

NI Modular Instruments Python Documentation

About

The nimi-python repository generates Python bindings (Application Programming Interface) for interacting with the Modular Instrument drivers. The
following drivers are supported:

	NI-DCPower (Python module: nidcpower)

	NI-Digital Pattern Driver (Python module: nidigital)

	NI-DMM (Python module: nidmm)

	NI-FGEN (Python module: nifgen)

	NI-ModInst (Python module: nimodinst)

	NI-SCOPE (Python module: niscope)

	NI Switch Executive (Python module: nise)

	NI-SWITCH (Python module: niswitch)

	NI-TClk (Python module: nitclk)

It is implemented as a set of Mako templates [http://makotemplates.org] and per-driver metafiles that produce a Python module for each driver. The driver is
called through its public C API using the ctypes [https://docs.python.org/2/library/ctypes.html] Python library.

nimi-python supports all the Operating Systems supported by the underlying driver.

nimi-python follows Python Software Foundation [https://devguide.python.org/#status-of-python-branches] support policy for different versions. At
this time this includes Python 3.5 and above using CPython.

Installation

Driver specific installation instructions can be found on Read The Docs:

	nidcpower [http://nimi-python.readthedocs.io/en/master/nidcpower.html#installation]

	nidigital [http://nimi-python.readthedocs.io/en/master/nidigital.html#installation]

	nidmm [http://nimi-python.readthedocs.io/en/master/nidmm.html#installation]

	nifgen [http://nimi-python.readthedocs.io/en/master/nifgen.html#installation]

	nimodinst [http://nimi-python.readthedocs.io/en/master/nimodinst.html#installation]

	niscope [http://nimi-python.readthedocs.io/en/master/niscope.html#installation]

	nise [http://nimi-python.readthedocs.io/en/master/nise.html#installation]

	niswitch [http://nimi-python.readthedocs.io/en/master/niswitch.html#installation]

	nitclk [http://nimi-python.readthedocs.io/en/master/nitclk.html#installation]

Contributing

We welcome contributions! You can clone the project repository, build it, and install it by following these instructions [https://github.com/ni/nimi-python/blob/master/CONTRIBUTING.md].

Support / Feedback

The packages included in nimi-python package are supported by NI. For support, open
a request through the NI support portal at ni.com [http://www.ni.com].

Bugs / Feature Requests

To report a bug or submit a feature request specific to NI Modular Instruments Python bindings (nimi-python), please use the
GitHub issues page [https://github.com/ni/nimi-python/issues].

Fill in the issue template as completely as possible and we will respond as soon
as we can.

For hardware support or any other questions not specific to this GitHub project, please visit NI Community Forums [https://forums.ni.com/].

Documentation

Documentation is available here [http://nimi-python.readthedocs.io].

Additional Documentation

Refer to your driver documentation for device-specific information and detailed API documentation.

License

nimi-python is licensed under an MIT-style license (see
LICENSE [https://github.com/ni/nimi-python/blob/master/LICENSE]).
Other incorporated projects may be licensed under different licenses. All
licenses allow for non-commercial and commercial use.

Drivers

	nidcpower module
	Installation

	Usage

	API Reference
	Session

	Methods

	Properties

	Repeated Capabilities

	Enums

	Exceptions and Warnings

	Examples

	nidigital module
	Installation

	Usage

	API Reference
	Session

	Methods

	Properties

	NI-TClk Support

	Repeated Capabilities

	Enums

	Exceptions and Warnings

	Examples

	nidmm module
	Installation

	Usage

	API Reference
	Session

	Methods

	Properties

	Enums

	Exceptions and Warnings

	Examples

	nifgen module
	Installation

	Usage

	API Reference
	Session

	Methods

	Properties

	NI-TClk Support

	Repeated Capabilities

	Enums

	Exceptions and Warnings

	Examples

	niscope module
	Installation

	Usage

	API Reference
	Session

	Methods

	Properties

	NI-TClk Support

	Repeated Capabilities

	Enums

	Exceptions and Warnings

	Examples

	niswitch module
	Installation

	Usage

	API Reference
	Session

	Methods

	Properties

	Repeated Capabilities

	Enums

	Exceptions and Warnings

	Examples

	nise module
	Installation

	Usage

	API Reference
	Session

	Methods

	Enums

	Exceptions and Warnings

	Examples

	nimodinst module
	Installation

	Usage

	API Reference
	Session

	Methods

	Properties

	Exceptions and Warnings

	Examples

	nitclk module
	Installation

	Usage

	API Reference
	Public API

	SessionReference

	Exceptions and Warnings

	Examples

Indices and tables

	Index

	Module Index

	Search Page

nidcpower module

Installation

As a prerequisite to using the nidcpower module, you must install the NI-DCPower runtime on your system. Visit ni.com/downloads [http://www.ni.com/downloads/] to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-DCPower) can be installed with pip [http://pypi.python.org/pypi/pip]:

$ python -m pip install nidcpower~=1.3.1

Or easy_install from
setuptools [http://pypi.python.org/pypi/setuptools]:

$ python -m easy_install nidcpower

Usage

The following is a basic example of using the nidcpower module to open a session to a Source Meter Unit and measure voltage and current.

import nidcpower
Configure the session.

with nidcpower.Session(resource_name='PXI1Slot2', channels='0') as session:
 session.measure_record_length = 20
 session.measure_record_length_is_finite = True
 session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE
 session.voltage_level = 5.0

 session.commit()
 print('Effective measurement rate: {0} S/s'.format(session.measure_record_delta_time / 1))

 samples_acquired = 0
 print(' # Voltage Current In Compliance')
 row_format = '{0:3d}: {1:8.6f} {2:8.6f} {3}'
 with session.initiate():
 while samples_acquired < 20:
 measurements = session.fetch_multiple(count=session.fetch_backlog)
 samples_acquired += len(measurements)
 for i in range(len(measurements)):
 print(row_format.format(i, measurements[i].voltage, measurements[i].current, measurements[i].in_compliance))

Additional examples for NI-DCPower are located in src/nidcpower/examples/ directory.

API Reference

	Session

	Methods
	abort

	close

	commit

	configure_aperture_time

	create_advanced_sequence

	create_advanced_sequence_step

	delete_advanced_sequence

	disable

	export_attribute_configuration_buffer

	export_attribute_configuration_file

	fetch_multiple

	get_channel_name

	get_ext_cal_last_date_and_time

	get_ext_cal_last_temp

	get_ext_cal_recommended_interval

	get_self_cal_last_date_and_time

	get_self_cal_last_temp

	import_attribute_configuration_buffer

	import_attribute_configuration_file

	initiate

	lock

	measure

	measure_multiple

	query_in_compliance

	query_max_current_limit

	query_max_voltage_level

	query_min_current_limit

	query_output_state

	read_current_temperature

	reset

	reset_device

	reset_with_defaults

	self_cal

	self_test

	send_software_edge_trigger

	set_sequence

	unlock

	wait_for_event

	Properties
	active_advanced_sequence

	active_advanced_sequence_step

	actual_power_allocation

	aperture_time

	aperture_time_units

	auto_zero

	auxiliary_power_source_available

	channel_count

	compliance_limit_symmetry

	current_compensation_frequency

	current_gain_bandwidth

	current_level

	current_level_autorange

	current_level_range

	current_limit

	current_limit_autorange

	current_limit_behavior

	current_limit_high

	current_limit_low

	current_limit_range

	current_pole_zero_ratio

	dc_noise_rejection

	digital_edge_measure_trigger_input_terminal

	digital_edge_pulse_trigger_input_terminal

	digital_edge_sequence_advance_trigger_input_terminal

	digital_edge_source_trigger_input_terminal

	digital_edge_start_trigger_input_terminal

	driver_setup

	exported_measure_trigger_output_terminal

	exported_pulse_trigger_output_terminal

	exported_sequence_advance_trigger_output_terminal

	exported_source_trigger_output_terminal

	exported_start_trigger_output_terminal

	fetch_backlog

	instrument_firmware_revision

	instrument_manufacturer

	instrument_model

	interlock_input_open

	io_resource_descriptor

	logical_name

	measure_buffer_size

	measure_complete_event_delay

	measure_complete_event_output_terminal

	measure_complete_event_pulse_polarity

	measure_complete_event_pulse_width

	measure_record_delta_time

	measure_record_length

	measure_record_length_is_finite

	measure_trigger_type

	measure_when

	output_capacitance

	output_connected

	output_enabled

	output_function

	output_resistance

	overranging_enabled

	ovp_enabled

	ovp_limit

	power_allocation_mode

	power_line_frequency

	power_source

	power_source_in_use

	pulse_bias_current_level

	pulse_bias_current_limit

	pulse_bias_current_limit_high

	pulse_bias_current_limit_low

	pulse_bias_delay

	pulse_bias_voltage_level

	pulse_bias_voltage_limit

	pulse_bias_voltage_limit_high

	pulse_bias_voltage_limit_low

	pulse_complete_event_output_terminal

	pulse_complete_event_pulse_polarity

	pulse_complete_event_pulse_width

	pulse_current_level

	pulse_current_level_range

	pulse_current_limit

	pulse_current_limit_high

	pulse_current_limit_low

	pulse_current_limit_range

	pulse_off_time

	pulse_on_time

	pulse_trigger_type

	pulse_voltage_level

	pulse_voltage_level_range

	pulse_voltage_limit

	pulse_voltage_limit_high

	pulse_voltage_limit_low

	pulse_voltage_limit_range

	query_instrument_status

	ready_for_pulse_trigger_event_output_terminal

	ready_for_pulse_trigger_event_pulse_polarity

	ready_for_pulse_trigger_event_pulse_width

	requested_power_allocation

	reset_average_before_measurement

	samples_to_average

	self_calibration_persistence

	sense

	sequence_advance_trigger_type

	sequence_engine_done_event_output_terminal

	sequence_engine_done_event_pulse_polarity

	sequence_engine_done_event_pulse_width

	sequence_iteration_complete_event_output_terminal

	sequence_iteration_complete_event_pulse_polarity

	sequence_iteration_complete_event_pulse_width

	sequence_loop_count

	sequence_loop_count_is_finite

	sequence_step_delta_time

	sequence_step_delta_time_enabled

	serial_number

	simulate

	source_complete_event_output_terminal

	source_complete_event_pulse_polarity

	source_complete_event_pulse_width

	source_delay

	source_mode

	source_trigger_type

	specific_driver_description

	specific_driver_prefix

	specific_driver_revision

	specific_driver_vendor

	start_trigger_type

	supported_instrument_models

	transient_response

	voltage_compensation_frequency

	voltage_gain_bandwidth

	voltage_level

	voltage_level_autorange

	voltage_level_range

	voltage_limit

	voltage_limit_autorange

	voltage_limit_high

	voltage_limit_low

	voltage_limit_range

	voltage_pole_zero_ratio

	Repeated Capabilities
	channels

	Enums
	ApertureTimeUnits

	AutoZero

	ComplianceLimitSymmetry

	DCNoiseRejection

	Event

	MeasureWhen

	MeasurementTypes

	OutputCapacitance

	OutputFunction

	OutputStates

	Polarity

	PowerAllocationMode

	PowerSource

	PowerSourceInUse

	SelfCalibrationPersistence

	SendSoftwareEdgeTriggerType

	Sense

	SourceMode

	TransientResponse

	TriggerType

	Exceptions and Warnings
	Error

	DriverError

	UnsupportedConfigurationError

	DriverNotInstalledError

	InvalidRepeatedCapabilityError

	SelfTestError

	DriverWarning

	Examples
	nidcpower_advanced_sequence.py

	nidcpower_measure_record.py

	nidcpower_source_delay_measure.py

Session

	
class nidcpower.Session(self, resource_name, channels=None, reset=False, options={})

	Creates and returns a new NI-DCPower session to the power supply or SMU
specified in resource name to be used in all subsequent NI-DCPower
method calls. With this method, you can optionally set the initial
state of the following session properties:

	nidcpower.Session.simulate

	nidcpower.Session.driver_setup

After calling this method, the session will be in the Uncommitted
state. Refer to the Programming
States topic for
details about specific software states.

To place the device in a known start-up state when creating a new
session, set reset to True. This action is equivalent to using
the nidcpower.Session.reset() method immediately after initializing the
session.

To open a session and leave the device in its existing configuration
without passing through a transitional output state, set reset to
False. Then configure the device as in the previous session,
changing only the desired settings, and then call the
nidcpower.Session.initiate() method.

Related Topics:

Programming
States

	Parameters

	
	resource_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the resourceName assigned by Measurement & Automation
Explorer (MAX), for example “PXI1Slot3” where “PXI1Slot3” is an
instrument’s resourceName. resourceName can also be a logical
IVI name.

	channels (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list], range [https://docs.python.org/3/library/stdtypes.html#range], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Specifies which output channel(s) to include in a new session. Specify
multiple channels by using a channel list or a channel range. A channel
list is a comma (,) separated sequence of channel names (for example,
0,2 specifies channels 0 and 2). A channel range is a lower bound
channel followed by a hyphen (-) or colon (:) followed by an upper bound
channel (for example, 0-2 specifies channels 0, 1, and 2). In the
Running state, multiple output channel configurations are performed
sequentially based on the order specified in this parameter. If you do
not specify any channels, by default all channels on the device are
included in the session.

	reset (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether to reset the device during the initialization
procedure.

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned
value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not
specify a value for a property, the default value is used.

Advanced Example:
{ ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’, ‘BoardType’: ‘<type>’ } }

	Property

	Default

	range_check

	True

	query_instrument_status

	False

	cache

	True

	simulate

	False

	record_value_coersions

	False

	driver_setup

	{}

Methods

abort

	
nidcpower.Session.abort()

	Transitions the NI-DCPower session from the Running state to the
Uncommitted state. If a sequence is running, it is stopped. Any
configuration methods called after this method are not applied until
the nidcpower.Session.initiate() method is called. If power output is enabled
when you call the nidcpower.Session.abort() method, the output channels remain
in their current state and continue providing power.

Use the nidcpower.Session.ConfigureOutputEnabled() method to disable power
output on a per channel basis. Use the nidcpower.Session.reset() method to
disable output on all channels.

Refer to the Programming
States topic in
the NI DC Power Supplies and SMUs Help for information about the
specific NI-DCPower software states.

Related Topics:

Programming
States

Note

One or more of the referenced methods are not in the Python API for this driver.

close

	
nidcpower.Session.close()

	Closes the session specified in vi and deallocates the resources
that NI-DCPower reserves. If power output is enabled when you call this
method, the output channels remain in their existing state and
continue providing power. Use the nidcpower.Session.ConfigureOutputEnabled()
method to disable power output on a per channel basis. Use the
nidcpower.Session.reset() method to disable power output on all channel(s).

Related Topics:

Programming
States

Note

One or more of the referenced methods are not in the Python API for this driver.

Note

This method is not needed when using the session context manager

commit

	
nidcpower.Session.commit()

	Applies previously configured settings to the device. Calling this
method moves the NI-DCPower session from the Uncommitted state into
the Committed state. After calling this method, modifying any
property reverts the NI-DCPower session to the Uncommitted state. Use
the nidcpower.Session.initiate() method to transition to the Running state.
Refer to the Programming
States topic in
the NI DC Power Supplies and SMUs Help for details about the specific
NI-DCPower software states.

Related Topics:

Programming
States

configure_aperture_time

	
nidcpower.Session.configure_aperture_time(aperture_time, units=nidcpower.ApertureTimeUnits.SECONDS)

	Configures the aperture time on the specified channel(s).

The supported values depend on the units. Refer to the Aperture
Time topic for your device in the NI DC Power Supplies and SMUs Help
for more information. In general, devices support discrete
apertureTime values, and if you configure apertureTime to some
unsupported value, NI-DCPower coerces it up to the next supported value.

Refer to the Measurement Configuration and Timing or DC Noise
Rejection topic for your device in the NI DC Power Supplies and SMUs
Help for more information about how to configure your measurements.

Related Topics:

Aperture Time

Note

This method is not supported on all devices. Refer to Supported
Methods by
Device
for more information about supported devices.

Tip

This method requires repeated capabilities. If called directly on the
nidcpower.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	aperture_time (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the aperture time. Refer to the Aperture Time topic for your
device in the NI DC Power Supplies and SMUs Help for more information.

	units (nidcpower.ApertureTimeUnits) – Specifies the units for apertureTime.
Defined Values:

	SECONDS (1028)

	Specifies seconds.

	POWER_LINE_CYCLES (1029)

	Specifies Power Line Cycles.

create_advanced_sequence

	
nidcpower.Session.create_advanced_sequence(sequence_name, property_names, set_as_active_sequence=True)

	Creates an empty advanced sequence. Call the
nidcpower.Session.create_advanced_sequence_step() method to add steps to the
active advanced sequence.

You can create multiple advanced sequences in a session.

Support for this method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence
methods is unsupported.

Use this method in the Uncommitted or Committed programming states.
Refer to the Programming
States topic in
the NI DC Power Supplies and SMUs Help for more information about
NI-DCPower programming states.

Related Topics:

Advanced Sequence
Mode

Programming
States

nidcpower.Session.create_advanced_sequence_step()

Note

This method is not supported on all devices. Refer to Supported
Methods by
Device
for more information about supported devices.

	Parameters

	
	sequence_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the name of the sequence to create.

	property_names (list of str) – Specifies the names of the properties you reconfigure per step in the advanced sequence. The following table lists which properties can be configured in an advanced sequence for each NI-DCPower device that supports advanced sequencing. A Yes indicates that the property can be configured in advanced sequencing. An No indicates that the property cannot be configured in advanced sequencing.

	Property

	PXIe-4135

	PXIe-4136

	PXIe-4137

	PXIe-4138

	PXIe-4139

	PXIe-4140/4142/4144

	PXIe-4141/4143/4145

	PXIe-4162/4163

	nidcpower.Session.dc_noise_rejection

	Yes

	No

	Yes

	No

	Yes

	No

	No

	Yes

	nidcpower.Session.aperture_time

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.measure_record_length

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.sense

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.ovp_enabled

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.ovp_limit

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_bias_delay

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_off_time

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_on_time

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.source_delay

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.current_compensation_frequency

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	Yes

	nidcpower.Session.current_gain_bandwidth

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	Yes

	nidcpower.Session.current_pole_zero_ratio

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	Yes

	nidcpower.Session.voltage_compensation_frequency

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	Yes

	nidcpower.Session.voltage_gain_bandwidth

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	Yes

	nidcpower.Session.voltage_pole_zero_ratio

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	Yes

	nidcpower.Session.current_level

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.current_level_range

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.voltage_limit

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.voltage_limit_high

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	nidcpower.Session.voltage_limit_low

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	nidcpower.Session.voltage_limit_range

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.current_limit

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.current_limit_high

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	nidcpower.Session.current_limit_low

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	nidcpower.Session.current_limit_range

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.voltage_level

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.voltage_level_range

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.output_enabled

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.output_function

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.output_resistance

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	No

	nidcpower.Session.pulse_bias_current_level

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_bias_voltage_limit

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_bias_voltage_limit_high

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_bias_voltage_limit_low

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_current_level

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_current_level_range

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_voltage_limit

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_voltage_limit_high

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_voltage_limit_low

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_voltage_limit_range

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_bias_current_limit

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_bias_current_limit_high

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_bias_current_limit_low

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_bias_voltage_level

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_current_limit

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_current_limit_high

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_current_limit_low

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_current_limit_range

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_voltage_level

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.pulse_voltage_level_range

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	nidcpower.Session.transient_response

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	set_as_active_sequence (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies that this current sequence is active.

create_advanced_sequence_step

	
nidcpower.Session.create_advanced_sequence_step(set_as_active_step=True)

	Creates a new advanced sequence step in the advanced sequence specified
by the Active advanced sequence. When you create an advanced sequence
step, each property you passed to the nidcpower.Session._create_advanced_sequence()
method is reset to its default value for that step unless otherwise
specified.

Support for this Method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence
methods is unsupported.

Related Topics:

Advanced Sequence
Mode

Programming
States

nidcpower.Session._create_advanced_sequence()

Note

This method is not supported on all devices. Refer to Supported
Methods by
Device
for more information about supported devices.

	Parameters

	set_as_active_step (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies that this current step in the active sequence is active.

delete_advanced_sequence

	
nidcpower.Session.delete_advanced_sequence(sequence_name)

	Deletes a previously created advanced sequence and all the advanced
sequence steps in the advanced sequence.

Support for this Method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence
methods is unsupported.

Related Topics:

Advanced Sequence
Mode

Programming
States

Note

This method is not supported on all devices. Refer to Supported
Methods by
Device
for more information about supported devices.

	Parameters

	sequence_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – specifies the name of the sequence to delete.

disable

	
nidcpower.Session.disable()

	This method performs the same actions as the nidcpower.Session.reset()
method, except that this method also immediately sets the
nidcpower.Session.output_enabled property to False.

This method opens the output relay on devices that have an output
relay.

export_attribute_configuration_buffer

	
nidcpower.Session.export_attribute_configuration_buffer()

	Exports the property configuration of the session to the specified
configuration buffer.

You can export and import session property configurations only between
devices with identical model numbers and the same number of configured
channels.

This method verifies that the properties you have configured for the
session are valid. If the configuration is invalid, NI‑DCPower returns
an error.

Support for this Method

Calling this method in Sequence Source
Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between
NI‑DCPower sessions that were initialized with different channels, the
configurations of the exporting channels are mapped to the importing
channels in the order you specify in the channelName input to the
nidcpower.Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting
session and 1,2 for the importing session:

	The configuration exported from channel 0 is imported into channel 1.

	The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Using Properties and
Properties

Setting Properties and Properties Before Reading
Them

Note

This method will return an error if the total number of channels
initialized for the exporting session is not equal to the total number
of channels initialized for the importing session.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Returns

	Specifies the byte array buffer to be populated with the exported
property configuration.

export_attribute_configuration_file

	
nidcpower.Session.export_attribute_configuration_file(file_path)

	Exports the property configuration of the session to the specified
file.

You can export and import session property configurations only between
devices with identical model numbers and the same number of configured
channels.

This method verifies that the properties you have configured for the
session are valid. If the configuration is invalid, NI‑DCPower returns
an error.

Support for this Method

Calling this method in Sequence Source
Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between
NI‑DCPower sessions that were initialized with different channels, the
configurations of the exporting channels are mapped to the importing
channels in the order you specify in the channelName input to the
nidcpower.Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting
session and 1,2 for the importing session:

	The configuration exported from channel 0 is imported into channel 1.

	The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Using Properties and
Properties

Setting Properties and Properties Before Reading
Them

Note

This method will return an error if the total number of channels
initialized for the exporting session is not equal to the total number
of channels initialized for the importing session.

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the absolute path to the file to contain the exported
property configuration. If you specify an empty or relative path, this
method returns an error.
Default file extension: .nidcpowerconfig

fetch_multiple

	
nidcpower.Session.fetch_multiple(count, timeout=hightime.timedelta(seconds=1.0))

	Returns a list of named tuples (Measurement) that were
previously taken and are stored in the NI-DCPower buffer. This method
should not be used when the nidcpower.Session.measure_when property is
set to ON_DEMAND. You must first call
nidcpower.Session.initiate() before calling this method.

Fields in Measurement:

	voltage (float)

	current (float)

	in_compliance (bool)

Note

This method is not supported on all devices. Refer to Supported Methods by Device for more information about supported devices.

Tip

This method requires repeated capabilities. If called directly on the
nidcpower.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	count (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the number of measurements to fetch.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – Specifies the maximum time allowed for this method to complete. If the method does not complete within this time interval, NI-DCPower returns an error.

Note

When setting the timeout interval, ensure you take into account any triggers so that the timeout interval is long enough for your application.

	Return type

	list of Measurement

	Returns

	List of named tuples with fields:

	voltage (float)

	current (float)

	in_compliance (bool)

get_channel_name

	
nidcpower.Session.get_channel_name(index)

	Retrieves the output channelName that corresponds to the requested
index. Use the nidcpower.Session.channel_count property to
determine the upper bound of valid values for index.

	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – Specifies which output channel name to return. The index values begin at
1.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	Returns the output channel name that corresponds to index.

get_ext_cal_last_date_and_time

	
nidcpower.Session.get_ext_cal_last_date_and_time()

	Returns the date and time of the last successful calibration.

	Return type

	hightime.datetime

	Returns

	Indicates date and time of the last calibration.

get_ext_cal_last_temp

	
nidcpower.Session.get_ext_cal_last_temp()

	Returns the onboard temperature of the device, in degrees Celsius,
during the last successful external calibration.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	Returns the onboard temperature of the device, in degrees Celsius,
during the last successful external calibration.

get_ext_cal_recommended_interval

	
nidcpower.Session.get_ext_cal_recommended_interval()

	Returns the recommended maximum interval, in months, between
external calibrations.

	Return type

	hightime.timedelta

	Returns

	Specifies the recommended maximum interval, in months, between
external calibrations.

get_self_cal_last_date_and_time

	
nidcpower.Session.get_self_cal_last_date_and_time()

	Returns the date and time of the oldest successful self-calibration from among the channels in the session.

Note

This method is not supported on all devices.

	Return type

	hightime.datetime

	Returns

	Returns the date and time the device was last calibrated.

get_self_cal_last_temp

	
nidcpower.Session.get_self_cal_last_temp()

	Returns the onboard temperature of the device, in degrees Celsius,
during the oldest successful self-calibration from among the channels in
the session.

For example, if you have a session using channels 1 and 2, and you
perform a self-calibration on channel 1 with a device temperature of 25
degrees Celsius at 2:00, and a self-calibration was performed on channel
2 at 27 degrees Celsius at 3:00 on the same day, this method returns
25 for the temperature parameter.

Note

This method is not supported on all devices. Refer to Supported
Methods by
Device
for more information about supported devices.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	Returns the onboard temperature of the device, in degrees Celsius,
during the oldest successful calibration.

import_attribute_configuration_buffer

	
nidcpower.Session.import_attribute_configuration_buffer(configuration)

	Imports a property configuration to the session from the specified
configuration buffer.

You can export and import session property configurations only between
devices with identical model numbers and the same number of configured
channels.

Support for this Method

Calling this method in Sequence Source
Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between
NI‑DCPower sessions that were initialized with different channels, the
configurations of the exporting channels are mapped to the importing
channels in the order you specify in the channelName input to the
nidcpower.Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting
session and 1,2 for the importing session:

	The configuration exported from channel 0 is imported into channel 1.

	The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Programming
States

Using Properties and
Properties

Setting Properties and Properties Before Reading
Them

Note

This method will return an error if the total number of channels
initialized for the exporting session is not equal to the total number
of channels initialized for the importing session.

	Parameters

	configuration (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Specifies the byte array buffer that contains the property
configuration to import.

import_attribute_configuration_file

	
nidcpower.Session.import_attribute_configuration_file(file_path)

	Imports a property configuration to the session from the specified
file.

You can export and import session property configurations only between
devices with identical model numbers and the same number of configured
channels.

Support for this Method

Calling this method in Sequence Source
Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between
NI‑DCPower sessions that were initialized with different channels, the
configurations of the exporting channels are mapped to the importing
channels in the order you specify in the channelName input to the
nidcpower.Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting
session and 1,2 for the importing session:

	The configuration exported from channel 0 is imported into channel 1.

	The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Programming
States

Using Properties and
Properties

Setting Properties and Properties Before Reading
Them

Note

This method will return an error if the total number of channels
initialized for the exporting session is not equal to the total number
of channels initialized for the importing session.

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the absolute path to the file containing the property
configuration to import. If you specify an empty or relative path, this
method returns an error.
Default File Extension: .nidcpowerconfig

initiate

	
nidcpower.Session.initiate()

	Starts generation or acquisition, causing the NI-DCPower session to
leave the Uncommitted state or Committed state and enter the Running
state. To return to the Uncommitted state call the nidcpower.Session.abort()
method. Refer to the Programming
States topic in
the NI DC Power Supplies and SMUs Help for information about the
specific NI-DCPower software states.

Related Topics:

Programming
States

Note

This method will return a Python context manager that will initiate on entering and abort on exit.

lock

	
nidcpower.Session.lock()

	Obtains a multithread lock on the device session. Before doing so, the
software waits until all other execution threads release their locks
on the device session.

Other threads may have obtained a lock on this session for the
following reasons:

	The application called the nidcpower.Session.lock() method.

	A call to NI-DCPower locked the session.

	After a call to the nidcpower.Session.lock() method returns
successfully, no other threads can access the device session until
you call the nidcpower.Session.unlock() method or exit out of the with block when using
lock context manager.

	Use the nidcpower.Session.lock() method and the
nidcpower.Session.unlock() method around a sequence of calls to
instrument driver methods if you require that the device retain its
settings through the end of the sequence.

You can safely make nested calls to the nidcpower.Session.lock() method
within the same thread. To completely unlock the session, you must
balance each call to the nidcpower.Session.lock() method with a call to
the nidcpower.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls
is to use lock as a context manager

with nidcpower.Session('dev1') as session:
 with session.lock():
 # Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

	Return type

	context manager

	Returns

	When used in a with statement, nidcpower.Session.lock() acts as
a context manager and unlock will be called when the with block is exited

measure

	
nidcpower.Session.measure(measurement_type)

	Returns the measured value of either the voltage or current on the
specified output channel. Each call to this method blocks other
method calls until the hardware returns the measurement. To
measure multiple output channels, use the nidcpower.Session.measure_multiple()
method.

Tip

This method requires repeated capabilities. If called directly on the
nidcpower.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling this method on the result.

	Parameters

	measurement_type (nidcpower.MeasurementTypes) – Specifies whether a voltage or current value is measured.
Defined Values:

	VOLTAGE (1)

	The device measures voltage.

	CURRENT (0)

	The device measures current.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	Returns the value of the measurement, either in volts for voltage or
amps for current.

measure_multiple

	
nidcpower.Session.measure_multiple()

	Returns a list of named tuples (Measurement) containing the measured voltage
and current values on the specified output channel(s). Each call to this method
blocks other method calls until the measurements are returned from the device.
The order of the measurements returned in the array corresponds to the order
on the specified output channel(s).

Fields in Measurement:

	voltage (float)

	current (float)

	in_compliance (bool) - Always None

Note

This method is not supported on all devices. Refer to Supported Methods by Device for more information about supported devices.

Tip

This method requires repeated capabilities. If called directly on the
nidcpower.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling this method on the result.

	Return type

	list of Measurement

	Returns

	List of named tuples with fields:

	voltage (float)

	current (float)

	in_compliance (bool) - Always None

query_in_compliance

	
nidcpower.Session.query_in_compliance()

	Queries the specified output device to determine if it is operating at
the compliance limit.

The compliance limit is the current limit when the output method is
set to DC_VOLTAGE. If the output is operating at the
compliance limit, the output reaches the current limit before the
desired voltage level. Refer to the nidcpower.Session.ConfigureOutputFunction()
method and the nidcpower.Session.ConfigureCurrentLimit() method for more
information about output method and current limit, respectively.

The compliance limit is the voltage limit when the output method is
set to DC_CURRENT. If the output is operating at the
compliance limit, the output reaches the voltage limit before the
desired current level. Refer to the nidcpower.Session.ConfigureOutputFunction()
method and the nidcpower.Session.ConfigureVoltageLimit() method for more
information about output method and voltage limit, respectively.

Related Topics:

Compliance

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This method requires repeated capabilities. If called directly on the
nidcpower.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling this method on the result.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	Returns whether the device output channel is in compliance.

query_max_current_limit

	
nidcpower.Session.query_max_current_limit(voltage_level)

	Queries the maximum current limit on an output channel if the output
channel is set to the specified voltageLevel.

Tip

This method requires repeated capabilities. If called directly on the
nidcpower.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling this method on the result.

	Parameters

	voltage_level (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the voltage level to use when calculating the
maxCurrentLimit.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	Returns the maximum current limit that can be set with the specified
voltageLevel.

query_max_voltage_level

	
nidcpower.Session.query_max_voltage_level(current_limit)

	Queries the maximum voltage level on an output channel if the output
channel is set to the specified currentLimit.

Tip

This method requires repeated capabilities. If called directly on the
nidcpower.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling this method on the result.

	Parameters

	current_limit (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the current limit to use when calculating the
maxVoltageLevel.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	Returns the maximum voltage level that can be set on an output channel
with the specified currentLimit.

query_min_current_limit

	
nidcpower.Session.query_min_current_limit(voltage_level)

	Queries the minimum current limit on an output channel if the output
channel is set to the specified voltageLevel.

Tip

This method requires repeated capabilities. If called directly on the
nidcpower.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling this method on the result.

	Parameters

	voltage_level (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the voltage level to use when calculating the
minCurrentLimit.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	Returns the minimum current limit that can be set on an output channel
with the specified voltageLevel.

query_output_state

	
nidcpower.Session.query_output_state(output_state)

	Queries the specified output channel to determine if the output channel
is currently in the state specified by outputState.

Related Topics:

Compliance

Tip

This method requires repeated capabilities. If called directly on the
nidcpower.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling this method on the result.

	Parameters

	output_state (nidcpower.OutputStates) – Specifies the output state of the output channel that is being queried.
Defined Values:

	VOLTAGE (0)

	The device maintains a constant voltage by adjusting the current.

	CURRENT (1)

	The device maintains a constant current by adjusting the voltage.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	Returns whether the device output channel is in the specified output
state.

read_current_temperature

	
nidcpower.Session.read_current_temperature()

	Returns the current onboard temperature, in degrees Celsius, of the
device.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	Returns the onboard temperature, in degrees Celsius, of the device.

reset

	
nidcpower.Session.reset()

	Resets the device to a known state. This method disables power
generation, resets session properties to their default values, commits
the session properties, and leaves the session in the Uncommitted state.
Refer to the Programming
States topic for
more information about NI-DCPower software states.

reset_device

	
nidcpower.Session.reset_device()

	Resets the device to a known state. The method disables power
generation, resets session properties to their default values, clears
errors such as overtemperature and unexpected loss of auxiliary power,
commits the session properties, and leaves the session in the
Uncommitted state. This method also performs a hard reset on the
device and driver software. This method has the same functionality as
using reset in Measurement & Automation Explorer. Refer to the
Programming
States topic for
more information about NI-DCPower software states.

This will also open the output relay on devices that have an output
relay.

reset_with_defaults

	
nidcpower.Session.reset_with_defaults()

	Resets the device to a known state. This method disables power
generation, resets session properties to their default values, commits
the session properties, and leaves the session in the
Running
state. In addition to exhibiting the behavior of the nidcpower.Session.reset()
method, this method can assign user-defined default values for
configurable properties from the IVI configuration.

self_cal

	
nidcpower.Session.self_cal()

	Performs a self-calibration upon the specified channel(s).

This method disables the output, performs several internal
calculations, and updates calibration values. The updated calibration
values are written to the device hardware if the
nidcpower.Session.self_calibration_persistence property is set to
WRITE_TO_EEPROM. Refer to the
nidcpower.Session.self_calibration_persistence property topic for more
information about the settings for this property.

When calling nidcpower.Session.self_cal() with the PXIe-4162/4163,
specify all channels of your PXIe-4162/4163 with the channelName input.
You cannot self-calibrate a subset of PXIe-4162/4163 channels.

Refer to the
Self-Calibration topic for
more information about this method.

Related Topics:

Self-Calibration

Note

This method is not supported on all devices. Refer to Supported
Methods by
Device
for more information about supported devices.

Tip

This method requires repeated capabilities. If called directly on the
nidcpower.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling this method on the result.

self_test

	
nidcpower.Session.self_test()

	Performs the device self-test routine and returns the test result(s).
Calling this method implicitly calls the nidcpower.Session.reset() method.

When calling nidcpower.Session.self_test() with the PXIe-4162/4163, specify all
channels of your PXIe-4162/4163 with the channels input of
nidcpower.Session.__init__(). You cannot self test a subset of
PXIe-4162/4163 channels.

Raises SelfTestError on self test failure. Properties on exception object:

	code - failure code from driver

	message - status message from driver

	Self-Test Code

	Description

	0

	Self test passed.

	1

	Self test failed.

send_software_edge_trigger

	
nidcpower.Session.send_software_edge_trigger(trigger)

	Asserts the specified trigger. This method can override an external
edge trigger.

Related Topics:

Triggers

Note

This method is not supported on all devices. Refer to Supported
Methods by
Device
for more information about supported devices.

	Parameters

	trigger (nidcpower.SendSoftwareEdgeTriggerType) – Specifies which trigger to assert.
Defined Values:

	NIDCPOWER_VAL_START_TRIGGER (1034)

	Asserts the Start trigger.

