition to complete.

The wvalid range is 0-86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type
tuple (waveform_array, actual_number_of_points)
WHERE
waveform_array (numpy.array(dtype=numpy.float64)):

Waveform Array is an array of measurement values stored in waveform data
type.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

get_cal_date_and_time

nidmm.Session.get_cal_date_and_time (cal_type)
Returns the date and time of the last calibration performed.

Note: The NI 4050 and NI 4060 are not supported.

Parameters cal_type (int)— Specifies the type of calibration performed (external or
self-calibration).

NIDMM_VAIL_INTERNAL_AREA (default) | O | Self-Calibration
NIDMM VAL _EXTERNAL_AREA 1 External Calibration

Note: The NI 4065 does not support self-calibration.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

Return type datetime.datetime

7.2. nidmm module 169

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime

NI Modular Instruments Python APl Documentation, Release 1.0.1

Returns Indicates date and time of the last calibration.
get_dev_temp

nidmm.Session.get_dev_temp (options="")
Returns the current Temperature of the device.

Note: The NI 4050 and NI 4060 are not supported.

Parameters options (str)— Reserved.

Return type float

Returns Returns the current temperature of the device.
get_ext_cal_recommended_interval

nidmm.Session.get_ext_cal_ recommended_ interval ()
Returns the recommended interval between external recalibration in Months.

Note: The NI 4050 and NI 4060 are not supported.

Return type datetime.timedelta

Returns Returns the recommended number of months between external calibrations.
get_last_cal_temp

nidmm.Session.get_last_cal_temp (cal_type)
Returns the Temperature during the last calibration procedure.

Note: The NI 4050 and NI 4060 are not supported.

Parameters cal_type (int) — Specifies the type of calibration performed (external or
self-calibration).

NIDMM_VAL_INTERNAL_AREA (default) 0 | Self-Calibration
NIDMM_VAL_EXTERNAL_AREA 1 | External Calibration

Note: The NI 4065 does not support self-calibration.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

170 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.0.1

Return type float

Returns Returns the temperature during the last calibration.

get_self_cal_supported

nidmm.Session.get_self cal_supported ()
Returns a Boolean value that expresses whether or not the DMM that you are using can perform
self-calibration.

Return type bool
Returns

Returns whether Self Cal is supported for the device specified by the given session.

True | 1 | The DMM that you are using can perform self-calibration.
False | O | The DMM that you are using cannot perform self-calibration.

lock

nidmm.Session.lock ()
Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:
* The application called the nidmm. Session.lock () method.
* A call to NI-DMM locked the session.

* After a call to the nidmm. Session. lock () method returns successfully, no other threads can access
the device session until you call the nidmm. Session.unlock () method or exit out of the with block
when using lock context manager.

e Use the nidmm. Session.lock () method and the nidmm.Session.unlock () method around a
sequence of calls to instrument driver methods if you require that the device retain its settings through the
end of the sequence.

You can safely make nested calls to the nidmm. Session.lock () method within the same thread. To
completely unlock the session, you must balance each call to the nidmm. Session. lock () method with a
call to the nidmm. Session.unlock () method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

with nidmm.Session('devl') as session:
with session.lock():
Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type context manager

Returns When used in a with statement, nidmm. Session.lock () acts as a context manager
and unlock will be called when the with block is exited

7.2. nidmm module 171

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.0.1

perform_open_cable_comp

nidmm. Session.perform open_cable_comp ()
For the NI 4082 and NI 4072 only, performs the open cable compensation measurements for the
current capacitance/inductance range, and returns open cable compensation Conductance and Sus-
ceptance values. You can use the return values of this method as inputs to nidmm.Session.
ConfigureOpenCableCompValues ().

This method returns an error if the value of the nidmm. Session.method property is not set to
CAPACITANCE (1005) or INDUCTANCE (1006).

Note: One or more of the referenced methods are not in the Python API for this driver.

Return type
tuple (conductance, susceptance)
WHERE
conductance (float):
conductance is the measured value of open cable compensation conductance.
susceptance (float):

susceptance is the measured value of open cable compensation susceptance.

perform_short_cable_comp

nidmm. Session.perform_short_cable_comp ()
Performs the short cable compensation measurements for the current capacitance/inductance range,
and returns short cable compensation Resistance and Reactance values. You can use the return val-
ues of this method as inputs to nidmm. Session.ConfigureShortCableCompValues ().

This method returns an error if the value of the nidmm. Session.method property is not set to
CAPACITANCE (1005) or INDUCTANCE (1006).

Note: One or more of the referenced methods are not in the Python API for this driver.

Return type
tuple (resistance, reactance)
WHERE
resistance (float):
resistance is the measured value of short cable compensation resistance.
reactance (float):

reactance is the measured value of short cable compensation reactance.

172 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

read

nidmm. Session.read (maximum_time=datetime.timedelta(milliseconds=-1))
Acquires a single measurement and returns the measured value.

Parameters maximum time (float in seconds or datetime.
timedelta) — Specifies the maximum_time allowed for this method to complete
in milliseconds. If the method does not complete within this time interval, the method
returns the NIDMM_ERROR_MAX_TIME_EXCEEDED error code. This may
happen if an external trigger has not been received, or if the specified timeout is not
long enough for the acquisition to complete.

The valid range is 0-86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

Return type float

Returns The measured value returned from the DMM.

read_multi_point

nidmm.Session.read_multi_point (array_size, maximum_time=datetime.timedelta(milliseconds=-

1))
Acquires multiple measurements and returns an array of measured values. The number of mea-

surements the DMM makes is determined by the values you specify for the Trigger_Count and
Sample_Count parameters in nidmm. Session.configure _multi_point ().

Parameters

* array_size (int)- Specifies the number of measurements to acquire. The max-
imum number of measurements for a finite acquisition is the (Trigger Count x Sam-
ple Count) parameters in nidmm. Session.configure_multi_point ().

For continuous acquisitions, up to 100,000 points can be returned at once. The
number of measurements can be a subset. The valid range is any positive Vilnt32.
The default value is 1.

* maximum_time (float in seconds or datetime.timedelta) -
Specifies the maximum_time allowed for this method to complete in milliseconds.
If the method does not complete within this time interval, the method returns the
NIDMM_ERROR_MAX_TIME_EXCEEDED error code. This may happen if an
external trigger has not been received, or if the specified timeout is not long enough
for the acquisition to complete.

The valid range is 0-86400000. The default wvalue is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

7.2. nidmm module 173

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.0.1

Return type
tuple (reading_array, actual_number_of_points)
WHERE
reading_array (array.array(“d”)):

An array of measurement values.

Note: The size of the Reading_Array must be at least the size that you specify
for the Array_Size parameter.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

read_status

nidmm.Session.read_status ()
Returns measurement backlog and acquisition status. Use this method to determine how many
measurements are available before calling nidmm. Session. fetch (), nidmm.Session.
fetch_multi_point (),or nidmm.Session.fetch_waveform().

Note: The NI 4050 is not supported.

Return type
tuple (acquisition_backlog, acquisition_status)
WHERE
acquisition_backlog (int):

The number of measurements available to be read. If the backlog continues to
increase, data is eventually overwritten, resulting in an error.

Note: On the NI 4060, the Backlog does not increase when autoranging. On
the NI 4065, the Backlog does not increase when Range is set to AUTO RANGE
ON (-1), or before the first point is fetched when Range is set to AUTO RANGE
ONCE (-3). These behaviors are due to the autorange model of the devices.

acquisition_status (nidmm.AcquisitionStatus):

Indicates status of the acquisition. The following table shows the acquisition

states:
0 | Running
1 | Finished with backlog
2 | Finished with no backlog
3 | Paused
4 | No acquisition in progress

174 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

read_waveform

nidmm. Session.read_waveform (array_size, maximum_time=datetime.timedelta(milliseconds=-
1))
For the NI 4080/4081/4082 and the NI 4070/4071/4072, acquires a waveform and returns data as

an array of values or as a waveform data type. The number of elements in the Waveform_Array is
determined by the values you specify for the Waveform_Points parameter in nidmm. Session.
configure waveform acquisition ().

Parameters

* array_size (int) — Specifies the number of waveform points to return. You
specify the total number of points that the DMM acquires in the Waveform Points
parameter of nidmm. Session.configure_waveform acquisition().
The default value is 1.

e maximum time (float in seconds or datetime.timedelta) -
Specifies the maximum_time allowed for this method to complete in milliseconds.
If the method does not complete within this time interval, the method returns the
NIDMM_ERROR_MAX_TIME_EXCEEDED error code. This may happen if an
external trigger has not been received, or if the specified timeout is not long enough
for the acquisition to complete.

The wvalid range is 0-86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type
tuple (waveform_array, actual_number_of_points)
WHERE
waveform_array (array.array(“d”)):

An array of measurement values.

Note: The size of the Waveform_Array must be at least the size that you specify
for the Array_Size parameter.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

reset

nidmm.Session.reset ()
Resets the instrument to a known state and sends initialization commands to the instrument. The
initialization commands set instrument settings to the state necessary for the operation of the instru-
ment driver.

7.2. nidmm module 175

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.0.1

reset_with_defaults

nidmm.Session.reset_with defaults ()
Resets the instrument to a known state and sends initialization commands to the DMM. The initial-
ization commands set the DMM settings to the state necessary for the operation of NI-DMM. All
user-defined default values associated with a logical name are applied after setting the DMM.

self_cal

nidmm.Session.self cal()
For the NI 4080/4081/4082 and the NI 4070/4071/4072, executes the self-calibration routine to
maintain measurement accuracy.

Note: This method calls nidmm. Session.reset (), and any configurations previous to the
call will be lost. All properties will be set to their default values after the call returns.

self_test

nidmm.Session.self_ test ()
Performs a self-test on the DMM to ensure that the DMM is functioning properly. Self-test does not
calibrate the DMM. Zero indicates success.

On the NI 4080/4082 and NI 4070/4072, the error code 1013 indicates that you should check the
fuse and replace it, if necessary.

Raises SelfTestError on self test failure. Properties on exception object:
* code - failure code from driver

* message - status message from driver

Note: Self-test does not check the fuse on the NI 4065, NI 4071, and NI 4081. Hence, even if the
fuse is blown on the device, self-test does not return error code 1013.

Note: This method calls nidmm. Session.reset (), and any configurations previous to the
call will be lost. All properties will be set to their default values after the call returns.

send_software_trigger

nidmm.Session.send_software_trigger ()
Sends a command to trigger the DMM. Call this method if you have configured either the nidmm.
Session.trigger_source or nidmm.Session.sample_ trigger properties. If the
nidmm.Session.trigger_sourceand/or nidmm.Session.sample_ trigger proper-
ties are set to NIDMM_VAL_EXTERNAL or NIDMM_VAL_TTLn, you can use this method to over-
ride the trigger source that you configured and trigger the device. The NI 4050 and NI 4060 are not
supported.

176 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

unlock

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

nidmm. Session.unlock ()
Releases a lock that you acquired on an device session using nidmm. Session.lock (). Refer to nidmm.
Session.unlock () for additional information on session locks.

Properties
Property Datatype
nidmm.Session.ac_max_freqg float
nidmm.Session.ac_min_freq float
nidmm.Session.adc_calibration ADCCalibration
nidmm. Session.aperture_time float
nidmm.Session.aperture_time_units ApertureTimeUnits
nidmm.Session.auto_range_value float
nidmm.Session.auto_zero AutoZero
nidmm.Session.buffer_size int
nidmm.Session.cable_comp_type CableCompensationType
nidmm.Session.channel_count int
nidmm.Session.current__source float
nidmm.Session.dc _bias bool
nidmm.Session.dc_noise_rejection DCNoiseRejection
nidmm.Session.driver._setup str
nidmm.Session.freq _voltage_auto_range float
nidmm.Session.freq voltage_ range float
nidmm.Session.function Function
nidmm.Session.input_resistance float
nidmm.Session.instrument_firmware revision str
nidmm.Session.instrument_manufacturer str
nidmm. Session.instrument_model str
nidmm.Session.instrument_product_id int
nidmm.Session.io_resource_descriptor str
nidmm.Session.lc_calculation _model LCCalculationModel
nidmm.Session.lc_number_meas_to_average int
nidmm.Session.logical_name str
nidmm.Session.meas_complete dest MeasurementCompleteDest
nidmm.Session.number_of_averages int
nidmm.Session.offset_comp_ohms bool
nidmm.Session.open_cable comp_conductance float
nidmm.Session.open_cable comp_susceptance float
nidmm.Session.operation_mode OperationMode
nidmm.Session.powerline freq float
nidmm.Session.range float
nidmm.Session.resolution _absolute float

Continued on next page

7.2. nidmm module

177

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 5 — continued from previous page

Property Datatype
nidmm.Session.resolution digits float
nidmm.Session.sample_count int
nidmm.Session.sample interval float in seconds or datetime.timedelta
nidmm.Session.sample_trigger SampleTrigger
nidmm.Session.serial_ number str
nidmm.Session.settle_time float in seconds or datetime.timedelta
nidmm.Session.short_cable_comp_reactance float
nidmm.Session.short_cable_ comp_resistance float
nidmm.Session.simulate bool
nidmm.Session.specific _driver _description str
nidmm.Session.specific_driver _major_version | int
nidmm.Session.specific_driver_minor_version | int
nidmm.Session.specific_driver_revision str
nidmm.Session.specific _driver_ vendor str
nidmm.Session.supported_instrument_models str
nidmm.Session.temp_rtd_a float
nidmm.Session.temp_rtd_b float
nidmm.Session.temp_rtd _c float
nidmm.Session.temp_rtd_res float
nidmm.Session.temp_rtd _type RTDType
nidmm.Session.temp_tc_fixed_ ref_junc float
nidmm.Session.temp_tc_ref_ junc_type ThermocoupleReferencedJunctionType
nidmm.Session.temp_tc_type ThermocoupleType
nidmm.Session.temp_thermistor_a float
nidmm.Session.temp_thermistor_b float
nidmm.Session.temp_thermistor_c float
nidmm.Session.temp_thermistor_type ThermistorType
nidmm.Session.temp_transducer_type TransducerType
nidmm.Session.trigger._count int
nidmm.Session.trigger_delay float in seconds or datetime.timedelta
nidmm.Session.trigger._source TriggerSource
nidmm.Session.waveform coupling WaveformCoupling
nidmm.Session.waveform points int
nidmm.Session.waveform rate float
Methods
Method name
nidmm.Session.abort ()
nidmm.Session.configure_measurement_absolute ()
nidmm.Session.configure_measurement_digits ()
nidmm.Session.configure _multi_point ()
nidmm.Session.configure_rtd _custom /()
nidmm.Session.configure_rtd_type ()
nidmm.Session.configure thermistor_custom/()
nidmm.Session.configure_thermocouple ()
nidmm.Session.configure_trigger()
nidmm.Session.configure_waveform acquisition ()
Continued on next page
178 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 6 — continued from previous page
Method name
nidmm.Session.disable ()
nidmm.Session.fetch ()
nidmm.Session.fetch _multi_point ()
nidmm.Session.fetch_waveform()
nidmm.Session.fetch waveform into()
nidmm.Session.get_cal_date_and_time ()
nidmm.Session.get_dev_temp ()
nidmm.Session.get_ext_cal_ recommended_interval ()
nidmm.Session.get__last_cal_temp()
nidmm.Session.qget_self cal_ supported()
nidmm.Session.lock ()
nidmm.Session.perform open_cable comp ()
nidmm.Session.perform _short_cable_ comp ()
nidmm.Session.read/()
nidmm.Session.read_multi_point ()
nidmm.Session.read_status()
nidmm.Session.read _waveform()
nidmm.Session.reset ()
nidmm.Session.reset_with _defaults()
nidmm.Session.self cal ()
nidmm.Session.self_test ()
nidmm.Session.send_software trigger()
nidmm.Session.unlock ()

7.2.3.2 Enums

Enums used in NI-DMM

ADCCalibration

class nidmm.ADCCalibration

AUTO
The DMM enables or disables ADC calibration for you.

OFF
The DMM does not compensate for changes to the gain.

ON
The DMM measures an internal reference to calculate the correct gain for the measurement.

AcquisitionStatus

class nidmm.AcquisitionStatus

RUNNING
Running

FINISHED_ WITH BACKLOG
Finished with Backlog

7.2. nidmm module 179

NI Modular Instruments Python APl Documentation, Release 1.0.1

FINISHED_ WITH_ NO_BACKLOG
Finished with no Backlog

PAUSED
Paused

NO_ACQUISITION_IN_PROGRESS
No acquisition in progress

ApertureTimeUnits
class nidmm.ApertureTimeUnits
SECONDS

Seconds

POWER_LINE_CYCLES
Powerline Cycles

AutoZero

class nidmm.AutoZero

AUTO

The drivers chooses the AutoZero setting based on the configured method and resolution.

OFF
Disables AutoZero.

ON

The DMM internally disconnects the input signal following each measurement and takes a zero reading.

It then subtracts the zero reading from the preceding reading.

ONCE

The DMM internally disconnects the input signal for the first measurement and takes a zero reading. It

then subtracts the zero reading from the first reading and the following readings.

CableCompensationType

class nidmm.CableCompensationType

NONE
No Cable Compensation

OPEN
Open Cable Compensation

SHORT
Short Cable Compensation

OPEN_AND_SHORT
Open and Short Cable Compensation

180

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

DCNoiseRejection

class nidmm.DCNoiseRejection

AUTO
The driver chooses the DC noise rejection setting based on the configured method and resolution.

NORMAL
NI-DMM weighs all samples equally.

SECOND_ORDER
NI-DMM weighs the samples taken in the middle of the aperture time more than samples taken at the
beginning and the end of the measurement using a triangular weighing method.

HIGH_ORDER
NI-DMM weighs the samples taken in the middle of the aperture time more than samples taken at the
beginning and the end of the measurement using a bell-curve weighing method.

Function

class nidmm.Function

DC_VOLTS
DC Voltage

AC_VOLTS
AC Voltage

DC__CURRENT
DC Current

AC_CURRENT
AC Current

TWO_WIRE RES
2-Wire Resistance

FOUR_WIRE_RES
4-Wire Resistance

FREQ
Frequency

PERIOD
Period

TEMPERATURE
NI 4065, and NI 4070/4071/4072 supported.

AC_VOLTS_DC_COUPLED
AC Voltage with DC Coupling

DIODE
Diode

WAVEFORM _VOLTAGE
Waveform voltage

7.2. nidmm module 181

NI Modular Instruments Python APl Documentation, Release 1.0.1

WAVEFORM CURRENT
Waveform current

CAPACITANCE
Capacitance

INDUCTANCE
Inductance

LCCalculationModel

class nidmm.LCCalculationModel

AUTO
NI-DMM chooses the algorithm based on method and range

SERIES
NI-DMM uses the series impedance model to calculate capacitance and inductance

PARALLEL
NI-DMM uses the parallel admittance model to calculate capacitance and inductance

MeasurementCompleteDest

class nidmm.MeasurementCompleteDest

NONE
No Trigger

EXTERNAL
AUX I/0 Connector

PXI_TRIGO
PXI Trigger Line 0

PXI_ TRIG1
PXI Trigger Line 1

PXI_TRIG2
PXI Trigger Line 2

PXI_TRIG3
PXI Trigger Line 3

PXI_TRIG4
PXI Trigger Line 4

PXI_TRIGS
PXI Trigger Line 5

PXI_TRIG6
PXI Trigger Line 6

PXI_TRIG7
PXI Trigger Line 7

LBR_TRIGO
Internal Trigger Line of a PXI/SCXI Combination Chassis

182 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

OperationMode
class nidmm.OperationMode

IVIDMM
IviDmm Mode

WAVEFORM
Waveform acquisition mode

RTDType

class nidmm.RTDType

CUSTOM
Performs Callendar-Van Dusen RTD scaling with the user-specified A, B, and C coefficients.