	NIDCPOWER_VAL_SOURCE_TRIGGER (1035)

	Asserts the Source trigger.

	NIDCPOWER_VAL_MEASURE_TRIGGER (1036)

	Asserts the Measure trigger.

	NIDCPOWER_VAL_SEQUENCE_ADVANCE_TRIGGER (1037)

	Asserts the Sequence Advance trigger.

	NIDCPOWER_VAL_PULSE_TRIGGER (1053

	Asserts the Pulse trigger.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

set_sequence

	
nidcpower.Session.set_sequence(values, source_delays)

	Configures a series of voltage or current outputs and corresponding
source delays. The source mode must be set to
Sequence for this
method to take effect.

Refer to the Configuring the Source
Unit topic
in the NI DC Power Supplies and SMUs Help for more information about
how to configure your device.

Use this method in the Uncommitted or Committed programming states.
Refer to the Programming
States topic in
the NI DC Power Supplies and SMUs Help for more information about
NI-DCPower programming states.

Note

This method is not supported on all devices. Refer to Supported
Methods by
Device
for more information about supported devices.

Tip

This method requires repeated capabilities. If called directly on the
nidcpower.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	values (list of float) – Specifies the series of voltage levels or current levels, depending on
the configured output
method.
Valid values:
The valid values for this parameter are defined by the voltage level
range or current level range.

	source_delays (list of float) – Specifies the source delay that follows the configuration of each value
in the sequence.
Valid Values:
The valid values are between 0 and 167 seconds.

unlock

	
nidcpower.Session.unlock()

	Releases a lock that you acquired on an device session using
nidcpower.Session.lock(). Refer to nidcpower.Session.unlock() for additional
information on session locks.

wait_for_event

	
nidcpower.Session.wait_for_event(event_id, timeout=hightime.timedelta(seconds=10.0))

	Waits until the device has generated the specified event.

The session monitors whether each type of event has occurred at least
once since the last time this method or the nidcpower.Session.initiate()
method were called. If an event has only been generated once and you
call this method successively, the method times out. Individual
events must be generated between separate calls of this method.

Note

Refer to Supported Methods by
Device
for more information about supported devices.

	Parameters

	
	event_id (nidcpower.Event) – Specifies which event to wait for.
Defined Values:

	NIDCPOWER_VAL_SOURCE_COMPLETE_EVENT (1030)

	Waits for the Source Complete event.

	NIDCPOWER_VAL_MEASURE_COMPLETE_EVENT (1031)

	Waits for the Measure Complete event.

	NIDCPOWER_VAL_SEQUENCE_ITERATION_COMPLETE_EVENT (1032)

	Waits for the Sequence Iteration Complete event.

	NIDCPOWER_VAL_SEQUENCE_ENGINE_DONE_EVENT (1033)

	Waits for the Sequence Engine Done event.

	NIDCPOWER_VAL_PULSE_COMPLETE_EVENT (1051)

	Waits for the Pulse Complete event.

	NIDCPOWER_VAL_READY_FOR_PULSE_TRIGGER_EVENT (1052)

	Waits for the Ready for Pulse Trigger event.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – Specifies the maximum time allowed for this method to complete, in
seconds. If the method does not complete within this time interval,
NI-DCPower returns an error.

Note

When setting the timeout interval, ensure you take into account any
triggers so that the timeout interval is long enough for your
application.

Properties

active_advanced_sequence

	
nidcpower.Session.active_advanced_sequence

	Specifies the advanced sequence to configure or generate.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Active Advanced Sequence

	C Attribute: NIDCPOWER_ATTR_ACTIVE_ADVANCED_SEQUENCE

active_advanced_sequence_step

	
nidcpower.Session.active_advanced_sequence_step

	Specifies the advanced sequence step to configure.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Active Advanced Sequence Step

	C Attribute: NIDCPOWER_ATTR_ACTIVE_ADVANCED_SEQUENCE_STEP

actual_power_allocation

	
nidcpower.Session.actual_power_allocation

	Returns the power, in watts, the device is sourcing on each active channel if the nidcpower.Session.power_allocation_mode property is set to AUTOMATIC or MANUAL.

Valid Values: [0, device per-channel maximum power]

Default Value: Refer to the Supported Properties by Device topic for the default value by device.

Note

This property is not supported by all devices. Refer to the Supported Properties by Device topic for information about supported devices.

This property returns -1 when the nidcpower.Session.power_allocation_mode property is set to DISABLED.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Actual Power Allocation

	C Attribute: NIDCPOWER_ATTR_ACTUAL_POWER_ALLOCATION

aperture_time

	
nidcpower.Session.aperture_time

	Specifies the measurement aperture time for the channel configuration. Aperture time is specified in the units set by the nidcpower.Session.aperture_time_units property.
for information about supported devices.
Refer to the Aperture Time topic in the NI DC Power Supplies and SMUs Help for more information about how to configure your measurements and for information about valid values.
Default Value: 0.01666666 seconds

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Aperture Time

	C Attribute: NIDCPOWER_ATTR_APERTURE_TIME

aperture_time_units

	
nidcpower.Session.aperture_time_units

	Specifies the units of the nidcpower.Session.aperture_time property for the channel configuration.
for information about supported devices.
Refer to the Aperture Time topic in the NI DC Power Supplies and SMUs Help for more information about how to configure your measurements and for information about valid values.
Default Value: SECONDS

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ApertureTimeUnits

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Aperture Time Units

	C Attribute: NIDCPOWER_ATTR_APERTURE_TIME_UNITS

auto_zero

	
nidcpower.Session.auto_zero

	Specifies the auto-zero method to use on the device.
Refer to the NI PXI-4132 Measurement Configuration and Timing and Auto Zero topics for more information about how to configure your measurements.
Default Value: The default value for the NI PXI-4132 is ON. The default value for all other devices is OFF, which is the only supported value for these devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.AutoZero

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Auto Zero

	C Attribute: NIDCPOWER_ATTR_AUTO_ZERO

auxiliary_power_source_available

	
nidcpower.Session.auxiliary_power_source_available

	Indicates whether an auxiliary power source is connected to the device.
A value of False may indicate that the auxiliary input fuse has blown. Refer to the Detecting Internal/Auxiliary Power topic in the NI DC Power Supplies and SMUs Help for more information about internal and auxiliary power.
power source to generate power. Use the nidcpower.Session.power_source_in_use property to retrieve this information.

Note

This property does not necessarily indicate if the device is using the auxiliary

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Advanced:Auxiliary Power Source Available

	C Attribute: NIDCPOWER_ATTR_AUXILIARY_POWER_SOURCE_AVAILABLE

channel_count

	
nidcpower.Session.channel_count

	Indicates the number of channels that NI-DCPower supports for the instrument that was chosen when the current session was opened. For channel-based properties, the IVI engine maintains a separate cache value for each channel.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Channel Count

	C Attribute: NIDCPOWER_ATTR_CHANNEL_COUNT

compliance_limit_symmetry

	
nidcpower.Session.compliance_limit_symmetry

	Specifies whether compliance limits for current generation and voltage
generation for the device are applied symmetrically about 0 V and 0 A or
asymmetrically with respect to 0 V and 0 A.
When set to Symmetric, voltage limits and current limits are set
using a single property with a positive value. The resulting range is
bounded by this positive value and its opposite.
When set to Asymmetric, you must separately set a limit high and a
limit low using distinct properties.
For asymmetric limits, the range bounded by the limit high and limit low
must include zero.
Default Value: Symmetric
Related Topics:
Compliance
Ranges
Changing
Ranges
Overranging

Note

Refer to Supported Properties by
Device for
information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ComplianceLimitSymmetry

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Compliance Limit Symmetry

	C Attribute: NIDCPOWER_ATTR_COMPLIANCE_LIMIT_SYMMETRY

current_compensation_frequency

	
nidcpower.Session.current_compensation_frequency

	The frequency at which a pole-zero pair is added to the system when the channel is in Constant Current mode.
for information about supported devices.
Default Value: Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Custom Transient Response:Current:Compensation Frequency

	C Attribute: NIDCPOWER_ATTR_CURRENT_COMPENSATION_FREQUENCY

current_gain_bandwidth

	
nidcpower.Session.current_gain_bandwidth

	The frequency at which the unloaded loop gain extrapolates to 0 dB in the absence of additional poles and zeroes. This property takes effect when the channel is in Constant Current mode.
for information about supported devices.
Default Value: Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Custom Transient Response:Current:Gain Bandwidth

	C Attribute: NIDCPOWER_ATTR_CURRENT_GAIN_BANDWIDTH

current_level

	
nidcpower.Session.current_level

	Specifies the current level, in amps, that the device attempts to generate on the specified channel(s).
This property is applicable only if the nidcpower.Session.output_function property is set to DC_CURRENT.
nidcpower.Session.output_enabled property for more information about enabling the output channel.
Valid Values: The valid values for this property are defined by the values to which the nidcpower.Session.current_level_range property is set.

Note

The channel must be enabled for the specified current level to take effect. Refer to the

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Current Level

	C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL

current_level_autorange

	
nidcpower.Session.current_level_autorange

	Specifies whether NI-DCPower automatically selects the current level range based on the desired current level for the specified channels.
If you set this property to ON, NI-DCPower ignores any changes you make to the nidcpower.Session.current_level_range property. If you change the nidcpower.Session.current_level_autorange property from ON to OFF, NI-DCPower retains the last value the nidcpower.Session.current_level_range property was set to (or the default value if the property was never set) and uses that value as the current level range.
Query the nidcpower.Session.current_level_range property by using the nidcpower.Session._get_attribute_vi_int32() method for information about which range NI-DCPower automatically selects.
The nidcpower.Session.current_level_autorange property is applicable only if the nidcpower.Session.output_function property is set to DC_CURRENT.
Default Value: OFF

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Current Level Autorange

	C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_AUTORANGE

current_level_range

	
nidcpower.Session.current_level_range

	Specifies the current level range, in amps, for the specified channel(s).
The range defines the valid value to which the current level can be set. Use the nidcpower.Session.current_level_autorange property to enable automatic selection of the current level range.
The nidcpower.Session.current_level_range property is applicable only if the nidcpower.Session.output_function property is set to DC_CURRENT.
nidcpower.Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs Help.

Note

The channel must be enabled for the specified current level range to take effect. Refer to the

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Current Level Range

	C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_RANGE

current_limit

	
nidcpower.Session.current_limit

	Specifies the current limit, in amps, that the output cannot exceed when generating the desired voltage level on the specified channel(s).
This property is applicable only if the nidcpower.Session.output_function property is set to DC_VOLTAGE and the nidcpower.Session.compliance_limit_symmetry property is set to SYMMETRIC.
nidcpower.Session.output_enabled property for more information about enabling the output channel.
Valid Values: The valid values for this property are defined by the values to which nidcpower.Session.current_limit_range property is set.

Note

The channel must be enabled for the specified current limit to take effect. Refer to the

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Current Limit

	C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT

current_limit_autorange

	
nidcpower.Session.current_limit_autorange

	Specifies whether NI-DCPower automatically selects the current limit range based on the desired current limit for the specified channel(s).
If you set this property to ON, NI-DCPower ignores any changes you make to the nidcpower.Session.current_limit_range property. If you change this property from ON to OFF, NI-DCPower retains the last value the nidcpower.Session.current_limit_range property was set to (or the default value if the property was never set) and uses that value as the current limit range.
Query the nidcpower.Session.current_limit_range property by using the nidcpower.Session._get_attribute_vi_int32() method for information about which range NI-DCPower automatically selects.
The nidcpower.Session.current_limit_autorange property is applicable only if the nidcpower.Session.output_function property is set to DC_VOLTAGE.
Default Value: OFF

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Current Limit Autorange

	C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_AUTORANGE

current_limit_behavior

	
nidcpower.Session.current_limit_behavior

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_BEHAVIOR

current_limit_high

	
nidcpower.Session.current_limit_high

	Specifies the maximum current, in amps, that the output can produce when
generating the desired voltage on the specified channel(s).
This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:`nidcpower.Session.ComplianceLimitSymmetry.html>`__ property is set to
Asymmetric and the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to DC
Voltage.
You must also specify a Current Limit
Low <p:py:meth:`nidcpower.Session.CurrentLimitLow.html>`__ to complete the asymmetric
range.
Valid Values: [1% of Current Limit
Range <p:py:meth:`nidcpower.Session.CurrentLimitRange.html>`__, Current Limit
Range <p:py:meth:`nidcpower.Session.CurrentLimitRange.html>`__]
The range bounded by the limit high and limit low must include zero.
Default Value: Refer to Supported Properties by
Device for
the default value by device.
Related Topics:
Ranges
Changing
Ranges
Overranging

Note

The limit may be extended beyond the selected limit range if the
Overranging Enabled <p:py:meth:`nidcpower.Session.OverrangingEnabled.html>`__ property is
set to TRUE.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Current Limit High

	C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_HIGH

current_limit_low

	
nidcpower.Session.current_limit_low

	Specifies the minimum current, in amps, that the output can produce when
generating the desired voltage on the specified channel(s).
This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:`nidcpower.Session.ComplianceLimitSymmetry.html>`__ property is set to
Asymmetric and the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to DC
Voltage.
You must also specify a Current Limit
High <p:py:meth:`nidcpower.Session.CurrentLimitHigh.html>`__ to complete the asymmetric
range.
Valid Values: [-Current Limit
Range <p:py:meth:`nidcpower.Session.CurrentLimitRange.html>`__, -1% of Current Limit
Range <p:py:meth:`nidcpower.Session.CurrentLimitRange.html>`__]
The range bounded by the limit high and limit low must include zero.
Default Value: Refer to Supported Properties by
Device for
the default value by device.
Related Topics:
Ranges
Changing
Ranges
Overranging

Note

The limit may be extended beyond the selected limit range if the
Overranging Enabled <p:py:meth:`nidcpower.Session.OverrangingEnabled.html>`__ property is
set to TRUE.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Current Limit Low

	C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_LOW

current_limit_range

	
nidcpower.Session.current_limit_range

	Specifies the current limit range, in amps, for the specified channel(s).
The range defines the valid value to which the current limit can be set. Use the nidcpower.Session.current_limit_autorange property to enable automatic selection of the current limit range.
The nidcpower.Session.current_limit_range property is applicable only if the nidcpower.Session.output_function property is set to DC_VOLTAGE.
nidcpower.Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs Help.

Note

The channel must be enabled for the specified current limit to take effect. Refer to the

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Current Limit Range

	C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_RANGE

current_pole_zero_ratio

	
nidcpower.Session.current_pole_zero_ratio

	The ratio of the pole frequency to the zero frequency when the channel is in Constant Current mode.
for information about supported devices.
Default Value: Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Custom Transient Response:Current:Pole-Zero Ratio

	C Attribute: NIDCPOWER_ATTR_CURRENT_POLE_ZERO_RATIO

dc_noise_rejection

	
nidcpower.Session.dc_noise_rejection

	Determines the relative weighting of samples in a measurement. Refer to the NI PXIe-4140/4141 DC Noise Rejection, NI PXIe-4142/4143 DC Noise Rejection, or NI PXIe-4144/4145 DC Noise Rejection topic in the NI DC Power Supplies and SMUs Help for more information about noise rejection.
for information about supported devices.
Default Value: NORMAL

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.DCNoiseRejection

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:DC Noise Rejection

	C Attribute: NIDCPOWER_ATTR_DC_NOISE_REJECTION

digital_edge_measure_trigger_input_terminal

	
nidcpower.Session.digital_edge_measure_trigger_input_terminal

	Specifies the input terminal for the Measure trigger. This property is used only when the nidcpower.Session.measure_trigger_type property is set to DIGITAL_EDGE.
for this property.
You can specify any valid input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer under the Device Routes tab.
Input terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Measure Trigger:Digital Edge:Input Terminal

	C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_MEASURE_TRIGGER_INPUT_TERMINAL

digital_edge_pulse_trigger_input_terminal

	
nidcpower.Session.digital_edge_pulse_trigger_input_terminal

	Specifies the input terminal for the Pulse trigger. This property is used only when the nidcpower.Session.pulse_trigger_type property is set to digital edge.
You can specify any valid input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer under the Device Routes tab.
Input terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Pulse Trigger:Digital Edge:Input Terminal

	C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_PULSE_TRIGGER_INPUT_TERMINAL

digital_edge_sequence_advance_trigger_input_terminal

	
nidcpower.Session.digital_edge_sequence_advance_trigger_input_terminal

	Specifies the input terminal for the Sequence Advance trigger. Use this property only when the nidcpower.Session.sequence_advance_trigger_type property is set to DIGITAL_EDGE.
the NI DC Power Supplies and SMUs Help for information about supported devices.
You can specify any valid input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer under the Device Routes tab.
Input terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic in

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Sequence Advance Trigger:Digital Edge:Input Terminal

	C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SEQUENCE_ADVANCE_TRIGGER_INPUT_TERMINAL

digital_edge_source_trigger_input_terminal

	
nidcpower.Session.digital_edge_source_trigger_input_terminal

	Specifies the input terminal for the Source trigger. Use this property only when the nidcpower.Session.source_trigger_type property is set to DIGITAL_EDGE.
for information about supported devices.
You can specify any valid input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer under the Device Routes tab.
Input terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Source Trigger:Digital Edge:Input Terminal

	C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SOURCE_TRIGGER_INPUT_TERMINAL

digital_edge_start_trigger_input_terminal

	
nidcpower.Session.digital_edge_start_trigger_input_terminal

	Specifies the input terminal for the Start trigger. Use this property only when the nidcpower.Session.start_trigger_type property is set to DIGITAL_EDGE.
for information about supported devices.
You can specify any valid input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer under the Device Routes tab.
Input terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Start Trigger:Digital Edge:Input Terminal

	C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_START_TRIGGER_INPUT_TERMINAL

driver_setup

	
nidcpower.Session.driver_setup

	Indicates the Driver Setup string that you specified when initializing the driver.
Some cases exist where you must specify the instrument driver options at initialization time. An example of this case is specifying a particular device model from among a family of devices that the driver supports. This property is useful when simulating a device. You can specify the driver-specific options through the DriverSetup keyword in the optionsString parameter in the nidcpower.Session.__init__() method or through the IVI Configuration Utility.
You can specify driver-specific options through the DriverSetup keyword in the optionsString parameter in the nidcpower.Session.__init__() method. If you do not specify a Driver Setup string, this property returns an empty string.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Driver Setup

	C Attribute: NIDCPOWER_ATTR_DRIVER_SETUP

exported_measure_trigger_output_terminal

	
nidcpower.Session.exported_measure_trigger_output_terminal

	Specifies the output terminal for exporting the Measure trigger.
Refer to the Device Routes tab in Measurement & Automation Explorer for a list of the terminals available on your device.
for information about supported devices.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Measure Trigger:Export Output Terminal

	C Attribute: NIDCPOWER_ATTR_EXPORTED_MEASURE_TRIGGER_OUTPUT_TERMINAL

exported_pulse_trigger_output_terminal

	
nidcpower.Session.exported_pulse_trigger_output_terminal

	Specifies the output terminal for exporting the Pulse trigger.
Refer to the Device Routes tab in Measurement & Automation Explorer for a list of the terminals available on your device.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Pulse Trigger:Export Output Terminal

	C Attribute: NIDCPOWER_ATTR_EXPORTED_PULSE_TRIGGER_OUTPUT_TERMINAL

exported_sequence_advance_trigger_output_terminal

	
nidcpower.Session.exported_sequence_advance_trigger_output_terminal

	Specifies the output terminal for exporting the Sequence Advance trigger.
Refer to the Device Routes tab in Measurement & Automation Explorer for a list of the terminals available on your device.
for information about supported devices.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Sequence Advance Trigger:Export Output Terminal

	C Attribute: NIDCPOWER_ATTR_EXPORTED_SEQUENCE_ADVANCE_TRIGGER_OUTPUT_TERMINAL

exported_source_trigger_output_terminal

	
nidcpower.Session.exported_source_trigger_output_terminal

	Specifies the output terminal for exporting the Source trigger.
Refer to the Device Routes tab in MAX for a list of the terminals available on your device.
for information about supported devices.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Source Trigger:Export Output Terminal

	C Attribute: NIDCPOWER_ATTR_EXPORTED_SOURCE_TRIGGER_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

	
nidcpower.Session.exported_start_trigger_output_terminal

	Specifies the output terminal for exporting the Start trigger.
Refer to the Device Routes tab in Measurement & Automation Explorer (MAX) for a list of the terminals available on your device.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.
for information about supported devices.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Start Trigger:Export Output Terminal

	C Attribute: NIDCPOWER_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

fetch_backlog

	
nidcpower.Session.fetch_backlog

	Returns the number of measurements acquired that have not been fetched yet.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Fetch Backlog

	C Attribute: NIDCPOWER_ATTR_FETCH_BACKLOG

instrument_firmware_revision

	
nidcpower.Session.instrument_firmware_revision

	Contains the firmware revision information for the device you are currently using.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Firmware Revision

	C Attribute: NIDCPOWER_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

	
nidcpower.Session.instrument_manufacturer

	Contains the name of the manufacturer for the device you are currently using.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Manufacturer

	C Attribute: NIDCPOWER_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

	
nidcpower.Session.instrument_model

	Contains the model number or name of the device that you are currently using.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Model

	C Attribute: NIDCPOWER_ATTR_INSTRUMENT_MODEL

interlock_input_open

	
nidcpower.Session.interlock_input_open

	Indicates whether the safety interlock circuit is open.
Refer to the Safety Interlock topic in the NI DC Power Supplies and SMUs Help for more information about the safety interlock circuit.
about supported devices.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Advanced:Interlock Input Open

	C Attribute: NIDCPOWER_ATTR_INTERLOCK_INPUT_OPEN

io_resource_descriptor

	
nidcpower.Session.io_resource_descriptor

	Indicates the resource descriptor NI-DCPower uses to identify the physical device.
If you initialize NI-DCPower with a logical name, this property contains the resource descriptor that corresponds to the entry in the IVI Configuration utility.
If you initialize NI-DCPower with the resource descriptor, this property contains that value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Resource Descriptor

	C Attribute: NIDCPOWER_ATTR_IO_RESOURCE_DESCRIPTOR

logical_name

	
nidcpower.Session.logical_name

	Contains the logical name you specified when opening the current IVI session.
You can pass a logical name to the nidcpower.Session.__init__() method. The IVI Configuration utility must contain an entry for the logical name. The logical name entry refers to a method section in the IVI Configuration file. The method section specifies a physical device and initial user options.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name

	C Attribute: NIDCPOWER_ATTR_LOGICAL_NAME

measure_buffer_size

	
nidcpower.Session.measure_buffer_size

	Specifies the number of samples that the active channel measurement buffer can hold.
The default value is the maximum number of samples that a device is capable of recording in one second.
for information about supported devices.
Valid Values: 1000 to 2147483647
Default Value: Varies by device. Refer to Supported Properties by Device topic in the NI DC Power Supplies and SMUs Help for more information about default values.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Measure Buffer Size

	C Attribute: NIDCPOWER_ATTR_MEASURE_BUFFER_SIZE

measure_complete_event_delay

	
nidcpower.Session.measure_complete_event_delay

	Specifies the amount of time to delay the generation of the Measure Complete event, in seconds.
for information about supported devices.
Valid Values: 0 to 167 seconds
Default Value: The NI PXI-4132 and NI PXIe-4140/4141/4142/4143/4144/4145/4154 supports values from 0 seconds to 167 seconds.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Measure Complete Event:Event Delay

	C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_DELAY

measure_complete_event_output_terminal

	
nidcpower.Session.measure_complete_event_output_terminal

	Specifies the output terminal for exporting the Measure Complete event.
for information about supported devices.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Measure Complete Event:Output Terminal

	C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_OUTPUT_TERMINAL

measure_complete_event_pulse_polarity

	
nidcpower.Session.measure_complete_event_pulse_polarity

	Specifies the behavior of the Measure Complete event.
for information about supported devices.
Default Value: HIGH

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Polarity

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Measure Complete Event:Pulse:Polarity

	C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_PULSE_POLARITY

measure_complete_event_pulse_width

	
nidcpower.Session.measure_complete_event_pulse_width

	Specifies the width of the Measure Complete event, in seconds.
The minimum event pulse width value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is 250 ns.
The maximum event pulse width value for all devices is 1.6 microseconds.
for information about supported devices.
Valid Values: 1.5e-7 to 1.6e-6
Default Value: The default value for PXI devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Measure Complete Event:Pulse:Width

	C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_PULSE_WIDTH

measure_record_delta_time

	
nidcpower.Session.measure_record_delta_time

	Queries the amount of time, in seconds, between between the start of two consecutive measurements in a measure record. Only query this property after the desired measurement settings are committed.
for information about supported devices.
two measurements and the rest would differ.

Note

This property is not available when Auto Zero is configured to Once because the amount of time between the first

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Measure Record Delta Time

	C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_DELTA_TIME

measure_record_length

	
nidcpower.Session.measure_record_length

	Specifies how many measurements compose a measure record. When this property is set to a value greater than 1, the nidcpower.Session.measure_when property must be set to AUTOMATICALLY_AFTER_SOURCE_COMPLETE or ON_MEASURE_TRIGGER.
for information about supported devices.
Valid Values: 1 to 16,777,216
Default Value: 1

Note

This property is not available in a session involving multiple channels.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Measure Record Length

	C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH

measure_record_length_is_finite

	
nidcpower.Session.measure_record_length_is_finite

	Specifies whether to take continuous measurements. Call the nidcpower.Session.abort() method to stop continuous measurements. When this property is set to False and the nidcpower.Session.source_mode property is set to SINGLE_POINT, the nidcpower.Session.measure_when property must be set to AUTOMATICALLY_AFTER_SOURCE_COMPLETE or ON_MEASURE_TRIGGER. When this property is set to False and the nidcpower.Session.source_mode property is set to SEQUENCE, the nidcpower.Session.measure_when property must be set to ON_MEASURE_TRIGGER.
for information about supported devices.
Default Value: True

Note

This property is not available in a session involving multiple channels.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Measure Record Length Is Finite

	C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH_IS_FINITE

measure_trigger_type

	
nidcpower.Session.measure_trigger_type

	Specifies the behavior of the Measure trigger.
for information about supported devices.
Default Value: DIGITAL_EDGE

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Measure Trigger:Trigger Type

	C Attribute: NIDCPOWER_ATTR_MEASURE_TRIGGER_TYPE

measure_when

	
nidcpower.Session.measure_when

	Specifies when the measure unit should acquire measurements. Unless this property is configured to ON_MEASURE_TRIGGER, the nidcpower.Session.measure_trigger_type property is ignored.
Refer to the Acquiring Measurements topic in the NI DC Power Supplies and SMUs Help for more information about how to configure your measurements.
Default Value: If the nidcpower.Session.source_mode property is set to SINGLE_POINT, the default value is ON_DEMAND. This value supports only the nidcpower.Session.measure() method and nidcpower.Session.measure_multiple() method. If the nidcpower.Session.source_mode property is set to SEQUENCE, the default value is AUTOMATICALLY_AFTER_SOURCE_COMPLETE. This value supports only the nidcpower.Session.fetch_multiple() method.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.MeasureWhen

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Measure When

	C Attribute: NIDCPOWER_ATTR_MEASURE_WHEN

output_capacitance

	
nidcpower.Session.output_capacitance

	Specifies whether to use a low or high capacitance on the output for the specified channel(s).
for information about supported devices.
Refer to the NI PXI-4130 Output Capacitance Selection topic in the NI DC Power Supplies and SMUs Help for more information about capacitance.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.OutputCapacitance

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Output Capacitance

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CAPACITANCE

output_connected

	
nidcpower.Session.output_connected

	Specifies whether the output relay is connected (closed) or disconnected (open). The nidcpower.Session.output_enabled property does not change based on this property; they are independent of each other.
about supported devices.
Set this property to False to disconnect the output terminal from the output.
to the output terminal might discharge unless the relay is disconnected. Excessive connecting and disconnecting of the output can cause premature wear on the relay.
Default Value: True

Note

Only disconnect the output when disconnecting is necessary for your application. For example, a battery connected

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Connected

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CONNECTED

output_enabled

	
nidcpower.Session.output_enabled

	Specifies whether the output is enabled (True) or disabled (False).
Depending on the value you specify for the nidcpower.Session.output_function property, you also must set the voltage level or current level in addition to enabling the output
the nidcpower.Session.initiate() method. Refer to the Programming States topic in the NI DC Power Supplies and SMUs Help for more information about NI-DCPower programming states.
Default Value: The default value is True if you use the nidcpower.Session.__init__() method to open the session. Otherwise the default value is False, including when you use a calibration session or the deprecated programming model.

Note

If the session is in the Committed or Uncommitted states, enabling the output does not take effect until you call

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Enabled

	C Attribute: NIDCPOWER_ATTR_OUTPUT_ENABLED

output_function

	
nidcpower.Session.output_function

	Configures the method to generate on the specified channel(s).
When DC_VOLTAGE is selected, the device generates the desired voltage level on the output as long as the output current is below the current limit. You can use the following properties to configure the channel when DC_VOLTAGE is selected:
nidcpower.Session.voltage_level
nidcpower.Session.current_limit
nidcpower.Session.current_limit_high
nidcpower.Session.current_limit_low
nidcpower.Session.voltage_level_range
nidcpower.Session.current_limit_range
nidcpower.Session.compliance_limit_symmetry
When DC_CURRENT is selected, the device generates the desired current level on the output as long as the output voltage is below the voltage limit. You can use the following properties to configure the channel when DC_CURRENT is selected:
nidcpower.Session.current_level
nidcpower.Session.voltage_limit
nidcpower.Session.voltage_limit_high
nidcpower.Session.voltage_limit_low
nidcpower.Session.current_level_range
nidcpower.Session.voltage_limit_range
nidcpower.Session.compliance_limit_symmetry

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.OutputFunction

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Function

	C Attribute: NIDCPOWER_ATTR_OUTPUT_FUNCTION

output_resistance

	
nidcpower.Session.output_resistance

	Specifies the output resistance that the device attempts to generate for the specified channel(s). This property is available only when you set the nidcpower.Session.output_function property on a support device. Refer to a supported device’s topic about output resistance for more information about selecting an output resistance.
about supported devices.
Default Value: 0.0

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic for information

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Resistance

	C Attribute: NIDCPOWER_ATTR_OUTPUT_RESISTANCE

overranging_enabled

	
nidcpower.Session.overranging_enabled

	Specifies whether NI-DCPower allows setting the voltage level, current level, voltage limit and current limit outside the device specification limits. True means that overranging is enabled.
Refer to the Ranges topic in the NI DC Power Supplies and SMUs Help for more information about overranging.
Default Value: False

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Overranging Enabled

	C Attribute: NIDCPOWER_ATTR_OVERRANGING_ENABLED

ovp_enabled

	
nidcpower.Session.ovp_enabled

	Enables (True) or disables (False) overvoltage protection (OVP).
Refer to the Output Overvoltage Protection topic in the NI DC Power Supplies and SMUs Help for more information about overvoltage protection.
for information about supported devices.
Default Value: False

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:OVP Enabled

	C Attribute: NIDCPOWER_ATTR_OVP_ENABLED

ovp_limit

	
nidcpower.Session.ovp_limit

	Determines the voltage limit, in volts, beyond which overvoltage protection (OVP) engages.
for information about supported devices.
Valid Values: 2 V to 210 V
Default Value: 210 V

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:OVP Limit

	C Attribute: NIDCPOWER_ATTR_OVP_LIMIT

power_allocation_mode

	
nidcpower.Session.power_allocation_mode

	Determines whether the device sources the power its source configuration requires or a specific wattage you request; determines whether NI-DCPower proactively checks that this sourcing power is within the maximum per-channel and overall sourcing power of the device.

When this property configures NI-DCPower to perform a sourcing power check, a device is not permitted to source power in excess of its maximum per-channel or overall sourcing power. If the check determines a source configuration or power request would require the device to do so, NI-DCPower returns an error.

When this property does not configure NI-DCPower to perform a sourcing power check, a device can attempt to fulfill source configurations that would require it to source power in excess of its maximum per-channel or overall sourcing power and may shut down to prevent damage.

Default Value: Refer to the Supported Properties by Device topic for the default value by device.

Note

This property is not supported by all devices. Refer to the Supported Properties by Device topic for information about supported devices. Devices that do not support this property behave as if this property were set to DISABLED.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.PowerAllocationMode

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Power Allocation Mode

	C Attribute: NIDCPOWER_ATTR_POWER_ALLOCATION_MODE

power_line_frequency

	
nidcpower.Session.power_line_frequency

	Specifies the power line frequency for specified channel(s). NI-DCPower uses this value to select a timebase for setting the nidcpower.Session.aperture_time property in power line cycles (PLCs).
in the NI DC Power Supplies and SMUs Help for information about supported devices.
Default Value: NIDCPOWER_VAL_60_HERTZ

Note

This property is not supported by all devices. Refer to the Supported Properties by Device topic

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Power Line Frequency

	C Attribute: NIDCPOWER_ATTR_POWER_LINE_FREQUENCY

power_source

	
nidcpower.Session.power_source

	Specifies the power source to use. NI-DCPower switches the power source used by the device to the specified value.
Default Value: AUTOMATIC
is set to AUTOMATIC. However, if the session is in the Committed or Uncommitted state when you set this property, the power source selection only occurs after you call the nidcpower.Session.initiate() method.

Note

Automatic selection is not persistent and occurs only at the time this property

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.PowerSource

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Advanced:Power Source

	C Attribute: NIDCPOWER_ATTR_POWER_SOURCE

power_source_in_use

	
nidcpower.Session.power_source_in_use

	Indicates whether the device is using the internal or auxiliary power source to generate power.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.PowerSourceInUse

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Advanced:Power Source In Use

	C Attribute: NIDCPOWER_ATTR_POWER_SOURCE_IN_USE

pulse_bias_current_level

	
nidcpower.Session.pulse_bias_current_level

	Specifies the pulse bias current level, in amps, that the device attempts to generate on the specified channel(s) during the off phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_current_level_range property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Bias Current Level

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LEVEL

pulse_bias_current_limit

	
nidcpower.Session.pulse_bias_current_limit

	Specifies the pulse bias current limit, in amps, that the output cannot exceed when generating the desired pulse bias voltage on the specified channel(s) during the off phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_current_limit_range property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT

pulse_bias_current_limit_high

	
nidcpower.Session.pulse_bias_current_limit_high

	Specifies the maximum current, in amps, that the output can produce when
generating the desired pulse voltage on the specified channel(s) during
the off phase of a pulse.
This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:`nidcpower.Session.ComplianceLimitSymmetry.html>`__ property is set to
Asymmetric and the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to Pulse
Voltage.
You must also specify a Pulse Bias Current Limit
Low <p:py:meth:`nidcpower.Session.PulseBiasCurrentLimitLow.html>`__ to complete the
asymmetric range.
Valid Values: [1% of Pulse Current Limit
Range <p:py:meth:`nidcpower.Session.PulseCurrentLimitRange.html>`__, Pulse Current Limit
Range <p:py:meth:`nidcpower.Session.PulseCurrentLimitRange.html>`__]
The range bounded by the limit high and limit low must include zero.
Default Value: Refer to Supported Properties by
Device for
the default value by device.
Related Topics:
Ranges
Changing
Ranges
Overranging

Note

The limit may be extended beyond the selected limit range if the
Overranging Enabled <p:py:meth:`nidcpower.Session.OverrangingEnabled.html>`__ property is
set to TRUE or if the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to a
pulsing method.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit High

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT_HIGH

pulse_bias_current_limit_low

	
nidcpower.Session.pulse_bias_current_limit_low

	Specifies the minimum current, in amps, that the output can produce when
generating the desired pulse voltage on the specified channel(s) during
the off phase of a pulse.
This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:`nidcpower.Session.ComplianceLimitSymmetry.html>`__ property is set to
Asymmetric and the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to Pulse
Voltage.
You must also specify a Pulse Bias Current Limit
High <p:py:meth:`nidcpower.Session.PulseBiasCurrentLimitHigh.html>`__ to complete the
asymmetric range.
Valid Values: [-Pulse Current Limit
Range <p:py:meth:`nidcpower.Session.PulseCurrentLimitRange.html>`__, -1% of Pulse Current
Limit Range <p:py:meth:`nidcpower.Session.PulseCurrentLimitRange.html>`__]
The range bounded by the limit high and limit low must include zero.
Default Value: Refer to Supported Properties by
Device for
the default value by device.
Related Topics:
Ranges
Changing
Ranges
Overranging

Note

The limit may be extended beyond the selected limit range if the
Overranging Enabled <p:py:meth:`nidcpower.Session.OverrangingEnabled.html>`__ property is
set to TRUE or if the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to a
pulsing method.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit Low

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT_LOW

pulse_bias_delay

	
nidcpower.Session.pulse_bias_delay

	Determines when, in seconds, the device generates the Pulse Complete event after generating the off level of a pulse.
Valid Values: 0 to 167 seconds
Default Value: 16.67 milliseconds

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Pulse Bias Delay

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_DELAY

pulse_bias_voltage_level

	
nidcpower.Session.pulse_bias_voltage_level

	Specifies the pulse bias voltage level, in volts, that the device attempts to generate on the specified channel(s) during the off phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_voltage_level_range property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Bias Voltage Level

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LEVEL

pulse_bias_voltage_limit

	
nidcpower.Session.pulse_bias_voltage_limit

	Specifies the pulse voltage limit, in volts, that the output cannot exceed when generating the desired current on the specified channel(s) during the off phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_voltage_limit_range property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT

pulse_bias_voltage_limit_high

	
nidcpower.Session.pulse_bias_voltage_limit_high

	Specifies the maximum voltage, in volts, that the output can produce
when generating the desired pulse current on the specified channel(s)
during the off phase of a pulse.
This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:`nidcpower.Session.ComplianceLimitSymmetry.html>`__ property is set to
Asymmetric and the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to Pulse
Current.
You must also specify a Pulse Bias Voltage Limit
Low <p:py:meth:`nidcpower.Session.PulseBiasVoltageLimitLow.html>`__ to complete the
asymmetric range.
Valid Values: [1% of Pulse Voltage Limit
Range <p:py:meth:`nidcpower.Session.PulseVoltageLimitRange.html>`__, Pulse Voltage Limit
Range <p:py:meth:`nidcpower.Session.PulseVoltageLimitRange.html>`__]
The range bounded by the limit high and limit low must include zero.
Default Value: Refer to Supported Properties by
Device for
the default value by device.
Related Topics:
Ranges
Changing
Ranges
Overranging

Note

The limit may be extended beyond the selected limit range if the
Overranging Enabled <p:py:meth:`nidcpower.Session.OverrangingEnabled.html>`__ property is
set to TRUE or if the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to a
pulsing method.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit High

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT_HIGH

pulse_bias_voltage_limit_low

	
nidcpower.Session.pulse_bias_voltage_limit_low

	Specifies the minimum voltage, in volts, that the output can produce
when generating the desired pulse current on the specified channel(s)
during the off phase of a pulse.
This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:`nidcpower.Session.ComplianceLimitSymmetry.html>`__ property is set to
Asymmetric and the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to Pulse
Current.
You must also specify a Pulse Bias Voltage Limit
High <p:py:meth:`nidcpower.Session.PulseBiasVoltageLimitHigh.html>`__ to complete the
asymmetric range.
Valid Values: [-Pulse Voltage Limit
Range <p:py:meth:`nidcpower.Session.PulseVoltageLimitRange.html>`__, -1% of Pulse Voltage
Limit Range <p:py:meth:`nidcpower.Session.PulseVoltageLimitRange.html>`__]
The range bounded by the limit high and limit low must include zero.
Default Value: Refer to Supported Properties by
Device for
the default value by device.
Related Topics:
Ranges
Changing
Ranges
Overranging

Note

The limit may be extended beyond the selected limit range if the
Overranging Enabled <p:py:meth:`nidcpower.Session.OverrangingEnabled.html>`__ property is
set to TRUE or if the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to a
pulsing method.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit Low

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT_LOW

pulse_complete_event_output_terminal

	
nidcpower.Session.pulse_complete_event_output_terminal

	Specifies the output terminal for exporting the Pulse Complete event.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.
Default Value:The default value for PXI Express devices is 250 ns.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Pulse Complete Event:Output Terminal

	C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_OUTPUT_TERMINAL

pulse_complete_event_pulse_polarity

	
nidcpower.Session.pulse_complete_event_pulse_polarity

	Specifies the behavior of the Pulse Complete event.
Default Value: HIGH

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Polarity

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Pulse Complete Event:Pulse:Polarity

	C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_PULSE_POLARITY

pulse_complete_event_pulse_width

	
nidcpower.Session.pulse_complete_event_pulse_width

	Specifies the width of the Pulse Complete event, in seconds.
The minimum event pulse width value for PXI Express devices is 250 ns.
The maximum event pulse width value for PXI Express devices is 1.6 microseconds.
Default Value: The default value for PXI Express devices is 250 ns.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Pulse Complete Event:Pulse:Width

	C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_PULSE_WIDTH

pulse_current_level

	
nidcpower.Session.pulse_current_level

	Specifies the pulse current level, in amps, that the device attempts to generate on the specified channel(s) during the on phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_current_level_range property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Current Level

	C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LEVEL

pulse_current_level_range

	
nidcpower.Session.pulse_current_level_range

	Specifies the pulse current level range, in amps, for the specified channel(s).
The range defines the valid values to which you can set the pulse current level and pulse bias current level.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT.
For valid ranges, refer to the ranges topic for your device in the NI DC Power Supplies and SMUs Help.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Current Level Range

	C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LEVEL_RANGE

pulse_current_limit

	
nidcpower.Session.pulse_current_limit

	Specifies the pulse current limit, in amps, that the output cannot exceed when generating the desired pulse voltage on the specified channel(s) during the on phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE and the nidcpower.Session.compliance_limit_symmetry property is set to SYMMETRIC.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_current_limit_range property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit

	C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT

pulse_current_limit_high

	
nidcpower.Session.pulse_current_limit_high

	Specifies the maximum current, in amps, that the output can produce when
generating the desired pulse voltage on the specified channel(s) during
the on phase of a pulse.
This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:`nidcpower.Session.ComplianceLimitSymmetry.html>`__ property is set to
Asymmetric and the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to Pulse
Voltage.
You must also specify a Pulse Current Limit
Low <p:py:meth:`nidcpower.Session.PulseCurrentLimitLow.html>`__ to complete the asymmetric
range.
Valid Values: [1% of Pulse Current Limit
Range <p:py:meth:`nidcpower.Session.PulseCurrentLimitRange.html>`__, Pulse Current Limit
Range <p:py:meth:`nidcpower.Session.PulseCurrentLimitRange.html>`__]
The range bounded by the limit high and limit low must include zero.
Default Value: Refer to Supported Properties by
Device for
the default value by device.
Related Topics:
Ranges
Changing
Ranges
Overranging

Note

The limit may be extended beyond the selected limit range if the
Overranging Enabled <p:py:meth:`nidcpower.Session.OverrangingEnabled.html>`__ property is
set to TRUE or if the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to a
pulsing method.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit High

	C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_HIGH

pulse_current_limit_low

	
nidcpower.Session.pulse_current_limit_low

	Specifies the minimum current, in amps, that the output can produce when
generating the desired pulse voltage on the specified channel(s) during
the on phase of a pulse.
This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:`nidcpower.Session.ComplianceLimitSymmetry.html>`__ property is set to
Asymmetric and the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to Pulse
Voltage.
You must also specify a Pulse Current Limit
High <p:py:meth:`nidcpower.Session.PulseCurrentLimitHigh.html>`__ to complete the
asymmetric range.
Valid Values: [-Pulse Current Limit
Range <p:py:meth:`nidcpower.Session.PulseCurrentLimitRange.html>`__, -1% of Pulse Current
Limit Range <p:py:meth:`nidcpower.Session.PulseCurrentLimitRange.html>`__]
The range bounded by the limit high and limit low must include zero.
Default Value: Refer to Supported Properties by
Device for
the default value by device.
Related Topics:
Ranges
Changing
Ranges
Overranging

Note

The limit may be extended beyond the selected limit range if the
Overranging Enabled <p:py:meth:`nidcpower.Session.OverrangingEnabled.html>`__ property is
set to TRUE or if the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to a
pulsing method.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit Low

	C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_LOW

pulse_current_limit_range

	
nidcpower.Session.pulse_current_limit_range

	Specifies the pulse current limit range, in amps, for the specified channel(s).
The range defines the valid values to which you can set the pulse current limit and pulse bias current limit.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
For valid ranges, refer to the ranges topic for your device in the NI DC Power Supplies and SMUs Help.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit Range

	C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_RANGE

pulse_off_time

	
nidcpower.Session.pulse_off_time

	Determines the length, in seconds, of the off phase of a pulse.
Valid Values: 10 microseconds to 167 seconds
Default Value: 34 milliseconds

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Pulse Off Time

	C Attribute: NIDCPOWER_ATTR_PULSE_OFF_TIME

pulse_on_time

	
nidcpower.Session.pulse_on_time

	Determines the length, in seconds, of the on phase of a pulse.
Valid Values: 10 microseconds to 167 seconds
Default Value: 34 milliseconds

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Pulse On Time

	C Attribute: NIDCPOWER_ATTR_PULSE_ON_TIME

pulse_trigger_type

	
nidcpower.Session.pulse_trigger_type

	Specifies the behavior of the Pulse trigger.
Default Value: NONE

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Pulse Trigger:Trigger Type

	C Attribute: NIDCPOWER_ATTR_PULSE_TRIGGER_TYPE

pulse_voltage_level

	
nidcpower.Session.pulse_voltage_level

	Specifies the pulse current limit, in amps, that the output cannot exceed when generating the desired pulse voltage on the specified channel(s) during the on phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_current_limit_range property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Voltage Level

	C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LEVEL

pulse_voltage_level_range

	
nidcpower.Session.pulse_voltage_level_range

	Specifies the pulse voltage level range, in volts, for the specified channel(s).
The range defines the valid values at which you can set the pulse voltage level and pulse bias voltage level.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
For valid ranges, refer to the ranges topic for your device in the NI DC Power Supplies and SMUs Help.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Voltage Level Range

	C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LEVEL_RANGE

pulse_voltage_limit

	
nidcpower.Session.pulse_voltage_limit

	Specifies the pulse voltage limit, in volts, that the output cannot exceed when generating the desired pulse current on the specified channel(s) during the on phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT and the nidcpower.Session.compliance_limit_symmetry property is set to SYMMETRIC.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_voltage_limit_range property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit

	C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT

pulse_voltage_limit_high

	
nidcpower.Session.pulse_voltage_limit_high

	Specifies the maximum voltage, in volts, that the output can produce
when generating the desired pulse current on the specified channel(s)
during the on phase of a pulse.
This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:`nidcpower.Session.ComplianceLimitSymmetry.html>`__ property is set to
Asymmetric and the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to Pulse
Current.
You must also specify a Pulse Voltage Limit
Low <p:py:meth:`nidcpower.Session.PulseVoltageLimitLow.html>`__ to complete the asymmetric
range.
Valid Values: [1% of Pulse Voltage Limit
Range <p:py:meth:`nidcpower.Session.PulseVoltageLimitRange.html>`__, Pulse Voltage Limit
Range <p:py:meth:`nidcpower.Session.PulseVoltageLimitRange.html>`__]
The range bounded by the limit high and limit low must include zero.
Default Value: Refer to Supported Properties by
Device for
the default value by device.
Related Topics:
Ranges
Changing
Ranges
Overranging

Note

The limit may be extended beyond the selected limit range if the
Overranging Enabled <p:py:meth:`nidcpower.Session.OverrangingEnabled.html>`__ property is
set to TRUE or if the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to a
pulsing method.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit High

	C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_HIGH

pulse_voltage_limit_low

	
nidcpower.Session.pulse_voltage_limit_low

	Specifies the minimum voltage, in volts, that the output can produce
when generating the desired pulse current on the specified channel(s)
during the on phase of a pulse.
This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:`nidcpower.Session.ComplianceLimitSymmetry.html>`__ property is set to
Asymmetric and the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to Pulse
Current.
You must also specify a Pulse Voltage Limit
High <p:py:meth:`nidcpower.Session.PulseVoltageLimitHigh.html>`__ to complete the
asymmetric range.
Valid Values: [-Pulse Voltage Limit
Range <p:py:meth:`nidcpower.Session.PulseVoltageLimitRange.html>`__, -1% of Pulse Voltage
Limit Range <p:py:meth:`nidcpower.Session.PulseVoltageLimitRange.html>`__]
The range bounded by the limit high and limit low must include zero.
Default Value: Refer to Supported Properties by
Device for
the default value by device.
Related Topics:
Ranges
Changing
Ranges
Overranging

Note

The limit may be extended beyond the selected limit range if the
Overranging Enabled <p:py:meth:`nidcpower.Session.OverrangingEnabled.html>`__ property is
set to TRUE or if the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to a
pulsing method.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit Low

	C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_LOW

pulse_voltage_limit_range

	
nidcpower.Session.pulse_voltage_limit_range

	Specifies the pulse voltage limit range, in volts, for the specified channel(s).
The range defines the valid values to which you can set the pulse voltage limit and pulse bias voltage limit.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT.
For valid ranges, refer to the ranges topic for your device in the NI DC Power Supplies and SMUs Help.

Note

The channel must be enabled for the specified current limit to take effect. Refer to the nidcpower.Session.output_enabled property for more information about enabling the output channel.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit Range

	C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_RANGE

query_instrument_status

	
nidcpower.Session.query_instrument_status

	Specifies whether NI-DCPower queries the device status after each operation.
Querying the device status is useful for debugging. After you validate your program, you can set this property to False to disable status checking and maximize performance.
NI-DCPower ignores status checking for particular properties regardless of the setting of this property.
Use the nidcpower.Session.__init__() method to override this value.
Default Value: True

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:User Options:Query Instrument Status

	C Attribute: NIDCPOWER_ATTR_QUERY_INSTRUMENT_STATUS

ready_for_pulse_trigger_event_output_terminal

	
nidcpower.Session.ready_for_pulse_trigger_event_output_terminal

	Specifies the output terminal for exporting the Ready For Pulse Trigger event.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Ready For Pulse Trigger Event:Output Terminal

	C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_OUTPUT_TERMINAL

ready_for_pulse_trigger_event_pulse_polarity

	
nidcpower.Session.ready_for_pulse_trigger_event_pulse_polarity

	Specifies the behavior of the Ready For Pulse Trigger event.
Default Value: HIGH

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Polarity

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Ready For Pulse Trigger Event:Pulse:Polarity

	C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_PULSE_POLARITY

ready_for_pulse_trigger_event_pulse_width

	
nidcpower.Session.ready_for_pulse_trigger_event_pulse_width

	Specifies the width of the Ready For Pulse Trigger event, in seconds.
The minimum event pulse width value for PXI Express devices is 250 ns.
The maximum event pulse width value for all devices is 1.6 microseconds.
Default Value: The default value for PXI Express devices is 250 ns

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Ready For Pulse Trigger Event:Pulse:Width

	C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_PULSE_WIDTH

requested_power_allocation

	
nidcpower.Session.requested_power_allocation

	
	Specifies the power, in watts, to request the device to source from each active channel.

	This property defines the power to source from the device only if the nidcpower.Session.power_allocation_mode property is set to MANUAL.

	The power you request with this property may be incompatible with the power a given source configuration requires or the power the device can provide:

	If the requested power is less than the power required for the source configuration, the device does not exceed the requested power, and NI-DCPower returns an error.
If the requested power is greater than the maximum per-channel or overall sourcing power, the device does not exceed the allowed power, and NI-DCPower returns an error.

	Valid Values: [0, device per-channel maximum power]

	Default Value: Refer to the Supported Properties by Device topic for the default value by device.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Requested Power Allocation

	C Attribute: NIDCPOWER_ATTR_REQUESTED_POWER_ALLOCATION

reset_average_before_measurement

	
nidcpower.Session.reset_average_before_measurement

	Specifies whether the measurement returned from any measurement call starts with a new measurement call (True) or returns a measurement that has already begun or completed(False).
for information about supported devices.
When you set the nidcpower.Session.samples_to_average property in the Running state, the output channel measurements might move out of synchronization. While NI-DCPower automatically synchronizes measurements upon the initialization of a session, you can force a synchronization in the running state before you run the nidcpower.Session.measure_multiple() method. To force a synchronization in the running state, set this property to True, and then run the nidcpower.Session.measure_multiple() method, specifying all channels in the channel name parameter. You can set the nidcpower.Session.reset_average_before_measurement property to False after the nidcpower.Session.measure_multiple() method completes.
Default Value: True

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Reset Average Before Measurement

	C Attribute: NIDCPOWER_ATTR_RESET_AVERAGE_BEFORE_MEASUREMENT

samples_to_average

	
nidcpower.Session.samples_to_average

	Specifies the number of samples to average when you take a measurement.
Increasing the number of samples to average decreases measurement noise but increases the time required to take a measurement. Refer to the NI PXI-4110, NI PXI-4130, NI PXI-4132, or NI PXIe-4154 Averaging topic for optional property settings to improve immunity to certain noise types, or refer to the NI PXIe-4140/4141 DC Noise Rejection, NI PXIe-4142/4143 DC Noise Rejection, or NI PXIe-4144/4145 DC Noise Rejection topic for information about improving noise immunity for those devices.
Default Value:
NI PXI-4110 or NI PXI-4130—10
NI PXI-4132—1
NI PXIe-4112—1
NI PXIe-4113—1
NI PXIe-4140/4141—1
NI PXIe-4142/4143—1
NI PXIe-4144/4145—1
NI PXIe-4154—500

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Samples To Average

	C Attribute: NIDCPOWER_ATTR_SAMPLES_TO_AVERAGE

self_calibration_persistence

	
nidcpower.Session.self_calibration_persistence

	Specifies whether the values calculated during self-calibration should be written to hardware to be used until the next self-calibration or only used until the nidcpower.Session.reset_device() method is called or the machine is powered down.
This property affects the behavior of the nidcpower.Session.self_cal() method. When set to KEEP_IN_MEMORY, the values calculated by the nidcpower.Session.self_cal() method are used in the existing session, as well as in all further sessions until you call the nidcpower.Session.reset_device() method or restart the machine. When you set this property to WRITE_TO_EEPROM, the values calculated by the nidcpower.Session.self_cal() method are written to hardware and used in the existing session and in all subsequent sessions until another call to the nidcpower.Session.self_cal() method is made.
about supported devices.
Default Value: KEEP_IN_MEMORY

Note

This property is not supported by all devices. Refer to Supported Properties by Device for information

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.SelfCalibrationPersistence

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Advanced:Self-Calibration Persistence

	C Attribute: NIDCPOWER_ATTR_SELF_CALIBRATION_PERSISTENCE

sense

	
nidcpower.Session.sense

	Selects either local or remote sensing of the output voltage for the specified channel(s).
Refer to the Local and Remote Sense topic in the NI DC Power Supplies and SMUs Help for more information about sensing voltage on supported channels and about devices that support local and/or remote sensing.
Default Value: The default value is LOCAL if the device supports local sense. Otherwise, the default and only supported value is REMOTE.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Sense

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Sense

	C Attribute: NIDCPOWER_ATTR_SENSE

sequence_advance_trigger_type

	
nidcpower.Session.sequence_advance_trigger_type

	Specifies the behavior of the Sequence Advance trigger.
for information about supported devices.
Default Value: NONE

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Sequence Advance Trigger:Trigger Type

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ADVANCE_TRIGGER_TYPE

sequence_engine_done_event_output_terminal

	
nidcpower.Session.sequence_engine_done_event_output_terminal

	Specifies the output terminal for exporting the Sequence Engine Done Complete event.
for information about supported devices.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Engine Done Event:Output Terminal

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_OUTPUT_TERMINAL

sequence_engine_done_event_pulse_polarity

	
nidcpower.Session.sequence_engine_done_event_pulse_polarity

	Specifies the behavior of the Sequence Engine Done event.
for information about supported devices.
Default Value: HIGH

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Polarity

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Engine Done Event:Pulse:Polarity

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_PULSE_POLARITY

sequence_engine_done_event_pulse_width

	
nidcpower.Session.sequence_engine_done_event_pulse_width

	Specifies the width of the Sequence Engine Done event, in seconds.
The minimum event pulse width value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is 250 ns.
The maximum event pulse width value for all devices is 1.6 microseconds.
for information about supported devices.
Valid Values: 1.5e-7 to 1.6e-6 seconds
Default Value: The default value for PXI devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Engine Done Event:Pulse:Width

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_PULSE_WIDTH

sequence_iteration_complete_event_output_terminal

	
nidcpower.Session.sequence_iteration_complete_event_output_terminal

	Specifies the output terminal for exporting the Sequence Iteration Complete event.
for information about supported devices.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Iteration Complete Event:Output Terminal

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_OUTPUT_TERMINAL

sequence_iteration_complete_event_pulse_polarity

	
nidcpower.Session.sequence_iteration_complete_event_pulse_polarity

	Specifies the behavior of the Sequence Iteration Complete event.
for information about supported devices.
Default Value: HIGH

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Polarity

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Iteration Complete Event:Pulse:Polarity

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_PULSE_POLARITY

sequence_iteration_complete_event_pulse_width

	
nidcpower.Session.sequence_iteration_complete_event_pulse_width

	Specifies the width of the Sequence Iteration Complete event, in seconds.
The minimum event pulse width value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is 250 ns.
The maximum event pulse width value for all devices is 1.6 microseconds.
the NI DC Power Supplies and SMUs Help for information about supported devices.
Valid Values: 1.5e-7 to 1.6e-6 seconds
Default Value: The default value for PXI devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic in

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Iteration Complete Event:Pulse:Width

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_PULSE_WIDTH

sequence_loop_count

	
nidcpower.Session.sequence_loop_count

	Specifies the number of times a sequence is run after initiation.
Refer to the Sequence Source Mode topic in the NI DC Power Supplies and SMUs Help for more information about the sequence loop count.
for information about supported devices. When the nidcpower.Session.sequence_loop_count_is_finite property is set to False, the nidcpower.Session.sequence_loop_count property is ignored.
Valid Range: 1 to 134217727
Default Value: 1

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Sequence Loop Count

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_LOOP_COUNT

sequence_loop_count_is_finite

	
nidcpower.Session.sequence_loop_count_is_finite

	Specifies whether a sequence should repeat indefinitely.
Refer to the Sequence Source Mode topic in the NI DC Power Supplies and SMUs Help for more information about infinite sequencing.
nidcpower.Session.sequence_loop_count_is_finite property is set to False, the nidcpower.Session.sequence_loop_count property is ignored.
Default Value: True

Note

This property is not supported by all devices. When the

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Sequence Loop Count Is Finite

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_LOOP_COUNT_IS_FINITE

sequence_step_delta_time

	
nidcpower.Session.sequence_step_delta_time

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_STEP_DELTA_TIME

sequence_step_delta_time_enabled

	
nidcpower.Session.sequence_step_delta_time_enabled

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_STEP_DELTA_TIME_ENABLED

serial_number

	
nidcpower.Session.serial_number

	Contains the serial number for the device you are currently using.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Serial Number

	C Attribute: NIDCPOWER_ATTR_SERIAL_NUMBER

simulate

	
nidcpower.Session.simulate

	Specifies whether to simulate NI-DCPower I/O operations. True specifies that operation is simulated.
Default Value: False

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:User Options:Simulate

	C Attribute: NIDCPOWER_ATTR_SIMULATE

source_complete_event_output_terminal

	
nidcpower.Session.source_complete_event_output_terminal

	Specifies the output terminal for exporting the Source Complete event.
for information about supported devices.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Source Complete Event:Output Terminal

	C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_OUTPUT_TERMINAL

source_complete_event_pulse_polarity

	
nidcpower.Session.source_complete_event_pulse_polarity

	Specifies the behavior of the Source Complete event.
for information about supported devices.
Default Value: HIGH

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Polarity

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Source Complete Event:Pulse:Polarity

	C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_PULSE_POLARITY

source_complete_event_pulse_width

	
nidcpower.Session.source_complete_event_pulse_width

	Specifies the width of the Source Complete event, in seconds.
for information about supported devices.
The minimum event pulse width value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is 250 ns.
The maximum event pulse width value for all devices is 1.6 microseconds
Valid Values: 1.5e-7 to 1.6e-6 seconds
Default Value: The default value for PXI devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Source Complete Event:Pulse:Width

	C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_PULSE_WIDTH

source_delay

	
nidcpower.Session.source_delay

	Determines when, in seconds, the device generates the Source Complete event, potentially starting a measurement if the nidcpower.Session.measure_when property is set to AUTOMATICALLY_AFTER_SOURCE_COMPLETE.
Refer to the Single Point Source Mode and Sequence Source Mode topics for more information.
Valid Values: 0 to 167 seconds
Default Value: 0.01667 seconds

Note

Refer to Supported Properties by Device for information about supported devices.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Source Delay

	C Attribute: NIDCPOWER_ATTR_SOURCE_DELAY

source_mode

	
nidcpower.Session.source_mode

	Specifies whether to run a single output point or a sequence. Refer to the Single Point Source Mode and Sequence Source Mode topics in the NI DC Power Supplies and SMUs Help for more information about source modes.
Default value: SINGLE_POINT

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.SourceMode

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Source Mode

	C Attribute: NIDCPOWER_ATTR_SOURCE_MODE

source_trigger_type

	
nidcpower.Session.source_trigger_type

	Specifies the behavior of the Source trigger.
for information about supported devices.
Default Value: NONE

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Source Trigger:Trigger Type

	C Attribute: NIDCPOWER_ATTR_SOURCE_TRIGGER_TYPE

specific_driver_description

	
nidcpower.Session.specific_driver_description

	Contains a brief description of the specific driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Description

	C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_prefix

	
nidcpower.Session.specific_driver_prefix

	Contains the prefix for NI-DCPower. The name of each user-callable method in NI-DCPower begins with this prefix.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Prefix

	C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_PREFIX

specific_driver_revision

	
nidcpower.Session.specific_driver_revision

	Contains additional version information about NI-DCPower.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Revision

	C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

	
nidcpower.Session.specific_driver_vendor

	Contains the name of the vendor that supplies NI-DCPower.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Vendor

	C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_VENDOR

start_trigger_type

	
nidcpower.Session.start_trigger_type

	Specifies the behavior of the Start trigger.
for information about supported devices.
Default Value: NONE

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Start Trigger:Trigger Type

	C Attribute: NIDCPOWER_ATTR_START_TRIGGER_TYPE

supported_instrument_models

	
nidcpower.Session.supported_instrument_models

	Contains a comma-separated (,) list of supported NI-DCPower device models.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Supported Instrument Models

	C Attribute: NIDCPOWER_ATTR_SUPPORTED_INSTRUMENT_MODELS

transient_response

	
nidcpower.Session.transient_response

	Specifies the transient response. Refer to the Transient Response topic in the NI DC Power Supplies and SMUs Help for more information about transient response.
for information about supported devices.
Default Value: NORMAL

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TransientResponse

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Transient Response

	C Attribute: NIDCPOWER_ATTR_TRANSIENT_RESPONSE

voltage_compensation_frequency

	
nidcpower.Session.voltage_compensation_frequency

	The frequency at which a pole-zero pair is added to the system when the channel is in Constant Voltage mode.
for information about supported devices.
Default value: Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Custom Transient Response:Voltage:Compensation Frequency

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_COMPENSATION_FREQUENCY

voltage_gain_bandwidth

	
nidcpower.Session.voltage_gain_bandwidth

	The frequency at which the unloaded loop gain extrapolates to 0 dB in the absence of additional poles and zeroes. This property takes effect when the channel is in Constant Voltage mode.
for information about supported devices.
Default Value: Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Custom Transient Response:Voltage:Gain Bandwidth

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_GAIN_BANDWIDTH

voltage_level

	
nidcpower.Session.voltage_level

	Specifies the voltage level, in volts, that the device attempts to generate on the specified channel(s).
This property is applicable only if the nidcpower.Session.output_function property is set to DC_VOLTAGE.
nidcpower.Session.output_enabled property for more information about enabling the output channel.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.voltage_level_range property.

Note

The channel must be enabled for the specified voltage level to take effect. Refer to the

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Voltage Level

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL

voltage_level_autorange

	
nidcpower.Session.voltage_level_autorange

	Specifies whether NI-DCPower automatically selects the voltage level range based on the desired voltage level for the specified channel(s).
If you set this property to ON, NI-DCPower ignores any changes you make to the nidcpower.Session.voltage_level_range property. If you change the nidcpower.Session.voltage_level_autorange property from ON to OFF, NI-DCPower retains the last value the nidcpower.Session.voltage_level_range property was set to (or the default value if the property was never set) and uses that value as the voltage level range.
Query the nidcpower.Session.voltage_level_range property by using the nidcpower.Session._get_attribute_vi_int32() method for information about which range NI-DCPower automatically selects.
The nidcpower.Session.voltage_level_autorange property is applicable only if the nidcpower.Session.output_function property is set to DC_VOLTAGE.
Default Value: OFF

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Voltage Level Autorange

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL_AUTORANGE

voltage_level_range

	
nidcpower.Session.voltage_level_range

	Specifies the voltage level range, in volts, for the specified channel(s).
The range defines the valid values to which the voltage level can be set. Use the nidcpower.Session.voltage_level_autorange property to enable automatic selection of the voltage level range.
The nidcpower.Session.voltage_level_range property is applicable only if the nidcpower.Session.output_function property is set to DC_VOLTAGE.
nidcpower.Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs Help.

Note

The channel must be enabled for the specified voltage level range to take effect. Refer to the

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Voltage Level Range

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL_RANGE

voltage_limit

	
nidcpower.Session.voltage_limit

	Specifies the voltage limit, in volts, that the output cannot exceed when generating the desired current level on the specified channels.
This property is applicable only if the nidcpower.Session.output_function property is set to DC_CURRENT and the nidcpower.Session.compliance_limit_symmetry property is set to SYMMETRIC.
nidcpower.Session.output_enabled property for more information about enabling the output channel.
Valid Values: The valid values for this property are defined by the values to which the nidcpower.Session.voltage_limit_range property is set.

Note

The channel must be enabled for the specified current level to take effect. Refer to the

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Voltage Limit

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT

voltage_limit_autorange

	
nidcpower.Session.voltage_limit_autorange

	Specifies whether NI-DCPower automatically selects the voltage limit range based on the desired voltage limit for the specified channel(s).
If this property is set to ON, NI-DCPower ignores any changes you make to the nidcpower.Session.voltage_limit_range property. If you change the nidcpower.Session.voltage_limit_autorange property from ON to OFF, NI-DCPower retains the last value the nidcpower.Session.voltage_limit_range property was set to (or the default value if the property was never set) and uses that value as the voltage limit range.
Query the nidcpower.Session.voltage_limit_range property by using the nidcpower.Session._get_attribute_vi_int32() method to find out which range NI-DCPower automatically selects.
The nidcpower.Session.voltage_limit_autorange property is applicable only if the nidcpower.Session.output_function property is set to DC_CURRENT.
Default Value: OFF

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Voltage Limit Autorange

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_AUTORANGE

voltage_limit_high

	
nidcpower.Session.voltage_limit_high

	Specifies the maximum voltage, in volts, that the output can produce
when generating the desired current on the specified channel(s).
This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:`nidcpower.Session.ComplianceLimitSymmetry.html>`__ property is set to
Asymmetric and the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to DC
Current.
You must also specify a Voltage Limit
Low <p:py:meth:`nidcpower.Session.VoltageLimitLow.html>`__ to complete the asymmetric
range.
Valid Values: [1% of Voltage Limit
Range <p:py:meth:`nidcpower.Session.VoltageLimitRange.html>`__, Voltage Limit
Range <p:py:meth:`nidcpower.Session.VoltageLimitRange.html>`__]
The range bounded by the limit high and limit low must include zero.
Default Value: Refer to Supported Properties by
Device for
the default value by device.
Related Topics:
Ranges
Changing
Ranges
Overranging

Note

The limit may be extended beyond the selected limit range if the
Overranging Enabled <p:py:meth:`nidcpower.Session.OverrangingEnabled.html>`__ property is
set to TRUE.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Voltage Limit High

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_HIGH

voltage_limit_low

	
nidcpower.Session.voltage_limit_low

	Specifies the minimum voltage, in volts, that the output can produce
when generating the desired current on the specified channel(s).
This property is applicable only if the Compliance Limit
Symmetry <p:py:meth:`nidcpower.Session.ComplianceLimitSymmetry.html>`__ property is set to
Asymmetric and the Output
Method <p:py:meth:`nidcpower.Session.OutputFunction.html>`__ property is set to DC
Current.
You must also specify a Voltage Limit
High <p:py:meth:`nidcpower.Session.VoltageLimitHigh.html>`__ to complete the asymmetric
range.
Valid Values: [-Voltage Limit
Range <p:py:meth:`nidcpower.Session.VoltageLimitRange.html>`__, -1% of Voltage Limit
Range <p:py:meth:`nidcpower.Session.VoltageLimitRange.html>`__]
The range bounded by the limit high and limit low must include zero.
Default Value: Refer to Supported Properties by
Device for
the default value by device.
Related Topics:
Ranges
Changing
Ranges
Overranging

Note

The limit may be extended beyond the selected limit range if the
Overranging Enabled <p:py:meth:`nidcpower.Session.OverrangingEnabled.html>`__ property is
set to TRUE.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Voltage Limit Low

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_LOW

voltage_limit_range

	
nidcpower.Session.voltage_limit_range

	Specifies the voltage limit range, in volts, for the specified channel(s).
The range defines the valid values to which the voltage limit can be set. Use the nidcpower.Session.voltage_limit_autorange property to enable automatic selection of the voltage limit range.
The nidcpower.Session.voltage_limit_range property is applicable only if the nidcpower.Session.output_function property is set to DC_CURRENT.
nidcpower.Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the Ranges topic for your device in the NI DC Power Supplies and SMUs Help.

Note

The channel must be enabled for the specified voltage limit range to take effect. Refer to the

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Voltage Limit Range

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_RANGE

voltage_pole_zero_ratio

	
nidcpower.Session.voltage_pole_zero_ratio

	The ratio of the pole frequency to the zero frequency when the channel is in Constant Voltage mode.
for information about supported devices.
Default value: Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response property.