PT3750
Performs scaling for a Pt 3750 RTD.

PT3851
Performs scaling for a Pt 3851 RTD.

PT3911
Performs scaling for a Pt 3911 RTD.

PT3916
Performs scaling for a Pt 3916 RTD.

PT3920
Performs scaling for a Pt 3920 RTD.

PT3928
Performs scaling for a Pt 3928 RTD.

SampleTrigger

class nidmm.SampleTrigger

IMMEDIATE
No Trigger

EXTERNAL
AUX I/0 Connector Trigger Line 0

SOFTWARE_TRIG
Software Trigger

INTERVAL
Interval Trigger

PXI_TRIGO
PXI Trigger Line 0

PXI_TRIG1
PXI Trigger Line 1

7.2. nidmm module 183

NI Modular Instruments Python APl Documentation, Release 1.0.1

PXI_TRIG2
PXI Trigger Line 2

PXI_TRIG3
PXI Trigger Line 3

PXI_TRIG4
PXI Trigger Line 4

PXI_TRIGS
PXI Trigger Line 5

PXI_TRIG6
PXI Trigger Line 6

PXI_TRIG7
PXI Trigger Line 7

PXI_STAR
PXI Star Trigger Line

AUX_TRIG1
AUX 1/0 Connector Trigger Line 1

LBR_TRIG1
Internal Trigger Line of a PXI/SCXI Combination Chassis

ThermistorType

class nidmm.ThermistorType

CUSTOM
Custom

THERMISTOR 44004
44004

THERMISTOR_44006
44006

THERMISTOR 44007
44007

ThermocoupleReferencedunctionType

class nidmm.ThermocoupleReferencedJunctionType

FIXED
Thermocouple reference juction is fixed at the user-specified temperature.

ThermocoupleType

class nidmm.ThermocoupleType

184 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

B

Thermocouple type B
E

Thermocouple type E
J

Thermocouple type J
K

Thermocouple type K
N

Thermocouple type N
R

Thermocouple type R
S

Thermocouple type S
T

Thermocouple type T

TransducerType

class nidmm.TransducerType

THERMOCOUPLE
Thermocouple

THERMISTOR
Thermistor

TWO_WIRE_ RTD
2-wire RTD

FOUR_WIRE RTD
4-wire RTD

TriggerSource

class nidmm.TriggerSource

IMMEDIATE
No Trigger

EXTERNAL
AUX I/0O Connector Trigger Line 0

SOFTWARE_TRIG
Software Trigger

PXI_TRIGO
PXI Trigger Line 0

PXI_TRIG1
PXI Trigger Line 1

7.2. nidmm module

185

NI Modular Instruments Python APl Documentation, Release 1.0.1

PXI_TRIG2
PXI Trigger Line 2

PXI_TRIG3
PXI Trigger Line 3

PXI_TRIG4
PXI Trigger Line 4

PXI_TRIGS
PXI Trigger Line 5

PXI_TRIG6
PXI Trigger Line 6

PXI_TRIG7
PXI Trigger Line 7

PXI_STAR
PXI Star Trigger Line

AUX_TRIG1
AUX I/0O Connector Trigger Line 1

LBR_TRIG1
Internal Trigger Line of a PXI/SCXI Combination Chassis

WaveformCoupling

class nidmm.WaveformCoupling

AC
AC Coupled

DC
DC Coupled

7.2.3.3 Exceptions and Warnings
DriverError

exception nidmm.DriverError
An error originating from the NI-DMM driver

UnsupportedConfigurationError

exception nidmm.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

DriverNotInstalledError

exception nidmm.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

186 Chapter 7. License

20

21

22

23

24

25

26

NI Modular Instruments Python APl Documentation, Release 1.0.1

InvalidRepeatedCapabilityError

exception nidmm.InvalidRepeatedCapabilityError
An error due to an invalid character in a repeated capability

SelfTestError

exception nidmm.SelfTestError
An error due to a failed self-test

DriverWarning

exception nidmm.DriverWarning
A warning originating from the NI-DMM driver

7.2.3.4 Examples

nidmm_fetch_waveform.py

Listing 3: (nidmm_fetch_waveform.py)

#!/usr/bin/python

import argparse
import nidmm
import sys
import time

def example (resource_name, options, function, range, points, rate):
with nidmm.Session (resource_name=resource_name, options=options) as session:
session.configure_waveform_acquisition (measurement_function=nidmm.
—Function[function], range=range, rate=rate, waveform_points=points)
with session.initiate () :
while True:
time.sleep(0.1)
backlog, acquisition_state = session.read_status/()
if acquisition_state == nidmm.AcquisitionStatus.FINISHED_WITH_NO_
—BACKLOG:
break
measurements = session.fetch_waveform(array_size=backloq)
print (measurements)

def _main(argsv):

parser = argparse.ArgumentParser (description='Performs a waveform acquisition,
—using the NI-DMM API.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2', help='Resource
—name of a National Instruments Digital Multimeter.')

parser.add_argument ('-f', '—-—function', default='WAVEFORM_VOLTAGE', choices=nidmm.
—Function.__members__ .keys (), type=str.upper, help='Measurement function.")

parser.add_argument ('-r', '—--range', default=10, type=float, help='Measurement,
—range.')

(continues on next page)

7.2. nidmm module 187

https://github.com/ni/nimi-python/blob/master/src/nidmm/examples/nidmm_fetch_waveform.py

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

NI Modular Instruments Python APl Documentation, Release 1.0.1

(continued from previous page)

parser.add_argument ('-p', '--points', default=10, type=int, help='Specifies the,
—numpber of points to acquire before the waveform acquisition completes.')

parser.add_argument ('-s', '--rate', default=1000, type=int, help='Specifies the_
—rate of the acquisition in samples per second.')

parser.add_argument ('-op', '—-—-option-string', default='"', type=str, help='Option_
—string')

args = parser.parse_args (argsv)
example (args.resource_name, args.option_string, args.function, args.range, args.
—points, args.rate)

def main() :
_main(sys.argv([l:])

def test_example():
options = {'simulate': True, 'driver_setup': {'Model': '4082', 'BoardType': 'PXIe
‘—"l }I }

example ('PXI1Slot2', options, 'WAVEFORM VOLTAGE', 10, 10, 1000)

def test_main():
cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4082; BoardType:PXIe
‘—"l]

_main (cmd_line)

if name == '__main__ ':

main ()

nidmm_measurement.py

Listing 4: (nidmm_measurement.py)

#!/usr/bin/python

import argparse
import nidmm
import sys

def example (resource_name, option_string, function, range, digits):
with nidmm.Session (resource_name=resource_name, options=option_string) as session:
session.configure_measurement_digits (measurement_function=nidmm.
—Function[function], range=range, resolution_digits=digits)
print (session.read())

def _main(argsv):

supported_functions = list (nidmm.Function.__members__.keys())

parser = argparse.ArgumentParser (description='Performs a single measurement using,
—the NI-DMM API.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)

(continues on next page)

188 Chapter 7. License

https://github.com/ni/nimi-python/blob/master/src/nidmm/examples/nidmm_measurement.py

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

)

43

NI Modular Instruments Python APl Documentation, Release 1.0.1

(continued from previous page)

parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2', help='Resource,
—name of a National Instruments Digital Multimeter.')

parser.add_argument ('-f', '--function', default=supported_functions[0],
—choices=supported_functions, type=str.upper, help='Measurement function.")

parser.add_argument ('-r', '—-range', default=10, type=float, help='Measurement
—range.')

parser.add_argument ('-d', '--digits', default=6.5, type=float, help='Digits of
—resolution for the measurement.')

parser.add_argument ('-op', '--option-string', default='', type=str, help='Option_
—string')

args = parser.parse_args (argsv)
example (args.resource_name, args.option_string, args.function, args.range, args.
—digits)

def main() :
_main(sys.argv([1l:])

def test_example():
options = {'simulate': True, 'driver_setup': {'Model': '4082', 'BoardTIype': 'PXIe

‘—"l }/ }

example ('PXI1Slot2', options, 'DC_VOLTS', 10, 6.5)

def test_main():
cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4082; BoardType:PXIe
‘—"l]

_main(cmd_line)

if name == '_ main_ ':

main ()

nidmm_multi_point_measurement.py

Listing 5: (nidmm_multi_point_measurement.py)

#!/usr/bin/python

import argparse
import nidmm
import sys

def example (resource_name, options, function, range, digits, samples, triggers):
with nidmm.Session (resource_name=resource_name, options=options) as session:
session.configure_measurement_digits (measurement_function=nidmm.
—Function[function], range=range, resolution_digits=digits)
session.configure_multi_point (trigger_count=triggers, sample_count=samples)
measurements = session.read_multi_point (array_size=samples)
print ('Measurements: ', measurements)

(continues on next page)

7.2. nidmm module 189

https://github.com/ni/nimi-python/blob/master/src/nidmm/examples/nidmm_multi_point_measurement.py

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

NI Modular Instruments Python APl Documentation, Release 1.0.1

(continued from previous page)

def _main(argsv):

parser = argparse.ArgumentParser (description='Performs a multipoint measurement_
—using the NI-DMM API.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2', help='Resource,
—name of a National Instruments Digital Multimeter.')

parser.add_argument ('-f', '—-—-function', default='DC_VOLTS', choices=nidmm.
—Function.__members__ .keys (), type=str.upper, help='Measurement function.')

parser.add_argument ('-r', '—-range', default=10, type=float, help='Measurement
—range. ")

parser.add_argument ('-d', '—--digits', default=6.5, type=float, help='Digits of_,
—resolution for the measurement.')

parser.add_argument ('-s', '—--samples', default=10, type=int, help='The number of
—measurements the DMM makes.')

parser.add_argument ('-t', '—--triggers', default=1, type=int, help='Sets the_
—number of triggers you want the DMM to receive before returning to the Idle state.')

parser.add_argument ('-op', '—-—option-string', default='"', type=str, help='Option,
—string')

args = parser.parse_args (argsv)
example (args.resource_name, args.option_string, args.function, args.range, args.
—digits, args.samples, args.triggers)

def main () :
_main(sys.argv[1l:])

def test_example():
options = {'simulate': True, 'driver_setup': {'Model': '4082', 'BoardType': 'PXIe
‘—"l }/ }

example ('PXI1Slot2', options, 'DC_vOLTS', 10, 6.5, 10, 1)

def test_main():
cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4082; BoardType:PXIe
“"l]

_main(cmd_line)

if name == '_ main

main ()

7.3 nifgen module

7.3.1 Installation

As a prerequisite to using the nifgen module, you must install the NI-FGEN runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-FGEN) can be installed with pip:

190 Chapter 7. License

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip

NI Modular Instruments Python APl Documentation, Release 1.0.1

’$ python -m pip install nifgen~=1.0.1

Or easy_install from setuptools:

’$ python -m easy_install nifgen

7.3.2 Usage

The following is a basic example of using the nifgen module to open a session to a Function Generator and generate
a sine wave for 5 seconds.

import nifgen
import time
with nifgen.Session("Devl") as session:
session.output_mode = nifgen.OutputMode.FUNC
session.configure_standard_waveform(waveform=nifgen.Waveform.SINE, amplitude=1.0,
—frequency=10000000, dc_offset=0.0, start_phase=0.0)
with session.initiate():
time.sleep (5)

Additional examples for NI-FGEN are located in src/nifgen/examples/ directory.

7.3.3 API Reference

7.3.3.1 nifgen.Session

class nifgen.Session (self, resource_name, channel_name=None, reset_device=False, options={})
Creates and returns a new NI-FGEN session to the specified channel of a waveform generator that is used in all
subsequent NI-FGEN method calls.

Parameters

* resource_name (str)—

Caution: Traditional NI-DAQ and NI-DAQmx device names are not case-sensitive.
However, all IVI names, such as logical names, are case-sensitive. If you use logical
names, driver session names, or virtual names in your program, you must ensure that the
name you use matches the name in the IVI Configuration Store file exactly, without any
variations in the case of the characters.

Specifies the resource name of the device to initialize.

For Traditional NI-DAQ devices, the syntax is DAQ::n, where rn is the device number as-
signed by MAX, as shown in Example 1.

For NI-DAQmx devices, the syntax is just the device name specified in MAX, as shown in
Example 2. Typical default names for NI-DAQmx devices in MAX are Dev1 or PXI1Slot].
You can rename an NI-DAQmx device by right-clicking on the name in MAX and entering
a new name.

7.3. nifgen module 191

http://pypi.python.org/pypi/setuptools
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.0.1

An alternate syntax for NI-DAQmzx devices consists of DAQ::NI-DAQmx device name, as
shown in Example 3. This naming convention allows for the use of an NI-DAQmx device in
an application that was originally designed for a Traditional NI-DAQ device. For example,
if the application expects DAQ::1, you can rename the NI-DAQmx device to 1 in MAX and
pass in DAQ::1 for the resource name, as shown in Example 4.

If you use the DAQ::n syntax and an NI-DAQmzx device name already exists with that same
name, the NI-DAQmx device is matched first.

You can also pass in the name of an IVI logical name or an IVI virtual name configured
with the IVI Configuration utility, as shown in Example 5. A logical name identifies a
particular virtual instrument. A virtual name identifies a specific device and specifies the
initial settings for the session.

Ex- Device Type Syntax Variable
ample
#
1 Traditional NI-DAQ de- | DAQ::/ (I = device number)
vice
2 NI-DAQmzx device myDAQmxDevice | (myDAQmxDevice = de-
vice name)
3 NI-DAQmx device DAQ::myDAQmxDevieew DAQmxDevice = de-
vice name)
4 NI-DAQmx device DAQ::2 (2 = device name)
5 IVI logical name or IVI | myLogicalName (myLogicalName =
virtual name name)

* channel_name (st r) — Specifies the channel that this VI uses.
Default Value: “0”

* reset_device (bool) — Specifies whether you want to reset the device during the ini-
tialization procedure. True specifies that the device is reset and performs the same method
asthe nifgen.Session.Reset () method.

PDefined Values

Default Value: False

True | Reset device
False | Do not reset device

options (str) — Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

192 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.0.1

Property Default
range_check True
query_instrument_status | False
cache True
simulate False
record_value_coersions False
driver_setup {}
Properties
Property Datatype
all _marker_events_latched_status int
all marker events_live status int
analog_data_mask int
analog filter enabled bool
analog_path AnalogPath
analog_static_value int
arb_gain float
arb _marker position int
arb_offset float
arb_repeat_count int
arb_sample_rate float
arb_sequence_handle int
arb _waveform handle int
aux_power_enabled bool
bus_type BusType
channel_count int
channel_delay float
clock_mode ClockMode
common_mode_offset

float

data_marker_events_ count

nt

data _marker event_data bit_number

int

data_marker_event_level polarity

DataMarkerEventLevelPolarity

data_marker_event_output_terminal

Str

data_transfer block size

int

data_transfer _maximum bandwidth

float

data_transfer_maximum_in_flight_reads

nt

data_transfer_preferred packet_size

int

digital_data_mask

int

digital_edge_ script_trigger_edge

ScriptTriggerDigitalEdgeEdge

digital_ edge script_trigger_source

str

digital_edge_start_trigger_edge

StartTriggerDigitalEdgeEdge

digital_edge_start_trigger._source

str

digital_filter_enabled bool
digital_filter interpolation_factor float
digital_gain float
digital pattern_enabled bool
digital_static_value int
done_event_output_terminal str

driver_setup

str

Continued on next page

7.3. nifgen module

193

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 7 — continued from previous page

Property

Datatype

exported _onboard _reference clock_output_terminal

str

exported_reference_clock_output_terminal

str

exported _sample clock_divisor

int

exported_sample_clock_ output_terminal

str

exported _sample clock_timebase_divisor

int

exported_sample_clock_ timebase output_terminal

str

exported_script_trigger_output_terminal

str

exported_start_trigger_output_terminal

str

external_ clock_delay_binary value

int

external_ sample clock multiplier

float

file transfer _block _size

nt

filter._correction_frequency

float

flatness_correction_enabled

bool

fpga_bitfile path

str

freq list_duration_quantum

float

freq list_handle

nt

func_amplitude

float

func_buffer size

nt

func_dc_offset

float

func_duty_cycle high

float

func_frequency

float

func_max _buffer size

nt

func_start_phase

float

func_waveform

Waveform

idle behavior

IdleBehavior

idle_value

int

instrument_firmware revision

str

instrument_manufacturer

Str

instrument_model

str

io_resource_descriptor

Str

load_impedance

float

logical_name

Str

major_version

int

marker_events_count

int

marker_event_output_terminal

str

max_freq_list_duration

float

max_freq _list_length

nt

max_loop_count

int

max_num _freq lists

int

max_num_sequences

int

max_num waverforms

int

max_sequence_length

int

max_waveform size

int

memory_size

int

minor_version

int

min_freq list_duration

float

min_freq list_length

nt

min_sequence_length

int

min _waveform size

int

Continued on next page

194

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 7 — continued from previous page

Property Datatype
module_ revision str
output_enabled bool
output_impedance float
output_mode OutputMode
ready_for_start_event_output_terminal str

reference clock source

ReferenceClockSource

ref_ clock_frequency

float

sample_clock_source

SampleClockSource

sample_clock timebase_ rate

float

sample_clock_ timebase_source

SampleClockTimebaseSource

script_to_generate

Str

script_triggers_count

int

script_trigger_type ScriptTriggerType
serial_number str

simulate bool
specific_driver_description str
specific_driver_revision str
specific_driver_vendor str
started_event_output_terminal str
start_trigger_type StartTriggerType

streaming_space_available in _waveform

nt

streaming waveform handle

int

streaming_waveform_name

str

streaming write_ timeout

float in seconds or datetime.timedelta

supported_instrument_models

str

terminal_configuration

TerminalConfiguration

trigger._mode

TriggerMode

walt_behavior

WaitBehavior

wait_value

int

waveform quantum

int

Public methods

Method name

abort ()

allocate _named _waveform()

allocate waveform()

clear_arb_memory ()

clear_arb_sequence ()

clear_freq 1list ()

clear user_ standard _waveform/()

commit ()

configure_arb_sequence ()

configure _arb_waveform/()

configure custom fir filter coefficients()

configure freq 1list ()

configure_standard_waveform/()

create_advanced_arb_sequence ()

create_arb_sequence ()