Note

This property is not supported by all devices. Refer to Supported Properties by Device topic

Tip

This property can use repeated capabilities. If set or get directly on the
nidcpower.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidcpower.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Custom Transient Response:Voltage:Pole-Zero Ratio

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_POLE_ZERO_RATIO

Session

	Session

	Methods

	abort

	close

	commit

	configure_aperture_time

	create_advanced_sequence

	create_advanced_sequence_step

	delete_advanced_sequence

	disable

	export_attribute_configuration_buffer

	export_attribute_configuration_file

	fetch_multiple

	get_channel_name

	get_ext_cal_last_date_and_time

	get_ext_cal_last_temp

	get_ext_cal_recommended_interval

	get_self_cal_last_date_and_time

	get_self_cal_last_temp

	import_attribute_configuration_buffer

	import_attribute_configuration_file

	initiate

	lock

	measure

	measure_multiple

	query_in_compliance

	query_max_current_limit

	query_max_voltage_level

	query_min_current_limit

	query_output_state

	read_current_temperature

	reset

	reset_device

	reset_with_defaults

	self_cal

	self_test

	send_software_edge_trigger

	set_sequence

	unlock

	wait_for_event

	Properties

	active_advanced_sequence

	active_advanced_sequence_step

	actual_power_allocation

	aperture_time

	aperture_time_units

	auto_zero

	auxiliary_power_source_available

	channel_count

	compliance_limit_symmetry

	current_compensation_frequency

	current_gain_bandwidth

	current_level

	current_level_autorange

	current_level_range

	current_limit

	current_limit_autorange

	current_limit_behavior

	current_limit_high

	current_limit_low

	current_limit_range

	current_pole_zero_ratio

	dc_noise_rejection

	digital_edge_measure_trigger_input_terminal

	digital_edge_pulse_trigger_input_terminal

	digital_edge_sequence_advance_trigger_input_terminal

	digital_edge_source_trigger_input_terminal

	digital_edge_start_trigger_input_terminal

	driver_setup

	exported_measure_trigger_output_terminal

	exported_pulse_trigger_output_terminal

	exported_sequence_advance_trigger_output_terminal

	exported_source_trigger_output_terminal

	exported_start_trigger_output_terminal

	fetch_backlog

	instrument_firmware_revision

	instrument_manufacturer

	instrument_model

	interlock_input_open

	io_resource_descriptor

	logical_name

	measure_buffer_size

	measure_complete_event_delay

	measure_complete_event_output_terminal

	measure_complete_event_pulse_polarity

	measure_complete_event_pulse_width

	measure_record_delta_time

	measure_record_length

	measure_record_length_is_finite

	measure_trigger_type

	measure_when

	output_capacitance

	output_connected

	output_enabled

	output_function

	output_resistance

	overranging_enabled

	ovp_enabled

	ovp_limit

	power_allocation_mode

	power_line_frequency

	power_source

	power_source_in_use

	pulse_bias_current_level

	pulse_bias_current_limit

	pulse_bias_current_limit_high

	pulse_bias_current_limit_low

	pulse_bias_delay

	pulse_bias_voltage_level

	pulse_bias_voltage_limit

	pulse_bias_voltage_limit_high

	pulse_bias_voltage_limit_low

	pulse_complete_event_output_terminal

	pulse_complete_event_pulse_polarity

	pulse_complete_event_pulse_width

	pulse_current_level

	pulse_current_level_range

	pulse_current_limit

	pulse_current_limit_high

	pulse_current_limit_low

	pulse_current_limit_range

	pulse_off_time

	pulse_on_time

	pulse_trigger_type

	pulse_voltage_level

	pulse_voltage_level_range

	pulse_voltage_limit

	pulse_voltage_limit_high

	pulse_voltage_limit_low

	pulse_voltage_limit_range

	query_instrument_status

	ready_for_pulse_trigger_event_output_terminal

	ready_for_pulse_trigger_event_pulse_polarity

	ready_for_pulse_trigger_event_pulse_width

	requested_power_allocation

	reset_average_before_measurement

	samples_to_average

	self_calibration_persistence

	sense

	sequence_advance_trigger_type

	sequence_engine_done_event_output_terminal

	sequence_engine_done_event_pulse_polarity

	sequence_engine_done_event_pulse_width

	sequence_iteration_complete_event_output_terminal

	sequence_iteration_complete_event_pulse_polarity

	sequence_iteration_complete_event_pulse_width

	sequence_loop_count

	sequence_loop_count_is_finite

	sequence_step_delta_time

	sequence_step_delta_time_enabled

	serial_number

	simulate

	source_complete_event_output_terminal

	source_complete_event_pulse_polarity

	source_complete_event_pulse_width

	source_delay

	source_mode

	source_trigger_type

	specific_driver_description

	specific_driver_prefix

	specific_driver_revision

	specific_driver_vendor

	start_trigger_type

	supported_instrument_models

	transient_response

	voltage_compensation_frequency

	voltage_gain_bandwidth

	voltage_level

	voltage_level_autorange

	voltage_level_range

	voltage_limit

	voltage_limit_autorange

	voltage_limit_high

	voltage_limit_low

	voltage_limit_range

	voltage_pole_zero_ratio

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the
underlying driver function call. This can be the actual function based on the Session
method being called, or it can be the appropriate Get/Set Attribute function, such as niDCPower_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities.
The parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or
an integer. If it is a string, you can indicate a range using the same format as the driver: ‘0-2’ or
‘0:2’

Some repeated capabilities use a prefix before the number and this is optional

channels

	
nidcpower.Session.channels[]

	session.channels['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

Enums

Enums used in NI-DCPower

ApertureTimeUnits

	
class nidcpower.ApertureTimeUnits

	
	
SECONDS

	Specifies aperture time in seconds.

	
POWER_LINE_CYCLES

	Specifies aperture time in power line cycles (PLCs).

AutoZero

	
class nidcpower.AutoZero

	
	
OFF

	Disables auto zero.

	
ON

	Makes zero conversions for every measurement.

	
ONCE

	Makes zero conversions following the first measurement after initiating the device. The device uses these zero conversions for the preceding measurement and future measurements until the device is reinitiated.

ComplianceLimitSymmetry

	
class nidcpower.ComplianceLimitSymmetry

	
	
SYMMETRIC

	Compliance limits are specified symmetrically about 0.

	
ASYMMETRIC

	Compliance limits can be specified asymmetrically with respect to 0.

DCNoiseRejection

	
class nidcpower.DCNoiseRejection

	
	
SECOND_ORDER

	Second-order rejection of DC noise.

	
NORMAL

	Normal rejection of DC noise.

Event

	
class nidcpower.Event

	
	
SOURCE_COMPLETE

	

	
MEASURE_COMPLETE

	

	
SEQUENCE_ITERATION_COMPLETE

	

	
SEQUENCE_ENGINE_DONE

	

	
PULSE_COMPLETE

	

	
READY_FOR_PULSE_TRIGGER

	

MeasureWhen

	
class nidcpower.MeasureWhen

	
	
AUTOMATICALLY_AFTER_SOURCE_COMPLETE

	Acquires a measurement after each Source Complete event completes.

	
ON_DEMAND

	Acquires a measurement when the nidcpower.Session.measure() method or nidcpower.Session.measure_multiple() method is called.

	
ON_MEASURE_TRIGGER

	Acquires a measurement when a Measure trigger is received.

MeasurementTypes

	
class nidcpower.MeasurementTypes

	
	
CURRENT

	The device measures current.

	
VOLTAGE

	The device measures voltage.

OutputCapacitance

	
class nidcpower.OutputCapacitance

	
	
LOW

	Output Capacitance is low.

	
HIGH

	Output Capacitance is high.

OutputFunction

	
class nidcpower.OutputFunction

	
	
DC_VOLTAGE

	Sets the output method to DC voltage.

	
DC_CURRENT

	Sets the output method to DC current.

	
PULSE_VOLTAGE

	Sets the output method to pulse voltage.

	
PULSE_CURRENT

	Sets the output method to pulse current.

OutputStates

	
class nidcpower.OutputStates

	
	
VOLTAGE

	The device maintains a constant voltage by adjusting the current

	
CURRENT

	The device maintains a constant current by adjusting the voltage.

Polarity

	
class nidcpower.Polarity

	
	
HIGH

	A high pulse occurs when the event is generated. The exported signal is low level both before and after the event is generated.

	
LOW

	A low pulse occurs when the event is generated. The exported signal is high level both before and after the event is generated.

PowerAllocationMode

	
class nidcpower.PowerAllocationMode

	
	
DISABLED

	The device attempts to source, on each active channel, the power that the present source configuration requires; NI-DCPower does not perform a sourcing power check. If the required power is greater than the maximum sourcing power, the device attempts to source the required amount and may shut down to prevent damage.

	
AUTOMATIC

	The device attempts to source, on each active channel, the power that the present source configuration requires; NI-DCPower performs a sourcing power check. If the required power is greater than the maximum sourcing power, the device does not exceed the maximum power, and NI-DCPower returns an error.

	
MANUAL

	The device attempts to source, on each active channel, the power you request with the nidcpower.Session.requested_power_allocation property; NI-DCPower performs a sourcing power check. If the requested power is either less than the required power for the present source configuration or greater than the maximum sourcing power, the device does not exceed the requested or allowed power, respectively, and NI-DCPower returns an error.

PowerSource

	
class nidcpower.PowerSource

	
	
INTERNAL

	Uses the PXI chassis power source.

	
AUXILIARY

	Uses the auxiliary power source connected to the device.

	
AUTOMATIC

	Uses the auxiliary power source if it is available; otherwise uses the PXI chassis power source.

PowerSourceInUse

	
class nidcpower.PowerSourceInUse

	
	
INTERNAL

	Uses the PXI chassis power source.

	
AUXILIARY

	Uses the auxiliary power source connected to the device. Only the NI PXI-4110, NI PXIe-4112, NI PXIe-4113, and NI PXI-4130 support this value. This is the only supported value for the NI PXIe-4112 and NI PXIe-4113.

SelfCalibrationPersistence

	
class nidcpower.SelfCalibrationPersistence

	
	
KEEP_IN_MEMORY

	Keep new self calibration values in memory only.

	
WRITE_TO_EEPROM

	Write new self calibration values to hardware.

SendSoftwareEdgeTriggerType

	
class nidcpower.SendSoftwareEdgeTriggerType

	
	
START

	

	
SOURCE

	

	
MEASURE

	

	
SEQUENCE_ADVANCE

	

	
PULSE

	

Sense

	
class nidcpower.Sense

	
	
LOCAL

	Local sensing is selected.

	
REMOTE

	Remote sensing is selected.

SourceMode

	
class nidcpower.SourceMode

	
	
SINGLE_POINT

	The source unit applies a single source configuration.

	
SEQUENCE

	The source unit applies a list of voltage or current configurations sequentially.

TransientResponse

	
class nidcpower.TransientResponse

	
	
NORMAL

	The output responds to changes in load at a normal speed.

	
FAST

	The output responds to changes in load quickly.

	
SLOW

	The output responds to changes in load slowly.

	
CUSTOM

	The output responds to changes in load based on specified values.

TriggerType

	
class nidcpower.TriggerType

	
	
NONE

	No trigger is configured.

	
DIGITAL_EDGE

	The data operation starts when a digital edge is detected.

	
SOFTWARE_EDGE

	The data operation starts when a software trigger occurs.

Exceptions and Warnings

Error

	
exception nidcpower.errors.Error

	Base exception type that all NI-DCPower exceptions derive from

DriverError

	
exception nidcpower.errors.DriverError

	An error originating from the NI-DCPower driver

UnsupportedConfigurationError

	
exception nidcpower.errors.UnsupportedConfigurationError

	An error due to using this module in an usupported platform.

DriverNotInstalledError

	
exception nidcpower.errors.DriverNotInstalledError

	An error due to using this module without the driver runtime installed.

InvalidRepeatedCapabilityError

	
exception nidcpower.errors.InvalidRepeatedCapabilityError

	An error due to an invalid character in a repeated capability

SelfTestError

	
exception nidcpower.errors.SelfTestError

	An error due to a failed self-test

DriverWarning

	
exception nidcpower.errors.DriverWarning

	A warning originating from the NI-DCPower driver

Examples

You can download all nidcpower examples here [https://github.com/ni/nimi-python/releases/download/1.3.1/nidcpower_examples.zip]

nidcpower_advanced_sequence.py

(nidcpower_advanced_sequence.py) [https://github.com/ni/nimi-python/blob/master/src/nidcpower/examples/nidcpower_advanced_sequence.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

	#!/usr/bin/python

import argparse
import hightime
import nidcpower
import sys

def example(resource_name, channels, options, voltage_max, current_max, points_per_output_function, delay_in_seconds):
 timeout = hightime.timedelta(seconds=(delay_in_seconds + 1.0))

 with nidcpower.Session(resource_name=resource_name, channels=channels, options=options) as session:

 # Configure the session.
 session.source_mode = nidcpower.SourceMode.SEQUENCE
 session.voltage_level_autorange = True
 session.current_limit_autorange = True
 session.source_delay = hightime.timedelta(seconds=delay_in_seconds)
 properties_used = ['output_function', 'voltage_level', 'current_level']
 session.create_advanced_sequence(sequence_name='my_sequence', property_names=properties_used, set_as_active_sequence=True)

 voltage_per_step = voltage_max / points_per_output_function
 for i in range(points_per_output_function):
 session.create_advanced_sequence_step(set_as_active_step=False)
 session.output_function = nidcpower.OutputFunction.DC_VOLTAGE
 session.voltage_level = voltage_per_step * i

 current_per_step = current_max / points_per_output_function
 for i in range(points_per_output_function):
 session.create_advanced_sequence_step(set_as_active_step=False)
 session.output_function = nidcpower.OutputFunction.DC_CURRENT
 session.current_level = current_per_step * i

 with session.initiate():
 session.wait_for_event(nidcpower.Event.SEQUENCE_ENGINE_DONE)
 measurements = session.fetch_multiple(points_per_output_function * 2, timeout=timeout)

 session.delete_advanced_sequence(sequence_name='my_sequence')
 line_format = '{:,<4} {:,.6g} {:,.6g} {:<6}\n'
 print('{:<4} {:<10} {:,<10} {:<6}'.format('Num', 'Voltage', 'Current', 'In Compliance'))
 i = 0
 for measurement in measurements:
 print(line_format.format(i, measurement.voltage, measurement.current, str(measurement.in_compliance)))
 i += 1

def _main(argsv):
 parser = argparse.ArgumentParser(description='Output ramping voltage to voltage max, then ramping current to current max.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments SMU')
 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
 parser.add_argument('-s', '--number-steps', default=256, help='Number of steps per output function')
 parser.add_argument('-v', '--voltage-max', default=1.0, type=float, help='Maximum voltage (V)')
 parser.add_argument('-i', '--current-max', default=0.001, type=float, help='Maximum Current (I)')
 parser.add_argument('-d', '--delay', default=0.05, type=float, help='Source delay (s)')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.channels, args.option_string, args.voltage_max, args.current_max, args.number_steps, args.delay)

def main():
 _main(sys.argv[1:])

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe',]
 _main(cmd_line)

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', '0', options, 1.0, 0.001, 256, 0.05)

if __name__ == '__main__':
 main()

nidcpower_measure_record.py

(nidcpower_measure_record.py) [https://github.com/ni/nimi-python/blob/master/src/nidcpower/examples/nidcpower_measure_record.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

	#!/usr/bin/python

import argparse
import nidcpower
import sys

def example(resource_name, channels, options, voltage, length):
 with nidcpower.Session(resource_name=resource_name, channels=channels, options=options) as session:

 # Configure the session.
 session.measure_record_length = length
 session.measure_record_length_is_finite = True
 session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE
 session.voltage_level = voltage

 session.commit()
 print('Effective measurement rate: {0} S/s'.format(session.measure_record_delta_time / 1))

 samples_acquired = 0
 print(' # Voltage Current In Compliance')
 row_format = '{0:3d}: {1:8.6f} {2:8.6f} {3}'
 with session.initiate():
 while samples_acquired < length:
 measurements = session.fetch_multiple(count=session.fetch_backlog)
 samples_acquired += len(measurements)
 for i in range(len(measurements)):
 print(row_format.format(i, measurements[i].voltage, measurements[i].current, measurements[i].in_compliance))

def _main(argsv):
 parser = argparse.ArgumentParser(description='Outputs the specified voltage, then takes the specified number of voltage and current readings.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments SMU')
 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
 parser.add_argument('-l', '--length', default='20', type=int, help='Measure record length')
 parser.add_argument('-v', '--voltage', default=5.0, type=float, help='Voltage level (V)')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.channels, args.option_string, args.voltage, args.length)

def main():
 _main(sys.argv[1:])

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', '0', options, 5.0, 20)

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe',]
 _main(cmd_line)

if __name__ == '__main__':
 main()

nidcpower_source_delay_measure.py

(nidcpower_source_delay_measure.py) [https://github.com/ni/nimi-python/blob/master/src/nidcpower/examples/nidcpower_source_delay_measure.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

	#!/usr/bin/python

import argparse
import hightime
import nidcpower
import sys

def print_fetched_measurements(measurements):
 print(' Voltage : {:f} V'.format(measurements[0].voltage))
 print(' Current: {:f} A'.format(measurements[0].current))
 print(' In compliance: {0}'.format(measurements[0].in_compliance))

def example(resource_name, channels, options, voltage1, voltage2, delay):
 timeout = hightime.timedelta(seconds=(delay + 1.0))

 with nidcpower.Session(resource_name=resource_name, channels=channels, options=options) as session:

 # Configure the session.
 session.source_mode = nidcpower.SourceMode.SINGLE_POINT
 session.output_function = nidcpower.OutputFunction.DC_VOLTAGE
 session.current_limit = .06
 session.voltage_level_range = 5.0
 session.current_limit_range = .06
 session.source_delay = hightime.timedelta(seconds=delay)
 session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE
 session.voltage_level = voltage1

 with session.initiate():
 print('Voltage 1:')
 print_fetched_measurements(session.fetch_multiple(count=1, timeout=timeout))
 session.voltage_level = voltage2 # on-the-fly set
 print('Voltage 2:')
 print_fetched_measurements(session.fetch_multiple(count=1, timeout=timeout))
 session.output_enabled = False

def _main(argsv):
 parser = argparse.ArgumentParser(description='Outputs voltage 1, waits for source delay, and then takes a measurement. Then orepeat with voltage 2.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments SMU')
 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
 parser.add_argument('-v1', '--voltage1', default=1.0, type=float, help='Voltage level 1 (V)')
 parser.add_argument('-v2', '--voltage2', default=2.0, type=float, help='Voltage level 2 (V)')
 parser.add_argument('-d', '--delay', default=0.05, type=float, help='Source delay (s)')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.channels, args.option_string, args.voltage1, args.voltage2, args.delay)

def main():
 _main(sys.argv[1:])

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe',]
 _main(cmd_line)

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', '0', options, 1.0, 2.0, 0.05)

if __name__ == '__main__':
 main()

nidigital module

Installation

As a prerequisite to using the nidigital module, you must install the NI-Digital Pattern Driver runtime on your system. Visit ni.com/downloads [http://www.ni.com/downloads/] to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-Digital Pattern Driver) can be installed with pip [http://pypi.python.org/pypi/pip]:

$ python -m pip install nidigital~=0.9.1

Or easy_install from
setuptools [http://pypi.python.org/pypi/setuptools]:

$ python -m easy_install nidigital

Usage

The following is a basic example of using the nidigital module to open a session to a ….

import nidigital
with nidigital.Session(resource_name='PXI1Slot2', channels='0') as session:
 pass

Some repeated capabilities can be chained. This is useful for some methods that can be used with the pins
repeated capability. They can be chained with the sites repeated capability.

import nidigital
Configure the session.

with nidigital.Session(resource_name='PXI1Slot2', channels='0') as session:
 session.sites[0, 1].pins['PinA', 'PinB'].ppmu_source()

This will apply the method/property to ‘site0/PinA, site0/PinB, site1/PinA, site1/PinB’

Additional examples for NI-Digital Pattern Driver are located in src/nidigital/examples/ directory.

API Reference

	Session

	Methods
	abort

	abort_keep_alive

	apply_levels_and_timing

	apply_tdr_offsets

	burst_pattern

	clock_generator_abort

	clock_generator_generate_clock

	close

	commit

	configure_active_load_levels

	configure_pattern_burst_sites

	configure_time_set_compare_edges_strobe

	configure_time_set_compare_edges_strobe2x

	configure_time_set_drive_edges

	configure_time_set_drive_edges2x

	configure_time_set_drive_format

	configure_time_set_edge

	configure_time_set_edge_multiplier

	configure_time_set_period

	configure_voltage_levels

	create_capture_waveform_from_file_digicapture

	create_capture_waveform_parallel

	create_capture_waveform_serial

	create_source_waveform_from_file_tdms

	create_source_waveform_parallel

	create_source_waveform_serial

	create_time_set

	delete_all_time_sets

	disable_sites

	enable_sites

	fetch_capture_waveform

	fetch_history_ram_cycle_information

	frequency_counter_measure_frequency

	get_channel_names

	get_fail_count

	get_history_ram_sample_count

	get_pattern_name

	get_pattern_pin_names

	get_pin_results_pin_information

	get_site_pass_fail

	get_time_set_drive_format

	get_time_set_edge

	get_time_set_edge_multiplier

	get_time_set_name

	get_time_set_period

	initiate

	is_done

	is_site_enabled

	load_pattern

	load_pin_map

	load_specifications_levels_and_timing

	lock

	ppmu_measure

	ppmu_source

	read_sequencer_flag

	read_sequencer_register

	read_static

	reset

	reset_device

	self_calibrate

	self_test

	send_software_edge_trigger

	tdr

	unload_all_patterns

	unload_specifications

	unlock

	wait_until_done

	write_sequencer_flag

	write_sequencer_register

	write_source_waveform_broadcast

	write_source_waveform_data_from_file_tdms

	write_source_waveform_site_unique

	write_static

	Properties
	active_load_ioh

	active_load_iol

	active_load_vcom

	cache

	channel_count

	clock_generator_frequency

	clock_generator_is_running

	conditional_jump_trigger_terminal_name

	conditional_jump_trigger_type

	cycle_number_history_ram_trigger_cycle_number

	digital_edge_conditional_jump_trigger_edge

	digital_edge_conditional_jump_trigger_source

	digital_edge_start_trigger_edge

	digital_edge_start_trigger_source

	driver_setup

	exported_conditional_jump_trigger_output_terminal

	exported_pattern_opcode_event_output_terminal

	exported_start_trigger_output_terminal

	frequency_counter_measurement_time

	group_capabilities

	halt_on_keep_alive_opcode

	history_ram_buffer_size_per_site

	history_ram_cycles_to_acquire

	history_ram_max_samples_to_acquire_per_site

	history_ram_number_of_samples_is_finite

	history_ram_pretrigger_samples

	history_ram_trigger_type

	instrument_firmware_revision

	instrument_manufacturer

	instrument_model

	interchange_check

	io_resource_descriptor

	is_keep_alive_active

	logical_name

	mask_compare

	pattern_label_history_ram_trigger_cycle_offset

	pattern_label_history_ram_trigger_label

	pattern_label_history_ram_trigger_vector_offset

	pattern_opcode_event_terminal_name

	ppmu_allow_extended_voltage_range

	ppmu_aperture_time

	ppmu_aperture_time_units

	ppmu_current_level

	ppmu_current_level_range

	ppmu_current_limit

	ppmu_current_limit_behavior

	ppmu_current_limit_range

	ppmu_current_limit_supported

	ppmu_output_function

	ppmu_voltage_level

	ppmu_voltage_limit_high

	ppmu_voltage_limit_low

	query_instrument_status

	range_check

	record_coercions

	selected_function

	sequencer_flag_terminal_name

	serial_number

	simulate

	specific_driver_class_spec_major_version

	specific_driver_class_spec_minor_version

	specific_driver_description

	specific_driver_prefix

	specific_driver_revision

	specific_driver_vendor

	start_label

	start_trigger_terminal_name

	start_trigger_type

	supported_instrument_models

	tdr_endpoint_termination

	tdr_offset

	termination_mode

	timing_absolute_delay

	timing_absolute_delay_enabled

	vih

	vil

	voh

	vol

	vterm

	NI-TClk Support

	Repeated Capabilities
	channels

	pins

	instruments

	pattern_opcode_events

	conditional_jump_triggers

	sites

	Enums
	BitOrder

	DigitalEdge

	DriveFormat

	HistoryRAMCyclesToAcquire

	HistoryRAMTriggerType

	PPMUApertureTimeUnits

	PPMUCurrentLimitBehavior

	PPMUMeasurementType

	PPMUOutputFunction

	PinState

	SelectedFunction

	SequencerFlag

	SequencerRegister

	SoftwareTrigger

	SourceDataMapping

	TDREndpointTermination

	TerminationMode

	TimeSetEdgeType

	TriggerType

	WriteStaticPinState

	Exceptions and Warnings
	Error

	DriverError

	UnsupportedConfigurationError

	DriverNotInstalledError

	InvalidRepeatedCapabilityError

	SelfTestError

	DriverWarning

	Examples
	nidigital_do_nothing.py

Session

	
class nidigital.Session(self, resource_name, id_query=False, reset_device=False, options={})

	TBD

	Parameters

	
	resource_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	id_query (bool [https://docs.python.org/3/library/functions.html#bool]) –

	reset_device (bool [https://docs.python.org/3/library/functions.html#bool]) –

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned
value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not
specify a value for a property, the default value is used.

Advanced Example:
{ ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’, ‘BoardType’: ‘<type>’ } }

	Property

	Default

	range_check

	True

	query_instrument_status

	False

	cache

	True

	simulate

	False

	record_value_coersions

	False

	driver_setup

	{}

Methods

abort

	
nidigital.Session.abort()

	TBD

abort_keep_alive

	
nidigital.Session.abort_keep_alive()

	TBD

apply_levels_and_timing

	
nidigital.Session.apply_levels_and_timing(levels_sheet, timing_sheet, initial_state_high_pins=None, initial_state_low_pins=None, initial_state_tristate_pins=None)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	levels_sheet (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	timing_sheet (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	initial_state_high_pins (basic sequence types or str [https://docs.python.org/3/library/stdtypes.html#str]) – Pins or pin groups to initialize to a high state.

	initial_state_low_pins (basic sequence types or str [https://docs.python.org/3/library/stdtypes.html#str]) – Pins or pin groups to initialize to a low state.

	initial_state_tristate_pins (basic sequence types or str [https://docs.python.org/3/library/stdtypes.html#str]) – Pins or pin groups to initialize to a non-drive state (X).

apply_tdr_offsets

	
nidigital.Session.apply_tdr_offsets(offsets)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	offsets (basic sequence of hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

burst_pattern

	
nidigital.Session.burst_pattern(start_label, select_digital_function=True, wait_until_done=True, timeout=hightime.timedelta(seconds=10.0))

	Uses the start_label you specify to burst the pattern on the sites you specify. If you
specify wait_until_done as True, waits for the burst to complete, and returns comparison results for each site.

Digital pins retain their state at the end of a pattern burst until the first vector of the pattern burst, a call to
nidigital.Session.write_static(), or a call to nidigital.Session.apply_levels_and_timing().

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	start_label (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	select_digital_function (bool [https://docs.python.org/3/library/functions.html#bool]) –

	wait_until_done (bool [https://docs.python.org/3/library/functions.html#bool]) –

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

	Return type

	{ int: bool, int: bool, .. }

	Returns

	Dictionary where each key is a site number and value is pass/fail,
if wait_until_done is specified as True. Else, None.

clock_generator_abort

	
nidigital.Session.clock_generator_abort()

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

clock_generator_generate_clock

	
nidigital.Session.clock_generator_generate_clock(frequency, select_digital_function=True)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	frequency (float [https://docs.python.org/3/library/functions.html#float]) –

	select_digital_function (bool [https://docs.python.org/3/library/functions.html#bool]) –

close

	
nidigital.Session.close()

	TBD

Note

This method is not needed when using the session context manager

commit

	
nidigital.Session.commit()

	TBD

configure_active_load_levels

	
nidigital.Session.configure_active_load_levels(iol, ioh, vcom)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	iol (float [https://docs.python.org/3/library/functions.html#float]) –

	ioh (float [https://docs.python.org/3/library/functions.html#float]) –

	vcom (float [https://docs.python.org/3/library/functions.html#float]) –

configure_pattern_burst_sites

	
nidigital.Session.configure_pattern_burst_sites()

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

configure_time_set_compare_edges_strobe

	
nidigital.Session.configure_time_set_compare_edges_strobe(time_set_name, strobe_edge)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	time_set_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	strobe_edge (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

configure_time_set_compare_edges_strobe2x

	
nidigital.Session.configure_time_set_compare_edges_strobe2x(time_set_name, strobe_edge, strobe2_edge)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	time_set_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	strobe_edge (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

	strobe2_edge (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

configure_time_set_drive_edges

	
nidigital.Session.configure_time_set_drive_edges(time_set_name, format, drive_on_edge, drive_data_edge, drive_return_edge, drive_off_edge)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	time_set_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	format (nidigital.DriveFormat) –

	drive_on_edge (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

	drive_data_edge (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

	drive_return_edge (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

	drive_off_edge (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

configure_time_set_drive_edges2x

	
nidigital.Session.configure_time_set_drive_edges2x(time_set_name, format, drive_on_edge, drive_data_edge, drive_return_edge, drive_off_edge, drive_data2_edge, drive_return2_edge)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	time_set_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	format (nidigital.DriveFormat) –

	drive_on_edge (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

	drive_data_edge (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

	drive_return_edge (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

	drive_off_edge (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

	drive_data2_edge (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

	drive_return2_edge (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

configure_time_set_drive_format

	
nidigital.Session.configure_time_set_drive_format(time_set_name, drive_format)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	time_set_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	drive_format (nidigital.DriveFormat) –

configure_time_set_edge

	
nidigital.Session.configure_time_set_edge(time_set_name, edge, time)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	time_set_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	edge (nidigital.TimeSetEdgeType) –

	time (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

configure_time_set_edge_multiplier

	
nidigital.Session.configure_time_set_edge_multiplier(time_set_name, edge_multiplier)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	time_set_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	edge_multiplier (int [https://docs.python.org/3/library/functions.html#int]) –

configure_time_set_period

	
nidigital.Session.configure_time_set_period(time_set_name, period)

	TBD

	Parameters

	
	time_set_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	period (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

configure_voltage_levels

	
nidigital.Session.configure_voltage_levels(vil, vih, vol, voh, vterm)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	vil (float [https://docs.python.org/3/library/functions.html#float]) –

	vih (float [https://docs.python.org/3/library/functions.html#float]) –

	vol (float [https://docs.python.org/3/library/functions.html#float]) –

	voh (float [https://docs.python.org/3/library/functions.html#float]) –

	vterm (float [https://docs.python.org/3/library/functions.html#float]) –

create_capture_waveform_from_file_digicapture

	
nidigital.Session.create_capture_waveform_from_file_digicapture(waveform_name, waveform_file_path)

	TBD

	Parameters

	
	waveform_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	waveform_file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

create_capture_waveform_parallel

	
nidigital.Session.create_capture_waveform_parallel(waveform_name)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	waveform_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

create_capture_waveform_serial

	
nidigital.Session.create_capture_waveform_serial(waveform_name, sample_width, bit_order)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	waveform_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	sample_width (int [https://docs.python.org/3/library/functions.html#int]) –

	bit_order (nidigital.BitOrder) –

create_source_waveform_from_file_tdms

	
nidigital.Session.create_source_waveform_from_file_tdms(waveform_name, waveform_file_path, write_waveform_data=True)

	TBD

	Parameters

	
	waveform_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	waveform_file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	write_waveform_data (bool [https://docs.python.org/3/library/functions.html#bool]) –

create_source_waveform_parallel

	
nidigital.Session.create_source_waveform_parallel(waveform_name, data_mapping)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	waveform_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	data_mapping (nidigital.SourceDataMapping) –

create_source_waveform_serial

	
nidigital.Session.create_source_waveform_serial(waveform_name, data_mapping, sample_width, bit_order)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	waveform_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	data_mapping (nidigital.SourceDataMapping) –

	sample_width (int [https://docs.python.org/3/library/functions.html#int]) –

	bit_order (nidigital.BitOrder) –

create_time_set

	
nidigital.Session.create_time_set(name)

	TBD

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

delete_all_time_sets

	
nidigital.Session.delete_all_time_sets()

	TBD

disable_sites

	
nidigital.Session.disable_sites()

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

enable_sites

	
nidigital.Session.enable_sites()

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

fetch_capture_waveform

	
nidigital.Session.fetch_capture_waveform(waveform_name, samples_to_read, timeout=hightime.timedelta(seconds=10.0))

	Returns dictionary where each key is a site number and value is a collection of digital states representing capture waveform data

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	waveform_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	samples_to_read (int [https://docs.python.org/3/library/functions.html#int]) –

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

	Return type

	{ int: memoryview of array.array of unsigned int, int: memoryview of array.array of unsigned int, .. }

	Returns

	Dictionary where each key is a site number and value is a collection of digital states representing capture waveform data

fetch_history_ram_cycle_information

	
nidigital.Session.fetch_history_ram_cycle_information(position, samples_to_read)

	Returns the pattern information acquired for the specified cycles.

If the pattern is using the edge multiplier feature, cycle numbers represent tester cycles, each of which may
consist of multiple DUT cycles. When using pins with mixed edge multipliers, pins may return
PIN_STATE_NOT_ACQUIRED for DUT cycles where those pins do not have edges defined.

Site number on which to retrieve pattern information must be specified via sites repeated capability.
The method returns an error if more than one site is specified.

Pins for which to retrieve pattern information must be specified via pins repeated capability.
If pins are not specified, pin list from the pattern containing the start label is used. Call
nidigital.Session.get_pattern_pin_names() with the start label to retrieve the pins associated with the pattern burst:

session.sites[0].pins['PinA', 'PinB'].fetch_history_ram_cycle_information(0, -1)

Note

Before bursting a pattern, you must configure the History RAM trigger and specify which cycles to acquire.

nidigital.Session.history_ram_trigger_type should be used to specify the trigger condition on which History RAM
starts acquiring pattern information.

If History RAM trigger is configured as CYCLE_NUMBER,
nidigital.Session.cycle_number_history_ram_trigger_cycle_number should be used to specify the cycle number on which
History RAM starts acquiring pattern information.

If History RAM trigger is configured as PATTERN_LABEL,
nidigital.Session.pattern_label_history_ram_trigger_label should be used to specify the pattern label from which to
start acquiring pattern information.
nidigital.Session.pattern_label_history_ram_trigger_vector_offset should be used to specify the number of vectors
following the specified pattern label from which to start acquiring pattern information.
nidigital.Session.pattern_label_history_ram_trigger_cycle_offset should be used to specify the number of cycles
following the specified pattern label and vector offset from which to start acquiring pattern information.

For all History RAM trigger conditions, nidigital.Session.history_ram_pretrigger_samples should be used to specify
the number of samples to acquire before the trigger conditions are met. If you configure History RAM to only
acquire failed cycles, you must set nidigital.Session.history_ram_pretrigger_samples to 0.

nidigital.Session.history_ram_cycles_to_acquire should be used to specify which cycles History RAM acquires after
the trigger conditions are met.

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	position (int [https://docs.python.org/3/library/functions.html#int]) – Sample index from which to start fetching pattern information.

	samples_to_read (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples to fetch. A value of -1 specifies to fetch all available samples.

	Return type

	list of HistoryRAMCycleInformation

	Returns

	Returns a list of class instances with
the following information about each pattern cycle:

	pattern_name (str) Name of the pattern for the acquired cycle.

	time_set_name (str) Time set for the acquired cycle.

	vector_number (int) Vector number within the pattern for the acquired cycle. Vector numbers start
at 0 from the beginning of the pattern.

	cycle_number (int) Cycle number acquired by this History RAM sample. Cycle numbers start at 0
from the beginning of the pattern burst.

	scan_cycle_number (int) Scan cycle number acquired by this History RAM sample. Scan cycle numbers
start at 0 from the first cycle of the scan vector. Scan cycle numbers are -1 for cycles that do not
have a scan opcode.

	expected_pin_states (list of list of enums.PinState) Pin states as expected by the loaded
pattern in the order specified in the pin list. Pins without defined edges in the specified DUT cycle
will have a value of PIN_STATE_NOT_ACQUIRED.
Length of the outer list will be equal to the value of edge multiplier for the given vector.
Length of the inner list will be equal to the number of pins requested.

	actual_pin_states (list of list of enums.PinState) Pin states acquired by History RAM in the
order specified in the pin list. Pins without defined edges in the specified DUT cycle will have a
value of PIN_STATE_NOT_ACQUIRED.
Length of the outer list will be equal to the value of edge multiplier for the given vector.
Length of the inner list will be equal to the number of pins requested.

	per_pin_pass_fail (list of list of bool) Pass fail information for pins in the order specified in
the pin list. Pins without defined edges in the specified DUT cycle will have a value of pass (True).
Length of the outer list will be equal to the value of edge multiplier for the given vector.
Length of the inner list will be equal to the number of pins requested.

frequency_counter_measure_frequency

	
nidigital.Session.frequency_counter_measure_frequency()

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Return type

	list of float

	Returns

	

get_channel_names

	
nidigital.Session.get_channel_names(indices)

	Returns a list of channel names for given channel indices.

This is useful in multi-instrument sessions, where channels are expected to be
referenced by their fully-qualified names, for example, PXI1Slot3/0.

	Parameters

	indices (basic sequence types or str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]) – Specifies indices for the channels in the session.
Valid values are from zero to the total number of channels in the session minus one.
The following types and formats are supported:

	int - example: 0

	Basic sequence - example: [0, range(2, 4)]

	str - example: “0, 2, 3, 1”, “0-3”, “0:3”

The input can contain any combination of above types. Both out-of-order and repeated indices are
supported ([2,3,0], [1,2,2,3]). White space characters, including spaces, tabs, feeds, and
carriage returns, are allowed within strings. Ranges can be incrementing or decrementing.

	Return type

	list of str

	Returns

	Channel names

get_fail_count

	
nidigital.Session.get_fail_count()

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Return type

	list of int

	Returns

	

get_history_ram_sample_count

	
nidigital.Session.get_history_ram_sample_count()

	Returns the number of samples History RAM acquired on the last pattern burst.

Note

Before bursting a pattern, you must configure the History RAM trigger and specify which cycles to acquire.

nidigital.Session.history_ram_trigger_type should be used to specify the trigger condition on which History RAM
starts acquiring pattern information.

If History RAM trigger is configured as CYCLE_NUMBER,
nidigital.Session.cycle_number_history_ram_trigger_cycle_number should be used to specify the cycle number on which
History RAM starts acquiring pattern information.

If History RAM trigger is configured as PATTERN_LABEL,
nidigital.Session.pattern_label_history_ram_trigger_label should be used to specify the pattern label from which to
start acquiring pattern information.
nidigital.Session.pattern_label_history_ram_trigger_vector_offset should be used to specify the number of vectors
following the specified pattern label from which to start acquiring pattern information.
nidigital.Session.pattern_label_history_ram_trigger_cycle_offset should be used to specify the number of cycles
following the specified pattern label and vector offset from which to start acquiring pattern information.

For all History RAM trigger conditions, nidigital.Session.history_ram_pretrigger_samples should be used to specify
the number of samples to acquire before the trigger conditions are met. If you configure History RAM to only
acquire failed cycles, you must set nidigital.Session.history_ram_pretrigger_samples to 0.

nidigital.Session.history_ram_cycles_to_acquire should be used to specify which cycles History RAM acquires after
the trigger conditions are met.

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	

get_pattern_name

	
nidigital.Session.get_pattern_name(pattern_index)

	TBD

	Parameters

	pattern_index (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	

get_pattern_pin_names

	
nidigital.Session.get_pattern_pin_names(start_label)

	TBD

	Parameters

	start_label (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	list of str

	Returns

	

get_pin_results_pin_information

	
nidigital.Session.get_pin_results_pin_information()

	Returns a list of named tuples (PinInfo) that <FILL IN THE BLANK HERE>

Fields in PinInfo:

	pin_name (str)

	site_number (int)

	channel_name (str)

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Return type

	list of PinInfo

	Returns

	List of named tuples with fields:

	pin_name (str)

	site_number (int)

	channel_name (str)

get_site_pass_fail

	
nidigital.Session.get_site_pass_fail()

	Returns dictionary where each key is a site number and value is pass/fail

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Return type

	{ int: bool, int: bool, .. }

	Returns

	Dictionary where each key is a site number and value is pass/fail

get_time_set_drive_format

	
nidigital.Session.get_time_set_drive_format(time_set_name)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	time_set_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	nidigital.DriveFormat

	Returns

	

get_time_set_edge

	
nidigital.Session.get_time_set_edge(time_set_name, edge)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	time_set_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	edge (nidigital.TimeSetEdgeType) –

	Return type

	hightime.timedelta

	Returns

	

get_time_set_edge_multiplier

	
nidigital.Session.get_time_set_edge_multiplier(time_set_name)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	time_set_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	

get_time_set_name

	
nidigital.Session.get_time_set_name(time_set_index)

	TBD

	Parameters

	time_set_index (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	

get_time_set_period

	
nidigital.Session.get_time_set_period(time_set_name)

	TBD

	Parameters

	time_set_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	hightime.timedelta

	Returns

	

initiate

	
nidigital.Session.initiate()

	TBD

Note

This method will return a Python context manager that will initiate on entering and abort on exit.

is_done

	
nidigital.Session.is_done()

	TBD

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	

is_site_enabled

	
nidigital.Session.is_site_enabled()

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	

load_pattern

	
nidigital.Session.load_pattern(file_path)

	TBD

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

load_pin_map

	
nidigital.Session.load_pin_map(file_path)

	TBD

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

load_specifications_levels_and_timing

	
nidigital.Session.load_specifications_levels_and_timing(specifications_file_paths=None, levels_file_paths=None, timing_file_paths=None)

	Loads settings in specifications, levels, and timing sheets. These settings are not
applied to the digital pattern instrument until nidigital.Session.apply_levels_and_timing() is called.

If the levels and timing sheets contains formulas, they are evaluated at load time.
If the formulas refer to variables, the specifications sheets that define those
variables must be loaded either first, or at the same time as the levels and timing sheets.

	Parameters

	
	specifications_file_paths (str [https://docs.python.org/3/library/stdtypes.html#str] or basic sequence of str) – Absolute file path of one or more specifications files.

	levels_file_paths (str [https://docs.python.org/3/library/stdtypes.html#str] or basic sequence of str) – Absolute file path of one or more levels sheet files.

	timing_file_paths (str [https://docs.python.org/3/library/stdtypes.html#str] or basic sequence of str) – Absolute file path of one or more timing sheet files.

lock

	
nidigital.Session.lock()

	Obtains a multithread lock on the device session. Before doing so, the
software waits until all other execution threads release their locks
on the device session.

Other threads may have obtained a lock on this session for the
following reasons:

	The application called the nidigital.Session.lock() method.

	A call to NI-Digital Pattern Driver locked the session.

	After a call to the nidigital.Session.lock() method returns
successfully, no other threads can access the device session until
you call the nidigital.Session.unlock() method or exit out of the with block when using
lock context manager.

	Use the nidigital.Session.lock() method and the
nidigital.Session.unlock() method around a sequence of calls to
instrument driver methods if you require that the device retain its
settings through the end of the sequence.

You can safely make nested calls to the nidigital.Session.lock() method
within the same thread. To completely unlock the session, you must
balance each call to the nidigital.Session.lock() method with a call to
the nidigital.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls
is to use lock as a context manager

with nidigital.Session('dev1') as session:
 with session.lock():
 # Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

	Return type

	context manager

	Returns

	When used in a with statement, nidigital.Session.lock() acts as
a context manager and unlock will be called when the with block is exited

ppmu_measure

	
nidigital.Session.ppmu_measure(measurement_type)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	measurement_type (nidigital.PPMUMeasurementType) –

	Return type

	list of float

	Returns

	

ppmu_source

	
nidigital.Session.ppmu_source()

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

read_sequencer_flag

	
nidigital.Session.read_sequencer_flag(flag)

	TBD

	Parameters

	flag (nidigital.SequencerFlag) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	

read_sequencer_register

	
nidigital.Session.read_sequencer_register(reg)

	TBD

	Parameters

	reg (nidigital.SequencerRegister) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	

read_static

	
nidigital.Session.read_static()

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Return type

	list of nidigital.PinState

	Returns

	

reset

	
nidigital.Session.reset()

	TBD

reset_device

	
nidigital.Session.reset_device()

	TBD

self_calibrate

	
nidigital.Session.self_calibrate()

	TBD

self_test

	
nidigital.Session.self_test()

	TBD

send_software_edge_trigger

	
nidigital.Session.send_software_edge_trigger(trigger, trigger_identifier)

	Forces a particular edge-based trigger to occur regardless of how the
specified trigger is configured. You can use this method as a software override.

	Parameters

	
	trigger (nidigital.SoftwareTrigger) – Trigger specifies the trigger you want to override.

	Defined Values

	

	START

	Overrides the Start trigger. You must specify an empty string in the trigger_identifier parameter.

	CONDITIONAL_JUMP

	Specifies to route a conditional jump trigger. You must specify a conditional jump trigger in the trigger_identifier parameter.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	trigger_identifier (str [https://docs.python.org/3/library/stdtypes.html#str]) – Trigger Identifier specifies the instance of the trigger you want to override.
If trigger is specified as NIDIGITAL_VAL_START_TRIGGER, this parameter must be an empty string. If trigger is
specified as NIDIGITAL_VAL_CONDITIONAL_JUMP_TRIGGER, allowed values are conditionalJumpTrigger0,
conditionalJumpTrigger1, conditionalJumpTrigger2, and conditionalJumpTrigger3.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

tdr

	
nidigital.Session.tdr(apply_offsets=True)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	apply_offsets (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	list of hightime.timedelta

	Returns

	

unload_all_patterns

	
nidigital.Session.unload_all_patterns(unload_keep_alive_pattern=False)

	TBD

	Parameters

	unload_keep_alive_pattern (bool [https://docs.python.org/3/library/functions.html#bool]) –

unload_specifications

	
nidigital.Session.unload_specifications(file_paths)

	Unloads the given specifications sheets present in the previously loaded
specifications files that you select.

You must call nidigital.Session.load_specifications_levels_and_timing() to reload the files with updated
specifications values. You must then call nidigital.Session.apply_levels_and_timing() in order to apply
the levels and timing values that reference the updated specifications values.

	Parameters

	file_paths (str [https://docs.python.org/3/library/stdtypes.html#str] or basic sequence of str) – Absolute file path of one or more loaded specifications files.

unlock

	
nidigital.Session.unlock()

	Releases a lock that you acquired on an device session using
nidigital.Session.lock(). Refer to nidigital.Session.unlock() for additional
information on session locks.

wait_until_done

	
nidigital.Session.wait_until_done(timeout=hightime.timedelta(seconds=10.0))

	TBD

	Parameters

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) –

write_sequencer_flag

	
nidigital.Session.write_sequencer_flag(flag, value)

	TBD

	Parameters

	
	flag (nidigital.SequencerFlag) –

	value (bool [https://docs.python.org/3/library/functions.html#bool]) –

write_sequencer_register

	
nidigital.Session.write_sequencer_register(reg, value)

	TBD

	Parameters

	
	reg (nidigital.SequencerRegister) –

	value (int [https://docs.python.org/3/library/functions.html#int]) –

write_source_waveform_broadcast

	
nidigital.Session.write_source_waveform_broadcast(waveform_name, waveform_data)

	TBD

	Parameters

	
	waveform_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	waveform_data (list of int) –

write_source_waveform_data_from_file_tdms

	
nidigital.Session.write_source_waveform_data_from_file_tdms(waveform_name, waveform_file_path)

	TBD

	Parameters

	
	waveform_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	waveform_file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

write_source_waveform_site_unique

	
nidigital.Session.write_source_waveform_site_unique(waveform_name, waveform_data)

	TBD

	Parameters

	
	waveform_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	waveform_data ({ int: basic sequence of unsigned int, int: basic sequence of unsigned int, .. }) – Dictionary where each key is a site number and value is a collection of samples to use as source data

write_static

	
nidigital.Session.write_static(state)

	TBD

Tip

This method requires repeated capabilities. If called directly on the
nidigital.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling this method on the result.

	Parameters

	state (nidigital.WriteStaticPinState) –

Properties

active_load_ioh

	
nidigital.Session.active_load_ioh

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_ACTIVE_LOAD_IOH

active_load_iol

	
nidigital.Session.active_load_iol

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_ACTIVE_LOAD_IOL

active_load_vcom

	
nidigital.Session.active_load_vcom

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_ACTIVE_LOAD_VCOM

cache

	
nidigital.Session.cache

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_CACHE

channel_count

	
nidigital.Session.channel_count

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_CHANNEL_COUNT

clock_generator_frequency

	
nidigital.Session.clock_generator_frequency

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_CLOCK_GENERATOR_FREQUENCY

clock_generator_is_running

	
nidigital.Session.clock_generator_is_running

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_CLOCK_GENERATOR_IS_RUNNING

conditional_jump_trigger_terminal_name

	
nidigital.Session.conditional_jump_trigger_terminal_name

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_CONDITIONAL_JUMP_TRIGGER_TERMINAL_NAME

conditional_jump_trigger_type

	
nidigital.Session.conditional_jump_trigger_type

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_CONDITIONAL_JUMP_TRIGGER_TYPE

cycle_number_history_ram_trigger_cycle_number

	
nidigital.Session.cycle_number_history_ram_trigger_cycle_number

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_CYCLE_NUMBER_HISTORY_RAM_TRIGGER_CYCLE_NUMBER

digital_edge_conditional_jump_trigger_edge

	
nidigital.Session.digital_edge_conditional_jump_trigger_edge

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.DigitalEdge

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_CONDITIONAL_JUMP_TRIGGER_EDGE

digital_edge_conditional_jump_trigger_source

	
nidigital.Session.digital_edge_conditional_jump_trigger_source

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_CONDITIONAL_JUMP_TRIGGER_SOURCE

digital_edge_start_trigger_edge

	
nidigital.Session.digital_edge_start_trigger_edge

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.DigitalEdge

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_START_TRIGGER_EDGE

digital_edge_start_trigger_source

	
nidigital.Session.digital_edge_start_trigger_source

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_START_TRIGGER_SOURCE

driver_setup

	
nidigital.Session.driver_setup

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_DRIVER_SETUP

exported_conditional_jump_trigger_output_terminal

	
nidigital.Session.exported_conditional_jump_trigger_output_terminal

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_EXPORTED_CONDITIONAL_JUMP_TRIGGER_OUTPUT_TERMINAL

exported_pattern_opcode_event_output_terminal

	
nidigital.Session.exported_pattern_opcode_event_output_terminal

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_EXPORTED_PATTERN_OPCODE_EVENT_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

	
nidigital.Session.exported_start_trigger_output_terminal

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

frequency_counter_measurement_time

	
nidigital.Session.frequency_counter_measurement_time

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_FREQUENCY_COUNTER_MEASUREMENT_TIME

group_capabilities

	
nidigital.Session.group_capabilities

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_GROUP_CAPABILITIES

halt_on_keep_alive_opcode

	
nidigital.Session.halt_on_keep_alive_opcode

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_HALT_ON_KEEP_ALIVE_OPCODE

history_ram_buffer_size_per_site

	
nidigital.Session.history_ram_buffer_size_per_site

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_BUFFER_SIZE_PER_SITE

history_ram_cycles_to_acquire

	
nidigital.Session.history_ram_cycles_to_acquire

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.HistoryRAMCyclesToAcquire

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_CYCLES_TO_ACQUIRE

history_ram_max_samples_to_acquire_per_site

	
nidigital.Session.history_ram_max_samples_to_acquire_per_site

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_MAX_SAMPLES_TO_ACQUIRE_PER_SITE

history_ram_number_of_samples_is_finite

	
nidigital.Session.history_ram_number_of_samples_is_finite

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_NUMBER_OF_SAMPLES_IS_FINITE

history_ram_pretrigger_samples

	
nidigital.Session.history_ram_pretrigger_samples

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_PRETRIGGER_SAMPLES

history_ram_trigger_type

	
nidigital.Session.history_ram_trigger_type

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.HistoryRAMTriggerType

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_TRIGGER_TYPE

instrument_firmware_revision

	
nidigital.Session.instrument_firmware_revision

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

	
nidigital.Session.instrument_manufacturer

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

	
nidigital.Session.instrument_model

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_INSTRUMENT_MODEL

interchange_check

	
nidigital.Session.interchange_check

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_INTERCHANGE_CHECK

io_resource_descriptor

	
nidigital.Session.io_resource_descriptor

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_IO_RESOURCE_DESCRIPTOR

is_keep_alive_active

	
nidigital.Session.is_keep_alive_active

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_IS_KEEP_ALIVE_ACTIVE

logical_name

	
nidigital.Session.logical_name

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_LOGICAL_NAME

mask_compare

	
nidigital.Session.mask_compare

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_MASK_COMPARE

pattern_label_history_ram_trigger_cycle_offset

	
nidigital.Session.pattern_label_history_ram_trigger_cycle_offset

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PATTERN_LABEL_HISTORY_RAM_TRIGGER_CYCLE_OFFSET

pattern_label_history_ram_trigger_label

	
nidigital.Session.pattern_label_history_ram_trigger_label

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PATTERN_LABEL_HISTORY_RAM_TRIGGER_LABEL

pattern_label_history_ram_trigger_vector_offset

	
nidigital.Session.pattern_label_history_ram_trigger_vector_offset

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PATTERN_LABEL_HISTORY_RAM_TRIGGER_VECTOR_OFFSET

pattern_opcode_event_terminal_name

	
nidigital.Session.pattern_opcode_event_terminal_name

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PATTERN_OPCODE_EVENT_TERMINAL_NAME

ppmu_allow_extended_voltage_range

	
nidigital.Session.ppmu_allow_extended_voltage_range

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PPMU_ALLOW_EXTENDED_VOLTAGE_RANGE

ppmu_aperture_time

	
nidigital.Session.ppmu_aperture_time

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PPMU_APERTURE_TIME

ppmu_aperture_time_units

	
nidigital.Session.ppmu_aperture_time_units

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.PPMUApertureTimeUnits

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PPMU_APERTURE_TIME_UNITS

ppmu_current_level

	
nidigital.Session.ppmu_current_level

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LEVEL

ppmu_current_level_range

	
nidigital.Session.ppmu_current_level_range

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LEVEL_RANGE

ppmu_current_limit

	
nidigital.Session.ppmu_current_limit

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LIMIT

ppmu_current_limit_behavior

	
nidigital.Session.ppmu_current_limit_behavior

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.PPMUCurrentLimitBehavior

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LIMIT_BEHAVIOR

ppmu_current_limit_range

	
nidigital.Session.ppmu_current_limit_range

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LIMIT_RANGE

ppmu_current_limit_supported

	
nidigital.Session.ppmu_current_limit_supported

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LIMIT_SUPPORTED

ppmu_output_function

	
nidigital.Session.ppmu_output_function

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.PPMUOutputFunction

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PPMU_OUTPUT_FUNCTION

ppmu_voltage_level

	
nidigital.Session.ppmu_voltage_level

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PPMU_VOLTAGE_LEVEL

ppmu_voltage_limit_high

	
nidigital.Session.ppmu_voltage_limit_high

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PPMU_VOLTAGE_LIMIT_HIGH

ppmu_voltage_limit_low

	
nidigital.Session.ppmu_voltage_limit_low

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_PPMU_VOLTAGE_LIMIT_LOW

query_instrument_status

	
nidigital.Session.query_instrument_status

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_QUERY_INSTRUMENT_STATUS

range_check

	
nidigital.Session.range_check

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_RANGE_CHECK

record_coercions

	
nidigital.Session.record_coercions

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_RECORD_COERCIONS

selected_function

	
nidigital.Session.selected_function

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.SelectedFunction

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_SELECTED_FUNCTION

sequencer_flag_terminal_name

	
nidigital.Session.sequencer_flag_terminal_name

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_SEQUENCER_FLAG_TERMINAL_NAME

serial_number

	
nidigital.Session.serial_number

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_SERIAL_NUMBER

simulate

	
nidigital.Session.simulate

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_SIMULATE

specific_driver_class_spec_major_version

	
nidigital.Session.specific_driver_class_spec_major_version

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MAJOR_VERSION

specific_driver_class_spec_minor_version

	
nidigital.Session.specific_driver_class_spec_minor_version

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MINOR_VERSION

specific_driver_description

	
nidigital.Session.specific_driver_description

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_prefix

	
nidigital.Session.specific_driver_prefix

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_PREFIX

specific_driver_revision

	
nidigital.Session.specific_driver_revision

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

	
nidigital.Session.specific_driver_vendor

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_VENDOR

start_label

	
nidigital.Session.start_label

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_START_LABEL

start_trigger_terminal_name

	
nidigital.Session.start_trigger_terminal_name

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_START_TRIGGER_TERMINAL_NAME

start_trigger_type

	
nidigital.Session.start_trigger_type

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_START_TRIGGER_TYPE

supported_instrument_models

	
nidigital.Session.supported_instrument_models

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_SUPPORTED_INSTRUMENT_MODELS

tdr_endpoint_termination

	
nidigital.Session.tdr_endpoint_termination

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TDREndpointTermination

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_TDR_ENDPOINT_TERMINATION

tdr_offset

	
nidigital.Session.tdr_offset

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_TDR_OFFSET

termination_mode

	
nidigital.Session.termination_mode

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TerminationMode

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_TERMINATION_MODE

timing_absolute_delay

	
nidigital.Session.timing_absolute_delay

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_TIMING_ABSOLUTE_DELAY

timing_absolute_delay_enabled

	
nidigital.Session.timing_absolute_delay_enabled

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_TIMING_ABSOLUTE_DELAY_ENABLED

vih

	
nidigital.Session.vih

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_VIH

vil

	
nidigital.Session.vil

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_VIL

voh

	
nidigital.Session.voh

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_VOH

vol

	
nidigital.Session.vol

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_VOL

vterm

	
nidigital.Session.vterm

	
Tip

This property can use repeated capabilities. If set or get directly on the
nidigital.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nidigital.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDIGITAL_ATTR_VTERM

NI-TClk Support

	
nidigital.Session.tclk

	This is used to get and set NI-TClk attributes on the session.

See also

See nitclk.SessionReference for a complete list of attributes.

Session

	Session

	Methods

	abort

	abort_keep_alive

	apply_levels_and_timing

	apply_tdr_offsets

	burst_pattern

	clock_generator_abort

	clock_generator_generate_clock

	close

	commit

	configure_active_load_levels

	configure_pattern_burst_sites

	configure_time_set_compare_edges_strobe

	configure_time_set_compare_edges_strobe2x

	configure_time_set_drive_edges

	configure_time_set_drive_edges2x

	configure_time_set_drive_format

	configure_time_set_edge

	configure_time_set_edge_multiplier

	configure_time_set_period

	configure_voltage_levels

	create_capture_waveform_from_file_digicapture

	create_capture_waveform_parallel

	create_capture_waveform_serial

	create_source_waveform_from_file_tdms

	create_source_waveform_parallel

	create_source_waveform_serial

	create_time_set

	delete_all_time_sets

	disable_sites

	enable_sites

	fetch_capture_waveform

	fetch_history_ram_cycle_information

	frequency_counter_measure_frequency

	get_channel_names

	get_fail_count

	get_history_ram_sample_count

	get_pattern_name

	get_pattern_pin_names

	get_pin_results_pin_information

	get_site_pass_fail

	get_time_set_drive_format

	get_time_set_edge

	get_time_set_edge_multiplier

	get_time_set_name

	get_time_set_period

	initiate

	is_done

	is_site_enabled

	load_pattern

	load_pin_map

	load_specifications_levels_and_timing

	lock

	ppmu_measure

	ppmu_source

	read_sequencer_flag

	read_sequencer_register

	read_static

	reset

	reset_device

	self_calibrate

	self_test

	send_software_edge_trigger

	tdr

	unload_all_patterns

	unload_specifications

	unlock

	wait_until_done

	write_sequencer_flag

	write_sequencer_register

	write_source_waveform_broadcast

	write_source_waveform_data_from_file_tdms

	write_source_waveform_site_unique

	write_static

	Properties

	active_load_ioh

	active_load_iol

	active_load_vcom

	cache

	channel_count

	clock_generator_frequency

	clock_generator_is_running

	conditional_jump_trigger_terminal_name

	conditional_jump_trigger_type

	cycle_number_history_ram_trigger_cycle_number

	digital_edge_conditional_jump_trigger_edge

	digital_edge_conditional_jump_trigger_source

	digital_edge_start_trigger_edge

	digital_edge_start_trigger_source

	driver_setup

	exported_conditional_jump_trigger_output_terminal

	exported_pattern_opcode_event_output_terminal

	exported_start_trigger_output_terminal

	frequency_counter_measurement_time

	group_capabilities

	halt_on_keep_alive_opcode

	history_ram_buffer_size_per_site

	history_ram_cycles_to_acquire

	history_ram_max_samples_to_acquire_per_site

	history_ram_number_of_samples_is_finite

	history_ram_pretrigger_samples

	history_ram_trigger_type

	instrument_firmware_revision

	instrument_manufacturer

	instrument_model

	interchange_check

	io_resource_descriptor

	is_keep_alive_active

	logical_name

	mask_compare

	pattern_label_history_ram_trigger_cycle_offset

	pattern_label_history_ram_trigger_label

	pattern_label_history_ram_trigger_vector_offset

	pattern_opcode_event_terminal_name

	ppmu_allow_extended_voltage_range

	ppmu_aperture_time

	ppmu_aperture_time_units

	ppmu_current_level

	ppmu_current_level_range

	ppmu_current_limit

	ppmu_current_limit_behavior

	ppmu_current_limit_range

	ppmu_current_limit_supported

	ppmu_output_function

	ppmu_voltage_level

	ppmu_voltage_limit_high

	ppmu_voltage_limit_low

	query_instrument_status

	range_check

	record_coercions

	selected_function

	sequencer_flag_terminal_name

	serial_number

	simulate

	specific_driver_class_spec_major_version

	specific_driver_class_spec_minor_version

	specific_driver_description

	specific_driver_prefix

	specific_driver_revision

	specific_driver_vendor

	start_label

	start_trigger_terminal_name

	start_trigger_type

	supported_instrument_models

	tdr_endpoint_termination

	tdr_offset

	termination_mode

	timing_absolute_delay

	timing_absolute_delay_enabled

	vih

	vil

	voh

	vol

	vterm

	NI-TClk Support

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the
underlying driver function call. This can be the actual function based on the Session
method being called, or it can be the appropriate Get/Set Attribute function, such as niDigital_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities.
The parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or
an integer. If it is a string, you can indicate a range using the same format as the driver: ‘0-2’ or
‘0:2’

Some repeated capabilities use a prefix before the number and this is optional

channels

	
nidigital.Session.channels[]

	session.channels['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

pins

	
nidigital.Session.pins[]

	session.pins['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

instruments

	
nidigital.Session.instruments[]

	session.instruments['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

pattern_opcode_events

	
nidigital.Session.pattern_opcode_events[]

	If no prefix is added to the items in the parameter, the correct prefix will be added when
the driver function call is made.

session.pattern_opcode_events['0-2'].channel_enabled = True

passes a string of ‘patternOpcodeEvent0, patternOpcodeEvent1, patternOpcodeEvent2’ to the set attribute function.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix
for the specific repeated capability.

session.pattern_opcode_events['patternOpcodeEvent0-patternOpcodeEvent2'].channel_enabled = True

passes a string of ‘patternOpcodeEvent0, patternOpcodeEvent1, patternOpcodeEvent2’ to the set attribute function.

conditional_jump_triggers

	
nidigital.Session.conditional_jump_triggers[]

	If no prefix is added to the items in the parameter, the correct prefix will be added when
the driver function call is made.

session.conditional_jump_triggers['0-2'].channel_enabled = True

passes a string of ‘conditionalJumpTrigger0, conditionalJumpTrigger1, conditionalJumpTrigger2’ to the set attribute function.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix
for the specific repeated capability.

session.conditional_jump_triggers['conditionalJumpTrigger0-conditionalJumpTrigger2'].channel_enabled = True

passes a string of ‘conditionalJumpTrigger0, conditionalJumpTrigger1, conditionalJumpTrigger2’ to the set attribute function.

sites

	
nidigital.Session.sites[]

	If no prefix is added to the items in the parameter, the correct prefix will be added when
the driver function call is made.

session.sites['0-2'].channel_enabled = True

passes a string of ‘site0, site1, site2’ to the set attribute function.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix
for the specific repeated capability.

session.sites['site0-site2'].channel_enabled = True

passes a string of ‘site0, site1, site2’ to the set attribute function.

Enums

Enums used in NI-Digital Pattern Driver

BitOrder

	
class nidigital.BitOrder

	
	
MSB

	

	
LSB

	

DigitalEdge

	
class nidigital.DigitalEdge

	
	
RISING

	

	
FALLING

	

DriveFormat

	
class nidigital.DriveFormat

	
	
NR

	

	
RL

	

	
RH

	

	
SBC

	

HistoryRAMCyclesToAcquire

	
class nidigital.HistoryRAMCyclesToAcquire

	
	
FAILED

	

	
ALL

	

HistoryRAMTriggerType

	
class nidigital.HistoryRAMTriggerType

	
	
FIRST_FAILURE

	

	
CYCLE_NUMBER

	

	
PATTERN_LABEL

	

PPMUApertureTimeUnits

	
class nidigital.PPMUApertureTimeUnits

	
	
SECONDS

	

PPMUCurrentLimitBehavior

	
class nidigital.PPMUCurrentLimitBehavior

	
	
REGULATE

	

PPMUMeasurementType

	
class nidigital.PPMUMeasurementType

	
	
CURRENT

	

	
VOLTAGE

	

PPMUOutputFunction

	
class nidigital.PPMUOutputFunction

	
	
VOLTAGE

	

	
CURRENT

	

PinState

	
class nidigital.PinState

	
	
ZERO

	

	
ONE

	

	
L

	

	
H

	

	
X

	

	
M

	

	
V

	

	
D

	

	
E

	

	
NOT_A_PIN_STATE

	

	
PIN_STATE_NOT_ACQUIRED

	

SelectedFunction

	
class nidigital.SelectedFunction

	
	
DIGITAL

	

	
PPMU

	

	
OFF

	

	
DISCONNECT

	

SequencerFlag

	
class nidigital.SequencerFlag

	
	
FLAG0

	

	
FLAG1

	

	
FLAG2

	

	
FLAG3

	

SequencerRegister

	
class nidigital.SequencerRegister

	
	
REGISTER0

	

	
REGISTER1

	

	
REGISTER2

	

	
REGISTER3

	

	
REGISTER4

	

	
REGISTER5

	

	
REGISTER6

	

	
REGISTER7

	

	
REGISTER8

	

	
REGISTER9

	

	
REGISTER10

	

	
REGISTER11

	

	
REGISTER12

	

	
REGISTER13

	

	
REGISTER14

	

	
REGISTER15

	

SoftwareTrigger

	
class nidigital.SoftwareTrigger

	
	
START

	

	
CONDITIONAL_JUMP

	

SourceDataMapping

	
class nidigital.SourceDataMapping

	
	
BROADCAST

	

	
SITE_UNIQUE

	

TDREndpointTermination

	
class nidigital.TDREndpointTermination

	
	
OPEN

	

	
SHORT_TO_GROUND

	

TerminationMode

	
class nidigital.TerminationMode

	
	
ACTIVE_LOAD

	

	
VTERM

	

	
HIGH_Z

	

TimeSetEdgeType

	
class nidigital.TimeSetEdgeType

	
	
DRIVE_ON

	

	
DRIVE_DATA

	

	
DRIVE_RETURN

	

	
DRIVE_OFF

	

	
COMPARE_STROBE

	

	
DRIVE_DATA2

	

	
DRIVE_RETURN2

	

	
COMPARE_STROBE2

	

TriggerType

	
class nidigital.TriggerType

	
	
NONE

	

	
DIGITAL_EDGE

	

	
SOFTWARE

	

WriteStaticPinState

	
class nidigital.WriteStaticPinState

	
	
ZERO

	

	
ONE

	

	
X

	

Exceptions and Warnings

Error

	
exception nidigital.errors.Error

	Base exception type that all NI-Digital Pattern Driver exceptions derive from

DriverError

	
exception nidigital.errors.DriverError

	An error originating from the NI-Digital Pattern Driver driver

UnsupportedConfigurationError

	
exception nidigital.errors.UnsupportedConfigurationError

	An error due to using this module in an usupported platform.

DriverNotInstalledError

	
exception nidigital.errors.DriverNotInstalledError

	An error due to using this module without the driver runtime installed.

InvalidRepeatedCapabilityError

	
exception nidigital.errors.InvalidRepeatedCapabilityError

	An error due to an invalid character in a repeated capability

SelfTestError

	
exception nidigital.errors.SelfTestError

	An error due to a failed self-test

DriverWarning

	
exception nidigital.errors.DriverWarning

	A warning originating from the NI-Digital Pattern Driver driver

Examples

You can download all nidigital examples here [https://github.com/ni/nimi-python/releases/download/1.3.1/nidigital_examples.zip]

nidigital_do_nothing.py

(nidigital_do_nothing.py) [https://github.com/ni/nimi-python/blob/master/src/nidigital/examples/nidigital_do_nothing.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	#!/usr/bin/python

This is an empty example that doesn't really do anything. Just needed temporarily to make the build process happy until
we add real examples
import argparse
import nidigital
import sys

def example(resource_name, options):
 pass

def _main(argsv):
 parser = argparse.ArgumentParser(description='Performs a waveform acquisition using the NI-Digital Pattern Driver API.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a <>.')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.option_string)

def main():
 _main(sys.argv[1:])

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '6570', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', options)

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:6570;BoardType:PXIe',]
 _main(cmd_line)

if __name__ == '__main__':
 main()

nidmm module

Installation

As a prerequisite to using the nidmm module, you must install the NI-DMM runtime on your system. Visit ni.com/downloads [http://www.ni.com/downloads/] to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-DMM) can be installed with pip [http://pypi.python.org/pypi/pip]:

$ python -m pip install nidmm~=1.3.1

Or easy_install from
setuptools [http://pypi.python.org/pypi/setuptools]:

$ python -m easy_install nidmm

Usage

The following is a basic example of using the nidmm module to open a session to a DMM and perform a 5.5 digits of resolution voltage measurement in the 10 V range.

import nidmm
with nidmm.Session("Dev1") as session:
 session.configureMeasurementDigits(nidmm.Function.DC_VOLTS, 10, 5.5)
 print("Measurement: " + str(session.read()))

Additional examples for NI-DMM are located in src/nidmm/examples/ directory.

API Reference

	Session

	Methods
	abort

	close

	configure_measurement_absolute

	configure_measurement_digits

	configure_multi_point

	configure_rtd_custom

	configure_rtd_type

	configure_thermistor_custom

	configure_thermocouple

	configure_trigger

	configure_waveform_acquisition

	disable

	export_attribute_configuration_buffer

	export_attribute_configuration_file

	fetch

	fetch_multi_point

	fetch_waveform

	fetch_waveform_into

	get_cal_date_and_time

	get_dev_temp

	get_ext_cal_recommended_interval

	get_last_cal_temp

	get_self_cal_supported

	import_attribute_configuration_buffer

	import_attribute_configuration_file

	initiate

	lock

	perform_open_cable_comp

	perform_short_cable_comp

	read

	read_multi_point

	read_status

	read_waveform

	reset

	reset_with_defaults

	self_cal

	self_test

	send_software_trigger

	unlock

	Properties
	ac_max_freq

	ac_min_freq

	adc_calibration

	aperture_time

	aperture_time_units

	auto_range_value

	auto_zero

	buffer_size

	cable_comp_type

	channel_count

	current_source

	dc_bias

	dc_noise_rejection

	driver_setup

	freq_voltage_auto_range

	freq_voltage_range

	function

	input_resistance

	instrument_firmware_revision

	instrument_manufacturer

	instrument_model

	instrument_product_id

	io_resource_descriptor

	lc_calculation_model

	lc_number_meas_to_average

	logical_name

	meas_complete_dest

	number_of_averages

	offset_comp_ohms

	open_cable_comp_conductance

	open_cable_comp_susceptance

	operation_mode

	powerline_freq

	range

	resolution_absolute

	resolution_digits

	sample_count

	sample_interval

	sample_trigger

	serial_number

	settle_time

	short_cable_comp_reactance

	short_cable_comp_resistance

	simulate

	specific_driver_description

	specific_driver_major_version

	specific_driver_minor_version

	specific_driver_revision

	specific_driver_vendor

	supported_instrument_models

	temp_rtd_a

	temp_rtd_b

	temp_rtd_c

	temp_rtd_res

	temp_rtd_type

	temp_tc_fixed_ref_junc

	temp_tc_ref_junc_type

	temp_tc_type

	temp_thermistor_a

	temp_thermistor_b

	temp_thermistor_c

	temp_thermistor_type

	temp_transducer_type

	trigger_count

	trigger_delay

	trigger_source

	waveform_coupling

	waveform_points

	waveform_rate

	Enums
	ADCCalibration

	AcquisitionStatus

	ApertureTimeUnits

	AutoZero

	CableCompensationType

	DCNoiseRejection

	Function

	LCCalculationModel

	MeasurementCompleteDest

	OperationMode

	RTDType

	SampleTrigger

	ThermistorType

	ThermocoupleReferenceJunctionType

	ThermocoupleType

	TransducerType

	TriggerSource

	WaveformCoupling

	Exceptions and Warnings
	Error

	DriverError

	UnsupportedConfigurationError

	DriverNotInstalledError

	InvalidRepeatedCapabilityError

	SelfTestError

	DriverWarning

	Examples
	nidmm_fetch_waveform.py

	nidmm_measurement.py

	nidmm_multi_point_measurement.py

Session

	
class nidmm.Session(self, resource_name, id_query=False, reset_device=False, options={})

	This method completes the following tasks:

	Creates a new IVI instrument driver session and, optionally, sets the
initial state of the following session properties:
nidmm.Session.RANGE_CHECK, nidmm.Session.QUERY_INSTR_STATUS,
nidmm.Session.CACHE, nidmm.Session.simulate,
nidmm.Session.RECORD_COERCIONS.

	Opens a session to the device you specify for the Resource_Name
parameter. If the ID_Query parameter is set to True, this
method queries the instrument ID and checks that it is valid for
this instrument driver.

	If the Reset_Device parameter is set to True, this method
resets the instrument to a known state. Sends initialization commands
to set the instrument to the state necessary for the operation of the
instrument driver.

	Returns a ViSession handle that you use to identify the instrument in
all subsequent instrument driver method calls.

Note

One or more of the referenced properties are not in the Python API for this driver.

	Parameters

	
	resource_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –
Caution

All IVI names for the Resource_Name, such as logical names or
virtual names, are case-sensitive. If you use logical names, driver
session names, or virtual names in your program, you must make sure that
the name you use matches the name in the IVI Configuration Store file
exactly, without any variations in the case of the characters in the
name.

Contains the resource_name of the device to initialize. The
resource_name is assigned in Measurement & Automation Explorer
(MAX). Refer to Related
Documentation
for the NI Digital Multimeters Getting Started Guide for more
information about configuring and testing the DMM in MAX.