Continued on next page

7.3. nifgen module

195

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 8 — continued from previous page
Method name
create freq 1list ()
create _waveform from file fé64()
create_waveform from file 116/()
create_waveform _numpy ()
define user standard _waveform()
delete_script ()
delete _waveform/()
disable ()
get_ext_cal_last_date_and time ()
get_ext_cal last_temp/()
get_ext_cal_recommended_interval ()
get_hardware_state()
get_self cal_ last_date_and time ()
get_self cal last_temp/()
get_self cal_supported()
is_done ()
lock ()
query_arb_seq _capabilities ()
query_arb_wfm capabilities ()
query_freq list_capabilities/()
read_current_temperature ()
reset ()
reset_device ()
reset_with _defaults()
self_cal()
self test ()
send_software_edge_trigger ()
set_next_write_position/()
unlock ()
wait_until_ done ()
write script ()
write waveform/()

Properties
all_marker_events_latched_status

nifgen.Session.all_marker_events_latched_status
Returns a bit field of the latched status of all Marker Events. Write O to this property to clear the
latched status of all Marker Events.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

196 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Marker:Advanced:All Marker Events Latched Status
o C Attribute: NIFGEN_ATTR_ALL_MARKER_EVENTS_LATCHED_STATUS

all_marker_events_live_status

nifgen.Session.all_marker events_live_status
Returns a bit field of the live status of all Marker Events.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Marker:Advanced:All Marker Events Live Status
* C Attribute: NIFGEN_ATTR_ALL_MARKER_EVENTS_LIVE_STATUS

analog_data_mask

nifgen.Session.analog data_mask
Specifies the mask to apply to the analog output. The masked data is replaced with the data in
nifgen.Session.analog_static_value.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Output:Data Mask:Analog Data Mask
* C Attribute: NIFGEN_ATTR_ANALOG_DATA_MASK

7.3. nifgen module 197

NI Modular Instruments Python APl Documentation, Release 1.0.1

analog_filter_enabled

nifgen.Session.analog_filter enabled
Controls whether the signal generator applies to an analog filter to the output signal. This property
is valid in arbitrary waveform, arbitrary sequence, and script modes. This property can also be used
in standard method and frequency list modes for user-defined waveforms.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Output:Filters:Analog Filter Enabled
* C Attribute: NIFGEN_ATTR_ANALOG_FILTER_ENABLED

analog_path

nifgen.Session.analog_path
Specifies the analog signal path that should be used. The main path allows you to configure gain,
offset, analog filter status, output impedance, and output enable. The main path has two amplifier
options, high- and low-gain. The direct path presents a much smaller gain range, and you cannot
adjust offset or the filter status. The direct path also provides a smaller output range but also lower
distortion. NI-FGEN normally chooses the amplifier based on the user-specified gain.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.AnalogPath
Permissions read-write
Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Output:Analog Path
* C Attribute: NIFGEN_ATTR_ANALOG_PATH

analog_static_value

nifgen.Session.analog_static_value
Specifies the static value that replaces data masked by nifgen.Session.
analog data mask.

198 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Output:Data Mask:Analog Static Value
» C Attribute: NIFGEN_ATTR_ANALOG_STATIC_VALUE

arb_gain

nifgen.Session.arb_gain
Specifies the factor by which the signal generator scales the arbitrary waveform data. When you
create arbitrary waveforms, you must first normalize the data points to the range -1.0 to +1.0. Use
this property to scale the arbitrary waveform to other ranges. For example, when you set this property
to 2.0, the output signal ranges from -2.0 V to +2.0 V. Use this property when ni fgen. Session.
output_mode is set to ARB or SEQ.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Arbitrary Waveform:Gain
e C Attribute: NIFGEN_ATTR_ARB_GAIN

arb_marker_position

nifgen.Session.arb_marker_ position
Specifies the position for a marker to be asserted in the arbitrary waveform. This property de-
faults to -1 when no marker position is specified. Use this property when nifgen.Session.
output_modeissetto ARB. Use nifgen.Session.ExportSignal () toexport the marker
signal.

Note: One or more of the referenced methods are not in the Python API for this driver.

7.3. nifgen module 199

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property can use repeated capabilities (markers). If set or get directly on the nif-
gen.Session object, then the set/get will use all repeated capabilities in the session. You can specify
a subset of repeated capabilities using the Python index notation on an nifgen.Session repeated ca-
pabilities container, and calling set/get value on the result.:

session.markers[0,1].arb_marker_position = var
var = session.markers[0,1].arb_marker_position

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Arbitrary Waveform:Arbitrary Waveform Mode:Marker Position
e C Attribute: NIFGEN_ATTR_ARB_MARKER_POSITION

arb_offset

nifgen.Session.arb_offset
Specifies the value that the signal generator adds to the arbitrary waveform data. When you create
arbitrary waveforms, you must first normalize the data points to the range -1.0 to +1.0. Use this prop-
erty to shift the arbitrary waveform range. For example, when you set this property to 1.0, the output
signal ranges from 2.0 V to 0.0 V. Use this property when nifgen. Session.output_mode is
set to ARB or SEQ. Units: Volts

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Arbitrary Waveform:Offset
* C Attribute: NIFGEN_ATTR_ARB_OFFSET

200 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

arb_repeat_count

nifgen.Session.arb_repeat_count
Specifies number of times to repeat the arbitrary waveform when the triggerMode parameter of
nifgen.Session.ConfigureTriggerMode () is setto SINGLE or STEPPED. This prop-
erty is ignored if the triggerMode parameter is set to CONTINUOUS or BURST. Use this property
when nifgen.Session.output_mode is set to ARB. When used during streaming, this prop-
erty specifies the number of times to repeat the streaming waveform (the onboard memory allocated
for streaming). For more information about streaming, refer to the Streaming topic.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Arbitrary Waveform:Arbitrary Waveform Mode:Repeat Count
e C Attribute: NIFGEN_ATTR_ARB_REPEAT_COUNT

arb_sample_rate

nifgen.Session.arb_sample_rate
Specifies the rate at which the signal generator outputs the points in arbitrary waveforms. Use this
property when nifgen. Session.output_mode is set to ARB or SEQ. Units: Samples/s

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Clocks:Sample Clock:Rate
e C Attribute: NIFGEN_ATTR_ARB_SAMPLE_RATE

arb_sequence_handle

nifgen.Session.arb_sequence_handle
This channel-based property identifies which sequence the signal generator produces. You can

7.3. nifgen module 201

NI Modular Instruments Python APl Documentation, Release 1.0.1

create multiple sequences using nifgen.Session.create_arb_sequence (). nifgen.
Session.create_arb_sequence () returns a handle that you can use to identify the partic-
ular sequence. To configure the signal generator to produce a particular sequence, set this property
to the sequence handle. Use this property only when nifgen.Session.output_mode is set
to SEQ.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Arbitrary Sequence
Handle

* C Attribute: NIFGEN_ATTR_ARB_SEQUENCE_HANDLE

arb_waveform_handle

nifgen.Session.arb_waveform_ handle

Selects which arbitrary waveform the signal generator produces. You can cre-
ate multiple arbitrary waveforms using one of the following niFgen Create Wave-
form methods: nifgen.Session.create_waveform() nifgen.Session.
create_waveform() nifgen.Session.create_waveform from file 116/()
nifgen.Session.create _waveform from file f64() nifgen.Session.
CreateWaveformFromFileHWS () These methods return a handle that you can use to identify
the particular waveform. To configure the signal generator to produce a particular waveform,
set this property to the waveform handle. Use this property only when nifgen.Session.
output_mode is set to ARB.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Arbitrary Waveform:Arbitrary Waveform Mode:Arbitrary Wave-
form Handle

* C Attribute: NIFGEN_ATTR_ARB_WAVEFORM_HANDLE

202 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

aux_power_enabled

nifgen.Session.aux_power_enabled
Controls the specified auxiliary power pin. Setting this property to TRUE energizes the auxiliary
power when the session is committed. When this property is FALSE, the power pin of the connector
outputs no power.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Output:Advanced:AUX Power Enabled
* C Attribute: NIFGEN_ATTR_AUX_POWER_ENABLED

bus_type

nifgen.Session.bus_type
The bus type of the signal generator.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.BusType
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Instrument:Bus Type
e C Attribute: NIFGEN_ATTR_BUS_TYPE

channel_count

nifgen.Session.channel_count
Returns the number of channels that the specific instrument driver supports. For each property for
which IVI_VAL_MULTI_CHANNEL is set, the IVI Engine maintains a separate cache value for
each channel.

7.3. nifgen module

203

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Capabilities:Channel
Count

» C Attribute: NIFGEN_ATTR_CHANNEL_COUNT

channel_delay

nifgen.Session.channel_delay
Specifies, in seconds, the delay to apply to the analog output of the channel specified by the channel
string. You can use the channel delay to configure the timing relationship between channels on a
multichannel device. Values for this property can be zero or positive. A value of zero indicates
that the channels are aligned. A positive value delays the analog output by the specified number of
seconds.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Output:Channel Delay
* C Attribute: NIFGEN_ATTR_CHANNEL_DELAY

clock_mode

nifgen.Session.clock_mode
Controls which clock mode is used for the signal generator. For signal generators that support it,
this property allows switching the sample clock to High-Resolution mode. When in Divide-Down
mode, the sample rate can only be set to certain frequences, based on dividing down the update
clock. However, in High-Resolution mode, the sample rate may be set to any value.

The following table lists the characteristics of this property.

204 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value

Datatype enums.ClockMode
Permissions read-write
Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Clocks:Sample Clock:Mode
e C Attribute: NIFGEN_ATTR_CLOCK_MODE

common_mode_offset

nifgen.Session.common_mode_offset
Specifies, in volts, the value the signal generator adds to or subtracts from the arbi-
trary waveform data. This property applies only when you set the nifgen.Session.
terminal_configuration property to DIFFERENTIAL. Common mode offset is applied
to the signals generated at each differential output terminal.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Output:Common Mode Offset
» C Attribute: NIFGEN_ATTR_COMMON_MODE_OFFSET

data_marker_events_count

nifgen.Session.data_marker_events_count
Returns the number of Data Marker Events supported by the device.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.3. nifgen module 205

NI Modular Instruments Python APl Documentation, Release 1.0.1

e LabVIEW Property: Instrument:Data Marker Events Count
e C Attribute: NIFGEN_ATTR_DATA_MARKER_EVENTS_COUNT

data_marker_event_data_bit nhumber

nifgen.Session.data _marker_event_data bit_number
Specifies the bit number to assign to the Data Marker Event.

Tip: This property can use repeated capabilities (markers). If set or get directly on the nif-
gen.Session object, then the set/get will use all repeated capabilities in the session. You can specify
a subset of repeated capabilities using the Python index notation on an nifgen.Session repeated ca-
pabilities container, and calling set/get value on the result.:

session.markers[0, 1] .data_marker_event_data_bit_number = var
var = session.markers[0,1].data_marker_event_data_bit_number

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Data Marker:Data Bit Number
* C Attribute: NIFGEN_ATTR_DATA_MARKER_EVENT_DATA_BIT_NUMBER

data_marker_event_level_polarity

nifgen.Session.data _marker_event_level_polarity
Specifies the output polarity of the Data marker event.

Tip: This property can use repeated capabilities (markers). If set or get directly on the nif-
gen.Session object, then the set/get will use all repeated capabilities in the session. You can specify
a subset of repeated capabilities using the Python index notation on an nifgen.Session repeated ca-
pabilities container, and calling set/get value on the result.:

session.markers[0,1].data_marker_event_level_polarity = var
var = session.markers[0,1].data_marker_event_level_polarity

The following table lists the characteristics of this property.

206 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value

Datatype enums.DataMarkerEventLevelPolarity
Permissions read-write

Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Data Marker:Level:Active Level
* C Attribute: NIFGEN_ATTR_DATA_MARKER_EVENT LEVEL_POLARITY

data_marker_event_output_terminal

nifgen.Session.data_marker_ event_output_terminal
Specifies the destination terminal for the Data Marker Event.

Tip: This property can use repeated capabilities (markers). If set or get directly on the nif-
gen.Session object, then the set/get will use all repeated capabilities in the session. You can specify
a subset of repeated capabilities using the Python index notation on an nifgen.Session repeated ca-
pabilities container, and calling set/get value on the result.:

session.markers[0,1] .data_marker_event_output_terminal = var
var = session.markers[0,1].data_marker_event_output_terminal

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Events:Data Marker:OQutput Terminal
* C Attribute: NIFGEN_ATTR_DATA_MARKER_EVENT OUTPUT_TERMINAL

data_transfer_block_size

nifgen.Session.data_transfer block_size
The number of samples at a time to download to onboard memory. Useful when the total data to be
transferred to onboard memory is large.

The following table lists the characteristics of this property.

7.3. nifgen module

207

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Arbitrary Waveform:Data Transfer:Data Transfer Block Size
* C Attribute: NIFGEN_ATTR_DATA_TRANSFER_BLOCK_SIZE

data_transfer_maximum_bandwidth

nifgen.Session.data_transfer maximum_bandwidth
Specifies the maximum amount of bus bandwidth (in bytes per second) to use for data transfers.
The signal generator limits data transfer speeds on the PCle bus to the value you specify for this
property. Set this property to optimize bus bandwidth usage for multi-device streaming applications
by preventing the signal generator from consuming all of the available bandwidth on a PCI express
link when waveforms are being written to the onboard memory of the device.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Arbitrary Waveform:Data Transfer:Maximum Bandwidth
* C Attribute: NIFGEN_ATTR_DATA_TRANSFER_MAXIMUM_BANDWIDTH

data_transfer_maximum_in_flight_reads

nifgen.Session.data_transfer maximum in flight_reads

Specifies the maximum number of concurrent PCI Express read requests the signal generator can
issue. When transferring data from computer memory to device onboard memory across the PCI
Express bus, the signal generator can issue multiple memory reads at the same time. In general, the
larger the number of read requests, the more efficiently the device uses the bus because the multiple
read requests keep the data flowing, even in a PCI Express topology that has high latency due to
PCI Express switches in the data path. Most NI devices can issue a large number of read requests
(typically 8 or 16). By default, this property is set to the highest value the signal generator supports.
If other devices in your system cannot tolerate long data latencies, it may be helpful to decrease the
number of in-flight read requests the NI signal generator issues. This helps to reduce the amount of
data the signal generator reads at one time.

208 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Arbitrary Waveform:Data Transfer:Advanced:Maximum In-Flight
Read Requests

* C Attribute: NIFGEN_ATTR_DATA_TRANSFER_MAXIMUM_IN_FLIGHT_READS

data_transfer_preferred_packet_size

nifgen.Session.data_transfer preferred packet_size
Specifies the preferred size of the data field in a PCI Express read request packet. In general, the
larger the packet size, the more efficiently the device uses the bus. By default, NI signal generators
use the largest packet size allowed by the system. However, due to different system implementations,
some systems may perform better with smaller packet sizes. Recommended values for this property
are powers of two between 64 and 512. In some cases, the signal generator generates packets
smaller than the preferred size you set with this property. You cannot change this property while the
device is generating a waveform. If you want to change the device configuration, call the ni fgen.
Session.abort () method or wait for the generation to complete.

Note: :

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Arbitrary Waveform:Data Transfer:Advanced:Preferred Packet Size
* C Attribute: NIFGEN_ATTR_DATA_TRANSFER_PREFERRED_PACKET_SIZE

digital_data_mask

nifgen.Session.digital_data_mask
Specifies the mask to apply to the output on the digital connector. The masked data is replaced with
the datain ni fgen.Session.digital_static_value.

7.3. nifgen module

209

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Output:Data Mask:Digital Data Mask
» C Attribute: NIFGEN_ATTR_DIGITAL_DATA_MASK

digital_edge_script_trigger_edge

nifgen.Session.digital_edge_script_trigger_edge
Specifies the active edge for the Script trigger. This property is used when nifgen. Session.
script_trigger_type is setto Digital Edge.

Tip: This property can use repeated capabilities (script_triggers). If set or get directly on the
nifgen.Session object, then the set/get will use all repeated capabilities in the session. You can spec-
ify a subset of repeated capabilities using the Python index notation on an nifgen.Session repeated
capabilities container, and calling set/get value on the result.:

session.script_triggers([0,1].digital_edge_script_trigger_edge = var
var = session.script_triggers[0,1].digital_edge_script_trigger_edge

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.ScriptTriggerDigitalEdgeEdge
Permissions read-write

Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Script:Digital Edge:Edge
* C Attribute: NIFGEN_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_EDGE

digital_edge_script_trigger_source

nifgen.Session.digital_edge_script_trigger_source
Specifies the source terminal for the Script trigger. This property is used when nifgen.
Session.script_trigger_type is setto Digital Edge.

210 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property can use repeated capabilities (script_triggers). If set or get directly on the
nifgen.Session object, then the set/get will use all repeated capabilities in the session. You can spec-
ify a subset of repeated capabilities using the Python index notation on an nifgen.Session repeated
capabilities container, and calling set/get value on the result.:

session.script_triggers([0,1].digital_edge_script_trigger_source = var
var = session.script_triggers([0,1].digital_edge_script_trigger_source

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Script:Digital Edge:Source
* C Attribute: NIFGEN_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_SOURCE

digital_edge_start_trigger_edge

nifgen.Session.digital_edge_start_trigger_edge
Specifies the active edge for the Start trigger. This property is used only when ni fgen. Session.
start_trigger_type is setto Digital Edge.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.StartTriggerDigitalEdgeEdge
Permissions read-write

Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Start:Digital Edge:Edge
* C Attribute: NIFGEN_ATTR_DIGITAL_EDGE_START_TRIGGER_EDGE

digital_edge_start_trigger_source

nifgen.Session.digital_edge_start_trigger_source
Specifies the source terminal for the Start trigger. This property is used only when nifgen.
Session.start_trigger_type is set to Digital Edge.

7.3. nifgen module 211

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Start:Digital Edge:Source
* C Attribute: NIFGEN_ATTR_DIGITAL_EDGE_START_TRIGGER_SOURCE

digital_filter_enabled

nifgen.Session.digital_filter_enabled
Controls whether the signal generator applies a digital filter to the output signal. This property is
valid in arbitrary waveform, arbitrary sequence, and script modes. This property can also be used in
standard method and frequency list modes for user-defined waveforms.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Output:Filters:Digital Filter Enabled
* C Attribute: NIFGEN_ATTR_DIGITAL_FILTER_ENABLED

digital_filter_interpolation_factor

nifgen.Session.digital_filter_interpolation_factor
This property only affects the device when nifgen.Session.digital filter enabled
is set to True. If you do not set this property directly, NI-FGEN automatically selects the maximum
interpolation factor allowed for the current sample rate. Valid values are 2, 4, and 8.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

212 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Output:Filters:Digital Filter Interpolation Factor
» C Attribute: NIFGEN_ATTR_DIGITAL_FILTER_INTERPOLATION_FACTOR

digital_gain

nifgen.Session.digital_gain

Specifies a factor by which the signal generator digitally multiplies generated data before converting
it to an analog signal in the DAC. For a digital gain greater than 1.0, the product of digital gain
times the generated data must be inside the range plus or minus 1.0 (assuming floating point data).
If the product exceeds these limits, the signal generator clips the output signal, and an error results.
Some signal generators support both digital gain and an analog gain (analog gain is specified with
the nifgen.Session.func_amplitude property or the nifgen.Session.arb _gain
property). Digital gain can be changed during generation without the glitches that may occur when
changing analog gains, due to relay switching. However, the DAC output resolution is a method of
analog gain, so only analog gain makes full use of the resolution of the DAC.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Output:Digital Gain
* C Attribute: NIFGEN_ATTR_DIGITAL_GAIN

digital_pattern_enabled

nifgen.Session.digital_pattern_enabled
Controls whether the signal generator generates a digital pattern of the output signal.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Output:Advanced:Digital Pattern Enabled

7.3. nifgen module

213

NI Modular Instruments Python APl Documentation, Release 1.0.1

» C Attribute: NIFGEN_ATTR_DIGITAL_PATTERN_ENABLED

digital_static_value

nifgen.Session.digital_static_value
Specifies the static value that replaces

digital_data_mask.

data masked by

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

nifgen.Session.