Valid Syntax:

	NI-DAQmx name

	DAQ::NI-DAQmx name[::INSTR]

	DAQ::Traditional NI-DAQ device number[::INSTR]

	IVI logical name

	id_query (bool [https://docs.python.org/3/library/functions.html#bool]) – Verifies that the device you initialize is one that the driver supports.
NI-DMM automatically performs this query, so setting this parameter is
not necessary.
Defined Values:

	True (default)

	1

	Perform ID Query

	False

	0

	Skip ID Query

	reset_device (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether to reset the instrument during the initialization
procedure.
Defined Values:

	True (default)

	1

	Reset Device

	False

	0

	Don’t Reset

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned
value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not
specify a value for a property, the default value is used.

Advanced Example:
{ ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’, ‘BoardType’: ‘<type>’ } }

	Property

	Default

	range_check

	True

	query_instrument_status

	False

	cache

	True

	simulate

	False

	record_value_coersions

	False

	driver_setup

	{}

Methods

abort

	
nidmm.Session.abort()

	Aborts a previously initiated measurement and returns the DMM to the
Idle state.

close

	
nidmm.Session.close()

	Closes the specified session and deallocates resources that it reserved.

Note

This method is not needed when using the session context manager

configure_measurement_absolute

	
nidmm.Session.configure_measurement_absolute(measurement_function, range, resolution_absolute)

	Configures the common properties of the measurement. These properties
include nidmm.Session.method, nidmm.Session.range, and
nidmm.Session.resolution_absolute.

	Parameters

	
	measurement_function (nidmm.Function) – Specifies the measurement_function used to acquire the measurement.
The driver sets nidmm.Session.method to this value.

	range (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the range for the method specified in the
Measurement_Function parameter. When frequency is specified in the
Measurement_Function parameter, you must supply the minimum
frequency expected in the range parameter. For example, you must
type in 100 Hz if you are measuring 101 Hz or higher.
For all other methods, you must supply a range that exceeds the
value that you are measuring. For example, you must type in 10 V if you
are measuring 9 V. range values are coerced up to the closest input
range. Refer to the Devices
Overview for a list of valid
ranges. The driver sets nidmm.Session.range to this value. The default is
0.02 V.

	NIDMM_VAL_AUTO_RANGE_ON

	-1.0

	NI-DMM performs an Auto Range before acquiring the measurement.

	NIDMM_VAL_AUTO_RANGE_OFF

	-2.0

	NI-DMM sets the Range to the current nidmm.Session.auto_range_value and uses this range for all subsequent measurements until the measurement configuration is changed.

	NIDMM_VAL_AUTO_RANGE_ONCE

	-3.0

	NI-DMM performs an Auto Range before acquiring the measurement. The nidmm.Session.auto_range_value is stored and used for all subsequent measurements until the measurement configuration is changed.

Note

The NI 4050, NI 4060, and NI 4065 only support Auto Range when the
trigger and sample trigger are set to IMMEDIATE.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	resolution_absolute (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the absolute resolution for the measurement. NI-DMM sets
nidmm.Session.resolution_absolute to this value. The PXIe-4080/4081/4082
uses the resolution you specify. The NI 4065 and NI 4070/4071/4072
ignore this parameter when the Range parameter is set to
NIDMM_VAL_AUTO_RANGE_ON (-1.0) or NIDMM_VAL_AUTO_RANGE_ONCE
(-3.0). The default is 0.001 V.

Note

NI-DMM ignores this parameter for capacitance and inductance
measurements on the NI 4072. To achieve better resolution for such
measurements, use the nidmm.Session.lc_number_meas_to_average
property.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

configure_measurement_digits

	
nidmm.Session.configure_measurement_digits(measurement_function, range, resolution_digits)

	Configures the common properties of the measurement. These properties
include nidmm.Session.method, nidmm.Session.range, and
nidmm.Session.resolution_digits.

	Parameters

	
	measurement_function (nidmm.Function) – Specifies the measurement_function used to acquire the measurement.
The driver sets nidmm.Session.method to this value.

	range (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the range for the method specified in the
Measurement_Function parameter. When frequency is specified in the
Measurement_Function parameter, you must supply the minimum
frequency expected in the range parameter. For example, you must
type in 100 Hz if you are measuring 101 Hz or higher.
For all other methods, you must supply a range that exceeds the value
that you are measuring. For example, you must type in 10 V if you are
measuring 9 V. range values are coerced up to the closest input range.
Refer to the Devices
Overview for a list of valid
ranges. The driver sets nidmm.Session.range to this value. The default is
0.02 V.

	NIDMM_VAL_AUTO_RANGE_ON

	-1.0

	NI-DMM performs an Auto Range before acquiring the measurement.

	NIDMM_VAL_AUTO_RANGE_OFF

	-2.0

	NI-DMM sets the Range to the current nidmm.Session.auto_range_value and uses this range for all subsequent measurements until the measurement configuration is changed.

	NIDMM_VAL_AUTO_RANGE_ONCE

	-3.0

	NI-DMM performs an Auto Range before acquiring the measurement. The nidmm.Session.auto_range_value is stored and used for all subsequent measurements until the measurement configuration is changed.

Note

The NI 4050, NI 4060, and NI 4065 only support Auto Range when the
trigger and sample trigger are set to IMMEDIATE.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	resolution_digits (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the resolution of the measurement in digits. The driver sets
the Devices Overview for a
list of valid ranges. The driver sets nidmm.Session.resolution_digits
property to this value. The PXIe-4080/4081/4082 uses the resolution you
specify. The NI 4065 and NI 4070/4071/4072 ignore this parameter when
the Range parameter is set to NIDMM_VAL_AUTO_RANGE_ON (-1.0) or
NIDMM_VAL_AUTO_RANGE_ONCE (-3.0). The default is 5½.

Note

NI-DMM ignores this parameter for capacitance and inductance
measurements on the NI 4072. To achieve better resolution for such
measurements, use the nidmm.Session.lc_number_meas_to_average
property.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

configure_multi_point

	
nidmm.Session.configure_multi_point(trigger_count, sample_count, sample_trigger=nidmm.SampleTrigger.IMMEDIATE, sample_interval=hightime.timedelta(seconds=-1))

	Configures the properties for multipoint measurements. These properties
include nidmm.Session.trigger_count, nidmm.Session.sample_count,
nidmm.Session.sample_trigger, and nidmm.Session.sample_interval.

For continuous acquisitions, set nidmm.Session.trigger_count or
nidmm.Session.sample_count to zero. For more information, refer to
Multiple Point
Acquisitions,
Triggering, and Using
Switches.

	Parameters

	
	trigger_count (int [https://docs.python.org/3/library/functions.html#int]) – Sets the number of triggers you want the DMM to receive before returning
to the Idle state. The driver sets nidmm.Session.trigger_count to this
value. The default value is 1.

	sample_count (int [https://docs.python.org/3/library/functions.html#int]) – Sets the number of measurements the DMM makes in each measurement
sequence initiated by a trigger. The driver sets
nidmm.Session.sample_count to this value. The default value is 1.

	sample_trigger (nidmm.SampleTrigger) – Specifies the sample_trigger source you want to use. The driver
sets nidmm.Session.sample_trigger to this value. The default is
Immediate.

Note

To determine which values are supported by each device, refer to the
LabWindows/CVI Trigger
Routing section.

	sample_interval (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – Sets the amount of time in seconds the DMM waits between measurement
cycles. The driver sets nidmm.Session.sample_interval to this value.
Specify a sample interval to add settling time between measurement
cycles or to decrease the measurement rate. sample_interval only
applies when the Sample_Trigger is set to INTERVAL.

On the NI 4060, the sample_interval value is used as the settling
time. When sample interval is set to 0, the DMM does not settle between
measurement cycles. The NI 4065 and NI 4070/4071/4072 use the value
specified in sample_interval as additional delay. The default value
(-1) ensures that the DMM settles for a recommended time. This is the
same as using an Immediate trigger.

Note

This property is not used on the NI 4080/4081/4082 and the NI 4050.

configure_rtd_custom

	
nidmm.Session.configure_rtd_custom(rtd_a, rtd_b, rtd_c)

	Configures the A, B, and C parameters for a custom RTD.

	Parameters

	
	rtd_a (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the Callendar-Van Dusen A coefficient for RTD scaling when RTD
Type parameter is set to Custom in the nidmm.Session.configure_rtd_type() method.
The default is 3.9083e-3 (Pt3851)

	rtd_b (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the Callendar-Van Dusen B coefficient for RTD scaling when RTD
Type parameter is set to Custom in the nidmm.Session.configure_rtd_type() method.
The default is -5.775e-7 (Pt3851).

	rtd_c (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the Callendar-Van Dusen C coefficient for RTD scaling when RTD
Type parameter is set to Custom in the nidmm.Session.configure_rtd_type() method.
The default is -4.183e-12 (Pt3851).

configure_rtd_type

	
nidmm.Session.configure_rtd_type(rtd_type, rtd_resistance)

	Configures the RTD Type and RTD Resistance parameters for an RTD.

	Parameters

	
	rtd_type (nidmm.RTDType) – Specifies the type of RTD used to measure the temperature resistance.
NI-DMM uses this value to set the RTD Type property. The default is
PT3851.

	Enum

	Standards

	Material

	TCR (α)

	Typical R0 (Ω)

	Notes

	

	Callendar-Van Dusen Coefficient

	
	
	
	
	
	

	PT3851

	IEC-751 DIN 43760 BS 1904 ASTM-E1137 EN-60751

	Platinum

	.003851

	100 Ω 1000 Ω

	A = 3.9083 × 10–3 B = –5.775×10:sup:–7 C = –4.183×10:sup:–12

	Most common RTDs

	PT3750

	Low-cost vendor compliant RTD*

	Platinum

	.003750

	1000 Ω

	A = 3.81 × 10–3 B = –6.02×10:sup:–7 C = –6.0×10:sup:–12

	Low-cost RTD

	PT3916

	JISC 1604

	Platinum

	.003916

	100 Ω

	A = 3.9739 × 10–3 B = –5.870×10:sup:–7 C = –4.4 ×10–12

	Used in primarily in Japan

	PT3920

	US Industrial Standard D-100 American

	Platinum

	.003920

	100 Ω

	A = 3.9787 × 10–3 B = –5.8686×10:sup:–7 C = –4.167 ×10–12

	Low-cost RTD

	PT3911

	US Industrial Standard American

	Platinum

	.003911

	100 Ω

	A = 3.9692 × 10–3 B = –5.8495×10:sup:–7 C = –4.233 ×10–12

	Low-cost RTD

	PT3928

	ITS-90

	Platinum

	.003928

	100 Ω

	A = 3.9888 × 10–3 B = –5.915×10:sup:–7 C = –3.85 ×10–12

	The definition of temperature

	*No standard. Check the TCR.

	
	
	
	
	
	

	rtd_resistance (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the RTD resistance in ohms at 0 °C. NI-DMM uses this value to
set the RTD Resistance property. The default is 100 (Ω).

configure_thermistor_custom

	
nidmm.Session.configure_thermistor_custom(thermistor_a, thermistor_b, thermistor_c)

	Configures the A, B, and C parameters for a custom thermistor.

	Parameters

	
	thermistor_a (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the Steinhart-Hart A coefficient for thermistor scaling when
Thermistor Type is set to Custom in the nidmm.Session.ConfigureThermistorType()
method. The default is 1.0295e-3 (44006).

Note

One or more of the referenced methods are not in the Python API for this driver.

	thermistor_b (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the Steinhart-Hart B coefficient for thermistor scaling when
Thermistor Type is set to Custom in the nidmm.Session.ConfigureThermistorType()
method. The default is 2.391e-4 (44006).

Note

One or more of the referenced methods are not in the Python API for this driver.

	thermistor_c (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the Steinhart-Hart C coefficient for thermistor scaling when
Thermistor Type is set to Custom in the nidmm.Session.ConfigureThermistorType()
method. The default is 1.568e-7 (44006).

Note

One or more of the referenced methods are not in the Python API for this driver.

configure_thermocouple

	
nidmm.Session.configure_thermocouple(thermocouple_type, reference_junction_type=nidmm.ThermocoupleReferenceJunctionType.FIXED)

	Configures the thermocouple type and reference junction type for a
chosen thermocouple.

	Parameters

	
	thermocouple_type (nidmm.ThermocoupleType) – Specifies the type of thermocouple used to measure the temperature.
NI-DMM uses this value to set the Thermocouple Type property. The
default is J.

	B

	Thermocouple type B

	E

	Thermocouple type E

	J

	Thermocouple type J

	K

	Thermocouple type K

	N

	Thermocouple type N

	R

	Thermocouple type R

	S

	Thermocouple type S

	T

	Thermocouple type T

	reference_junction_type (nidmm.ThermocoupleReferenceJunctionType) – Specifies the type of reference junction to be used in the reference
junction compensation of a thermocouple measurement. NI-DMM uses this
value to set the Reference Junction Type property. The only supported
value is NIDMM_VAL_TEMP_REF_JUNC_FIXED.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

configure_trigger

	
nidmm.Session.configure_trigger(trigger_source, trigger_delay=hightime.timedelta(seconds=-1))

	Configures the DMM Trigger_Source and Trigger_Delay. Refer to
Triggering and Using
Switches for more
information.

	Parameters

	
	trigger_source (nidmm.TriggerSource) – Specifies the trigger_source that initiates the acquisition. The
driver sets nidmm.Session.trigger_source to this value. Software
configures the DMM to wait until nidmm.Session.send_software_trigger() is called
before triggering the DMM.

Note

To determine which values are supported by each device, refer to the
LabWindows/CVI Trigger
Routing section.

	trigger_delay (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – Specifies the time that the DMM waits after it has received a trigger
before taking a measurement. The driver sets the
nidmm.Session.trigger_delay property to this value. By default,
trigger_delay is NIDMM_VAL_AUTO_DELAY (-1), which means the DMM
waits an appropriate settling time before taking the measurement. On the
NI 4060, if you set trigger_delay to 0, the DMM does not settle
before taking the measurement. The NI 4065 and NI 4070/4071/4072 use the
value specified in trigger_delay as additional settling time.

Note

When using the NI 4050, Trigger_Delay must be set to
NIDMM_VAL_AUTO_DELAY (-1).

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

configure_waveform_acquisition

	
nidmm.Session.configure_waveform_acquisition(measurement_function, range, rate, waveform_points)

	Configures the DMM for waveform acquisitions. This feature is supported
on the NI 4080/4081/4082 and the NI 4070/4071/4072.

	Parameters

	
	measurement_function (nidmm.Function) – Specifies the measurement_function used in a waveform acquisition.
The driver sets nidmm.Session.method to this value.

	WAVEFORM_VOLTAGE (default)

	1003

	Voltage Waveform

	WAVEFORM_CURRENT

	1004

	Current Waveform

	range (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the expected maximum amplitude of the input signal and sets
the range for the Measurement_Function. NI-DMM sets
nidmm.Session.range to this value. range values are coerced up to the
closest input range. The default is 10.0.

For valid ranges refer to the topics in
Devices.

Auto-ranging is not supported during waveform acquisitions.

	rate (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the rate of the acquisition in samples per second. NI-DMM
sets nidmm.Session.waveform_rate to this value.

The valid Range is 10.0–1,800,000 S/s. rate values are coerced
to the closest integer divisor of 1,800,000. The default value is
1,800,000.

	waveform_points (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the number of points to acquire before the waveform
acquisition completes. NI-DMM sets nidmm.Session.waveform_points to this
value.

To calculate the maximum and minimum number of waveform points that you
can acquire in one acquisition, refer to the Waveform Acquisition
Measurement Cycle.

The default value is 500.

disable

	
nidmm.Session.disable()

	Places the instrument in a quiescent state where it has minimal or no
impact on the system to which it is connected. If a measurement is in
progress when this method is called, the measurement is aborted.

export_attribute_configuration_buffer

	
nidmm.Session.export_attribute_configuration_buffer()

	Exports the property configuration of the session to the specified
configuration buffer.

You can export and import session property configurations only between
devices with identical model numbers.

This method verifies that the properties you have configured for the
session are valid. If the configuration is invalid, NI‑DMM returns an
error.

Coercion Behavior for Certain Devices

Imported and exported property configurations contain coerced values
for the following NI‑DMM devices:

	PXI/PCI/PCIe/USB‑4065

	PXI/PCI‑4070

	PXI‑4071

	PXI‑4072

NI‑DMM coerces property values when the value you set is within the
allowed range for the property but is not one of the discrete valid
values the property supports. For example, for a property that
coerces values up, if you choose a value of 4 when the adjacent valid
values are 1 and 10, the property coerces the value to 10.

Related Topics:

Using Properties and Properties with
NI‑DMM

Setting Properties Before Reading
Properties

Note

Not supported on the PCMCIA‑4050 or the PXI/PCI‑4060.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Returns

	Specifies the byte array buffer to be populated with the exported
property configuration.

export_attribute_configuration_file

	
nidmm.Session.export_attribute_configuration_file(file_path)

	Exports the property configuration of the session to the specified
file.

You can export and import session property configurations only between
devices with identical model numbers.

This method verifies that the properties you have configured for the
session are valid. If the configuration is invalid, NI‑DMM returns an
error.

Coercion Behavior for Certain Devices

Imported and exported property configurations contain coerced values
for the following NI‑DMM devices:

	PXI/PCI/PCIe/USB‑4065

	PXI/PCI‑4070

	PXI‑4071

	PXI‑4072

NI‑DMM coerces property values when the value you set is within the
allowed range for the property but is not one of the discrete valid
values the property supports. For example, for a property that
coerces values up, if you choose a value of 4 when the adjacent valid
values are 1 and 10, the property coerces the value to 10.

Related Topics:

Using Properties and Properties with
NI‑DMM

Setting Properties Before Reading
Properties

Note

Not supported on the PCMCIA‑4050 or the PXI/PCI‑4060.

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the absolute path to the file to contain the exported
property configuration. If you specify an empty or relative path, this
method returns an error.
Default file extension: .nidmmconfig

fetch

	
nidmm.Session.fetch(maximum_time=hightime.timedelta(milliseconds=-1))

	Returns the value from a previously initiated measurement. You must call
nidmm.Session._initiate() before calling this method.

	Parameters

	maximum_time (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or int in milliseconds) – Specifies the maximum_time allowed for this method to complete in
milliseconds. If the method does not complete within this time
interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been
received, or if the specified timeout is not long enough for the
acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	The measured value returned from the DMM.

fetch_multi_point

	
nidmm.Session.fetch_multi_point(array_size, maximum_time=hightime.timedelta(milliseconds=-1))

	Returns an array of values from a previously initiated multipoint
measurement. The number of measurements the DMM makes is determined by
the values you specify for the Trigger_Count and Sample_Count
parameters of nidmm.Session.configure_multi_point(). You must first call
nidmm.Session._initiate() to initiate a measurement before calling this method.

	Parameters

	
	array_size (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the number of measurements to acquire. The maximum number of
measurements for a finite acquisition is the (Trigger Count x
Sample Count) parameters in nidmm.Session.configure_multi_point().

For continuous acquisitions, up to 100,000 points can be returned at
once. The number of measurements can be a subset. The valid range is any
positive ViInt32. The default value is 1.

	maximum_time (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or int in milliseconds) – Specifies the maximum_time allowed for this method to complete in
milliseconds. If the method does not complete within this time
interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been
received, or if the specified timeout is not long enough for the
acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	Return type

	tuple (reading_array, actual_number_of_points)

WHERE

reading_array (array.array(“d”)):

An array of measurement values.

Note

The size of the Reading_Array must be at least the size that you
specify for the Array_Size parameter.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

fetch_waveform

	
nidmm.Session.fetch_waveform(array_size, maximum_time=hightime.timedelta(milliseconds=-1))

	For the NI 4080/4081/4082 and the NI 4070/4071/4072, returns an array of
values from a previously initiated waveform acquisition. You must call
nidmm.Session._initiate() before calling this method.

	Parameters

	
	array_size (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the number of waveform points to return. You specify the total
number of points that the DMM acquires in the Waveform Points
parameter of nidmm.Session.configure_waveform_acquisition(). The default value is
1.

	maximum_time (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or int in milliseconds) – Specifies the maximum_time allowed for this method to complete in
milliseconds. If the method does not complete within this time
interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been
received, or if the specified timeout is not long enough for the
acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	Return type

	tuple (waveform_array, actual_number_of_points)

WHERE

waveform_array (array.array(“d”)):

Waveform Array is an array of measurement values stored in waveform
data type.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

fetch_waveform_into

	
nidmm.Session.fetch_waveform_into(array_size, maximum_time=hightime.timedelta(milliseconds=-1))

	For the NI 4080/4081/4082 and the NI 4070/4071/4072, returns an array of
values from a previously initiated waveform acquisition. You must call
nidmm.Session._initiate() before calling this method.

	Parameters

	
	waveform_array (numpy.array(dtype=numpy.float64)) – Waveform Array is an array of measurement values stored in waveform
data type.

	maximum_time (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or int in milliseconds) – Specifies the maximum_time allowed for this method to complete in
milliseconds. If the method does not complete within this time
interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been
received, or if the specified timeout is not long enough for the
acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	Return type

	tuple (waveform_array, actual_number_of_points)

WHERE

waveform_array (numpy.array(dtype=numpy.float64)):

Waveform Array is an array of measurement values stored in waveform
data type.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

get_cal_date_and_time

	
nidmm.Session.get_cal_date_and_time(cal_type)

	Returns the date and time of the last calibration performed.

Note

The NI 4050 and NI 4060 are not supported.

	Parameters

	cal_type (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the type of calibration performed (external or self-calibration).

	NIDMM_VAL_INTERNAL_AREA (default)

	0

	Self-Calibration

	NIDMM_VAL_EXTERNAL_AREA

	1

	External Calibration

Note

The NI 4065 does not support self-calibration.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	Return type

	hightime.datetime

	Returns

	Indicates date and time of the last calibration.

get_dev_temp

	
nidmm.Session.get_dev_temp(options="")

	Returns the current Temperature of the device.

Note

The NI 4050 and NI 4060 are not supported.

	Parameters

	options (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reserved.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	Returns the current temperature of the device.

get_ext_cal_recommended_interval

	
nidmm.Session.get_ext_cal_recommended_interval()

	Returns the recommended interval between external recalibration in
Months.

Note

The NI 4050 and NI 4060 are not supported.

	Return type

	hightime.timedelta

	Returns

	Returns the recommended number of months between external
calibrations.

get_last_cal_temp

	
nidmm.Session.get_last_cal_temp(cal_type)

	Returns the Temperature during the last calibration procedure.

Note

The NI 4050 and NI 4060 are not supported.

	Parameters

	cal_type (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the type of calibration performed (external or
self-calibration).

	NIDMM_VAL_INTERNAL_AREA (default)

	0

	Self-Calibration

	NIDMM_VAL_EXTERNAL_AREA

	1

	External Calibration

Note

The NI 4065 does not support self-calibration.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	Returns the temperature during the last calibration.

get_self_cal_supported

	
nidmm.Session.get_self_cal_supported()

	Returns a Boolean value that expresses whether or not the DMM that you
are using can perform self-calibration.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	Returns whether Self Cal is supported for the device specified by the
given session.

	True

	1

	The DMM that you are using can perform self-calibration.

	False

	0

	The DMM that you are using cannot perform self-calibration.

import_attribute_configuration_buffer

	
nidmm.Session.import_attribute_configuration_buffer(configuration)

	Imports a property configuration to the session from the specified
configuration buffer.

You can export and import session property configurations only between
devices with identical model numbers.

Coercion Behavior for Certain Devices

Imported and exported property configurations contain coerced values
for the following NI‑DMM devices:

	PXI/PCI/PCIe/USB‑4065

	PXI/PCI‑4070

	PXI‑4071

	PXI‑4072

NI‑DMM coerces property values when the value you set is within the
allowed range for the property but is not one of the discrete valid
values the property supports. For example, for a property that
coerces values up, if you choose a value of 4 when the adjacent valid
values are 1 and 10, the property coerces the value to 10.

Related Topics:

Using Properties and Properties with
NI‑DMM

Setting Properties Before Reading
Properties

Note

Not supported on the PCMCIA‑4050 or the PXI/PCI‑4060.

	Parameters

	configuration (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Specifies the byte array buffer that contains the property
configuration to import.

import_attribute_configuration_file

	
nidmm.Session.import_attribute_configuration_file(file_path)

	Imports a property configuration to the session from the specified
file.

You can export and import session property configurations only between
devices with identical model numbers.

Coercion Behavior for Certain Devices

Imported and exported property configurations contain coerced values
for the following NI‑DMM devices:

	PXI/PCI/PCIe/USB‑4065

	PXI/PCI‑4070

	PXI‑4071

	PXI‑4072

NI‑DMM coerces property values when the value you set is within the
allowed range for the property but is not one of the discrete valid
values the property supports. For example, for a property that
coerces values up, if you choose a value of 4 when the adjacent valid
values are 1 and 10, the property coerces the value to 10.

Related Topics:

Using Properties and Properties with
NI‑DMM

Setting Properties Before Reading
Properties

Note

Not supported on the PCMCIA‑4050 or the PXI/PCI‑4060.

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the absolute path to the file containing the property
configuration to import. If you specify an empty or relative path, this
method returns an error.
Default File Extension: .nidmmconfig

initiate

	
nidmm.Session.initiate()

	Initiates an acquisition. After you call this method, the DMM leaves
the Idle state and enters the Wait-for-Trigger state. If trigger is set
to Immediate mode, the DMM begins acquiring measurement data. Use
nidmm.Session.fetch(), nidmm.Session.fetch_multi_point(), or nidmm.Session.fetch_waveform() to
retrieve the measurement data.

Note

This method will return a Python context manager that will initiate on entering and abort on exit.

lock

	
nidmm.Session.lock()

	Obtains a multithread lock on the device session. Before doing so, the
software waits until all other execution threads release their locks
on the device session.

Other threads may have obtained a lock on this session for the
following reasons:

	The application called the nidmm.Session.lock() method.

	A call to NI-DMM locked the session.

	After a call to the nidmm.Session.lock() method returns
successfully, no other threads can access the device session until
you call the nidmm.Session.unlock() method or exit out of the with block when using
lock context manager.

	Use the nidmm.Session.lock() method and the
nidmm.Session.unlock() method around a sequence of calls to
instrument driver methods if you require that the device retain its
settings through the end of the sequence.

You can safely make nested calls to the nidmm.Session.lock() method
within the same thread. To completely unlock the session, you must
balance each call to the nidmm.Session.lock() method with a call to
the nidmm.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls
is to use lock as a context manager

with nidmm.Session('dev1') as session:
 with session.lock():
 # Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

	Return type

	context manager

	Returns

	When used in a with statement, nidmm.Session.lock() acts as
a context manager and unlock will be called when the with block is exited

perform_open_cable_comp

	
nidmm.Session.perform_open_cable_comp()

	For the NI 4082 and NI 4072 only, performs the open cable compensation
measurements for the current capacitance/inductance range, and returns
open cable compensation Conductance and Susceptance values. You
can use the return values of this method as inputs to
nidmm.Session.ConfigureOpenCableCompValues().

This method returns an error if the value of the nidmm.Session.method
property is not set to CAPACITANCE (1005) or
INDUCTANCE (1006).

Note

One or more of the referenced methods are not in the Python API for this driver.

	Return type

	tuple (conductance, susceptance)

WHERE

conductance (float):

conductance is the measured value of open cable compensation
conductance.

susceptance (float):

susceptance is the measured value of open cable compensation
susceptance.

perform_short_cable_comp

	
nidmm.Session.perform_short_cable_comp()

	Performs the short cable compensation measurements for the current
capacitance/inductance range, and returns short cable compensation
Resistance and Reactance values. You can use the return values
of this method as inputs to nidmm.Session.ConfigureShortCableCompValues().

This method returns an error if the value of the nidmm.Session.method
property is not set to CAPACITANCE (1005) or
INDUCTANCE (1006).

Note

One or more of the referenced methods are not in the Python API for this driver.

	Return type

	tuple (resistance, reactance)

WHERE

resistance (float):

resistance is the measured value of short cable compensation
resistance.

reactance (float):

reactance is the measured value of short cable compensation
reactance.

read

	
nidmm.Session.read(maximum_time=hightime.timedelta(milliseconds=-1))

	Acquires a single measurement and returns the measured value.

	Parameters

	maximum_time (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or int in milliseconds) – Specifies the maximum_time allowed for this method to complete in
milliseconds. If the method does not complete within this time
interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been
received, or if the specified timeout is not long enough for the
acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	The measured value returned from the DMM.

read_multi_point

	
nidmm.Session.read_multi_point(array_size, maximum_time=hightime.timedelta(milliseconds=-1))

	Acquires multiple measurements and returns an array of measured values.
The number of measurements the DMM makes is determined by the values you
specify for the Trigger_Count and Sample_Count parameters in
nidmm.Session.configure_multi_point().

	Parameters

	
	array_size (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the number of measurements to acquire. The maximum number of
measurements for a finite acquisition is the (Trigger Count x
Sample Count) parameters in nidmm.Session.configure_multi_point().

For continuous acquisitions, up to 100,000 points can be returned at
once. The number of measurements can be a subset. The valid range is any
positive ViInt32. The default value is 1.

	maximum_time (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or int in milliseconds) – Specifies the maximum_time allowed for this method to complete in
milliseconds. If the method does not complete within this time
interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been
received, or if the specified timeout is not long enough for the
acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	Return type

	tuple (reading_array, actual_number_of_points)

WHERE

reading_array (array.array(“d”)):

An array of measurement values.

Note

The size of the Reading_Array must be at least the size that you
specify for the Array_Size parameter.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

read_status

	
nidmm.Session.read_status()

	Returns measurement backlog and acquisition status. Use this method to
determine how many measurements are available before calling
nidmm.Session.fetch(), nidmm.Session.fetch_multi_point(), or nidmm.Session.fetch_waveform().

Note

The NI 4050 is not supported.

	Return type

	tuple (acquisition_backlog, acquisition_status)

WHERE

acquisition_backlog (int):

The number of measurements available to be read. If the backlog
continues to increase, data is eventually overwritten, resulting in an
error.

Note

On the NI 4060, the Backlog does not increase when autoranging. On
the NI 4065, the Backlog does not increase when Range is set to AUTO
RANGE ON (-1), or before the first point is fetched when Range is set to
AUTO RANGE ONCE (-3). These behaviors are due to the autorange model of
the devices.

acquisition_status (nidmm.AcquisitionStatus):

Indicates status of the acquisition. The following table shows the
acquisition states:

	0

	Running

	1

	Finished with backlog

	2

	Finished with no backlog

	3

	Paused

	4

	No acquisition in progress

read_waveform

	
nidmm.Session.read_waveform(array_size, maximum_time=hightime.timedelta(milliseconds=-1))

	For the NI 4080/4081/4082 and the NI 4070/4071/4072, acquires a waveform
and returns data as an array of values or as a waveform data type. The
number of elements in the Waveform_Array is determined by the
values you specify for the Waveform_Points parameter in
nidmm.Session.configure_waveform_acquisition().

	Parameters

	
	array_size (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the number of waveform points to return. You specify the total
number of points that the DMM acquires in the Waveform Points
parameter of nidmm.Session.configure_waveform_acquisition(). The default value is
1.

	maximum_time (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or int in milliseconds) – Specifies the maximum_time allowed for this method to complete in
milliseconds. If the method does not complete within this time
interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been
received, or if the specified timeout is not long enough for the
acquisition to complete.

The valid range is 0–86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	Return type

	tuple (waveform_array, actual_number_of_points)

WHERE

waveform_array (array.array(“d”)):

An array of measurement values.

Note

The size of the Waveform_Array must be at least the size that you
specify for the Array_Size parameter.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

reset

	
nidmm.Session.reset()

	Resets the instrument to a known state and sends initialization commands
to the instrument. The initialization commands set instrument settings
to the state necessary for the operation of the instrument driver.

reset_with_defaults

	
nidmm.Session.reset_with_defaults()

	Resets the instrument to a known state and sends initialization commands
to the DMM. The initialization commands set the DMM settings to the
state necessary for the operation of NI-DMM. All user-defined default
values associated with a logical name are applied after setting the DMM.

self_cal

	
nidmm.Session.self_cal()

	For the NI 4080/4081/4082 and the NI 4070/4071/4072, executes the
self-calibration routine to maintain measurement accuracy.

Note

This method calls nidmm.Session.reset(), and any configurations previous to
the call will be lost. All properties will be set to their default
values after the call returns.

self_test

	
nidmm.Session.self_test()

	Performs a self-test on the DMM to ensure that the DMM is functioning
properly. Self-test does not calibrate the DMM. Zero
indicates success.

On the NI 4080/4082 and NI 4070/4072, the error code 1013 indicates that
you should check the fuse and replace it, if necessary.

Raises SelfTestError on self test failure. Properties on exception object:

	code - failure code from driver

	message - status message from driver

Note

Self-test does not check the fuse on the NI 4065, NI 4071, and NI 4081. Hence, even if the fuse is blown on the device, self-test does not return error code 1013.

Note

This method calls nidmm.Session.reset(), and any configurations previous to the call will be lost. All properties will be set to their default values after the call returns.

send_software_trigger

	
nidmm.Session.send_software_trigger()

	Sends a command to trigger the DMM. Call this method if you have
configured either the nidmm.Session.trigger_source or
nidmm.Session.sample_trigger properties. If the
nidmm.Session.trigger_source and/or nidmm.Session.sample_trigger
properties are set to NIDMM_VAL_EXTERNAL or NIDMM_VAL_TTLn, you
can use this method to override the trigger source that you configured
and trigger the device. The NI 4050 and NI 4060 are not supported.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

unlock

	
nidmm.Session.unlock()

	Releases a lock that you acquired on an device session using
nidmm.Session.lock(). Refer to nidmm.Session.unlock() for additional
information on session locks.

Properties

ac_max_freq

	
nidmm.Session.ac_max_freq

	Specifies the maximum frequency component of the input signal for AC measurements. This property is used only for error checking and verifies that the value of this parameter is less than the maximum frequency of the device. This property affects the DMM only when you set the nidmm.Session.method property to AC measurements.
The valid range is 1 Hz-300 kHz for the NI 4070/4071/4072, 10 Hz-100 kHz for the NI 4065, and 20 Hz-25 kHz for the NI 4050 and NI 4060.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Max Frequency

	C Attribute: NIDMM_ATTR_AC_MAX_FREQ

ac_min_freq

	
nidmm.Session.ac_min_freq

	Specifies the minimum frequency component of the input signal for AC measurements. This property affects the DMM only when you set the nidmm.Session.method property to AC measurements.
The valid range is 1 Hz-300 kHz for the NI 4070/4071/4072, 10 Hz-100 kHz for the NI 4065, and 20 Hz-25 kHz for the NI 4050 and NI 4060.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Min Frequency

	C Attribute: NIDMM_ATTR_AC_MIN_FREQ

adc_calibration

	
nidmm.Session.adc_calibration

	For the NI 4070/4071/4072 only, specifies the ADC calibration mode.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ADCCalibration

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:ADC Calibration

	C Attribute: NIDMM_ATTR_ADC_CALIBRATION

aperture_time

	
nidmm.Session.aperture_time

	Specifies the measurement aperture time for the current configuration. Aperture time is specified in units set by nidmm.Session.aperture_time_units. To override the default aperture, set this property to the desired aperture time after calling nidmm.Session.ConfigureMeasurement(). To return to the default, set this property to NIDMM_VAL_APERTURE_TIME_AUTO (-1).
On the NI 4070/4071/4072, the minimum aperture time is 8.89 usec, and the maximum aperture time is 149 sec. Any number of powerline cycles (PLCs) within the minimum and maximum ranges is allowed on the NI 4070/4071/4072.
On the NI 4065 the minimum aperture time is 333 µs, and the maximum aperture time is 78.2 s. If setting the number of averages directly, the total measurement time is aperture time X the number of averages, which must be less than 72.8 s. The aperture times allowed are 333 µs, 667 µs, or multiples of 1.11 ms-for example 1.11 ms, 2.22 ms, 3.33 ms, and so on. If you set an aperture time other than 333 µs, 667 µs, or multiples of 1.11 ms, the value will be coerced up to the next supported aperture time.
On the NI 4060, when the powerline frequency is 60 Hz, the PLCs allowed are 1 PLC, 6 PLC, 12 PLC, and 120 PLC. When the powerline frequency is 50 Hz, the PLCs allowed are 1 PLC, 5 PLC, 10 PLC, and 100 PLC.