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

* LabVIEW Property: Output:Data Mask:Digital Static Value
* C Attribute: NIFGEN_ATTR_DIGITAL_STATIC_VALUE

done_event_output_terminal

nifgen.Session.done_event_output_terminal
Specifies the destination terminal for the Done Event.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Events:Done:Output Terminal
e C Attribute: NIFGEN_ATTR_DONE_EVENT_OUTPUT_TERMINAL

driver_setup

nifgen.Session.driver_setup

Specifies the driver setup portion of the option string that was passed into the ni fgen. Session.

InitWithOptions () method.

214

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | 0
Resettable 0

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIFGEN_ATTR_DRIVER_SETUP

exported_onboard_reference_clock_output_terminal

nifgen.Session.exported onboard reference_ clock_output_terminal
Specifies the terminal to which to export the Onboard Reference Clock.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

* LabVIEW Property: Clocks:Reference Clock:Onboard Reference Clock:Export Output
Terminal

» C Attribute: NIFGEN_ATTR_EXPORTED_ONBOARD_REFERENCE_CLOCK_OUTPUT_TERMINAL

exported_reference_clock_output_terminal

nifgen.Session.exported reference_clock_ output_terminal
Specifies the terminal to which to export the Reference Clock.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

7.3. nifgen module 215

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Clocks:Reference Clock:Export Output Terminal
o C Attribute: NIFGEN_ATTR_EXPORTED_REFERENCE_CLOCK_OUTPUT_TERMINAL

exported_sample_clock_divisor

nifgen.Session.exported_sample_clock _divisor
Specifies the factor by which to divide the Sample clock, also known as the Update clock, before it is
exported. To export the Sample clock, use the nifgen.Session.ExportSignal () method
orthe nifgen.Session.exported sample clock _output_terminal property.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Clocks:Sample Clock:Exported Sample Clock Divisor
* C Attribute: NIFGEN_ATTR_EXPORTED_SAMPLE_CLOCK_DIVISOR

exported_sample_clock_output_terminal

nifgen.Session.exported_sample_clock output_terminal
Specifies the terminal to which to export the Sample Clock.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Clocks:Sample Clock:Export Output Terminal
e C Attribute: NIFGEN_ATTR_EXPORTED_SAMPLE_CLOCK_OUTPUT_TERMINAL

216 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

exported_sample_clock_timebase_divisor

nifgen.Session.exported_sample_clock_ timebase_divisor
Specifies the factor by which to divide the sample clock timebase (board clock) before it is exported.
To export the Sample clock timebase, use the nifgen.Session.ExportSignal () method
or the nifgen.Session.exported _sample_clock_ timebase output_terminal

property.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Clocks:Sample Clock Timebase:Exported Sample Clock Timebase
Divisor

* C Attribute: NIFGEN_ATTR_EXPORTED_SAMPLE_CLOCK_TIMEBASE_DIVISOR

exported_sample_clock_timebase_output_terminal

nifgen.Session.exported_sample_clock_ timebase_output_terminal

Specifies the terminal to which to export the Sample clock timebase. If you specify a di-
visor with the nifgen.Session.exported sample clock timebase divisor
property, the Sample clock exported with the nifgen.Session.
exported_sample clock_timebase_output_terminal property is the value of
the Sample clock timebase after it is divided-down. For a list of the terminals available on
your device, refer to the Device Routes tab in MAX. To change the device configuration, call
nifgen.Session.abort () or wait for the generation to complete.

Note: The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.3. nifgen module 217

NI Modular Instruments Python APl Documentation, Release 1.0.1

e LabVIEW Property: Clocks:Sample Clock Timebase:Export Output Terminal
¢ C Attribute: NIFGEN_ATTR_EXPORTED_SAMPLE_CLOCK_TIMEBASE_OUTPUT_TERMINAL

exported_script_trigger_output_terminal

nifgen.Session.exported script_trigger output_terminal
Specifies the output terminal for the exported Script trigger. Setting this property to an empty string
means that when you commit the session, the signal is removed from that terminal and, if possible,
the terminal is tristated.

Tip: This property can use repeated capabilities (script_triggers). If set or get directly on the
nifgen.Session object, then the set/get will use all repeated capabilities in the session. You can spec-
ify a subset of repeated capabilities using the Python index notation on an nifgen.Session repeated
capabilities container, and calling set/get value on the result.:

session.script_triggers([0, 1] .exported_script_trigger_output_terminal =
—var

var = session.script_triggers[0,1].exported_script_trigger_output_
—terminal

[

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Script:Output Terminal
e C Attribute: NIFGEN_ATTR_EXPORTED_SCRIPT_TRIGGER_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

nifgen.Session.exported start_trigger output_terminal
Specifies the destination terminal for exporting the Start trigger.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

218 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Triggers:Start:Output Terminal
» C Attribute: NIFGEN_ATTR_EXPORTED_START _TRIGGER_OUTPUT_TERMINAL

external_clock_delay binary value

nifgen.Session.external_clock_delay binary value
Binary value of the external clock delay.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Clocks:Advanced:External Clock Delay Binary Value
* C Attribute: NIFGEN_ATTR_EXTERNAL_CLOCK_DELAY_BINARY_VALUE

external_sample_clock_multiplier

nifgen.Session.external_sample_clock multiplier
Specifies a multiplication factor to use to obtain a desired sample rate from an external Sample clock.
The resulting sample rate is equal to this factor multiplied by the external Sample clock rate. You
can use this property to generate samples at a rate higher than your external clock rate. When using
this property, you do not need to explicitly set the external clock rate.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Clocks:Advanced:External Sample Clock Multiplier
* C Attribute: NIFGEN_ATTR_EXTERNAL_SAMPLE_CLOCK_MULTIPLIER

7.3. nifgen module 219

NI Modular Instruments Python APl Documentation, Release 1.0.1

file_transfer_block_size

nifgen.Session.file_transfer block_size
The number of samples at a time to read from the file and download to onboard memory. Used in
conjunction with the Create From File and Write From File methods.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Arbitrary Waveform:Data Transfer:File Transfer Block Size
* C Attribute: NIFGEN_ATTR_FILE_TRANSFER_BLOCK_SIZE

filter_correction_frequency

nifgen.Session.filter_ correction_frequency
Controls the filter correction frequency of the analog filter. This property corrects for the ripples in
the analog filter frequency response at the frequency specified. For standard waveform output, the
filter correction frequency should be set to be the same as the frequency of the standard waveform.
To have no filter correction, set this property to 0 Hz.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Instrument:5401/5411/5431:Filter Correction Frequency
* C Attribute: NIFGEN_ATTR_FILTER_CORRECTION_FREQUENCY

flatness_correction_enabled

nifgen.Session.flatness_correction_enabled
When True, the signal generator applies a flatness correction factor to the generated sine wave in
order to ensure the same output power level at all frequencies. This property should be set to False
when performing Flatness Calibration.

The following table lists the characteristics of this property.

220 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Output:Filters:Flatness Correction Enabled
* C Attribute: NIFGEN_ATTR_FLATNESS_CORRECTION_ENABLED

fpga_bitfile_path

nifgen.Session.fpga bitfile_path
Gets the absolute file path to the bitfile loaded on the FPGA.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Instrument:FPGA Bitfile Path
* C Attribute: NIFGEN_ATTR_FPGA_BITFILE_PATH

freq_list_duration_quantum

nifgen.Session.freq list_duration_quantum
Returns the quantum of which all durations must be a multiple in a frequency list.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Standard Function:Frequency List Mode:Frequency List Duration
Quantum

7.3. nifgen module 221

NI Modular Instruments Python APl Documentation, Release 1.0.1

» C Attribute: NIFGEN_ATTR_FREQ_LIST_DURATION_QUANTUM

freq_list_handle

nifgen.Session.freq list_handle
Sets which frequency list the signal generator produces. Create a frequency list using nifgen.
Session.create freq list (). nifgen.Session.create freq 1list () returns a
handle that you can use to identify the list.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Standard Function:Frequency List Mode:Frequency List Handle
» C Attribute: NIFGEN_ATTR_FREQ_LIST _HANDLE

func_amplitude

nifgen.Session.func_amplitude
Controls the amplitude of the standard waveform that the signal generator produces. This value is
the amplitude at the output terminal. For example, to produce a waveform ranging from -5.00 V to
+5.00 V, set the amplitude to 10.00 V. set the Waveform parameter to DC. Units: Vpk-pk

Note: This parameter does not affect signal generator behavior when you

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Standard Function: Amplitude
» C Attribute: NIFGEN_ATTR_FUNC_AMPLITUDE

222 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

func_buffer_size

nifgen.Session.func_buffer size
This property contains the number of samples used in the standard method waveform buffer. This
property is only valid on devices that implement standard method mode in software, and is read-only
for all other devices. implementation of Standard Method Mode on your device.

Note: Refer to the Standard Method Mode topic for more information on the

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Standard Function:Standard Function Mode:Buffer Size
e C Attribute: NIFGEN_ATTR_FUNC_BUFFER_SIZE

func_dc_offset

nifgen.Session.func_dc_offset
Controls the DC offset of the standard waveform that the signal generator produces. This value is the
offset at the output terminal. The value is the offset from ground to the center of the waveform that
you specify with the Waveform parameter. For example, to configure a waveform with an amplitude
of 10.00 V to range from 0.00 V to +10.00 V, set DC Offset to 5.00 V. Units: volts

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Standard Function:DC Offset
e C Attribute: NIFGEN_ATTR_FUNC_DC_OFFSET

7.3. nifgen module

223

NI Modular Instruments Python APl Documentation, Release 1.0.1

func_duty_cycle_high

nifgen.Session.func_duty_ cycle_high
Controls the duty cycle of the square wave the signal generator produces. Specify this property as a
percentage of the time the square wave is high in a cycle. set the Waveform parameter to SOQUARE.
Units: Percentage of time the waveform is high

Note: This parameter only affects signal generator behavior when you

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Standard Function:Duty Cycle High
e C Attribute: NIFGEN_ATTR_FUNC_DUTY_CYCLE_HIGH

func_frequency

nifgen.Session.func_frequency
Controls the frequency of the standard waveform that the signal generator produces. Units: hertz (1)
This parameter does not affect signal generator behavior when you set the Waveform parameter of
the nifgen.Session.configure standard waveform () methodto DC. (2) For STNE,
the range is between 0 MHz and 16 MHz, but the range is between 0 MHz and 1 MHz for all other
waveforms.

Note: :

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Standard Function:Standard Function Mode:Frequency
* C Attribute: NIFGEN_ATTR_FUNC_FREQUENCY

224 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

func_max_buffer_size

nifgen.Session.func_max_buffer_ size
This property sets the maximum number of samples that can be used in the standard method wave-
form buffer. Increasing this value may increase the quality of the waveform. This property is only
valid on devices that implement standard method mode in software, and is read-only for all other
devices. implementation of Standard Method Mode on your device.

Note: Refer to the Standard Method Mode topic for more information on the

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Standard Function:Standard Function Mode:Maximum Buffer Size
» C Attribute: NIFGEN_ATTR_FUNC_MAX _ BUFFER_SIZE

func_start_phase

nifgen.Session.func_start_phase
Controls horizontal offset of the standard waveform the signal generator produces. Specify this
property in degrees of one waveform cycle. A start phase of 180 degrees means output generation
begins halfway through the waveform. A start phase of 360 degrees offsets the output by an entire
waveform cycle, which is identical to a start phase of 0 degrees. set the Waveform parameter to DC.
Units: Degrees of one cycle

Note: This parameter does not affect signal generator behavior when you

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Standard Function:Start Phase
e C Attribute: NIFGEN_ATTR_FUNC_START_PHASE

7.3. nifgen module 225

NI Modular Instruments Python APl Documentation, Release 1.0.1

func_waveform

nifgen.Session.func_waveform
This channel-based property specifies which standard waveform the signal generator produces.
Use this property only when nifgen.Session.output_mode is set to FUNC. SINE -
Sinusoid waveform SQUARE - Square waveform TRIANGLE - Triangle waveform RAMP_UP
- Positive ramp waveform RAMP DOWN - Negative ramp waveform DC - Constant voltage
NOISE - White noise USER - User-defined waveform as defined with nifgen.Session.
define_ _user standard waveform/()

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums. Waveform
Permissions read-write
Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Standard Function: Waveform
* C Attribute: NIFGEN_ATTR_FUNC_WAVEFORM

idle_behavior

nifgen.Session.idle_behavior
Specifies the behavior of the output during the Idle state. The output can be configured to hold the
last generated voltage before entering the Idle state or jump to the Idle Value.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.IdleBehavior
Permissions read-write

Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Output:Advanced:Idle Behavior
* C Attribute: NIFGEN_ATTR_IDLE_BEHAVIOR

idle_value

nifgen.Session.idle_value
Specifies the value to generate in the Idle state. The Idle Behavior must be configured to jump to
this value.

226 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Output:Advanced:Idle Value
» C Attribute: NIFGEN_ATTR_IDLE_VALUE

instrument_firmware_revision

nifgen.Session.instrument_firmware_revision
A string that contains the firmware revision information for the device that you are currently using.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Instrument:Inherent IVI Attributes:Instrument Identifica-
tion:Firmware Revision

» C Attribute: NIFGEN_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

nifgen.Session.instrument_manufacturer
A string that contains the name of the device manufacturer you are currently using.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.3. nifgen module 227

NI Modular Instruments Python APl Documentation, Release 1.0.1

e LabVIEW Property: Instrument:Inherent IVI Attributes:Instrument Identifica-
tion:Manufacturer

» C Attribute: NIFGEN_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

nifgen.Session.instrument_model
A string that contains the model number or name of the device that you are currently using.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Instrument:Inherent IVI Attributes:Instrument Identification:Model
* C Attribute: NIFGEN_ATTR_INSTRUMENT_MODEL

io_resource_descriptor

nifgen.Session.io_resource_descriptor
Indicates the resource descriptor that NI-FGEN uses to identify the physical device. If you initialize
NI-FGEN with a logical name, this property contains the resource descriptor that corresponds to the
entry in the IVI Configuration Utility. If you initialize NI-FGEN with the resource descriptor, this
property contains that value.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Instrument:Inherent IVI Attributes:Advanced Session Informa-
tion:Resource Descriptor

* C Attribute: NIFGEN_ATTR_10_RESOURCE_DESCRIPTOR

228 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

load_impedance

nifgen.Session.load_ impedance
This channel-based property specifies the load impedance connected to the analog output of the
channel. If you set this property to NIFGEN_VAL_MATCHED_LOAD_IMPEDANCE (-1.0), NI-
FGEN assumes that the load impedance matches the output impedance. NI-FGEN compensates to
give the desired peak-to-peak voltage amplitude or arbitrary gain (relative to 1 V).

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Output:Load Impedance
» C Attribute: NIFGEN_ATTR_LOAD_IMPEDANCE

logical_name

nifgen.Session.logical_name
A string containing the logical name that you specified when opening the current IVI ses-
sion. You may pass a logical name to nifgen.Session.init () or nifgen.Session.
InitWithOptions (). The IVI Configuration Utility must contain an entry for the logical name.
The logical name entry refers to a virtual instrument section in the IVI Configuration file. The virtual
instrument section specifies a physical device and initial user options.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Instrument:Inherent IVI Attributes:Advanced Session Informa-
tion:Logical Name

7.3. nifgen module 229

NI Modular Instruments Python APl Documentation, Release 1.0.1

* C Attribute: NIFGEN_ATTR_LOGICAL_NAME

major_version

nifgen.Session.major_version
Returns the major version number of NI-FGEN.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Instrument:Obsolete:Major Version
» C Attribute: NIFGEN_ATTR_MAJOR_VERSION

marker_events_count

nifgen.Session.marker_events_count
Returns the number of markers supported by the device. Use this property when nifgen.
Session.output_modeis setto SCRIPT.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Instrument:Marker Events Count
e C Attribute: NIFGEN_ATTR_MARKER_EVENTS_COUNT

marker_event_output_terminal

nifgen.Session.marker_event_output_terminal
Specifies the destination terminal for the Marker Event.

230 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property can use repeated capabilities (markers). If set or get directly on the nif-
gen.Session object, then the set/get will use all repeated capabilities in the session. You can specify
a subset of repeated capabilities using the Python index notation on an nifgen.Session repeated ca-
pabilities container, and calling set/get value on the result.:

session.markers[0,1] .marker_event_output_terminal = var
var = session.markers([0,1].marker_event_output_terminal

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Marker:Output Terminal
e C Attribute: NIFGEN_ATTR_MARKER_EVENT_OUTPUT_TERMINAL

max_freq_list_duration

nifgen.Session.max freq list_duration
Returns the maximum duration of any one step in the frequency list.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Standard Function:Frequency List Mode:Maximum Frequency List
Duration

* C Attribute: NIFGEN_ATTR_MAX_FREQ_LIST_DURATION

max_freq_list_length

nifgen.Session.max freq list_length
Returns the maximum number of steps that can be in a frequency list.

The following table lists the characteristics of this property.

7.3. nifgen module

231

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Standard Function:Frequency List Mode:Maximum Frequency List
Length

* C Attribute: NIFGEN_ATTR_MAX_FREQ_LIST_LENGTH

max_loop_count

nifgen.Session.max_loop_count
Returns the maximum number of times that the signal generator can repeat a waveform in a se-
quence. Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Max Loop Count
o C Attribute: NIFGEN_ATTR_MAX LOOP_COUNT

max_num_freq_lists

nifgen.Session.max_num_freq lists
Returns the maximum number of frequency lists the signal generator allows.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

232 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

e LabVIEW Property: Standard Function:Frequency List Mode:Maximum Number Of Fre-
quency Lists

e C Attribute: NIFGEN_ATTR_MAX_ NUM_FREQ_LISTS

max_num_sequences

nifgen.Session.max_num_sequences
Returns the maximum number of arbitrary sequences that the signal generator allows. Typically, this
value is constant for the signal generator.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Max Number of Se-
quences

e C Attribute: NIFGEN_ATTR_MAX NUM_SEQUENCES

max_num_waveforms

nifgen.Session.max num waveforms
Returns the maximum number of arbitrary waveforms that the signal generator allows. Typically,
this value is constant for the signal generator.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Arbitrary Waveform:Capabilities:Max Number of Waveforms
e C Attribute: NIFGEN_ATTR_MAX_NUM_WAVEFORMS

7.3. nifgen module 233

NI Modular Instruments Python APl Documentation, Release 1.0.1

max_sequence_length

nifgen.Session.max_sequence_length
Returns the maximum number of arbitrary waveforms that the signal generator allows in a sequence.
Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Max Sequence
Length

» C Attribute: NIFGEN_ATTR_MAX SEQUENCE_LENGTH

max_waveform_size

nifgen.Session.max_waveform_ size
Returns the size, in samples, of the largest waveform that can be created. This property reflects the
space currently available, taking into account previously allocated waveforms and instructions.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Arbitrary Waveform:Capabilities:Max Waveform Size
e C Attribute: NIFGEN_ATTR_MAX_ WAVEFORM_SIZE

memory_size

nifgen.Session.memory size
The total amount of memory, in bytes, on the signal generator.

The following table lists the characteristics of this property.

234 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Instrument:Memory Size
* C Attribute: NIFGEN_ATTR_MEMORY_SIZE

minor_version

nifgen.Session.minor_version
Returns the minor version number of NI-FGEN.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Instrument:Obsolete:Minor Version
* C Attribute: NIFGEN_ATTR_MINOR_VERSION

min_freq_list_duration

nifgen.Session.min_freq list_duration
Returns the minimum number of steps that can be in a frequency list.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Standard Function:Frequency List Mode:Minimum Frequency List
Duration

7.3. nifgen module 235

NI Modular Instruments Python APl Documentation, Release 1.0.1

» C Attribute: NIFGEN_ATTR_MIN_FREQ_LIST_DURATION

min_freq_list_length

nifgen.Session.min_freq list_length
Returns the minimum number of frequency lists that the signal generator allows.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

¢ LabVIEW Property: Standard Function:Frequency List Mode:Minimum Frequency List
Length

» C Attribute: NIFGEN_ATTR_MIN_FREQ_LIST_LENGTH

min_sequence_length

nifgen.Session.min_sequence_length
Returns the minimum number of arbitrary waveforms that the signal generator allows in a sequence.
Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Min Sequence
Length

» C Attribute: NIFGEN_ATTR_MIN_SEQUENCE_LENGTH

min_waveform_size

nifgen.Session.min_waveform size
Returns the minimum number of points that the signal generator allows in an arbitrary waveform.
Typically, this value is constant for the signal generator.

236 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Arbitrary Waveform:Capabilities:Min Waveform Size
» C Attribute: NIFGEN_ATTR_MIN_WAVEFORM_SIZE

module_revision

nifgen.Session.module_revision
A string that contains the module revision for the device that you are currently using.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Instrument:Inherent IVI Attributes:Instrument Identifica-
tion:Module Revision

» C Attribute: NIFGEN_ATTR_MODULE_REVISION

output_enabled

nifgen.Session.output_enabled
This channel-based property specifies whether the signal that the signal generator produces appears
at the output connector.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable Yes

7.3. nifgen module 237

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Output:Output Enabled
» C Attribute: NIFGEN_ATTR_OUTPUT_ENABLED

output_impedance

nifgen.Session.output_impedance
This channel-based property specifies the signal generator output impedance at the output connector.
NI signal sources modules have an output impedance of 50 ohms and an optional 75 ohms on select
modules. If the load impedance matches the output impedance, then the voltage at the signal output
connector is at the needed level. The voltage at the signal output connector varies with load output
impedance, up to doubling the voltage for a high-impedance load.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Output:Output Impedance
* C Attribute: NIFGEN_ATTR_OUTPUT_IMPEDANCE

output_mode

nifgen.Session.output_mode
Sets which output mode the signal generator will use. The value you specify determines which
methods and properties you use to configure the waveform the signal generator produces.

Note: The signal generator must not be in the Generating state when you change this property. To
change the device configuration, call ni fgen. Session.abort () or wait for the generation to
complete.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.OutputMode
Permissions read-write

Channel Based | False

Resettable No

238 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Output:Output Mode
» C Attribute: NIFGEN_ATTR_OUTPUT_MODE

ready for_start_event_output_terminal

nifgen.Session.ready_ for_ start_event_output_terminal
Specifies the destination terminal for the Ready for Start Event.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Ready For Start:Output Terminal
* C Attribute: NIFGEN_ATTR_READY_FOR_START_EVENT_OUTPUT_TERMINAL

reference_clock_source

nifgen.Session.reference_clock_source
Specifies the reference clock source used by the signal generator. The signal generator derives the
frequencies and sample rates that it uses to generate waveforms from the source you specify. For
example, when you set this property to ClkIn, the signal generator uses the signal it receives at the
CLK IN front panel connector as the Reference clock. To change the device configuration, call
nifgen.Session.abort () or wait for the generation to complete.

Note: The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.ReferenceClockSource
Permissions read-write

Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Clocks:Reference Clock:Source

7.3. nifgen module 239

NI Modular Instruments Python APl Documentation, Release 1.0.1

» C Attribute: NIFGEN_ATTR_REFERENCE_CLOCK_SOURCE

ref_clock_frequency

nifgen.Session.ref_ clock_frequency
Sets the frequency of the signal generator reference clock. The signal generator uses the reference
clock to derive frequencies and sample rates when generating output.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Clocks:Reference Clock:Frequency
* C Attribute: NIFGEN_ATTR_REF_CLOCK_FREQUENCY

sample_clock_source

nifgen.Session.sample_clock_source
Specifies the Sample clock source. If you specify a divisor with the nifgen.Session.
exported_sample clock_divisor property, the Sample clock exported with the ni fgen.
Session.exported _sample clock_output_terminal property is the value of the
Sample clock after it is divided-down. For a list of the terminals available on your device, refer
to the Device Routes tab in MAX. To change the device configuration, call nifgen. Session.
abort () or wait for the generation to complete.

Note: The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.SampleClockSource
Permissions read-write

Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Clocks:Sample Clock:Source
e C Attribute: NIFGEN_ATTR_SAMPLE_CLOCK_SOURCE

240 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

sample_clock_timebase_rate

nifgen.Session.sample_clock_ timebase_rate
Specifies the Sample clock timebase rate. This property applies only to external Sample clock
timebases. To change the device configuration, call ni fgen. Session.abort () or wait for the
generation to complete.

Note: The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Clocks:Sample Clock Timebase:Rate
e C Attribute: NIFGEN_ATTR_SAMPLE_CLOCK_TIMEBASE_RATE

sample_clock_timebase_source

nifgen.Session.sample_clock_timebase_source
Specifies the Sample Clock Timebase source. To change the device configuration, call the ni fgen.
Session.abort () method or wait for the generation to complete.

Note: The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.SampleClockTimebaseSource
Permissions read-write

Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Clocks:Sample Clock Timebase:Source
» C Attribute: NIFGEN_ATTR_SAMPLE_CLOCK_TIMEBASE_SOURCE

7.3. nifgen module 241

NI Modular Instruments Python APl Documentation, Release 1.0.1

script_to_generate

nifgen.Session.script_to_generate
Specifies which script the generator produces. To configure the generator to run a particular script,
set this property to the name of the script. Use nifgen.Session.write_script () to create
multiple scripts. Use this property when nifgen. Session.output_modeis setto SCRIPT.

Note: The signal generator must not be in the Generating state when you change this property. To
change the device configuration, call nifgen. Session.abort () or wait for the generation to
complete.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Arbitrary Waveform:Script Mode:Script to Generate
* C Attribute: NIFGEN_ATTR_SCRIPT_TO_GENERATE

script_triggers_count

nifgen.Session.script_triggers_count
Specifies the number of Script triggers supported by the device. Use this property when nifgen.
Session.output_modeis setto SCRIPT.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Instrument:Script Triggers Count
» C Attribute: NIFGEN_ATTR_SCRIPT_TRIGGERS_COUNT

242 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

script_trigger_type

nifgen.Session.script_trigger_ type

Specifies the Script trigger type. Depending upon the value of this property, additional properties

may need to be configured to fully configure the trigger.

Tip: This property can use repeated capabilities (script_triggers). If set or get directly on the
nifgen.Session object, then the set/get will use all repeated capabilities in the session. You can spec-
ify a subset of repeated capabilities using the Python index notation on an nifgen.Session repeated

capabilities container, and calling set/get value on the result.:

session.script_triggers([0,1].script_trigger_type = var
var = session.script_triggers[0,1].script_trigger_type

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.ScriptTriggerType
Permissions read-write

Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Triggers:Script:Trigger Type
» C Attribute: NIFGEN_ATTR_SCRIPT_TRIGGER_TYPE

serial_number

nifgen.Session.serial_number
The signal generator’s serial number.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Instrument:Serial Number
* C Attribute: NIFGEN_ATTR_SERIAL_NUMBER

7.3. nifgen module

243

NI Modular Instruments Python APl Documentation, Release 1.0.1

simulate

nifgen.Session.simulate
Specifies whether to simulate NI-FGEN I/O operations. If simulation is enabled, NI-FGEN methods
perform range checking and call Ivi_GetAttribute and Ivi_SetAttribute, but they do not perform
device I/O. For output parameters that represent device data, NI-FGEN methods return calculated
values. Default Value: False Use ni fgen.Session.InitWithOptions () tooverride default
value.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Instrument:Inherent IVI Attributes:User Options:Simulate
* C Attribute: NIFGEN_ATTR_SIMULATE

specific_driver_description

nifgen.Session.specific_driver_description
Returns a brief description of NI-FGEN.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Identification:Description
* C Attribute: NIFGEN_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_revision

nifgen.Session.specific_driver_ revision
A string that contains additional version information about NI-FGEN.

244 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Identification:Revision
» C Attribute: NIFGEN_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

nifgen.Session.specific_driver_vendor
A string that contains the name of the vendor that supplies NI-FGEN.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Identification:Driver Ven-
dor

» C Attribute: NIFGEN_ATTR_SPECIFIC_DRIVER_VENDOR

started_event_output_terminal

nifgen.Session.started_event_output_terminal
Specifies the destination terminal for the Started Event.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.3. nifgen module 245

NI Modular Instruments Python APl Documentation, Release 1.0.1

e LabVIEW Property: Events:Started:Output Terminal
* C Attribute: NIFGEN_ATTR_STARTED_EVENT_OUTPUT_TERMINAL

start_trigger_type

nifgen.Session.start_trigger_ type

Specifies whether you want the Start trigger to be a Digital Edge, or Software trigger. You can also

choose None as the value for this property.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.StartTriggerType
Permissions read-write

Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Start:Trigger Type
e C Attribute: NIFGEN_ATTR_START_TRIGGER_TYPE

streaming_space_available_in_waveform

nifgen.Session.streaming space_available_in_waveform

Indicates the space available (in samples) in the streaming waveform for writing new data. Dur-
ing generation, this available space may be in multiple locations with, for example, part of the
available space at the end of the streaming waveform and the rest at the beginning. In this sit-
uation, writing a block of waveform data the size of the total space available in the streaming
waveform causes NI-FGEN to return an error, as NI-FGEN will not wrap the data from the end
of the waveform to the beginning and cannot write data past the end of the waveform buffer.
To avoid writing data past the end of the waveform, write new data to the waveform in a fixed
size that is an integer divisor of the total size of the streaming waveform. Used in conjunc-
tion with the nifgen.Session.streaming waveform handleor nifgen.Session.

streaming_waveform_name properties.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Arbitrary Waveform:Data Transfer:Streaming:Space Available in

Streaming Waveform

246

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

» C Attribute: NIFGEN_ATTR_STREAMING_SPACE_AVAILABLE_IN_WAVEFORM

streaming_waveform_handle

nifgen.Session.streaming waveform handle
Specifies the waveform handle of the waveform used to continuously stream data during generation.
This property defaults to -1 when no streaming waveform is specified. Used in conjunction with
nifgen.Session.streaming_space_available_ in_waveform.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

¢ LabVIEW Property: Arbitrary Waveform:Data Transfer:Streaming:Streaming Waveform
Handle

* C Attribute: NIFGEN_ATTR_STREAMING_WAVEFORM_HANDLE

streaming_waveform_name

nifgen.Session.streaming waveform name
Specifies the name of the waveform used to continuously stream data during generation. This prop-
erty defaults to // when no streaming waveform is specified. Use in conjunction with nifgen.
Session.streaming_space_available_in_ waveform.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Arbitrary Waveform:Data Transfer:Streaming:Streaming Waveform
Name

* C Attribute: NIFGEN_ATTR_STREAMING_WAVEFORM_NAME

7.3. nifgen module 247

NI Modular Instruments Python APl Documentation, Release 1.0.1

streaming_write_timeout

nifgen.Session.streaming write_timeout
Specifies the maximum amount of time allowed to complete a streaming write operation.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype float in seconds or datetime.timedelta
Permissions read-write

Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Arbitrary Waveform:Data Transfer:Streaming:Streaming Write
Timeout

* C Attribute: NIFGEN_ATTR_STREAMING_WRITE_TIMEOUT

supported_instrument_models

nifgen.Session.supported instrument_models
Returns a model code of the device. For NI-FGEN versions that support more than one device, this
property contains a comma-separated list of supported device models.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Capabilities:Supported
Instrument Models

* C Attribute: NIFGEN_ATTR_SUPPORTED_INSTRUMENT MODELS

terminal_configuration

nifgen.Session.terminal_ configuration
Specifies whether gain and offset values will be analyzed based on single-ended or differential op-
eration.

The following table lists the characteristics of this property.

248 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Characteristic | Value

Datatype enums.TerminalConfiguration
Permissions read-write

Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Output:Terminal Configuration
» C Attribute: NIFGEN_ATTR_TERMINAL_CONFIGURATION

trigger_mode

nifgen.Session.trigger_mode
Controls the trigger mode.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums.TriggerMode
Permissions read-write

Channel Based | False

Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Trigger Mode
e C Attribute: NIFGEN_ATTR_TRIGGER_MODE

wait_behavior

nifgen.Session.wait_behavior
Specifies the behavior of the output while waiting for a script trigger or during a wait instruction.
The output can be configured to hold the last generated voltage before waiting or jump to the Wait
Value.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype enums. WaitBehavior
Permissions read-write

Channel Based | False

Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.3. nifgen module 249

NI Modular Instruments Python APl Documentation, Release 1.0.1

e LabVIEW Property: Output:Advanced:Wait Behavior
* C Attribute: NIFGEN_ATTR_WAIT_BEHAVIOR

wait_value

nifgen.Session.wait_value
Specifies the value to generate while waiting. The Wait Behavior must be configured to jump to this
value.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write
Channel Based | False
Resettable Yes

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Output:Advanced:Wait Value
* C Attribute: NIFGEN_ATTR_WAIT_VALUE

waveform_quantum

nifgen.Session.waveform_quantum
The size of each arbitrary waveform must be a multiple of a quantum value. This property returns
the quantum value that the signal generator allows. For example, when this property returns a value
of 8, all waveform sizes must be a multiple of 8. Typically, this value is constant for the signal
generator.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only
Channel Based | False
Resettable No

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Arbitrary Waveform:Capabilities: Waveform Quantum
e C Attribute: NIFGEN_ATTR_WAVEFORM_QUANTUM

250 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Methods

abort

nifgen.Session.abort ()
Aborts any previously initiated signal generation. Call the nifgen.Session.initiate ()
method to cause the signal generator to produce a signal again.

allocate_named_waveform

nifgen.Session.allocate_named_waveform (waveform_name, waveform_size)
Specifies the size of a named waveform up front so that it can be allocated in onboard memory
before loading the associated data. Data can then be loaded in smaller blocks with the niFgen Write
(Binary16) Waveform methods.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1].allocate_named_waveform(waveform_name, waveform_
—size)

Parameters

* waveform_name (st r)— Specifies the name to associate with the allocated wave-
form.

» waveform_size (int) — Specifies the size of the waveform to allocate in sam-
ples.

Default Value: “4096”

allocate_waveform

nifgen.Session.allocate_waveform (waveform_size)
Specifies the size of a waveform so that it can be allocated in onboard memory before loading the
associated data. Data can then be loaded in smaller blocks with the Write Binary 16 Waveform
methods.

Note: The signal generator must not be in the Generating state when you call this method.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1].allocate_waveform(waveform_ size)

7.3. nifgen module 251

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.0.1

Parameters waveform_size (int) — Specifies, in samples, the size of the waveform
to allocate.

Return type int

Returns The handle that identifies the new waveform. This handle is used later when
referring to this waveform.

clear_arb_memory

nifgen.Session.clear_arb_memory ()
Removes all previously created arbitrary waveforms, sequences, and scripts from the signal genera-
tor memory and invalidates all waveform handles, sequence handles, and waveform names.

Note: The signal generator must not be in the Generating state when you call this method.

clear_arb_sequence

nifgen.Session.clear_arb_sequence (sequence_handle)
Removes a previously created arbitrary sequence from the signal generator memory and invalidates
the sequence handle.

Note: The signal generator must not be in the Generating state when you call this method.

Parameters sequence_handle (int) — Specifies the handle of the arbitrary se-
quence that you want the signal generator to remove. You can create an arbitrary se-
quence using the nifgen.Session.create_arb_sequence () or nifgen.
Session.create_advanced _arb sequence () method. These methods re-
turn a handle that you use to identify the sequence.

Defined Value:

NIFGEN_VAL_ALL_SEQUENCES—Remove all sequences from the signal
generator

Default Value: None

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

clear_freq_list

nifgen.Session.clear_freq list (frequency_list_handle)
Removes a previously created frequency list from the signal generator memory and invalidates the
frequency list handle.

252 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: The signal generator must not be in the Generating state when you call this method.

Parameters frequency_list_handle (int) — Specifies the handle of the fre-
quency list you want the signal generator to remove. You create multiple frequency
lists using nifgen.Session.create_freq _list (). nifgen.Session.
create_freq list () returns a handle that you use to identify each list. Specify
a value of -1 to clear all frequency lists.

Defined Value

NIFGEN_VAL_ALL_FLISTS—Remove all frequency lists from the signal genera-
tor.

Default Value: None

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

clear_user_standard_waveform

nifgen.Session.clear_user_standard waveform()
Clears the user-defined waveform created by the nifgen.Session.
define user standard waveform () method.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1].clear_user_standard_waveform/ ()

commit

nifgen.Session.commit ()
Causes a transition to the Committed state. This method verifies property values, reserves the device,
and commits the property values to the device. If the property values are all valid, NI-FGEN sets the
device hardware configuration to match the session configuration. This method does not support the
NI 5401/5404/5411/5431 signal generators.

In the Committed state, you can load waveforms, scripts, and sequences into memory. If any prop-
erties are changed, NI-FGEN implicitly transitions back to the Idle state, where you can program
all session properties before applying them to the device. This method has no effect if the device is
already in the Committed or Generating state and returns a successful status value.

Calling this VI before the niFgen Initiate Generation VI is optional but has the following benefits:
* Routes are committed, so signals are exported or imported.