Note

One or more of the referenced methods are not in the Python API for this driver.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Advanced:Aperture Time

	C Attribute: NIDMM_ATTR_APERTURE_TIME

aperture_time_units

	
nidmm.Session.aperture_time_units

	Specifies the units of aperture time for the current configuration.
The NI 4060 does not support an aperture time set in seconds.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ApertureTimeUnits

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Advanced:Aperture Time Units

	C Attribute: NIDMM_ATTR_APERTURE_TIME_UNITS

auto_range_value

	
nidmm.Session.auto_range_value

	Specifies the value of the range. If auto ranging, shows the actual value of the active range. The value of this property is set during a read operation.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Auto Range Value

	C Attribute: NIDMM_ATTR_AUTO_RANGE_VALUE

auto_zero

	
nidmm.Session.auto_zero

	Specifies the AutoZero mode.
The NI 4050 is not supported.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.AutoZero

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Auto Zero

	C Attribute: NIDMM_ATTR_AUTO_ZERO

buffer_size

	
nidmm.Session.buffer_size

	Size in samples of the internal data buffer. Maximum is 134,217,727 (OX7FFFFFF) samples. When set to NIDMM_VAL_BUFFER_SIZE_AUTO (-1), NI-DMM chooses the buffer size.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Multi Point Acquisition:Advanced:Buffer Size

	C Attribute: NIDMM_ATTR_BUFFER_SIZE

cable_comp_type

	
nidmm.Session.cable_comp_type

	For the NI 4072 only, the type of cable compensation that is applied to the current capacitance or inductance measurement for the current range.
Changing the method or the range through this property or through nidmm.Session.configure_measurement_digits() resets the value of this property to the default value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.CableCompensationType

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Capacitance and Inductance:Cable Compensation Type

	C Attribute: NIDMM_ATTR_CABLE_COMP_TYPE

channel_count

	
nidmm.Session.channel_count

	Indicates the number of channels that the specific instrument driver supports. For each property for which the IVI_VAL_MULTI_CHANNEL flag property is set, the IVI engine maintains a separate cache value for each channel.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Capabilities:Channel Count

	C Attribute: NIDMM_ATTR_CHANNEL_COUNT

current_source

	
nidmm.Session.current_source

	Specifies the current source provided during diode measurements.
The NI 4050 and NI 4060 are not supported.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Current Source

	C Attribute: NIDMM_ATTR_CURRENT_SOURCE

dc_bias

	
nidmm.Session.dc_bias

	For the NI 4072 only, controls the available DC bias for capacitance measurements.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Capacitance and Inductance:Advanced:DC Bias

	C Attribute: NIDMM_ATTR_DC_BIAS

dc_noise_rejection

	
nidmm.Session.dc_noise_rejection

	Specifies the DC noise rejection mode.
The NI 4050 and NI 4060 are not supported.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.DCNoiseRejection

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:DC Noise Rejection

	C Attribute: NIDMM_ATTR_DC_NOISE_REJECTION

driver_setup

	
nidmm.Session.driver_setup

	This property indicates the Driver Setup string that the user specified when initializing the driver.
Some cases exist where the end-user must specify instrument driver options at initialization time. An example of this is specifying a particular instrument model from among a family of instruments that the driver supports. This is useful when using simulation. The end-user can specify driver-specific options through the DriverSetup keyword in the optionsString parameter to the niDMM Init With Options.vi.
If the user does not specify a Driver Setup string, this property returns an empty string.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:User Options:Driver Setup

	C Attribute: NIDMM_ATTR_DRIVER_SETUP

freq_voltage_auto_range

	
nidmm.Session.freq_voltage_auto_range

	For the NI 4070/4071/4072 only, specifies the value of the frequency voltage range. If Auto Ranging, shows the actual value of the active frequency voltage range. If not Auto Ranging, the value of this property is the same as that of nidmm.Session.freq_voltage_range.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Frequency Voltage Auto Range Value

	C Attribute: NIDMM_ATTR_FREQ_VOLTAGE_AUTO_RANGE

freq_voltage_range

	
nidmm.Session.freq_voltage_range

	Specifies the maximum amplitude of the input signal for frequency measurements.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Frequency Voltage Range

	C Attribute: NIDMM_ATTR_FREQ_VOLTAGE_RANGE

function

	
nidmm.Session.function

	Specifies the measurement method.
Refer to the nidmm.Session.method topic in the NI Digital Multimeters Help for device-specific information.
If you are setting this property directly, you must also set the nidmm.Session.operation_mode property, which controls whether the DMM takes standard single or multipoint measurements, or acquires a waveform. If you are programming properties directly, you must set the nidmm.Session.operation_mode property before setting other configuration properties. If the nidmm.Session.operation_mode property is set to WAVEFORM, the only valid method types are WAVEFORM_VOLTAGE and WAVEFORM_CURRENT. Set the nidmm.Session.operation_mode property to IVIDMM to set all other method values.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Function

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Function

	C Attribute: NIDMM_ATTR_FUNCTION

input_resistance

	
nidmm.Session.input_resistance

	Specifies the input resistance of the instrument.
The NI 4050 and NI 4060 are not supported.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Input Resistance

	C Attribute: NIDMM_ATTR_INPUT_RESISTANCE

instrument_firmware_revision

	
nidmm.Session.instrument_firmware_revision

	A string containing the instrument firmware revision number.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Firmware Revision

	C Attribute: NIDMM_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

	
nidmm.Session.instrument_manufacturer

	A string containing the manufacturer of the instrument.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Manufacturer

	C Attribute: NIDMM_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

	
nidmm.Session.instrument_model

	A string containing the instrument model.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Model

	C Attribute: NIDMM_ATTR_INSTRUMENT_MODEL

instrument_product_id

	
nidmm.Session.instrument_product_id

	The PCI product ID.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Product ID

	C Attribute: NIDMM_ATTR_INSTRUMENT_PRODUCT_ID

io_resource_descriptor

	
nidmm.Session.io_resource_descriptor

	A string containing the resource descriptor of the instrument.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:I/O Resource Descriptor

	C Attribute: NIDMM_ATTR_IO_RESOURCE_DESCRIPTOR

lc_calculation_model

	
nidmm.Session.lc_calculation_model

	For the NI 4072 only, specifies the type of algorithm that the measurement processing uses for capacitance and inductance measurements.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.LCCalculationModel

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Capacitance and Inductance:Advanced:Calculation Model

	C Attribute: NIDMM_ATTR_LC_CALCULATION_MODEL

lc_number_meas_to_average

	
nidmm.Session.lc_number_meas_to_average

	For the NI 4072 only, specifies the number of LC measurements that are averaged to produce one reading.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Capacitance and Inductance:Number of LC Measurements To Average

	C Attribute: NIDMM_ATTR_LC_NUMBER_MEAS_TO_AVERAGE

logical_name

	
nidmm.Session.logical_name

	A string containing the logical name of the instrument.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name

	C Attribute: NIDMM_ATTR_LOGICAL_NAME

meas_complete_dest

	
nidmm.Session.meas_complete_dest

	Specifies the destination of the measurement complete (MC) signal.
The NI 4050 is not supported.
To determine which values are supported by each device, refer to the LabWindows/CVI Trigger Routing section in the NI Digital Multimeters Help.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.MeasurementCompleteDest

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Trigger:Measurement Complete Dest

	C Attribute: NIDMM_ATTR_MEAS_COMPLETE_DEST

number_of_averages

	
nidmm.Session.number_of_averages

	Specifies the number of averages to perform in a measurement. For the NI 4070/4071/4072, applies only when the aperture time is not set to AUTO and Auto Zero is ON. The default is 1.
The NI 4050 and NI 4060 are not supported.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Advanced:Number Of Averages

	C Attribute: NIDMM_ATTR_NUMBER_OF_AVERAGES

offset_comp_ohms

	
nidmm.Session.offset_comp_ohms

	For the NI 4070/4071/4072 only, enables or disables offset compensated ohms.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Offset Compensated Ohms

	C Attribute: NIDMM_ATTR_OFFSET_COMP_OHMS

open_cable_comp_conductance

	
nidmm.Session.open_cable_comp_conductance

	For the NI 4072 only, specifies the active part (conductance) of the open cable compensation. The valid range is any real number greater than 0. The default value (-1.0) indicates that compensation has not taken place.
Changing the method or the range through this property or through nidmm.Session.configure_measurement_digits() resets the value of this property to the default value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Capacitance and Inductance:Open Cable Compensation Values:Conductance

	C Attribute: NIDMM_ATTR_OPEN_CABLE_COMP_CONDUCTANCE

open_cable_comp_susceptance

	
nidmm.Session.open_cable_comp_susceptance

	For the NI 4072 only, specifies the reactive part (susceptance) of the open cable compensation. The valid range is any real number greater than 0. The default value (-1.0) indicates that compensation has not taken place.
Changing the method or the range through this property or through nidmm.Session.configure_measurement_digits() resets the value of this property to the default value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Capacitance and Inductance:Open Cable Compensation Values:Susceptance

	C Attribute: NIDMM_ATTR_OPEN_CABLE_COMP_SUSCEPTANCE

operation_mode

	
nidmm.Session.operation_mode

	Specifies how the NI 4065 and NI 4070/4071/4072 acquire data. When you call nidmm.Session.configure_measurement_digits(), NI-DMM sets this property to IVIDMM. When you call nidmm.Session.configure_waveform_acquisition(), NI-DMM sets this property to WAVEFORM. If you are programming properties directly, you must set this property before setting other configuration properties.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.OperationMode

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Advanced:Operation Mode

	C Attribute: NIDMM_ATTR_OPERATION_MODE

powerline_freq

	
nidmm.Session.powerline_freq

	Specifies the powerline frequency. The NI 4050 and NI 4060 use this value to select an aperture time to reject powerline noise by selecting the appropriate internal sample clock and filter. The NI 4065 and NI 4070/4071/4072 use this value to select a timebase for setting the nidmm.Session.aperture_time property in powerline cycles (PLCs).
After configuring powerline frequency, set the nidmm.Session.aperture_time_units property to PLCs. When setting the nidmm.Session.aperture_time property, select the number of PLCs for the powerline frequency. For example, if powerline frequency = 50 Hz (or 20ms) and aperture time in PLCs = 5, then aperture time in Seconds = 20ms * 5 PLCs = 100 ms. Similarly, if powerline frequency = 60 Hz (or 16.667 ms) and aperture time in PLCs = 6, then aperture time in Seconds = 16.667 ms * 6 PLCs = 100 ms.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Powerline Frequency

	C Attribute: NIDMM_ATTR_POWERLINE_FREQ

range

	
nidmm.Session.range

	Specifies the measurement range. Use positive values to represent the absolute value of the maximum expected measurement. The value is in units appropriate for the current value of the nidmm.Session.method property. For example, if nidmm.Session.method is set to NIDMM_VAL_VOLTS, the units are volts.
The NI 4050 and NI 4060 only support Auto Range when the trigger and sample trigger is set to IMMEDIATE.
NIDMM_VAL_AUTO_RANGE_ON -1.0
NI-DMM performs an Auto Range before acquiring the measurement.
NIDMM_VAL_AUTO_RANGE_OFF -2.0
NI-DMM sets the Range to the current nidmm.Session.auto_range_value and uses this range for all subsequent measurements until the measurement configuration is changed.
NIDMM_VAL_AUTO_RANGE_ONCE -3.0
NI-DMM performs an Auto Range before acquiring the next measurement. The nidmm.Session.auto_range_value is stored and used for all subsequent measurements until the measurement configuration is changed.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Range

	C Attribute: NIDMM_ATTR_RANGE

resolution_absolute

	
nidmm.Session.resolution_absolute

	Specifies the measurement resolution in absolute units. Setting this property to higher values increases the measurement accuracy. Setting this property to lower values increases the measurement speed.
NI-DMM ignores this property for capacitance and inductance measurements on the NI 4072. To achieve better resolution for such measurements, use the nidmm.Session.lc_number_meas_to_average property.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Absolute Resolution

	C Attribute: NIDMM_ATTR_RESOLUTION_ABSOLUTE

resolution_digits

	
nidmm.Session.resolution_digits

	Specifies the measurement resolution in digits. Setting this property to higher values increases the measurement accuracy. Setting this property to lower values increases the measurement speed.
NI-DMM ignores this property for capacitance and inductance measurements on the NI 4072. To achieve better resolution for such measurements, use the nidmm.Session.lc_number_meas_to_average property.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Digits Resolution

	C Attribute: NIDMM_ATTR_RESOLUTION_DIGITS

sample_count

	
nidmm.Session.sample_count

	Specifies the number of measurements the DMM takes each time it receives a trigger in a multiple point acquisition.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Multi Point Acquisition:Sample Count

	C Attribute: NIDMM_ATTR_SAMPLE_COUNT

sample_interval

	
nidmm.Session.sample_interval

	Specifies the amount of time in seconds the DMM waits between measurement cycles. This property only applies when the nidmm.Session.sample_trigger property is set to INTERVAL.
On the NI 4060, the value for this property is used as the settling time. When this property is set to 0, the NI 4060 does not settle between measurement cycles. The onboard timing resolution is 1 µs on the NI 4060.
The NI 4065 and NI 4070/4071/4072 use the value specified in this property as additional delay. On the NI 4065 and NI 4070/4071/4072, the onboard timing resolution is 34.72 ns and the valid range is 0-149 s.
Only positive values are valid when setting the sample interval.
The NI 4050 is not supported.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Multi Point Acquisition:Sample Interval

	C Attribute: NIDMM_ATTR_SAMPLE_INTERVAL

sample_trigger

	
nidmm.Session.sample_trigger

	Specifies the sample trigger source.
To determine which values are supported by each device, refer to the LabWindows/CVI Trigger Routing section in the NI Digital Multimeters Help.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.SampleTrigger

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Multi Point Acquisition:Sample Trigger

	C Attribute: NIDMM_ATTR_SAMPLE_TRIGGER

serial_number

	
nidmm.Session.serial_number

	A string containing the serial number of the instrument. This property corresponds to the serial number label that is attached to most products.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Serial Number

	C Attribute: NIDMM_ATTR_SERIAL_NUMBER

settle_time

	
nidmm.Session.settle_time

	Specifies the settling time in seconds. To override the default settling time, set this property. To return to the default, set this property to NIDMM_VAL_SETTLE_TIME_AUTO (-1).
The NI 4050 and NI 4060 are not supported.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Advanced:Settle Time

	C Attribute: NIDMM_ATTR_SETTLE_TIME

short_cable_comp_reactance

	
nidmm.Session.short_cable_comp_reactance

	For the NI 4072 only, represents the reactive part (reactance) of the short cable compensation. The valid range is any real number greater than 0. The default value (-1) indicates that compensation has not taken place.
Changing the method or the range through this property or through nidmm.Session.configure_measurement_digits() resets the value of this property to the default value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Capacitance and Inductance:Short Cable Compensation Values:Reactance

	C Attribute: NIDMM_ATTR_SHORT_CABLE_COMP_REACTANCE

short_cable_comp_resistance

	
nidmm.Session.short_cable_comp_resistance

	For the NI 4072 only, represents the active part (resistance) of the short cable compensation. The valid range is any real number greater than 0. The default value (-1) indicates that compensation has not taken place.
Changing the method or the range through this property or through nidmm.Session.configure_measurement_digits() resets the value of this property to the default value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Capacitance and Inductance:Short Cable Compensation Values:Resistance

	C Attribute: NIDMM_ATTR_SHORT_CABLE_COMP_RESISTANCE

simulate

	
nidmm.Session.simulate

	Specifies whether or not to simulate instrument driver I/O operations. If simulation is enabled, instrument driver methods perform range checking and call IVI Get and Set methods, but they do not perform instrument I/O. For output parameters that represent instrument data, the instrument driver methods return calculated values.
The default value is False (0). Use the nidmm.Session.__init__() method to override this setting.
Simulate can only be set within the InitWithOptions method. The property value cannot be changed outside of the method.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:User Options:Simulate

	C Attribute: NIDMM_ATTR_SIMULATE

specific_driver_description

	
nidmm.Session.specific_driver_description

	A string containing a description of the specific driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Specific Driver Identification:Specific Driver Description

	C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_major_version

	
nidmm.Session.specific_driver_major_version

	Returns the major version number of this instrument driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Version Info:Specific Driver Major Version

	C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_MAJOR_VERSION

specific_driver_minor_version

	
nidmm.Session.specific_driver_minor_version

	The minor version number of this instrument driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Version Info:Specific Driver Minor Version

	C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_MINOR_VERSION

specific_driver_revision

	
nidmm.Session.specific_driver_revision

	A string that contains additional version information about this specific instrument driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Version Info:Specific Driver Revision

	C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

	
nidmm.Session.specific_driver_vendor

	A string containing the vendor of the specific driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Specific Driver Identification:Specific Driver Vendor

	C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_VENDOR

supported_instrument_models

	
nidmm.Session.supported_instrument_models

	A string containing the instrument models supported by the specific driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Specific Driver Capabilities:Supported Instrument Models

	C Attribute: NIDMM_ATTR_SUPPORTED_INSTRUMENT_MODELS

temp_rtd_a

	
nidmm.Session.temp_rtd_a

	Specifies the Callendar-Van Dusen A coefficient for RTD scaling when the RTD Type property is set to Custom. The default value is 3.9083e-3 (Pt3851).

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Temperature Detector:RTD A

	C Attribute: NIDMM_ATTR_TEMP_RTD_A

temp_rtd_b

	
nidmm.Session.temp_rtd_b

	Specifies the Callendar-Van Dusen B coefficient for RTD scaling when the RTD Type property is set to Custom. The default value is -5.775e-7(Pt3851).

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Temperature Detector:RTD B

	C Attribute: NIDMM_ATTR_TEMP_RTD_B

temp_rtd_c

	
nidmm.Session.temp_rtd_c

	Specifies the Callendar-Van Dusen C coefficient for RTD scaling when the RTD Type property is set to Custom. The default value is -4.183e-12(Pt3851).

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Temperature Detector:RTD C

	C Attribute: NIDMM_ATTR_TEMP_RTD_C

temp_rtd_res

	
nidmm.Session.temp_rtd_res

	Specifies the RTD resistance at 0 degrees Celsius. This applies to all supported RTDs, including custom RTDs. The default value is 100 (?).

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Temperature Detector:RTD Resistance

	C Attribute: NIDMM_ATTR_TEMP_RTD_RES

temp_rtd_type

	
nidmm.Session.temp_rtd_type

	Specifies the type of RTD used to measure temperature. The default value is PT3851.
Refer to the nidmm.Session.temp_rtd_type topic in the NI Digital Multimeters Help for additional information about defined values.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.RTDType

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Temperature Detector:RTD Type

	C Attribute: NIDMM_ATTR_TEMP_RTD_TYPE

temp_tc_fixed_ref_junc

	
nidmm.Session.temp_tc_fixed_ref_junc

	Specifies the reference junction temperature when a fixed reference junction is used to take a thermocouple measurement. The default value is 25.0 (°C).

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Temperature:Thermocouple:Fixed Reference Junction

	C Attribute: NIDMM_ATTR_TEMP_TC_FIXED_REF_JUNC

temp_tc_ref_junc_type

	
nidmm.Session.temp_tc_ref_junc_type

	Specifies the type of reference junction to be used in the reference junction compensation of a thermocouple. The only supported value, NIDMM_VAL_TEMP_REF_JUNC_FIXED, is fixed.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ThermocoupleReferenceJunctionType

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Temperature:Thermocouple:Reference Junction Type

	C Attribute: NIDMM_ATTR_TEMP_TC_REF_JUNC_TYPE

temp_tc_type

	
nidmm.Session.temp_tc_type

	Specifies the type of thermocouple used to measure the temperature. The default value is J.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ThermocoupleType

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Temperature:Thermocouple:Thermocouple Type

	C Attribute: NIDMM_ATTR_TEMP_TC_TYPE

temp_thermistor_a

	
nidmm.Session.temp_thermistor_a

	Specifies the Steinhart-Hart A coefficient for thermistor scaling when the Thermistor Type property is set to Custom. The default value is 0.0010295 (44006).

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Temperature:Thermistor:Thermistor A

	C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_A

temp_thermistor_b

	
nidmm.Session.temp_thermistor_b

	Specifies the Steinhart-Hart B coefficient for thermistor scaling when the Thermistor Type proerty is set to Custom. The default value is 0.0002391 (44006).

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Temperature:Thermistor:Thermistor B

	C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_B

temp_thermistor_c

	
nidmm.Session.temp_thermistor_c

	Specifies the Steinhart-Hart C coefficient for thermistor scaling when the Thermistor Type property is set to Custom. The default value is 1.568e-7 (44006).

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Temperature:Thermistor:Thermistor C

	C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_C

temp_thermistor_type

	
nidmm.Session.temp_thermistor_type

	Specifies the type of thermistor used to measure the temperature. The default value is THERMISTOR_44006.
Refer to the nidmm.Session.temp_thermistor_type topic in the NI Digital Multimeters Help for additional information about defined values.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ThermistorType

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Temperature:Thermistor:Thermistor Type

	C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_TYPE

temp_transducer_type

	
nidmm.Session.temp_transducer_type

	Specifies the type of device used to measure the temperature. The default value is NIDMM_VAL_4_THERMOCOUPLE.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TransducerType

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Configuration:Measurement Options:Temperature:Transducer Type

	C Attribute: NIDMM_ATTR_TEMP_TRANSDUCER_TYPE

trigger_count

	
nidmm.Session.trigger_count

	Specifies the number of triggers the DMM receives before returning to the Idle state.
This property can be set to any positive ViInt32 value for the NI 4065 and NI 4070/4071/4072.
The NI 4050 and NI 4060 support this property being set to 1.
Refer to the Multiple Point Acquisitions section of the NI Digital Multimeters Help for more information.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Multi Point Acquisition:Trigger Count

	C Attribute: NIDMM_ATTR_TRIGGER_COUNT

trigger_delay

	
nidmm.Session.trigger_delay

	Specifies the time (in seconds) that the DMM waits after it has received a trigger before taking a measurement. The default value is AUTO DELAY (-1), which means that the DMM waits an appropriate settling time before taking the measurement. (-1) signifies that AUTO DELAY is on, and (-2) signifies that AUTO DELAY is off.
The NI 4065 and NI 4070/4071/4072 use the value specified in this property as additional settling time. For the The NI 4065 and NI 4070/4071/4072, the valid range for Trigger Delay is AUTO DELAY (-1) or 0.0-149.0 seconds and the onboard timing resolution is 34.72 ns.
On the NI 4060, if this property is set to 0, the DMM does not settle before taking the measurement. On the NI 4060, the valid range for AUTO DELAY (-1) is 0.0-12.0 seconds and the onboard timing resolution is 100 ms.
When using the NI 4050, this property must be set to AUTO DELAY (-1).
Use positive values to set the trigger delay in seconds.
Valid Range: NIDMM_VAL_AUTO_DELAY (-1.0), 0.0-12.0 seconds (NI 4060 only)
Default Value: NIDMM_VAL_AUTO_DELAY

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Trigger:Trigger Delay

	C Attribute: NIDMM_ATTR_TRIGGER_DELAY

trigger_source

	
nidmm.Session.trigger_source

	Specifies the trigger source. When nidmm.Session._initiate() is called, the DMM waits for the trigger specified with this property. After it receives the trigger, the DMM waits the length of time specified with the nidmm.Session.trigger_delay property. The DMM then takes a measurement.
This property is not supported on the NI 4050.
To determine which values are supported by each device, refer to the LabWindows/CVI Trigger Routing section in the NI Digital Multimeters Help.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerSource

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Trigger:Trigger Source

	C Attribute: NIDMM_ATTR_TRIGGER_SOURCE

waveform_coupling

	
nidmm.Session.waveform_coupling

	For the NI 4070/4071/4072 only, specifies the coupling during a waveform acquisition.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.WaveformCoupling

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Acquisition:Waveform Coupling

	C Attribute: NIDMM_ATTR_WAVEFORM_COUPLING

waveform_points

	
nidmm.Session.waveform_points

	For the NI 4070/4071/4072 only, specifies the number of points to acquire in a waveform acquisition.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Acquisition:Waveform Points

	C Attribute: NIDMM_ATTR_WAVEFORM_POINTS

waveform_rate

	
nidmm.Session.waveform_rate

	For the NI 4070/4071/4072 only, specifies the rate of the waveform acquisition in Samples per second (S/s). The valid Range is 10.0-1,800,000 S/s. Values are coerced to the closest integer divisor of 1,800,000. The default value is 1,800,000.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Acquisition:Waveform Rate

	C Attribute: NIDMM_ATTR_WAVEFORM_RATE

Session

	Session

	Methods

	abort

	close

	configure_measurement_absolute

	configure_measurement_digits

	configure_multi_point

	configure_rtd_custom

	configure_rtd_type

	configure_thermistor_custom

	configure_thermocouple

	configure_trigger

	configure_waveform_acquisition

	disable

	export_attribute_configuration_buffer

	export_attribute_configuration_file

	fetch

	fetch_multi_point

	fetch_waveform

	fetch_waveform_into

	get_cal_date_and_time

	get_dev_temp

	get_ext_cal_recommended_interval

	get_last_cal_temp

	get_self_cal_supported

	import_attribute_configuration_buffer

	import_attribute_configuration_file

	initiate

	lock

	perform_open_cable_comp

	perform_short_cable_comp

	read

	read_multi_point

	read_status

	read_waveform

	reset

	reset_with_defaults

	self_cal

	self_test

	send_software_trigger

	unlock

	Properties

	ac_max_freq

	ac_min_freq

	adc_calibration

	aperture_time

	aperture_time_units

	auto_range_value

	auto_zero

	buffer_size

	cable_comp_type

	channel_count

	current_source

	dc_bias

	dc_noise_rejection

	driver_setup

	freq_voltage_auto_range

	freq_voltage_range

	function

	input_resistance

	instrument_firmware_revision

	instrument_manufacturer

	instrument_model

	instrument_product_id

	io_resource_descriptor

	lc_calculation_model

	lc_number_meas_to_average

	logical_name

	meas_complete_dest

	number_of_averages

	offset_comp_ohms

	open_cable_comp_conductance

	open_cable_comp_susceptance

	operation_mode

	powerline_freq

	range

	resolution_absolute

	resolution_digits

	sample_count

	sample_interval

	sample_trigger

	serial_number

	settle_time

	short_cable_comp_reactance

	short_cable_comp_resistance

	simulate

	specific_driver_description

	specific_driver_major_version

	specific_driver_minor_version

	specific_driver_revision

	specific_driver_vendor

	supported_instrument_models

	temp_rtd_a

	temp_rtd_b

	temp_rtd_c

	temp_rtd_res

	temp_rtd_type

	temp_tc_fixed_ref_junc

	temp_tc_ref_junc_type

	temp_tc_type

	temp_thermistor_a

	temp_thermistor_b

	temp_thermistor_c

	temp_thermistor_type

	temp_transducer_type

	trigger_count

	trigger_delay

	trigger_source

	waveform_coupling

	waveform_points

	waveform_rate

Enums

Enums used in NI-DMM

ADCCalibration

	
class nidmm.ADCCalibration

	
	
AUTO

	The DMM enables or disables ADC calibration for you.

	
OFF

	The DMM does not compensate for changes to the gain.

	
ON

	The DMM measures an internal reference to calculate the correct gain for the measurement.

AcquisitionStatus

	
class nidmm.AcquisitionStatus

	
	
RUNNING

	Running

	
FINISHED_WITH_BACKLOG

	Finished with Backlog

	
FINISHED_WITH_NO_BACKLOG

	Finished with no Backlog

	
PAUSED

	Paused

	
NO_ACQUISITION_IN_PROGRESS

	No acquisition in progress

ApertureTimeUnits

	
class nidmm.ApertureTimeUnits

	
	
SECONDS

	Seconds

	
POWER_LINE_CYCLES

	Powerline Cycles

AutoZero

	
class nidmm.AutoZero

	
	
AUTO

	The drivers chooses the AutoZero setting based on the configured method and resolution.

	
OFF

	Disables AutoZero.

	
ON

	The DMM internally disconnects the input signal following each measurement and takes a zero reading. It then subtracts the zero reading from the preceding reading.

	
ONCE

	The DMM internally disconnects the input signal for the first measurement and takes a zero reading. It then subtracts the zero reading from the first reading and the following readings.

CableCompensationType

	
class nidmm.CableCompensationType

	
	
NONE

	No Cable Compensation

	
OPEN

	Open Cable Compensation

	
SHORT

	Short Cable Compensation

	
OPEN_AND_SHORT

	Open and Short Cable Compensation

DCNoiseRejection

	
class nidmm.DCNoiseRejection

	
	
AUTO

	The driver chooses the DC noise rejection setting based on the configured method and resolution.

	
NORMAL

	NI-DMM weighs all samples equally.

	
SECOND_ORDER

	NI-DMM weighs the samples taken in the middle of the aperture time more than samples taken at the beginning and the end of the measurement using a triangular weighing method.

	
HIGH_ORDER

	NI-DMM weighs the samples taken in the middle of the aperture time more than samples taken at the beginning and the end of the measurement using a bell-curve weighing method.

Function

	
class nidmm.Function

	
	
DC_VOLTS

	DC Voltage

	
AC_VOLTS

	AC Voltage

	
DC_CURRENT

	DC Current

	
AC_CURRENT

	AC Current

	
TWO_WIRE_RES

	2-Wire Resistance

	
FOUR_WIRE_RES

	4-Wire Resistance

	
FREQ

	Frequency

	
PERIOD

	Period

	
TEMPERATURE

	NI 4065, NI 4070/4071/4072, and NI 4080/4081/4182 supported.

	
AC_VOLTS_DC_COUPLED

	AC Voltage with DC Coupling

	
DIODE

	Diode

	
WAVEFORM_VOLTAGE

	Waveform voltage

	
WAVEFORM_CURRENT

	Waveform current

	
CAPACITANCE

	Capacitance

	
INDUCTANCE

	Inductance

LCCalculationModel

	
class nidmm.LCCalculationModel

	
	
AUTO

	NI-DMM chooses the algorithm based on method and range

	
SERIES

	NI-DMM uses the series impedance model to calculate capacitance and inductance

	
PARALLEL

	NI-DMM uses the parallel admittance model to calculate capacitance and inductance

MeasurementCompleteDest

	
class nidmm.MeasurementCompleteDest

	
	
NONE

	No Trigger

	
EXTERNAL

	AUX I/O Connector

	
PXI_TRIG0

	PXI Trigger Line 0

	
PXI_TRIG1

	PXI Trigger Line 1

	
PXI_TRIG2

	PXI Trigger Line 2

	
PXI_TRIG3

	PXI Trigger Line 3

	
PXI_TRIG4

	PXI Trigger Line 4

	
PXI_TRIG5

	PXI Trigger Line 5

	
PXI_TRIG6

	PXI Trigger Line 6

	
PXI_TRIG7

	PXI Trigger Line 7

	
LBR_TRIG0

	Internal Trigger Line of a PXI/SCXI Combination Chassis

OperationMode

	
class nidmm.OperationMode

	
	
IVIDMM

	IviDmm Mode

	
WAVEFORM

	Waveform acquisition mode

RTDType

	
class nidmm.RTDType

	
	
CUSTOM

	Performs Callendar-Van Dusen RTD scaling with the user-specified A, B,
and C coefficients.

	
PT3750

	Performs scaling for a Pt 3750 RTD.

	
PT3851

	Performs scaling for a Pt 3851 RTD.

	
PT3911

	Performs scaling for a Pt 3911 RTD.

	
PT3916

	Performs scaling for a Pt 3916 RTD.

	
PT3920

	Performs scaling for a Pt 3920 RTD.

	
PT3928

	Performs scaling for a Pt 3928 RTD.

SampleTrigger

	
class nidmm.SampleTrigger

	
	
IMMEDIATE

	No Trigger

	
EXTERNAL

	AUX I/O Connector Trigger Line 0

	
SOFTWARE_TRIG

	Software Trigger

	
INTERVAL

	Interval Trigger

	
PXI_TRIG0

	PXI Trigger Line 0

	
PXI_TRIG1

	PXI Trigger Line 1

	
PXI_TRIG2

	PXI Trigger Line 2

	
PXI_TRIG3

	PXI Trigger Line 3

	
PXI_TRIG4

	PXI Trigger Line 4

	
PXI_TRIG5

	PXI Trigger Line 5

	
PXI_TRIG6

	PXI Trigger Line 6

	
PXI_TRIG7

	PXI Trigger Line 7

	
PXI_STAR

	PXI Star Trigger Line

	
AUX_TRIG1

	AUX I/0 Connector Trigger Line 1

	
LBR_TRIG1

	Internal Trigger Line of a PXI/SCXI Combination Chassis

ThermistorType

	
class nidmm.ThermistorType

	
	
CUSTOM

	Custom

	
THERMISTOR_44004

	44004

	
THERMISTOR_44006

	44006

	
THERMISTOR_44007

	44007

ThermocoupleReferenceJunctionType

	
class nidmm.ThermocoupleReferenceJunctionType

	
	
FIXED

	Thermocouple reference juction is fixed at the user-specified
temperature.

ThermocoupleType

	
class nidmm.ThermocoupleType

	
	
B

	Thermocouple type B

	
E

	Thermocouple type E

	
J

	Thermocouple type J

	
K

	Thermocouple type K

	
N

	Thermocouple type N

	
R

	Thermocouple type R

	
S

	Thermocouple type S

	
T

	Thermocouple type T

TransducerType

	
class nidmm.TransducerType

	
	
THERMOCOUPLE

	Thermocouple

	
THERMISTOR

	Thermistor

	
TWO_WIRE_RTD

	2-wire RTD

	
FOUR_WIRE_RTD

	4-wire RTD

TriggerSource

	
class nidmm.TriggerSource

	
	
IMMEDIATE

	No Trigger

	
EXTERNAL

	AUX I/O Connector Trigger Line 0

	
SOFTWARE_TRIG

	Software Trigger

	
PXI_TRIG0

	PXI Trigger Line 0

	
PXI_TRIG1

	PXI Trigger Line 1

	
PXI_TRIG2

	PXI Trigger Line 2

	
PXI_TRIG3

	PXI Trigger Line 3

	
PXI_TRIG4

	PXI Trigger Line 4

	
PXI_TRIG5

	PXI Trigger Line 5

	
PXI_TRIG6

	PXI Trigger Line 6

	
PXI_TRIG7

	PXI Trigger Line 7

	
PXI_STAR

	PXI Star Trigger Line

	
AUX_TRIG1

	AUX I/O Connector Trigger Line 1

	
LBR_TRIG1

	Internal Trigger Line of a PXI/SCXI Combination Chassis

WaveformCoupling

	
class nidmm.WaveformCoupling

	
	
AC

	AC Coupled

	
DC

	DC Coupled

Exceptions and Warnings

Error

	
exception nidmm.errors.Error

	Base exception type that all NI-DMM exceptions derive from

DriverError

	
exception nidmm.errors.DriverError

	An error originating from the NI-DMM driver

UnsupportedConfigurationError

	
exception nidmm.errors.UnsupportedConfigurationError

	An error due to using this module in an usupported platform.

DriverNotInstalledError

	
exception nidmm.errors.DriverNotInstalledError

	An error due to using this module without the driver runtime installed.