* Any Reference Clock and external clock circuits are phase-locked.

7.3. nifgen module 253

https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.0.1

e A subsequent nifgen.Session.initiate () method can run faster because the device
is already configured.

configure_arb_sequence

nifgen.Session.configure_arb_sequence (sequence_handle, gain, offset)
Configures the signal generator properties that affect arbitrary sequence generation. Sets
the nifgen.Session.arb_sequence _handle, nifgen.Session.arb_gain, and
nifgen.Session.arb_offset properties.

Note: The signal generator must not be in the Generating state when you call this method.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1].configure_arb_sequence (sequence_handle, gain,
—~offset)

Parameters

* sequence_handle (int) — Specifies the handle of the arbitrary sequence that
you want the signal generator to produce. NI-FGEN sets the ni fgen. Session.
arb_sequence_handle property to this value. You can create an arbi-
trary sequence using the nifgen.Session.create_arb sequence () or
nifgen.Session.create_advanced_arb_sequence () method. These
methods return a handle that you use to identify the sequence.

Default Value: None

* gain (float) — Specifies the factor by which the signal generator scales the arbi-
trary waveforms in the sequence. When you create an arbitrary waveform, you must
first normalize the data points to a range of —1.00 to +1.00. You can use this param-
eter to scale the waveform to other ranges. The gain is applied before the offset is
added.

For example, to configure the output signal to range from —2.00 to +2.00 V, set gain
to 2.00.

Units: unitless
Default Value: None

* offset (float) — Specifies the value the signal generator adds to the arbitrary
waveform data. When you create arbitrary waveforms, you must first normal-
ize the data points to a range of —1.00 to +1.00 V. You can use this parameter to
shift the range of the arbitrary waveform. NI-FGEN sets the ni fgen. Session.
arb_offset property to this value.

For example, to configure the output signal to range from 0.00 to 2.00 V instead of
—1.00 to 1.00 V, set the offset to 1.00.

Units: volts

254 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

Default Value: None

configure_arb_waveform

nifgen.Session.configure_arb_waveform (waveform_handle, gain, offset)
Configures the properties of the signal generator that affect arbitrary waveform generation.
Sets the nifgen.Session.arb_waveform handle, nifgen.Session.arb_gain,
and nifgen.Session.arb_offset properties.

Note: The signal generator must not be in the Generating state when you call this method.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

—~offset)

session.channels[0,1].configure_arb_waveform(waveform_handle, gain,

Parameters

* waveform_handle (int) — Specifies the handle of the arbitrary waveform you
want the signal generator to produce. NI-FGEN sets the nifgen. Session.
arb_waveform _handle property to this value. You can create an arbitrary
waveform using one of the following niFgen Create Waveform methods:

nifgen

nifgen.
nifgen.
nifgen.

nifgen.

.Session

Session.
Session.
Session.

Session.

.create_waveform()

create_waveform()
create_waveform from file 116/()
create_waveform from file f64()

CreateWaveformFromFileHWS ()

These methods return a handle that you use to identify the waveform.

Default Value: None

Note:

driver.

One or more of the referenced methods are not in the Python API for this

* gain (float) — Specifies the factor by which the signal generator scales the arbi-
trary waveforms in the sequence. When you create an arbitrary waveform, you must
first normalize the data points to a range of —1.00 to +1.00. You can use this param-
eter to scale the waveform to other ranges. The gain is applied before the offset is
added.

For example, to configure the output signal to range from —2.00 to +2.00 V, set gain
to 2.00.

Units: unitless

7.3. nifgen module

255

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

Default Value: None

* offset (float) — Specifies the value the signal generator adds to the arbitrary
waveform data. When you create arbitrary waveforms, you must first normal-
ize the data points to a range of —1.00 to +1.00 V. You can use this parameter to
shift the range of the arbitrary waveform. NI-FGEN sets the ni fgen. Session.
arb_offset property to this value.

For example, to configure the output signal to range from 0.00 to 2.00 V instead of
—1.00 to 1.00 V, set the offset to 1.00.

Units: volts

Default Value: None

configure_custom_fir_filter_coefficients

nifgen.Session.configure_custom_fir_filter coefficients (coefficients_array)
Sets the FIR filter coefficients used by the onboard signal processing block. The values are coerced
to the closest settings achievable by the signal generator.

Refer to the FIR Filter topic for your device in the NI Signal Generators Help for more information
about FIR filter coefficients. This method is supported only for the NI 5441.

Note: The signal generator must not be in the Generating state when you call this method.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1].configure_custom_fir_filter_
—coefficients (coefficients_array)

Parameters coefficients_array(list of float)- Specifiesthe array of data
the onboard signal processor uses for the FIR filter coefficients. For the NI 5441,
provide a symmetric array of 95 coefficients to this parameter. The array must have
at least as many elements as the value that you specify in the numberOfCoefficients
parameter in this method. The coefficients should range between —1.00 and +1.00.

configure_freq_list

nifgen.Session.configure_ freq list (frequency_list_handle, amplitude,

dc_offset=0.0, start_phase=0.0)
Configures the properties of the signal generator that affect frequency list generation (the

nifgen.Session.freq list_handle, nifgen.Session.func_amplitude,
nifgen.Session.func_dc _offset, and nifgen.Session.func_start_phase
properties).

Note: The signal generator must not be in the Generating state when you call this method.

256 Chapter 7. License

https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1].configure_freq_ list (frequency_list_handle,
—amplitude, dc_offset=0.0, start_phase=0.0)

Parameters

* frequency list handle (int) — Specifies the handle of the frequency list
that you want the signal generator to produce. NI-FGEN sets the nifgen.
Session.freq list_handle property to this value. You can create a
frequency list using the nifgen. Session.create freq list () method,
which returns a handle that you use to identify the list. Default Value: None

* amplitude (f1oat)— Specifies the amplitude of the standard waveform that you
want the signal generator to produce. This value is the amplitude at the output
terminal. NI-FGEN sets the ni fgen. Session. func_amplitude property to
this value.

For example, to produce a waveform ranging from —5.00 V to +5.00 V, set the am-
plitude to 10.00 V.

Units: peak-to-peak voltage
Default Value: None

Note: This parameter does not affect signal generator behavior
when you set the waveform parameter of the nifgen.Session.
configure_standard_waveform () methodto DC.

* dc_offset (float) - Specifies the DC offset of the standard waveform that you
want the signal generator to produce. The value is the offset from ground to the
center of the waveform you specify with the waveform parameter, observed at the
output terminal. For example, to configure a waveform with an amplitude of 10.00
V to range from 0.00 V to +10.00 V, set the dcOffset to 5.00 V. NI-FGEN sets the
nifgen.Session. func_dc_offset property to this value.

Units: volts
Default Value: None

* start_phase (f1loat)- Specifies the horizontal offset of the standard waveform
you want the signal generator to produce. Specify this property in degrees of one
waveform cycle. NI-FGEN sets the ni fgen.Session. func_start_phase
property to this value. A start phase of 180 degrees means output generation begins
halfway through the waveform. A start phase of 360 degrees offsets the output by
an entire waveform cycle, which is identical to a start phase of 0 degrees.

Units: degrees of one cycle

Default Value: None degrees

7.3. nifgen module

257

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: This parameter does not affect signal generator behavior when you set the
waveform parameter to DC.

configure_standard_waveform

nifgen.Session.configure_standard waveform (waveform, amplitude, frequency,
dc_offset=0.0, start_phase=0.0)
Configures the following properties of the signal generator that affect standard waveform generation:

* nifgen.Session.func_waverorm

* nifgen.Session. func_amplitude
e nifgen.Session.func_dc offset
e nifgen.Session.func_frequency

* nifgen.Session.func_start_phase

Note: You must call the nifgen.Session.ConfigureOutputMode () method with the
outputMode parameter set to FUNC before calling this method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels [0, 1] .configure_standard _waveform(waveform, amplitude,
—frequency, dc_offset=0.0, start_phase=0.0)

Parameters

* waveform (nifgen.Waveform) — Specifies the standard waveform that you
want the signal generator to produce. NI-FGEN sets the nifgen.Session.
func_waveform property to this value.

Defined Values

Default Value: STNE

258 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

SINE | Specifies that the signal generator produces a sinusoid waveform.

SQUARESpecifies that the signal generator produces a square waveform.

TRIANGSpecifies that the signal generator produces a triangle waveform.

RAMP_|USpecifies that the signal generator produces a positive ramp waveform.

RAMP_|DSp@cifies that the signal generator produces a negative ramp waveform.

DC Specifies that the signal generator produces a constant voltage.

NOISEH Specifies that the signal generator produces white noise.

USER | Specifies that the signal generator produces a user-defined
waveform as defined with the nifgen.Session.
define user standard waveform () method.

amplitude (f1oat)— Specifies the amplitude of the standard waveform that you
want the signal generator to produce. This value is the amplitude at the output
terminal. NI-FGEN sets the ni fgen. Session. func_amplitude property to
this value.

For example, to produce a waveform ranging from —5.00 V to +5.00 V, set the am-
plitude to 10.00 V.

Units: peak-to-peak voltage
Default Value: None

Note: This parameter does not affect signal generator behavior
when you set the waveform parameter of the nifgen.Session.
configure_standard waveform () methodto DC.

frequency (float)—

Specifies the frequency of the standard waveform that you want the signal
generator to produce. NI-FGEN sets the
nifgen.Session. func_frequency property to this value.

Units: hertz

Default Value: None

Note: This parameter does not affect signal generator behavior
when you set the waveform parameter of the nifgen.Session.
configure standard waveform () methodto DC.

dc_offset (float)— Specifies the DC offset of the standard waveform that you
want the signal generator to produce. The value is the offset from ground to the
center of the waveform you specify with the waveform parameter, observed at the
output terminal. For example, to configure a waveform with an amplitude of 10.00
V to range from 0.00 V to +10.00 V, set the dcOffset to 5.00 V. NI-FGEN sets the
nifgen.Session. func_dc_offset property to this value.

Units: volts
Default Value: None

start_phase (float) — Specifies the horizontal offset of the standard wave-
form that you want the signal generator to produce. Specify this parameter

7.3. nifgen module

259

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

in degrees of one waveform cycle. NI-FGEN sets the nifgen.Session.
func_start_phase property to this value. A start phase of 180 degrees means
output generation begins halfway through the waveform. A start phase of 360 de-
grees offsets the output by an entire waveform cycle, which is identical to a start
phase of 0 degrees.

Units: degrees of one cycle

Default Value: 0.00

Note: This parameter does not affect signal generator behavior when you set the
waveform parameter to DC.

create_advanced_arb_sequence

nifgen.Session.create_advanced_arb_sequence (waveform_handles_array,
loop_counts_array, sam-
ple_counts_array=None,

marker_location_array=None)
Creates an arbitrary sequence from an array of waveform handles and an array of corresponding

loop counts. This method returns a handle that identifies the sequence. You pass this handle to
the nifgen.Session.configure_arb _sequence () method to specify what arbitrary se-
quence you want the signal generator to produce.

The nifgen.Session.create_advanced _arb sequence () method extends on the
nifgen.Session.create_arb_sequence () method by adding the ability to set the num-
ber of samples in each sequence step and to set marker locations.

An arbitrary sequence consists of multiple waveforms. For each waveform, you specify the number
of times the signal generator produces the waveform before proceeding to the next waveform. The
number of times to repeat a specific waveform is called the loop count.

Note: The signal generator must not be in the Generating state when you call this method. You
must call the nifgen.Session.ConfigureOutputMode () method to set the outputMode
parameter to SEQ before calling this method.

Parameters

*» waveform handles_array (1ist of int) — Specifies the array of wave-
form handles from which you want to create a new arbitrary sequence. The ar-
ray must have at least as many elements as the value that you specify in se-
quenceLength. Each waveformHandlesArray element has a corresponding loop-
CountsArray element that indicates how many times that waveform is repeated.
You obtain waveform handles when you create arbitrary waveforms with the
nifgen.Session.allocate_waveform () method or one of the following
niFgen CreateWaveform methods:

- nifgen.Session.create_waveform()
— nifgen.Session.create_waveform()
— nifgen.Session.create waveform from file 116()

— nifgen.Session.create waveform from file f64()

260 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

— nifgen.Session.CreateWaveformFromFileHWS ()
Default Value: None

loop_counts_array(list of int)-Specifiesthe array of loop counts you
want to use to create a new arbitrary sequence. The array must have at least as many
elements as the value that you specify in the sequenceLength parameter. Each loop-
CountsArray element corresponds to a waveformHandlesArray element and indi-
cates how many times to repeat that waveform. Each element of the loopCountsAr-
ray must be less than or equal to the maximum number of loop counts that the
signal generator allows. You can obtain the maximum loop count from maximum-
LoopCountinthe nifgen.Session.query_arb_seq capabilities()
method.

Default Value: None

sample_counts_array (list of int) — Specifies the array of sample
counts that you want to use to create a new arbitrary sequence. The array must have
at least as many elements as the value you specify in the sequenceLength parame-
ter. Each sampleCountsArray element corresponds to a waveformHandlesArray
element and indicates the subset, in samples, of the given waveform to generate.
Each element of the sampleCountsArray must be larger than the minimum wave-
form size, a multiple of the waveform quantum and no larger than the number of
samples in the corresponding waveform. You can obtain these values by calling the
nifgen.Session.query_arb_wfm_capabilities () method.

Default Value: None

marker location_array (list of int) - Specifies the array of marker
locations to where you want a marker to be generated in the sequence. The array
must have at least as many elements as the value you specify in the sequenceLength
parameter. Each markerLocationArray element corresponds to a waveformHan-
dlesArray element and indicates where in the waveform a marker is to generate.
The marker location must be less than the size of the waveform the marker is in.
The markers are coerced to the nearest marker quantum and the coerced values are
returned in the coercedMarkersArray parameter.

If you do not want a marker generated for a particular sequence stage, set this pa-
rameter to NITFGEN_VAL_NO_MARKER.

Defined Value: NIFGEN_VAL_NO_MARKER
Default Value: None

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type

tuple (coerced_markers_array, sequence_handle)

WHERE

coerced_markers_array (list of int):

Returns an array of all given markers that are coerced (rounded) to the nearest
marker quantum. Not all devices coerce markers.

Default Value: None

7.3. nifgen module

261

NI Modular Instruments Python APl Documentation, Release 1.0.1

sequence_handle (int):

Returns the handle that identifies the new arbitrary sequence. You can pass this
handle to nifgen.Session.configure_arb_sequence () to generate
the arbitrary sequence.

create_arb_sequence

nifgen.Session.create_arb_sequence (waveform_handles_array,

loop_counts_array)
Creates an arbitrary sequence from an array of waveform handles and an array of corresponding

loop counts. This method returns a handle that identifies the sequence. You pass this handle to
the nifgen.Session.configure_arb sequence () method to specify what arbitrary se-
quence you want the signal generator to produce.

An arbitrary sequence consists of multiple waveforms. For each waveform, you can specify the
number of times that the signal generator produces the waveform before proceeding to the next
waveform. The number of times to repeat a specific waveform is called the loop count.

Note: You must call the nifgen.Session.ConfigureOutputMode () method to set the
outputMode parameter to SEQ before calling this method.

Parameters

* waveform handles_array (list of int) — Specifies the array of wave-
form handles from which you want to create a new arbitrary sequence. The ar-
ray must have at least as many elements as the value that you specify in se-
quenceLength. Each waveformHandlesArray element has a corresponding loop-
CountsArray element that indicates how many times that waveform is repeated.
You obtain waveform handles when you create arbitrary waveforms with the
nifgen.Session.allocate_waveform () method or one of the following
niFgen CreateWaveform methods:

— nifgen.Session.create_waveform()

— nifgen.Session.create_waveform()

— nifgen.Session.create waveform from file 116()
— nifgen.Session.create_waveform from file f64 ()
— nifgen.Session.CreateWaveformFromFileHWS ()
Default Value: None

* loop_counts_array(list of int)- Specifies the array of loop counts you
want to use to create a new arbitrary sequence. The array must have at least as many
elements as the value that you specify in the sequenceLength parameter. Each loop-
CountsArray element corresponds to a waveformHandlesArray element and indi-
cates how many times to repeat that waveform. Each element of the loopCountsAr-
ray must be less than or equal to the maximum number of loop counts that the
signal generator allows. You can obtain the maximum loop count from maximum-
LoopCountinthe nifgen.Session.query_arb_seq _capabilities()
method.

Default Value: None

Return type int

262

Chapter 7. License

https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.0.1

Returns Returns the handle that identifies the new arbitrary sequence. You can pass
this handle to nifgen.Session.configure_arb_sequence () to generate

the arbitrary sequence.

create_freq_list

nifgen.Session.create_freq list (waveform, frequency_array, duration_array)

Creates a frequency list from an array of frequencies (frequencyArray) and an array of dura-
tions (durationArray). The two arrays should have the same number of elements, and this value
must also be the size of the frequencyListLength. The method returns a handle that identifies
the frequency list (the frequencyListHandle). You can pass this handle to nifgen. Session.
configure_freqg list () to specify what frequency list you want the signal generator to pro-

duce.

A frequency list consists of a list of frequencies and durations. The signal generator generates each
frequency for the given amount of time and then proceeds to the next frequency. When the end of

the list is reached, th

e signal generator starts over at the beginning of the list.

Note: The signal generator must not be in the Generating state when you call this method.

Parameters

* waveform (nifgen.Waveform) — Specifies the standard waveform that you
want the signal generator to produce. NI-FGEN sets the nifgen.Session.

func_w

aveform property to this value.

Defined Values

Default Value: SINE

SINE

Specifies that the signal generator produces a sinusoid waveform.

SQUAKR

ESpecifies that the signal generator produces a square waveform.

TRIAN

GSpecifies that the signal generator produces a triangle waveform.

RAMP_|

USpecifies that the signal generator produces a positive ramp waveform.

RAMP |

DSpecifies that the signal generator produces a negative ramp waveform.

DC

Specifies that the signal generator produces a constant voltage.

NOISEH

Specifies that the signal generator produces white noise.

USER

Specifies that the signal generator produces a user-defined
waveform as defined with the nifgen.Session.
define user standard waveform () method.

* frequency_array (1ist of float) - Specifies the array of frequencies to
form the frequency list. The array must have at least as many elements as the value
you specify in frequencyListLength. Each frequencyArray element has a cor-
responding durationArray element that indicates how long that frequency is re-

peated.

Units: hertz

Default Value: None

e duration_array(list of float)- Specifiesthe array of durations to form
the frequency list. The array must have at least as many elements as the value that

7.3. nifgen module

263

NI Modular Instruments Python APl Documentation, Release 1.0.1

you specify in frequencyListLength. Each durationArray element has a corre-
sponding frequencyArray element and indicates how long in seconds to generate
the corresponding frequency.

Units: seconds
Default Value: None
Return type int

Returns Returns the handle that identifies the new frequency list. You can pass this han-
dle to nifgen.Session.configure_freq list () to generate the arbitrary
sequence.

create_waveform_from_file f64

nifgen.Session.create_waveform from_file_£64 (file_name, byte_order)
This method takes the floating point double (F64) data from the specified file and creates an onboard
waveform for use in Arbitrary Waveform or Arbitrary Sequence output mode. The waveformHan-
dle returned by this method can later be used for setting the active waveform, changing the data
in the waveform, building sequences of waveforms, or deleting the waveform when it is no longer
needed.

Note: The F64 data must be between —1.0 and +1.0 V. Use the nifgen.Session.
digital_gain property to generate different voltage outputs.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1].create_waveform_from_file_f64 (file_name, byte_
—order)

Parameters

e file_name (str)— The full path and name of the file where the waveform data
resides.

* byte_order (nifgen.ByteOrder) — Specifies the byte order of the data in
the file.

Defined Values

Default Value: LITTLE

LITTLEittle Endian Data—The least significant bit is stored at the lowest ad-
dress, followed by the other bits, in order of increasing significance.
BIG | BigEndian Data—The most significant bit is stored at the lowest address,
followed by the other bits, in order of decreasing significance.

264 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: Data written by most applications in Windows (including LabWin-
dows™/CVI™) is in Little Endian format. Data written to a file from LabVIEW
is in Big Endian format by default on all platforms. Big Endian and Little Endian
refer to the way data is stored in memory, which can differ on different processors.

Return type int

Returns The handle that identifies the new waveform. This handle is used later when
referring to this waveform.

create_waveform_from_file i16

nifgen.Session.create_waveform from_ file_ilé6 (file_name, byte_order)
Takes the binary 16-bit signed integer (I116) data from the specified file and creates an onboard
waveform for use in Arbitrary Waveform or Arbitrary Sequence output mode. The waveformHan-
dle returned by this method can later be used for setting the active waveform, changing the data
in the waveform, building sequences of waveforms, or deleting the waveform when it is no longer
needed.

Note: The 116 data (values between —32768 and +32767) is assumed to represent —1 to +1 V. Use
the nifgen.Session.digital_gain property to generate different voltage outputs.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1].create_waveform_from_file_il6(file_name, byte_
—order)

Parameters

e file_name (str)— The full path and name of the file where the waveform data
resides.

* byte_order (nifgen.ByteOrder) — Specifies the byte order of the data in
the file.

Defined Values

Default Value: LI TTLE

L1TTLLittle Endian Data—The least significant bit is stored at the lowest ad-
dress, followed by the other bits, in order of increasing significance.
BIG | BigEndian Data—The most significant bit is stored at the lowest address,
followed by the other bits, in order of decreasing significance.

7.3. nifgen module 265

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: Data written by most applications in Windows (including LabWin-
dows™/CVI™) is in Little Endian format. Data written to a file from LabVIEW
is in Big Endian format by default on all platforms. Big Endian and Little Endian
refer to the way data is stored in memory, which can differ on different processors.

Return type int

Returns The handle that identifies the new waveform. This handle is used later when
referring to this waveform.

create_waveform_numpy

nifgen.Session.create_waveform_ numpy (waveform_data_array)
Creates an onboard waveform for use in Arbitrary Waveform output mode or Arbitrary Sequence
output mode.

Note: You must set nifgen.Session.output_mode to ARB or SEQ before calling this
method.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1].create_waveform(waveform_data_array)

Parameters waveform_data_array (list of float) — Array of data for the
new arbitrary waveform. This may be an iterable of float, or for best performance
a numpy.ndarray of dtype int16 or float64.

Return type int

Returns The handle that identifies the new waveform. This handle is used in other meth-
ods when referring to this waveform.

define_user_standard_waveform

nifgen.Session.define_user_standard_waveform (waveform_data_array)
Defines a user waveform for use in either Standard Method or Frequency List output mode.

To select the waveform, set the waveform parameter to USER with either the nifgen.
Session.configure_standard _waveform/() or the nifgen.Session.
create_freq 1list () method.

The waveform data must be scaled between —1.0 and 1.0. Use the amplitude parameter in the
nifgen.Session.configure_standard_waveform () method to generate different out-
put voltages.

266 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: You must call the nifgen.Session.ConfigureOutputMode () method to set the
outputMode parameter to FUNC or FREQ_LIST before calling this method.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1].define_user_standard_waveform(waveform_data_array)

Parameters waveform_data_array (list of float) — Specifies the array of
data you want to use for the new arbitrary waveform. The array must have at least
as many elements as the value that you specify in waveformSize.

You must normalize the data points in the array to be between —1.00 and +1.00.

Default Value: None

delete_script

nifgen.Session.delete_script (script_name)
Deletes the specified script from onboard memory.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1] .delete_script (script_name)

Parameters script_name (st r) — Specifies the name of the script you want to delete.
The script name appears in the text of the script following the script keyword.

delete_waveform

nifgen.Session.delete_waveform (waveform_name_or_handle)
Removes a previously created arbitrary waveform from the signal generator memory.

Note: The signal generator must not be in the Generating state when you call this method.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

7.3. nifgen module 267

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.0.1

session.channels[0,1].delete_waveform(waveform_name_or_handle)

Parameters waveform name_or_handle (str or int) — The name
(str) or handle (int) of an arbitrary waveform previously allocated with
nifgen.Session.allocate_named _waveform(), nifgen.Session.
allocate _waveform() ornifgen.Session.create_waveform().

disable

nifgen.Session.disable ()
Places the instrument in a quiescent state where it has minimal or no impact on the system to which
it is connected. The analog output and all exported signals are disabled.

get_ext_cal_last_date_and_time

nifgen.Session.get_ext_cal_ last_date_and time()
Returns the date and time of the last successful external calibration. The time returned is 24-hour
(military) local time; for example, if the device was calibrated at 2:30 PM, this method returns 14
for the hour parameter and 30 for the minute parameter.

Return type datetime.datetime

Returns Indicates date and time of the last calibration.

get_ext_cal_last_temp

nifgen.Session.get_ext_cal_last_temp ()
Returns the temperature at the last successful external calibration. The temperature is returned in
degrees Celsius.

Return type float

Returns Specifies the temperature at the last successful calibration in degrees Celsius.

get_ext_cal_recommended_interval

nifgen.Session.get_ext_ cal_ recommended interval ()
Returns the recommended interval between external calibrations in months.

Return type datetime.timedelta

Returns Specifies the recommended interval between external calibrations in months.

get_hardware_state

nifgen.Session.get_hardware_state ()
Returns the current hardware state of the device and, if the device is in the hardware error state, the
current hardware error.

268 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.0.1

Note: Hardware states do not necessarily correspond to NI-FGEN states.

Return type nifgen.HardwareState
Returns

Returns the hardware state of the signal generator.

Defined Values
IDLE The device is in the Idle state.
WAITING_FOR_START TRIGGER | The device is waiting for Start Trigger.
RUNNING The device is in the Running state.
DONE The generation has completed success-
fully.
HARDWARE_ERROR There is a hardware error.

get_self_cal_last_date_and_time

nifgen.Session.get_self cal_ last_date_and time()
Returns the date and time of the last successful self-calibration.

Return type datetime.datetime

Returns Returns the date and time the device was last calibrated.

get_self cal_last_temp

nifgen.Session.get_self cal_ last_temp ()
Returns the temperature at the last successful self-calibration. The temperature is returned in degrees

Celsius.
Return type float

Returns Specifies the temperature at the last successful calibration in degrees Celsius.

get_self_cal_supported

nifgen.Session.get_self cal_supported ()
Returns whether the device supports self—calibration.

Return type bool
Returns
Returns whether the device supports self-calibration.

PDefined Values

True | Self—calibration is supported.
False | Self—calibration is not supported.

7.3. nifgen module 269

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.0.1

is_done

nifgen.Session.is_done ()
Determines whether the current generation is complete. This method sets the done parameter to
True if the session is in the Idle or Committed states.

Note: NI-FGEN only reports the done parameter as True after the current generation is complete
in Single trigger mode.

Return type bool
Returns
Returns information about the completion of waveform generation.

Defined Values

True | Generation is complete.
False | Generation is not complete.

lock

nifgen.Session.lock ()
Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:
» The application called the nifgen. Session.lock () method.
A call to NI-FGEN locked the session.

* Afteracalltothe nifgen.Session. lock () method returns successfully, no other threads can access
the device session until you call the ni fgen. Session.unlock () method or exit out of the with block
when using lock context manager.

e Usethe nifgen.Session.lock () methodandthe nifgen.Session.unlock () method around
a sequence of calls to instrument driver methods if you require that the device retain its settings through
the end of the sequence.

You can safely make nested calls to the nifgen.Session.lock () method within the same thread. To
completely unlock the session, you must balance each call to the ni fgen. Session. lock () method with a
call tothe nifgen.Session.unlock () method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

with nifgen.Session('devl') as session:
with session.lock():
Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type context manager

270 Chapter 7. License

https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.0.1

Returns When used in a with statement, nifgen. Session.lock () acts as a context manager
and unlock will be called when the with block is exited

query_arb_seq_capabilities

nifgen.Session.query_ arb_seq capabilities()
Returns the properties of the signal generator that are related to creating arbitrary
sequences (the nifgen.Session.max_num_sequences, nifgen.Session.
min_sequence_length, nifgen.Session.max_sequence_length, and nifgen.
Session.max_loop_count properties).

Return type

tuple (maximum_number_of_sequences, minimum_sequence_length, maxi-
mum_sequence_length, maximum_loop_count)

WHERE
maximum_number_of_sequences (int):

Returns the maximum number of arbitrary waveform sequences that the signal
generator allows. NI-FGEN obtains this value from the nifgen. Session.
max_num_seqguences property.

minimum_sequence_length (int):

Returns the minimum number of arbitrary waveforms the signal generator al-
lows in a sequence. NI-FGEN obtains this value from the ni fgen. Session.
min_sequence_length property.

maximum_sequence_length (int):

Returns the maximum number of arbitrary waveforms the signal generator al-
lows in a sequence. NI-FGEN obtains this value from the nifgen. Session.
max_sequence_length property.

maximum_loop_count (int):

Returns the maximum number of times the signal generator can repeat an arbi-
trary waveform in a sequence. NI-FGEN obtains this value from the nifgen.
Session.max_loop_ count property.

query_arb_wfm_capabilities

nifgen.Session.query arb_ wfm capabilities()
Returns the properties of the signal generator that are related to creating arbitrary waveforms. These
properties are the maximum number of waveforms, waveform quantum, minimum waveform size,
and maximum waveform size.

Note: If you do not want to obtain the waveform quantum, pass a value of VI_NULL for this
parameter.

Return type

tuple (maximum_number_of waveforms, waveform_quantum, mini-
mum_waveform_size, maximum_waveform_size)

7.3. nifgen module 271

NI Modular Instruments Python APl Documentation, Release 1.0.1

WHERE
maximum_number_of waveforms (int):

Returns the maximum number of arbitrary waveforms that the signal gen-
erator allows. NI-FGEN obtains this value from the nifgen.Session.
max_num_waverlorms property.

waveform_quantum (int):

The size (number of points) of each waveform must be a multiple of a con-
stant quantum value. This parameter obtains the quantum value that the sig-
nal generator uses. NI-FGEN returns this value from the nifgen. Session.
waveform quantum property.

For example, when this property returns a value of 8, all waveform sizes must be
a multiple of 8.

minimum_waveform_size (int):

Returns the minimum number of points that the signal generator allows in
a waveform. NI-FGEN obtains this value from the nifgen.Session.
min_waveform size property.

maximum_waveform_size (int):

Returns the maximum number of points that the signal generator allows in
a waveform. NI-FGEN obtains this value from the nifgen.Session.
max_waveform size property.

query_freq_list_capabilities

nifgen.Session.query freq list_ capabilities()
Returns the properties of the signal generator that are related to creating fre-
quency lists. These properties are nifgen.Session.max_num_freq lists,
nifgen.Session.min_ freq list_length, nifgen.Session.
max_freq list_length, nifgen.Session.min_freq list_duration,
nifgen.Session.max_freq list_duration, and nifgen.Session.
freq _list_duration_quantum.

Return type
tuple (maximum_number_of_freq_lists, minimum_frequency_list_length,
maximum_frequency_list_length, minimum_frequency_list_duration, maxi-
mum_frequency_list_duration, frequency_list_duration_quantum)
WHERE

maximum_number_of_freq_lists (int):

Returns the maximum number of frequency lists that the signal genera-
tor allows. NI-FGEN obtains this value from the nifgen.Session.
max_num_freq 1ists property.

minimum_frequency_list_length (int):

Returns the minimum number of steps that the signal generator allows in a
frequency list. NI-FGEN obtains this value from the nifgen. Session.
min_freq list_length property.

maximum_frequency_list_length (int):

272 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Returns the maximum number of steps that the signal generator allows in a
frequency list. NI-FGEN obtains this value from the nifgen. Session.
max_freq list_length property.

minimum_frequency_list_duration (float):

Returns the minimum duration that the signal generator allows in a step of a
frequency list. NI-FGEN obtains this value from the nifgen. Session.
min_freq list_duration property.

maximum_frequency_list_duration (float):

Returns the maximum duration that the signal generator allows in a step of
a frequency list. NI-FGEN obtains this value from the nifgen. Session.
max_freq list_duration property.

frequency_list_duration_quantum (float):

Returns the quantum of which all durations must be a multiple in a fre-
quency list. NI-FGEN obtains this value from the nifgen.Session.
freq list_duration_quantum property.

read_cu rrent_temperature

nifgen.Session.read_ current_temperature ()
Reads the current onboard temperature of the device. The temperature is returned in degrees Celsius.

Return type float

Returns Returns the current temperature read from onboard temperature sensors, in de-
grees Celsius.

reset

nifgen.Session.reset ()
Resets the instrument to a known state. This method aborts the generation, clears all routes, and
resets session properties to the default values. This method does not, however, commit the session
properties or configure the device hardware to its default state.

Note: For the NI 5401/5404/5411/5431, this method exhibits the same behavior as the ni fgen.
Session.reset_device () method.

reset_device

nifgen.Session.reset_device ()
Performs a hard reset on the device. Generation is stopped, all routes are released, external bidi-
rectional terminals are tristated, FPGAs are reset, hardware is configured to its default state, and all
session properties are reset to their default states.

reset_with_defaults

nifgen.Session.reset_with_defaults ()
Resets the instrument and reapplies initial user—specified settings from the logical name that was

7.3. nifgen module

273

https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.0.1

used to initialize the session. If the session was created without a logical name, this method is
equivalent to the nifgen.Session. reset () method.

self _cal

nifgen.Session.self cal()
Performs a full internal self-calibration on the device. If the calibration is successful, new calibration
data and constants are stored in the onboard EEPROM.

self_test

nifgen.Session.self test ()
Runs the instrument self-test routine and returns the test result(s).

Raises SelfTestError on self test failure. Properties on exception object:
* code - failure code from driver

* message - status message from driver

Self-Test Code | Description
0 Passed self-test
1 Self-test failed

Note: When used on some signal generators, the device is reset after the nifgen. Session.
self test () method runs. If you use the nifgen.Session.self test () method, your
device may not be in its previously configured state after the method runs.

send_software_edge_trigger

nifgen.Session.send software_edge_ trigger ()
Sends a command to trigger the signal generator. This VI can act as an override for an external edge
trigger.

If called directly on the session, this will send a software start trigger.
..code:: python
session.send_software_edge_trigger()

If called using the script trigger repeated capability container, this will send a software trigger to the
specified script trigger

..code:: python
session.script_triggers[1].send_software_edge_trigger()

..note:

This method does not override external digital edge triggers of the NI
—5401/5411/5431.

274 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

set_next_write_position

nifgen.Session.set_next_write_position (waveform_name_or_handle, relative_to,
offset)

Sets the position in the waveform at which the next waveform data is written. This method allows
you to write to arbitrary locations within the waveform. These settings apply only to the next write
to the waveform specified by the waveformHandle parameter. Subsequent writes to that waveform
begin where the last write left off, unless this method is called again. The waveformHandle passed in
must have been created by a call to the nifgen.Session.allocate_waveform () method
or one of the following nifgen.Session.create_waveform () method.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1].set_next_write_position(waveform_name_or_handle,
—~relative_to, offset)

Parameters

e waveform name_or_handle (str or int) — The name (str) or han-
dle (int) of an arbitrary waveform previously allocated with nifgen.
Session.allocate_named _waveform(), nifgen.Session.
allocate_waveform() ornifgen.Session.create_waveform().

* relative_to(nifgen.RelativeTo)- Specifies the reference position in the
waveform. This position and offset together determine where to start loading data
into the waveform.

Defined Values

START (0) Use the start of the waveform as the reference position.
CURRENT Use the current position within the waveform as the reference
(1) position.

» offset (int)— Specifies the offset from relativeTo at which to start loading the
data into the waveform.

unlock

nifgen.Session.unlock ()
Releases a lock that you acquired on an device session using nifgen.Session.lock (). Refer to
nifgen.Session.unlock () for additional information on session locks.

wait_until_done

nifgen.Session.wait_until_done (max_time=datetime.timedelta(seconds=10.0))
Waits until the device is done generating or until the maximum time has expired.

Parameters max_time (float in seconds or datetime.timedelta) -
Specifies the timeout value in milliseconds.

7.3. nifgen module 275

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.0.1

write_script

nifgen.Session.write_script (script)
Writes a string containing one or more scripts that govern the generation of waveforms.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1] .write_script (script)

Parameters script (str)— Contains the text of the script you want to use for your gen-
eration operation. Refer to scripting Instructions for more information about writing
scripts.

write_waveform

nifgen.Session.write_waveform (waveform_name_or_handle, data)
Writes data to the waveform in onboard memory.

By default, subsequent calls to this method continue writing data from the position of the last
sample written. You can set the write position and offset by calling the nifgen. Session.
set_next_write position() nifgen.Session.set_next_write position ()
method.

Tip: This method requires repeated capabilities (channels). If called directly on the nifgen.Session
object, then the method will use all repeated capabilities in the session. You can specify a subset
of repeated capabilities using the Python index notation on an nifgen.Session repeated capabilities
container, and calling this method on the result.:

session.channels[0,1].write_waveform(waveform_name_or_handle, data)

Parameters

e waveform name_or_handle (str or int) — The name (str) or han-
dle (int) of an arbitrary waveform previously allocated with nifgen.
Session.allocate_named_waveform(), nifgen.Session.
allocate waveform() ornifgen.Session.create_waveform().

* data (I1ist of float) — Array of data to load into the waveform. This may
be an iterable of float, or for best performance a numpy.ndarray of dtype intl6 or
float64.

Properties

276 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
REPLACE_DRIVER_SPECIFIC_URL_2(niscripted.chm',%20'scripting_instructions)
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.0.1

Property Datatype
nifgen.Session.all_marker_events_latched_status int
nifgen.Session.all_marker_events_live status int
nifgen.Session.analog_data_mask int
nifgen.Session.analog_filter._enabled bool
nifgen.Session.analog path AnalogPath
nifgen.Session.analog_static_value int
nifgen.Session.arb_gain float
nifgen.Session.arb_marker_position int
nifgen.Session.arb_offset float
nifgen.Session.arb_repeat_count int
nifgen.Session.arb_sample_rate float
nifgen.Session.arb_sequence_handle int
nifgen.Session.arb_waveform handle int
nifgen.Session.aux_power_enabled bool
nifgen.Session.bus_type BusType
nifgen.Session.channel_count int
nifgen.Session.channel_delay float
nifgen.Session.clock_mode ClockMode
nifgen.Session.common_mode_offset float
nifgen.Session.data_marker_events_count int
nifgen.Session.data_marker._event_data_bit_number int
nifgen.Session.data _marker event_level polarity DataMarkerEventLevelPola
nifgen.Session.data_marker._event_output_terminal str
nifgen.Session.data_transfer_block_size int
nifgen.Session.data_transfer maximum bandwidth float
nifgen.Session.data_transfer_maximum_in_flight_reads int
nifgen.Session.data_transfer_preferred packet_size int
nifgen.Session.digital_data mask int
nifgen.Session.digital_edge_script_trigger._edge ScriptTriggerDigitalEdge:
nifgen.Session.digital_edge script_trigger._source str
nifgen.Session.digital_edge_start_trigger_edge StartTriggerDigitalEdgeE
nifgen.Session.digital_edge start_trigger._source str
nifgen.Session.digital_filter_enabled bool
nifgen.Session.digital_filter interpolation_factor float
nifgen.Session.digital_gain float
nifgen.Session.digital_pattern enabled bool
nifgen.Session.digital_static_value int
nifgen.Session.done_event_output_terminal str
nifgen.Session.driver_setup str
nifgen.Session.exported_onboard _reference clock_ output_terminal | str
nifgen.Session.exported _reference_clock_output_terminal str
nifgen.Session.exported_sample clock_divisor int
nifgen.Session.exported _sample_clock_output_terminal str
nifgen.Session.exported _sample clock_timebase divisor int
nifgen.Session.exported _sample_ clock_timebase_output_terminal str
nifgen.Session.exported _script_trigger_output_terminal str
nifgen.Session.exported start_trigger_output_terminal str
nifgen.Session.external_ clock _delay_binary_value int
nifgen.Session.external_sample clock_multiplier float
nifgen.Session.file transfer block_size int

Continued on next

7.3. nifgen module

277

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 9 — continued from previous page

Property Datatype
nifgen.Session.filter_correction_frequency float
nifgen.Session.flatness_correction_enabled bool
nifgen.Session. fpga bitfile path str
nifgen.Session.freq list_duration_quantum float
nifgen.Session.freq list_handle int
nifgen.Session. func_amplitude float
nifgen.Session.func_buffer_size int
nifgen.Session.func_dc_offset float
nifgen.Session. func_duty cycle high float
nifgen.Session.func_frequency float
nifgen.Session.func_max_buffer_size int
nifgen.Session.func_start_phase float
nifgen.Session.func_waveform Waveform
nifgen.Session.idle behavior IdleBehavior
nifgen.Session.idle_value int
nifgen.Session.instrument_ firmware_ revision str
nifgen.Session.instrument_manufacturer str
nifgen.Session.instrument_model str
nifgen.Session.io_resource_descriptor str
nifgen.Session.load impedance float
nifgen.Session.logical_name str
nifgen.Session.major_version int
nifgen.Session.marker_events_count int
nifgen.Session.marker_event_output_terminal str
nifgen.Session.max_freq list_duration float
nifgen.Session.max_freq list_length int
nifgen.Session.max_loop_count int
nifgen.Session.max_num freq lists int
nifgen.Session.max_num_sequences int
nifgen.Session.max_num _waveforms int
nifgen.Session.max_sequence_length int
nifgen.Session.max_waveform size int
nifgen.Session.memory_size int
nifgen.Session.minor._version int
nifgen.Session.min freq list_duration float
nifgen.Session.min_freq _list_length int
nifgen.Session.min_sequence_length int
nifgen.Session.min_waveform size int
nifgen.Session.module_revision str
nifgen.Session.output_enabled bool
nifgen.Session.output__impedance float
nifgen.Session.output_mode OutputMode
nifgen.Session.ready_ for_start_event_output_terminal str
nifgen.Session.reference_clock_source ReferenceClockSource
nifgen.Session.ref_clock_ frequency float
nifgen.Session.sample_clock_source SampleClockSource
nifgen.Session.sample_clock timebase_rate float
nifgen.Session.sample _clock_ timebase_source SampleClockTimebaseSourc
nifgen.Session.script_to _generate str
Continued on next
278 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 9 — continued from previous page

Property Datatype
nifgen.Session.script_triggers_count int
nifgen.Session.script_trigger_type ScriptTriggerType
nifgen.Session.serial_number str
nifgen.Session.simulate bool
nifgen.Session.specific _driver_description str
nifgen.Session.specific _driver_revision str
nifgen.Session.specific _driver_vendor str
nifgen.Session.started_event_output_terminal str
nifgen.Session.start_trigger_ type StartTriggerType
nifgen.Session.streaming_space_available in waveform int
nifgen.Session.streaming waveform handle int
nifgen.Session.streaming waveform name str

nifgen.Session.

streaming write_timeout

float in seconds or datetime.timedelt

nifgen.Session.

supported_instrument_models

str

nifgen.Session.

terminal_ configuration

TerminalConfiguration

nifgen.Session.

trigger._mode

TriggerMode

nifgen.Session.

wait_behavior

WaitBehavior

nifgen.Session.

wait_value

int

nifgen.Session.

waveform quantum

int

Methods

Method name

nifgen.Session.abort ()

nifgen.Session.allocate_named _waveform/()

nifgen.Session.allocate _waveform/()

nifgen.Session.clear_arb _memory ()

nifgen.Session.clear_arb_sequence ()

nifgen.Session.clear_freq list ()

nifgen.Session.clear_user_standard waveform()

nifgen.Session.commit ()

nifgen.Session.configure _arb_sequence ()

nifgen.Session.configure_arb_waveform()

nifgen.Session.configure custom fir_filter _coefficients/()

nifgen.Session.configure freq 1list ()

nifgen.Session.configure_ standard waveform/()

nifgen.Session.create_advanced_arb_sequence ()

nifgen.Session.create_arb_sequence ()

nifgen.Session.create_freq list ()

nifgen.Session.create_waveform from file f64()

nifgen.Session.create_waveform from file 1i16()

nifgen.Session.create_waveform numpy ()

nifgen.Session.define_user._standard waveform ()

nifgen.Session.delete_script ()

nifgen.Session.delete waveform/()

nifgen.Session.disable ()

nifgen.Session.get_ext_cal_last_date_and time ()

nifgen.Session.get_ext_cal_last_temp/()

Continued on next page

7.3. nifgen module

279

NI Modular Instruments Python APl Documentation, Release 1.0.1

Table 10 — continued from previous page

Method name
nifgen.Session.get_ext_cal_recommended interval ()
nifgen.Session.get_hardware_state ()
nifgen.Session.get_self cal_ last_date_and time()
nifgen.Session.get_self cal_last_temp()
nifgen.Session.get_self cal_supported()
nifgen.Session.is_done ()
nifgen.Session.lock ()
nifgen.Session.query_arb_seq_capabilities ()
nifgen.Session.query_arb wfm capabilities()
nifgen.Session.query_freq list_capabilities()
nifgen.Session.read _current_temperature ()
nifgen.Session.reset ()
nifgen.Session.reset_device ()
nifgen.Session.reset_with defaults/()
nifgen.Session.self _cal ()
nifgen.Session.self_test ()
nifgen.Session.send _software_edge_trigger ()
nifgen.Session.set_next_write_position()
nifgen.Session.unlock ()
nifgen.Session.wait_until_done ()
nifgen.Session.write_script ()
nifgen.Session.write _waveform/()

7.3.3.2 Enums

Enums used in NI-FGEN

AnalogPath

class nifgen.AnalogPath

MAIN

Specifies use of the main path. NI-FGEN chooses the amplifier based on the user-specified gain.

DIRECT

Specifies use of the direct path.

FIXED_ LOW_GAIN
Specifies use of the low-gain amplifier in the main path, no matter what value the user specifies for gain.
This setting limits the output range.

FIXED HIGH_ GAIN
Specifies use of the high-gain amplifier in the main path.

BusType

class nifgen.BusType

INVALID

Indicates an invalid bus type.

280

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

AT
Indicates the signal generator is the AT bus type.

PCI
Indicates the signal generator is the PCI bus type.

PXI
Indicates the signal generator is the PXI bus type.

VXI
Indicates the signal generator is the VXI bus type.

PCMCIA
Indicates the signal generator is the PCI-CMA bus type.

PXIE
Indicates the signal generator is the PXI Express bus type.

ByteOrder
class nifgen.ByteOrder

LITTLE

BIG

ClockMode

class nifgen.ClockMode

HIGH_RESOLUTION
High resolution sampling—Sample rate is generated by a high-resolution clock source.

DIVIDE_DOWN
Divide down sampling—Sample rates are generated by dividing the source frequency.

AUTOMATIC
Automatic Selection—NI-FGEN selects between the divide—down and high-resolution clocking modes.

DataMarkerEventLevelPolarity

class nifgen.DataMarkerEventLevelPolarity

HIGH
When the operation is ready to start, the Ready for Start event level is high.

LOW
When the operation is ready to start, the Ready for Start event level is low.

HardwareState

class nifgen.HardwareState

7.3. nifgen module 281

NI Modular Instruments Python APl Documentation, Release 1.0.1

IDLE

WAITING_FOR_START TRIGGER
RUNNING

DONE

HARDWARE_ERROR

IdleBehavior

class nifgen.IdleBehavior

HOLD_LAST
While in an Idle or Wait state, the output signal remains at the last voltage generated prior to entering the
state.

JUMP_TO
While in an Idle or Wait state, the output signal remains at the value configured in the Idle or Wait value

property.
OutputMode

class nifgen.OutputMode

FUNC
Standard Method mode— Generates standard method waveforms such as sine, square, triangle, and so on.
ARB
Arbitrary waveform mode—Generates waveforms from user-created/provided waveform arrays of numeric
data.
SEQ

Arbitrary sequence mode — Generates downloaded waveforms in an order your specify.

FREQ LIST
Frequency List mode—Generates a standard method using a list of frequencies you define.

SCRIPT
Script mode—Allows you to use scripting to link and loop multiple waveforms in complex combinations.

ReferenceClockSource

class nifgen.ReferenceClockSource

CLOCK_IN
Specifies that the CLK IN input signal from the front panel connector is used as the Reference Clock
source.

NONE
Specifies that a Reference Clock is not used.

ONBOARD_REFERENCE_CLOCK
Specifies that the onboard Reference Clock is used as the Reference Clock source.

282 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

PXI_CLOCK
Specifies the PXI Clock is used as the Reference Clock source.

RTSI_7
Specifies that the RTSI line 7 is used as the Reference Clock source.

RelativeTo

class nifgen.RelativeTo

START

CURRENT

SampleClockSource

class nifgen.SampleClockSource

CLOCK_IN
Specifies that the signal at the CLK IN front panel connector is used as the Sample Clock source.

DDC_CLOCK_IN
Specifies that the Sample Clock from DDC connector is used as the Sample Clock source.

ONBOARD_ CLOCK
Specifies that the onboard clock is used as the Sample Clock source.

PXI_STAR LINE
Specifies that the PXI_STAR trigger line is used as the Sample Clock source.

PXI_TRIGGER_LINE_ORTSI_O
Specifies that the PXI or RTSI line 0 is used as the Sample Clock source.

PXI_TRIGGER_LINE_1RTSI_1
Specifies that the PXI or RTSI line 1 is used as the Sample Clock source.

PXI_TRIGGER_LINE_2RTSI_2
Specifies that the PXI or RTSI line 2 is used as the Sample Clock source.

PXI_TRIGGER_LINE_3RTSI_3
Specifies that the PXI or RTSI line 3 is used as the Sample Clock source.

PXI_TRIGGER_LINE_4RTSI_ 4
Specifies that the PXI or RTSI line 4 is used as the Sample Clock source.

PXI_TRIGGER_LINE_S5RTSI_S5
Specifies that the PXTI or RTSI line 5 is used as the Sample Clock source.

PXI_TRIGGER_LINE_6RTSI_6
Specifies that the PXI or RTSI line 6 is used as the Sample Clock source.

PXI_TRIGGER_LINE_T7RTSI_7
Specifies that the PXI or RTSI line 7 is used as the Sample Clock source.

7.3. nifgen module 283

NI Modular Instruments Python APl Documentation, Release 1.0.1

SampleClockTimebaseSource

class nifgen.SampleClockTimebaseSource

CLOCK_IN

Specifies that the external signal on the CLK IN front panel connector is used as the source.

ONBOARD_CLOCK

Specifies that the onboard Sample Clock timebase is used as the source.

ScriptTriggerDigitalEdgeEdge

class nifgen.ScriptTriggerDigitalEdgeEdge
RISING
Rising Edge
FALLING
Falling Edge
ScriptTriggerType

class nifgen.ScriptTriggerType

TRIG_NONE

No trigger is configured. Signal generation starts immediately.

DIGITAL_EDGE
Trigger is asserted when a digital edge is detected.

DIGITAL_LEVEL
Trigger is asserted when a digital level is detected.

SOFTWARE_EDGE
Trigger is asserted when a software edge is detected.

StartTriggerDigitalEdgeEdge

class nifgen.StartTriggerDigitalEdgeEdge

RISING
Rising Edge

FALLING
Falling Edge

StartTriggerType

class nifgen.StartTriggerType

284

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

TRIG_NONE
None

DIGITAL EDGE
Digital Edge

SOFTWARE_EDGE
Software Edge

P2P_ENDPOINT_ FULLNESS
P2P Endpoint Fullness

TerminalConfiguration

class nifgen.TerminalConfiguration

SINGLE_ENDED
Single-ended operation

DIFFERENTIAL
Differential operation

TriggerMode

class nifgen.TriggerMode

SINGLE
Single Trigger Mode - The waveform you describe in the sequence list is generated only once by going
through the entire staging list. Only one trigger is required to start the waveform generation. You can
use Single trigger mode with the output mode in any mode. After a trigger is received, the waveform
generation starts from the first stage and continues through to the last stage. Then, the last stage generates
repeatedly until you stop the waveform generation.

CONTINUOUS
Continuous Trigger Mode - The waveform you describe in the staging list generates infinitely by repeatedly
cycling through the staging list. After a trigger is received, the waveform generation starts from the first
stage and continues through to the last stage. After the last stage completes, the waveform generation loops
back to the start of the first stage and continues until it is stopped. Only one trigger is required to start the
waveform generation.

STEPPED
Stepped Trigger Mode - After a start trigger is received, the waveform described by the first stage generates.
Then, the device waits for the next trigger signal. On the next trigger, the waveform described by the second
stage generates, and so on. After the staging list completes, the waveform generation returns to the first
stage and continues in a cyclic fashion. After any stage has generated completely, the first eight samples
of the next stage are repeated continuously until the next trigger is received. trigger mode.

Note: In Frequency List mode, Stepped trigger mode is the same as Burst

BURST
Burst Trigger Mode - After a start trigger is received, the waveform described by the first stage generates
until another trigger is received. At the next trigger, the buffer of the previous stage completes, and then
the waveform described by the second stage generates. After the staging list completes, the waveform

7.3. nifgen module 285

NI Modular Instruments Python APl Documentation, Release 1.0.1

generation returns to the first stage and continues in a cyclic fashion. In Frequency List mode, the duration
instruction is ignored, and the trigger switches the frequency to the next frequency in the list. trigger mode.

Note: In Frequency List mode, Stepped trigger mode is the same as Burst

WaitBehavior

class nifgen.WaitBehavior

HOLD_LAST
While in an Idle or Wait state, the output signal remains at the last voltage generated prior to entering the

state.

JUMP_TO
While in an Idle or Wait state, the output signal remains at the value configured in the Idle or Wait value

property.

Waveform

class nifgen.Waveform

SINE
Sinusoid waveform

SQUARE
Square waveform

TRIANGLE
Triange waveform

RAMP_UP
Positive ramp waveform

RAMP_DOWN
Negative ramp waveform

DC
Constant voltage

NOISE
‘White noise

USER
User-defined waveform as defined by the nifgen.Session.
define user_standard waveform () method.

7.3.3.3 Exceptions and Warnings
DriverError

exception nifgen.DriverError
An error originating from the NI-FGEN driver

286 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.0.1

UnsupportedConfigurationError

exception nifgen.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

DriverNotInstalledError

exception nifgen.DriverNotInstalledError

An error due to using this module without the driver runtime installed.

InvalidRepeatedCapabilityError

exception nifgen.InvalidRepeatedCapabilityError
An error due to an invalid character in a repeated capability

SelfTestError

exception nifgen.SelfTestError
An error due to a failed self-test

DriverWarning

exception nifgen.DriverWarning
A warning originating from the NI-FGEN driver

7.3.3.4 Examples

nifgen_arb_waveform.py

Listing 6: (nifgen_arb_waveform.py)

#!/usr/bin/python

import argparse
import math
import nifgen
import sys
import time

def create_waveform_data (number_of_samples) :
waveform_data = []
angle_per_sample = (2 * math.pi) / number_of_samples
for i in range (number_of_samples):
waveform_data.append (math.sin (i * angle_per_sample)
—sample * 20))
return waveform_data

x» math.sin(i » angle_per_

(continues on next page)

7.3. nifgen module

287

https://github.com/ni/nimi-python/blob/master/src/nifgen/examples/nifgen_arb_waveform.py

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

54

55

57

NI Modular Instruments Python APl Documentation, Release 1.0.1

(continued from previous page)

def example (resource_name, options, samples, gain, offset, gen_time):
waveform_data = create_waveform_data (samples)
with nifgen.Session(resource_name=resource_name, options=options) as session:
session.output_mode = nifgen.OutputMode.ARB
waveform = session.create_waveform(waveform_data_array=waveform_data)
session.configure_arb_waveform(waveform_handle=waveform, gain=gain,
—~offset=offset)
with session.initiate():
time.sleep(gen_time)

def _main(argsv):
parser = argparse.ArgumentParser (description='Continuously generates an arbitrary,
—waveform.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument ('-n', '—-—-resource-name', default='PXI1Slot2', help='Resource
—name of a National Instruments Arbitrary Waveform Generator')

parser.add_argument ('-s', '—--samples', default=100000, type=int, help='Number of
—samples')

parser.add_argument ('-g', '--gain', default=1.0, type=float, help='Gain')

parser.add_argument ('-o', '--offset', default=0.0, type=float, help='DC offset (V)
")

parser.add_argument ('-t', '—-—time', default=5.0, type=float, help='Generation,
—time (s)")

parser.add_argument ('-op', '—-—option-string', default='"', type=str, help='Option,
—string')

args = parser.parse_args (argsv)
example (args.resource_name, args.option_string, args.samples, args.gain, args.
—offset, args.time)

def main() :
_main(sys.argv[1l:])

def test_example():

options = {'simulate': True, 'driver_setup': {'Model': '5433 (2CH)', 'BoardType':
<~ 'PXIe', }, }

example ('PXI1Slot2', options, 100000, 1.0, 0.0, 5.0)