InvalidRepeatedCapabilityError

	
exception nidmm.errors.InvalidRepeatedCapabilityError

	An error due to an invalid character in a repeated capability

SelfTestError

	
exception nidmm.errors.SelfTestError

	An error due to a failed self-test

DriverWarning

	
exception nidmm.errors.DriverWarning

	A warning originating from the NI-DMM driver

Examples

You can download all nidmm examples here [https://github.com/ni/nimi-python/releases/download/1.3.1/nidmm_examples.zip]

nidmm_fetch_waveform.py

(nidmm_fetch_waveform.py) [https://github.com/ni/nimi-python/blob/master/src/nidmm/examples/nidmm_fetch_waveform.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	#!/usr/bin/python

import argparse
import nidmm
import sys
import time

def example(resource_name, options, function, range, points, rate):
 with nidmm.Session(resource_name=resource_name, options=options) as session:
 session.configure_waveform_acquisition(measurement_function=nidmm.Function[function], range=range, rate=rate, waveform_points=points)
 with session.initiate():
 while True:
 time.sleep(0.1)
 backlog, acquisition_state = session.read_status()
 if acquisition_state == nidmm.AcquisitionStatus.FINISHED_WITH_NO_BACKLOG:
 break
 measurements = session.fetch_waveform(array_size=backlog)
 print(measurements)

def _main(argsv):
 parser = argparse.ArgumentParser(description='Performs a waveform acquisition using the NI-DMM API.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments Digital Multimeter.')
 parser.add_argument('-f', '--function', default='WAVEFORM_VOLTAGE', choices=nidmm.Function.__members__.keys(), type=str.upper, help='Measurement function.')
 parser.add_argument('-r', '--range', default=10, type=float, help='Measurement range.')
 parser.add_argument('-p', '--points', default=10, type=int, help='Specifies the number of points to acquire before the waveform acquisition completes.')
 parser.add_argument('-s', '--rate', default=1000, type=int, help='Specifies the rate of the acquisition in samples per second.')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.option_string, args.function, args.range, args.points, args.rate)

def main():
 _main(sys.argv[1:])

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '4082', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', options, 'WAVEFORM_VOLTAGE', 10, 10, 1000)

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4082; BoardType:PXIe',]
 _main(cmd_line)

if __name__ == '__main__':
 main()

nidmm_measurement.py

(nidmm_measurement.py) [https://github.com/ni/nimi-python/blob/master/src/nidmm/examples/nidmm_measurement.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	#!/usr/bin/python

import argparse
import nidmm
import sys

def example(resource_name, option_string, function, range, digits):
 with nidmm.Session(resource_name=resource_name, options=option_string) as session:
 session.configure_measurement_digits(measurement_function=nidmm.Function[function], range=range, resolution_digits=digits)
 print(session.read())

def _main(argsv):
 supported_functions = list(nidmm.Function.__members__.keys())
 parser = argparse.ArgumentParser(description='Performs a single measurement using the NI-DMM API.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments Digital Multimeter.')
 parser.add_argument('-f', '--function', default=supported_functions[0], choices=supported_functions, type=str.upper, help='Measurement function.')
 parser.add_argument('-r', '--range', default=10, type=float, help='Measurement range.')
 parser.add_argument('-d', '--digits', default=6.5, type=float, help='Digits of resolution for the measurement.')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.option_string, args.function, args.range, args.digits)

def main():
 _main(sys.argv[1:])

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '4082', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', options, 'DC_VOLTS', 10, 6.5)

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4082; BoardType:PXIe',]
 _main(cmd_line)

if __name__ == '__main__':
 main()

nidmm_multi_point_measurement.py

(nidmm_multi_point_measurement.py) [https://github.com/ni/nimi-python/blob/master/src/nidmm/examples/nidmm_multi_point_measurement.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	#!/usr/bin/python

import argparse
import nidmm
import sys

def example(resource_name, options, function, range, digits, samples, triggers):
 with nidmm.Session(resource_name=resource_name, options=options) as session:
 session.configure_measurement_digits(measurement_function=nidmm.Function[function], range=range, resolution_digits=digits)
 session.configure_multi_point(trigger_count=triggers, sample_count=samples)
 measurements = session.read_multi_point(array_size=samples)
 print('Measurements: ', measurements)

def _main(argsv):
 parser = argparse.ArgumentParser(description='Performs a multipoint measurement using the NI-DMM API.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments Digital Multimeter.')
 parser.add_argument('-f', '--function', default='DC_VOLTS', choices=nidmm.Function.__members__.keys(), type=str.upper, help='Measurement function.')
 parser.add_argument('-r', '--range', default=10, type=float, help='Measurement range.')
 parser.add_argument('-d', '--digits', default=6.5, type=float, help='Digits of resolution for the measurement.')
 parser.add_argument('-s', '--samples', default=10, type=int, help='The number of measurements the DMM makes.')
 parser.add_argument('-t', '--triggers', default=1, type=int, help='Sets the number of triggers you want the DMM to receive before returning to the Idle state.')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.option_string, args.function, args.range, args.digits, args.samples, args.triggers)

def main():
 _main(sys.argv[1:])

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '4082', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', options, 'DC_VOLTS', 10, 6.5, 10, 1)

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4082; BoardType:PXIe',]
 _main(cmd_line)

if __name__ == '__main__':
 main()

nifgen module

Installation

As a prerequisite to using the nifgen module, you must install the NI-FGEN runtime on your system. Visit ni.com/downloads [http://www.ni.com/downloads/] to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-FGEN) can be installed with pip [http://pypi.python.org/pypi/pip]:

$ python -m pip install nifgen~=1.3.1

Or easy_install from
setuptools [http://pypi.python.org/pypi/setuptools]:

$ python -m easy_install nifgen

Usage

The following is a basic example of using the nifgen module to open a session to a Function Generator and generate a sine wave for 5 seconds.

import nifgen
import time
with nifgen.Session("Dev1") as session:
 session.output_mode = nifgen.OutputMode.FUNC
 session.configure_standard_waveform(waveform=nifgen.Waveform.SINE, amplitude=1.0, frequency=10000000, dc_offset=0.0, start_phase=0.0)
 with session.initiate():
 time.sleep(5)

Additional examples for NI-FGEN are located in src/nifgen/examples/ directory.

API Reference

	Session

	Methods
	abort

	allocate_named_waveform

	allocate_waveform

	clear_arb_memory

	clear_arb_sequence

	clear_freq_list

	clear_user_standard_waveform

	close

	commit

	configure_arb_sequence

	configure_arb_waveform

	configure_freq_list

	configure_standard_waveform

	create_advanced_arb_sequence

	create_arb_sequence

	create_freq_list

	create_waveform_from_file_f64

	create_waveform_from_file_i16

	create_waveform_numpy

	define_user_standard_waveform

	delete_script

	delete_waveform

	disable

	export_attribute_configuration_buffer

	export_attribute_configuration_file

	get_channel_name

	get_ext_cal_last_date_and_time

	get_ext_cal_last_temp

	get_ext_cal_recommended_interval

	get_hardware_state

	get_self_cal_last_date_and_time

	get_self_cal_last_temp

	get_self_cal_supported

	import_attribute_configuration_buffer

	import_attribute_configuration_file

	initiate

	is_done

	lock

	query_arb_seq_capabilities

	query_arb_wfm_capabilities

	query_freq_list_capabilities

	read_current_temperature

	reset

	reset_device

	reset_with_defaults

	self_cal

	self_test

	send_software_edge_trigger

	set_next_write_position

	unlock

	wait_until_done

	write_script

	write_waveform

	Properties
	absolute_delay

	all_marker_events_latched_status

	all_marker_events_live_status

	analog_data_mask

	analog_filter_enabled

	analog_path

	analog_static_value

	arb_gain

	arb_marker_position

	arb_offset

	arb_repeat_count

	arb_sample_rate

	arb_sequence_handle

	arb_waveform_handle

	aux_power_enabled

	bus_type

	channel_delay

	clock_mode

	common_mode_offset

	data_marker_events_count

	data_marker_event_data_bit_number

	data_marker_event_level_polarity

	data_marker_event_output_terminal

	data_transfer_block_size

	data_transfer_maximum_bandwidth

	data_transfer_maximum_in_flight_reads

	data_transfer_preferred_packet_size

	digital_data_mask

	digital_edge_script_trigger_edge

	digital_edge_script_trigger_source

	digital_edge_start_trigger_edge

	digital_edge_start_trigger_source

	digital_filter_enabled

	digital_filter_interpolation_factor

	digital_gain

	digital_pattern_enabled

	digital_static_value

	done_event_output_terminal

	driver_setup

	exported_onboard_reference_clock_output_terminal

	exported_reference_clock_output_terminal

	exported_sample_clock_divisor

	exported_sample_clock_output_terminal

	exported_sample_clock_timebase_divisor

	exported_sample_clock_timebase_output_terminal

	exported_script_trigger_output_terminal

	exported_start_trigger_output_terminal

	external_clock_delay_binary_value

	external_sample_clock_multiplier

	file_transfer_block_size

	filter_correction_frequency

	flatness_correction_enabled

	fpga_bitfile_path

	freq_list_duration_quantum

	freq_list_handle

	func_amplitude

	func_buffer_size

	func_dc_offset

	func_duty_cycle_high

	func_frequency

	func_max_buffer_size

	func_start_phase

	func_waveform

	idle_behavior

	idle_value

	instrument_firmware_revision

	instrument_manufacturer

	instrument_model

	io_resource_descriptor

	load_impedance

	logical_name

	marker_events_count

	marker_event_output_terminal

	max_freq_list_duration

	max_freq_list_length

	max_loop_count

	max_num_freq_lists

	max_num_sequences

	max_num_waveforms

	max_sequence_length

	max_waveform_size

	memory_size

	min_freq_list_duration

	min_freq_list_length

	min_sequence_length

	min_waveform_size

	module_revision

	channel_count

	output_enabled

	output_impedance

	output_mode

	ready_for_start_event_output_terminal

	reference_clock_source

	ref_clock_frequency

	sample_clock_source

	sample_clock_timebase_rate

	sample_clock_timebase_source

	script_to_generate

	script_triggers_count

	script_trigger_type

	serial_number

	simulate

	specific_driver_description

	major_version

	minor_version

	specific_driver_revision

	specific_driver_vendor

	started_event_output_terminal

	start_trigger_type

	streaming_space_available_in_waveform

	streaming_waveform_handle

	streaming_waveform_name

	streaming_write_timeout

	supported_instrument_models

	terminal_configuration

	trigger_mode

	wait_behavior

	wait_value

	waveform_quantum

	NI-TClk Support

	Repeated Capabilities
	channels

	script_triggers

	markers

	Enums
	AnalogPath

	BusType

	ByteOrder

	ClockMode

	DataMarkerEventLevelPolarity

	HardwareState

	IdleBehavior

	OutputMode

	ReferenceClockSource

	RelativeTo

	SampleClockSource

	SampleClockTimebaseSource

	ScriptTriggerDigitalEdgeEdge

	ScriptTriggerType

	StartTriggerDigitalEdgeEdge

	StartTriggerType

	TerminalConfiguration

	Trigger

	TriggerMode

	WaitBehavior

	Waveform

	Exceptions and Warnings
	Error

	DriverError

	UnsupportedConfigurationError

	DriverNotInstalledError

	InvalidRepeatedCapabilityError

	SelfTestError

	DriverWarning

	Examples
	nifgen_arb_waveform.py

	nifgen_script.py

	nifgen_standard_function.py

Session

	
class nifgen.Session(self, resource_name, channel_name=None, reset_device=False, options={})

	Creates and returns a new NI-FGEN session to the specified channel of a
waveform generator that is used in all subsequent NI-FGEN method
calls.

	Parameters

	
	resource_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –
Caution

Traditional NI-DAQ and NI-DAQmx device names are not case-sensitive.
However, all IVI names, such as logical names, are case-sensitive. If
you use logical names, driver session names, or virtual names in your
program, you must ensure that the name you use matches the name in the
IVI Configuration Store file exactly, without any variations in the case
of the characters.

Specifies the resource name of the device to initialize.

For Traditional NI-DAQ devices, the syntax is DAQ::n, where n is
the device number assigned by MAX, as shown in Example 1.

For NI-DAQmx devices, the syntax is just the device name specified in
MAX, as shown in Example 2. Typical default names for NI-DAQmx devices
in MAX are Dev1 or PXI1Slot1. You can rename an NI-DAQmx device by
right-clicking on the name in MAX and entering a new name.

An alternate syntax for NI-DAQmx devices consists of DAQ::NI-DAQmx
device name, as shown in Example 3. This naming convention allows for
the use of an NI-DAQmx device in an application that was originally
designed for a Traditional NI-DAQ device. For example, if the
application expects DAQ::1, you can rename the NI-DAQmx device to 1 in
MAX and pass in DAQ::1 for the resource name, as shown in Example 4.

If you use the DAQ::n syntax and an NI-DAQmx device name already
exists with that same name, the NI-DAQmx device is matched first.

You can also pass in the name of an IVI logical name or an IVI virtual
name configured with the IVI Configuration utility, as shown in Example
5. A logical name identifies a particular virtual instrument. A virtual
name identifies a specific device and specifies the initial settings for
the session.

	Example #

	Device Type

	Syntax

	Variable

	1

	Traditional NI-DAQ device

	DAQ::1

	(1 = device number)

	2

	NI-DAQmx device

	myDAQmxDevice

	(myDAQmxDevice = device name)

	3

	NI-DAQmx device

	DAQ::myDAQmxDevice

	(myDAQmxDevice = device name)

	4

	NI-DAQmx device

	DAQ::2

	(2 = device name)

	5

	IVI logical name or IVI virtual name

	myLogicalName

	(myLogicalName = name)

	channel_name (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list], range [https://docs.python.org/3/library/stdtypes.html#range], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Specifies the channel that this VI uses.

Default Value: “0”

	reset_device (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether you want to reset the device during the initialization
procedure. True specifies that the device is reset and performs the
same method as the nifgen.Session.Reset() method.

Defined Values

Default Value: False

	True

	Reset device

	False

	Do not reset device

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned
value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not
specify a value for a property, the default value is used.

Advanced Example:
{ ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’, ‘BoardType’: ‘<type>’ } }

	Property

	Default

	range_check

	True

	query_instrument_status

	False

	cache

	True

	simulate

	False

	record_value_coersions

	False

	driver_setup

	{}

Methods

abort

	
nifgen.Session.abort()

	Aborts any previously initiated signal generation. Call the
nifgen.Session.initiate() method to cause the signal generator to
produce a signal again.

allocate_named_waveform

	
nifgen.Session.allocate_named_waveform(waveform_name, waveform_size)

	Specifies the size of a named waveform up front so that it can be
allocated in onboard memory before loading the associated data. Data can
then be loaded in smaller blocks with the niFgen Write (Binary16)
Waveform methods.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	waveform_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the name to associate with the allocated waveform.

	waveform_size (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the size of the waveform to allocate in samples.

Default Value: “4096”

allocate_waveform

	
nifgen.Session.allocate_waveform(waveform_size)

	Specifies the size of a waveform so that it can be allocated in onboard
memory before loading the associated data. Data can then be loaded in
smaller blocks with the Write Binary 16 Waveform methods.

Note

The signal generator must not be in the Generating state when you call
this method.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	waveform_size (int [https://docs.python.org/3/library/functions.html#int]) – Specifies, in samples, the size of the waveform to allocate.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	The handle that identifies the new waveform. This handle is used later
when referring to this waveform.

clear_arb_memory

	
nifgen.Session.clear_arb_memory()

	Removes all previously created arbitrary waveforms, sequences, and
scripts from the signal generator memory and invalidates all waveform
handles, sequence handles, and waveform names.

Note

The signal generator must not be in the Generating state when you
call this method.

clear_arb_sequence

	
nifgen.Session.clear_arb_sequence(sequence_handle)

	Removes a previously created arbitrary sequence from the signal
generator memory and invalidates the sequence handle.

Note

The signal generator must not be in the Generating state when you
call this method.

	Parameters

	sequence_handle (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the handle of the arbitrary sequence that you want the signal
generator to remove. You can create an arbitrary sequence using the
nifgen.Session.create_arb_sequence() or nifgen.Session.create_advanced_arb_sequence() method.
These methods return a handle that you use to identify the sequence.

Defined Value:

NIFGEN_VAL_ALL_SEQUENCES—Remove all sequences from the signal
generator

Default Value: None

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

clear_freq_list

	
nifgen.Session.clear_freq_list(frequency_list_handle)

	Removes a previously created frequency list from the signal generator
memory and invalidates the frequency list handle.

Note

The signal generator must not be in the Generating state when you
call this method.

	Parameters

	frequency_list_handle (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the handle of the frequency list you want the signal generator
to remove. You create multiple frequency lists using
nifgen.Session.create_freq_list(). nifgen.Session.create_freq_list() returns a handle that you
use to identify each list. Specify a value of -1 to clear all frequency
lists.

Defined Value

NIFGEN_VAL_ALL_FLISTS—Remove all frequency lists from the signal
generator.

Default Value: None

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

clear_user_standard_waveform

	
nifgen.Session.clear_user_standard_waveform()

	Clears the user-defined waveform created by the
nifgen.Session.define_user_standard_waveform() method.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

close

	
nifgen.Session.close()

	Performs the following operations:

	Closes the instrument I/O session.

	Destroys the NI-FGEN session and all of its properties.

	Deallocates any memory resources NI-FGEN uses.

Not all signal routes established by calling the nifgen.Session.ExportSignal()
and nifgen.Session.RouteSignalOut() methods are released when the NI-FGEN
session is closed. The following table shows what happens to a signal
route on your device when you call the nifgen.Session._close() method.

	Routes To

	NI 5401/5411/5431

	Other Devices

	Front Panel

	Remain connected

	Remain connected

	RTSI/PXI Backplane

	Remain connected

	Disconnected

Note

After calling nifgen.Session._close(), you cannot use NI-FGEN again until you
call the nifgen.Session.init() or nifgen.Session.InitWithOptions() methods.

Note

This method is not needed when using the session context manager

commit

	
nifgen.Session.commit()

	Causes a transition to the Committed state. This method verifies
property values, reserves the device, and commits the property values
to the device. If the property values are all valid, NI-FGEN sets the
device hardware configuration to match the session configuration. This
method does not support the NI 5401/5404/5411/5431 signal generators.

In the Committed state, you can load waveforms, scripts, and sequences
into memory. If any properties are changed, NI-FGEN implicitly
transitions back to the Idle state, where you can program all session
properties before applying them to the device. This method has no
effect if the device is already in the Committed or Generating state and
returns a successful status value.

Calling this VI before the niFgen Initiate Generation VI is optional but
has the following benefits:

	Routes are committed, so signals are exported or imported.

	Any Reference Clock and external clock circuits are phase-locked.

	A subsequent nifgen.Session.initiate() method can run faster
because the device is already configured.

configure_arb_sequence

	
nifgen.Session.configure_arb_sequence(sequence_handle, gain, offset)

	Configures the signal generator properties that affect arbitrary
sequence generation. Sets the nifgen.Session.arb_sequence_handle,
nifgen.Session.arb_gain, and nifgen.Session.arb_offset properties.

Note

The signal generator must not be in the Generating state when you call
this method.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	sequence_handle (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the handle of the arbitrary sequence that you want the signal
generator to produce. NI-FGEN sets the
nifgen.Session.arb_sequence_handle property to this value. You can
create an arbitrary sequence using the nifgen.Session.create_arb_sequence() or
nifgen.Session.create_advanced_arb_sequence() method. These methods return a
handle that you use to identify the sequence.

Default Value: None

	gain (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the factor by which the signal generator scales the arbitrary
waveforms in the sequence. When you create an arbitrary waveform, you
must first normalize the data points to a range of –1.00 to +1.00. You
can use this parameter to scale the waveform to other ranges. The gain
is applied before the offset is added.

For example, to configure the output signal to range from –2.00 to
+2.00 V, set gain to 2.00.

Units: unitless

Default Value: None

	offset (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the value the signal generator adds to the arbitrary waveform
data. When you create arbitrary waveforms, you must first normalize the
data points to a range of –1.00 to +1.00 V. You can use this parameter
to shift the range of the arbitrary waveform. NI-FGEN sets the
nifgen.Session.arb_offset property to this value.

For example, to configure the output signal to range from 0.00 to 2.00 V
instead of –1.00 to 1.00 V, set the offset to 1.00.

Units: volts

Default Value: None

configure_arb_waveform

	
nifgen.Session.configure_arb_waveform(waveform_handle, gain, offset)

	Configures the properties of the signal generator that affect arbitrary
waveform generation. Sets the nifgen.Session.arb_waveform_handle,
nifgen.Session.arb_gain, and nifgen.Session.arb_offset properties.

Note

The signal generator must not be in the Generating state when you call
this method.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	waveform_handle (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the handle of the arbitrary waveform you want the signal
generator to produce. NI-FGEN sets the
nifgen.Session.arb_waveform_handle property to this value. You can
create an arbitrary waveform using one of the following niFgen Create
Waveform methods:

	nifgen.Session.create_waveform()

	nifgen.Session.create_waveform()

	nifgen.Session.create_waveform_from_file_i16()

	nifgen.Session.create_waveform_from_file_f64()

	nifgen.Session.CreateWaveformFromFileHWS()

These methods return a handle that you use to identify the waveform.

Default Value: None

Note

One or more of the referenced methods are not in the Python API for this driver.

	gain (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the factor by which the signal generator scales the arbitrary
waveforms in the sequence. When you create an arbitrary waveform, you
must first normalize the data points to a range of –1.00 to +1.00. You
can use this parameter to scale the waveform to other ranges. The gain
is applied before the offset is added.

For example, to configure the output signal to range from –2.00 to
+2.00 V, set gain to 2.00.

Units: unitless

Default Value: None

	offset (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the value the signal generator adds to the arbitrary waveform
data. When you create arbitrary waveforms, you must first normalize the
data points to a range of –1.00 to +1.00 V. You can use this parameter
to shift the range of the arbitrary waveform. NI-FGEN sets the
nifgen.Session.arb_offset property to this value.

For example, to configure the output signal to range from 0.00 to 2.00 V
instead of –1.00 to 1.00 V, set the offset to 1.00.

Units: volts

Default Value: None

configure_freq_list

	
nifgen.Session.configure_freq_list(frequency_list_handle, amplitude, dc_offset=0.0, start_phase=0.0)

	Configures the properties of the signal generator that affect frequency
list generation (the nifgen.Session.freq_list_handle,
nifgen.Session.func_amplitude, nifgen.Session.func_dc_offset, and
nifgen.Session.func_start_phase properties).

Note

The signal generator must not be in the Generating state when you call
this method.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	frequency_list_handle (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the handle of the frequency list that you want the signal
generator to produce. NI-FGEN sets the nifgen.Session.freq_list_handle
property to this value. You can create a frequency list using the
nifgen.Session.create_freq_list() method, which returns a handle that you use to
identify the list.
Default Value: None

	amplitude (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the amplitude of the standard waveform that you want the
signal generator to produce. This value is the amplitude at the output
terminal. NI-FGEN sets the nifgen.Session.func_amplitude property to
this value.

For example, to produce a waveform ranging from –5.00 V to +5.00 V, set
the amplitude to 10.00 V.

Units: peak-to-peak voltage

Default Value: None

Note

This parameter does not affect signal generator behavior when you set
the waveform parameter of the nifgen.Session.configure_standard_waveform()
method to DC.

	dc_offset (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the DC offset of the standard waveform that you want the
signal generator to produce. The value is the offset from ground to the
center of the waveform you specify with the waveform parameter,
observed at the output terminal. For example, to configure a waveform
with an amplitude of 10.00 V to range from 0.00 V to +10.00 V, set the
dcOffset to 5.00 V. NI-FGEN sets the nifgen.Session.func_dc_offset
property to this value.

Units: volts

Default Value: None

	start_phase (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the horizontal offset of the standard waveform you want the
signal generator to produce. Specify this property in degrees of one
waveform cycle. NI-FGEN sets the nifgen.Session.func_start_phase
property to this value. A start phase of 180 degrees means output
generation begins halfway through the waveform. A start phase of 360
degrees offsets the output by an entire waveform cycle, which is
identical to a start phase of 0 degrees.

Units: degrees of one cycle

Default Value: None degrees

Note

This parameter does not affect signal generator behavior when you set
the waveform parameter to DC.

configure_standard_waveform

	
nifgen.Session.configure_standard_waveform(waveform, amplitude, frequency, dc_offset=0.0, start_phase=0.0)

	Configures the following properties of the signal generator that affect
standard waveform generation:

	nifgen.Session.func_waveform

	nifgen.Session.func_amplitude

	nifgen.Session.func_dc_offset

	nifgen.Session.func_frequency

	nifgen.Session.func_start_phase

Note

You must call the nifgen.Session.ConfigureOutputMode() method with the
outputMode parameter set to FUNC before calling
this method.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	waveform (nifgen.Waveform) – Specifies the standard waveform that you want the signal generator to
produce. NI-FGEN sets the nifgen.Session.func_waveform property to this
value.

Defined Values

Default Value: SINE

	SINE

	Specifies that the signal generator produces a sinusoid waveform.

	SQUARE

	Specifies that the signal generator produces a square waveform.

	TRIANGLE

	Specifies that the signal generator produces a triangle waveform.

	RAMP_UP

	Specifies that the signal generator produces a positive ramp waveform.

	RAMP_DOWN

	Specifies that the signal generator produces a negative ramp waveform.

	DC

	Specifies that the signal generator produces a constant voltage.

	NOISE

	Specifies that the signal generator produces white noise.

	USER

	Specifies that the signal generator produces a user-defined waveform as defined with the nifgen.Session.define_user_standard_waveform() method.

	amplitude (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the amplitude of the standard waveform that you want the
signal generator to produce. This value is the amplitude at the output
terminal. NI-FGEN sets the nifgen.Session.func_amplitude property to
this value.

For example, to produce a waveform ranging from –5.00 V to +5.00 V, set
the amplitude to 10.00 V.

Units: peak-to-peak voltage

Default Value: None

Note

This parameter does not affect signal generator behavior when you set
the waveform parameter of the nifgen.Session.configure_standard_waveform()
method to DC.

	frequency (float [https://docs.python.org/3/library/functions.html#float]) –
Specifies the frequency of the standard waveform that you want the
signal generator to produce. NI-FGEN sets the
nifgen.Session.func_frequency property to this value.

Units: hertz

Default Value: None

Note

This parameter does not affect signal generator behavior when you set
the waveform parameter of the nifgen.Session.configure_standard_waveform()
method to DC.

	dc_offset (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the DC offset of the standard waveform that you want the
signal generator to produce. The value is the offset from ground to the
center of the waveform you specify with the waveform parameter,
observed at the output terminal. For example, to configure a waveform
with an amplitude of 10.00 V to range from 0.00 V to +10.00 V, set the
dcOffset to 5.00 V. NI-FGEN sets the nifgen.Session.func_dc_offset
property to this value.

Units: volts

Default Value: None

	start_phase (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the horizontal offset of the standard waveform that you want
the signal generator to produce. Specify this parameter in degrees of
one waveform cycle. NI-FGEN sets the nifgen.Session.func_start_phase
property to this value. A start phase of 180 degrees means output
generation begins halfway through the waveform. A start phase of 360
degrees offsets the output by an entire waveform cycle, which is
identical to a start phase of 0 degrees.

Units: degrees of one cycle

Default Value: 0.00

Note

This parameter does not affect signal generator behavior when you set
the waveform parameter to DC.

create_advanced_arb_sequence

	
nifgen.Session.create_advanced_arb_sequence(waveform_handles_array, loop_counts_array, sample_counts_array=None, marker_location_array=None)

	Creates an arbitrary sequence from an array of waveform handles and an
array of corresponding loop counts. This method returns a handle that
identifies the sequence. You pass this handle to the
nifgen.Session.configure_arb_sequence() method to specify what arbitrary sequence
you want the signal generator to produce.

The nifgen.Session.create_advanced_arb_sequence() method extends on the
nifgen.Session.create_arb_sequence() method by adding the ability to set the
number of samples in each sequence step and to set marker locations.

An arbitrary sequence consists of multiple waveforms. For each waveform,
you specify the number of times the signal generator produces the
waveform before proceeding to the next waveform. The number of times to
repeat a specific waveform is called the loop count.

Note

The signal generator must not be in the Generating state when you call
this method.
You must call the nifgen.Session.ConfigureOutputMode() method to set the
outputMode parameter to SEQ before calling this
method.

	Parameters

	
	waveform_handles_array (list of int) – Specifies the array of waveform handles from which you want to create a
new arbitrary sequence. The array must have at least as many elements as
the value that you specify in sequenceLength. Each
waveformHandlesArray element has a corresponding loopCountsArray
element that indicates how many times that waveform is repeated. You
obtain waveform handles when you create arbitrary waveforms with the
nifgen.Session.allocate_waveform() method or one of the following niFgen
CreateWaveform methods:

	nifgen.Session.create_waveform()

	nifgen.Session.create_waveform()

	nifgen.Session.create_waveform_from_file_i16()

	nifgen.Session.create_waveform_from_file_f64()

	nifgen.Session.CreateWaveformFromFileHWS()

Default Value: None

	loop_counts_array (list of int) – Specifies the array of loop counts you want to use to create a new
arbitrary sequence. The array must have at least as many elements as the
value that you specify in the sequenceLength parameter. Each
loopCountsArray element corresponds to a waveformHandlesArray
element and indicates how many times to repeat that waveform. Each
element of the loopCountsArray must be less than or equal to the
maximum number of loop counts that the signal generator allows. You can
obtain the maximum loop count from maximumLoopCount in the
nifgen.Session.query_arb_seq_capabilities() method.

Default Value: None

	sample_counts_array (list of int) – Specifies the array of sample counts that you want to use to create a
new arbitrary sequence. The array must have at least as many elements as
the value you specify in the sequenceLength parameter. Each
sampleCountsArray element corresponds to a waveformHandlesArray
element and indicates the subset, in samples, of the given waveform to
generate. Each element of the sampleCountsArray must be larger than
the minimum waveform size, a multiple of the waveform quantum and no
larger than the number of samples in the corresponding waveform. You can
obtain these values by calling the nifgen.Session.query_arb_wfm_capabilities()
method.

Default Value: None

	marker_location_array (list of int) – Specifies the array of marker locations to where you want a marker to be
generated in the sequence. The array must have at least as many elements
as the value you specify in the sequenceLength parameter. Each
markerLocationArray element corresponds to a
waveformHandlesArray element and indicates where in the waveform a
marker is to generate. The marker location must be less than the size of
the waveform the marker is in. The markers are coerced to the nearest
marker quantum and the coerced values are returned in the
coercedMarkersArray parameter.

If you do not want a marker generated for a particular sequence stage,
set this parameter to NIFGEN_VAL_NO_MARKER.

Defined Value: NIFGEN_VAL_NO_MARKER

Default Value: None

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	Return type

	tuple (coerced_markers_array, sequence_handle)

WHERE

coerced_markers_array (list of int):

Returns an array of all given markers that are coerced (rounded) to the
nearest marker quantum. Not all devices coerce markers.

Default Value: None

sequence_handle (int):

Returns the handle that identifies the new arbitrary sequence. You can
pass this handle to nifgen.Session.configure_arb_sequence() to generate the
arbitrary sequence.

create_arb_sequence

	
nifgen.Session.create_arb_sequence(waveform_handles_array, loop_counts_array)

	Creates an arbitrary sequence from an array of waveform handles and an
array of corresponding loop counts. This method returns a handle that
identifies the sequence. You pass this handle to the
nifgen.Session.configure_arb_sequence() method to specify what arbitrary sequence
you want the signal generator to produce.

An arbitrary sequence consists of multiple waveforms. For each waveform,
you can specify the number of times that the signal generator produces
the waveform before proceeding to the next waveform. The number of times
to repeat a specific waveform is called the loop count.

Note

You must call the nifgen.Session.ConfigureOutputMode() method to set the
outputMode parameter to SEQ before calling this
method.

	Parameters

	
	waveform_handles_array (list of int) – Specifies the array of waveform handles from which you want to create a
new arbitrary sequence. The array must have at least as many elements as
the value that you specify in sequenceLength. Each
waveformHandlesArray element has a corresponding loopCountsArray
element that indicates how many times that waveform is repeated. You
obtain waveform handles when you create arbitrary waveforms with the
nifgen.Session.allocate_waveform() method or one of the following niFgen
CreateWaveform methods:

	nifgen.Session.create_waveform()

	nifgen.Session.create_waveform()

	nifgen.Session.create_waveform_from_file_i16()

	nifgen.Session.create_waveform_from_file_f64()

	nifgen.Session.CreateWaveformFromFileHWS()

Default Value: None

	loop_counts_array (list of int) – Specifies the array of loop counts you want to use to create a new
arbitrary sequence. The array must have at least as many elements as the
value that you specify in the sequenceLength parameter. Each
loopCountsArray element corresponds to a waveformHandlesArray
element and indicates how many times to repeat that waveform. Each
element of the loopCountsArray must be less than or equal to the
maximum number of loop counts that the signal generator allows. You can
obtain the maximum loop count from maximumLoopCount in the
nifgen.Session.query_arb_seq_capabilities() method.

Default Value: None

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	Returns the handle that identifies the new arbitrary sequence. You can
pass this handle to nifgen.Session.configure_arb_sequence() to generate the
arbitrary sequence.

create_freq_list

	
nifgen.Session.create_freq_list(waveform, frequency_array, duration_array)

	Creates a frequency list from an array of frequencies
(frequencyArray) and an array of durations (durationArray). The
two arrays should have the same number of elements, and this value must
also be the size of the frequencyListLength. The method returns a
handle that identifies the frequency list (the frequencyListHandle).
You can pass this handle to nifgen.Session.configure_freq_list() to specify what
frequency list you want the signal generator to produce.

A frequency list consists of a list of frequencies and durations. The
signal generator generates each frequency for the given amount of time
and then proceeds to the next frequency. When the end of the list is
reached, the signal generator starts over at the beginning of the list.

Note

The signal generator must not be in the Generating state when you call
this method.

	Parameters

	
	waveform (nifgen.Waveform) – Specifies the standard waveform that you want the signal generator to
produce. NI-FGEN sets the nifgen.Session.func_waveform property to this
value.

Defined Values

Default Value: SINE

	SINE

	Specifies that the signal generator produces a sinusoid waveform.

	SQUARE

	Specifies that the signal generator produces a square waveform.

	TRIANGLE

	Specifies that the signal generator produces a triangle waveform.

	RAMP_UP

	Specifies that the signal generator produces a positive ramp waveform.

	RAMP_DOWN

	Specifies that the signal generator produces a negative ramp waveform.

	DC

	Specifies that the signal generator produces a constant voltage.

	NOISE

	Specifies that the signal generator produces white noise.

	USER

	Specifies that the signal generator produces a user-defined waveform as defined with the nifgen.Session.define_user_standard_waveform() method.

	frequency_array (list of float) – Specifies the array of frequencies to form the frequency list. The array
must have at least as many elements as the value you specify in
frequencyListLength. Each frequencyArray element has a
corresponding durationArray element that indicates how long that
frequency is repeated.

Units: hertz

Default Value: None

	duration_array (list of float) – Specifies the array of durations to form the frequency list. The array
must have at least as many elements as the value that you specify in
frequencyListLength. Each durationArray element has a
corresponding frequencyArray element and indicates how long in
seconds to generate the corresponding frequency.

Units: seconds

Default Value: None

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	Returns the handle that identifies the new frequency list. You can pass
this handle to nifgen.Session.configure_freq_list() to generate the arbitrary
sequence.

create_waveform_from_file_f64

	
nifgen.Session.create_waveform_from_file_f64(file_name, byte_order)

	This method takes the floating point double (F64) data from the
specified file and creates an onboard waveform for use in Arbitrary
Waveform or Arbitrary Sequence output mode. The waveformHandle
returned by this method can later be used for setting the active
waveform, changing the data in the waveform, building sequences of
waveforms, or deleting the waveform when it is no longer needed.

Note

The F64 data must be between –1.0 and +1.0 V. Use the
nifgen.Session.digital_gain property to generate different voltage
outputs.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full path and name of the file where the waveform data resides.

	byte_order (nifgen.ByteOrder) – Specifies the byte order of the data in the file.

Defined Values

Default Value: LITTLE

	LITTLE

	Little Endian Data—The least significant bit is stored at the lowest address, followed by the other bits, in order of increasing significance.

	BIG

	Big Endian Data—The most significant bit is stored at the lowest address, followed by the other bits, in order of decreasing significance.

Note

Data written by most applications in Windows (including
LabWindows™/CVI™) is in Little Endian format. Data written to a file
from LabVIEW is in Big Endian format by default on all platforms. Big
Endian and Little Endian refer to the way data is stored in memory,
which can differ on different processors.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	The handle that identifies the new waveform. This handle is used later
when referring to this waveform.

create_waveform_from_file_i16

	
nifgen.Session.create_waveform_from_file_i16(file_name, byte_order)

	Takes the binary 16-bit signed integer (I16) data from the specified
file and creates an onboard waveform for use in Arbitrary Waveform or
Arbitrary Sequence output mode. The waveformHandle returned by this
method can later be used for setting the active waveform, changing the
data in the waveform, building sequences of waveforms, or deleting the
waveform when it is no longer needed.

Note

The I16 data (values between –32768 and +32767) is assumed to
represent –1 to +1 V. Use the nifgen.Session.digital_gain property to
generate different voltage outputs.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full path and name of the file where the waveform data resides.

	byte_order (nifgen.ByteOrder) – Specifies the byte order of the data in the file.

Defined Values

Default Value: LITTLE

	LITTLE

	Little Endian Data—The least significant bit is stored at the lowest address, followed by the other bits, in order of increasing significance.

	BIG

	Big Endian Data—The most significant bit is stored at the lowest address, followed by the other bits, in order of decreasing significance.

Note

Data written by most applications in Windows (including
LabWindows™/CVI™) is in Little Endian format. Data written to a file
from LabVIEW is in Big Endian format by default on all platforms. Big
Endian and Little Endian refer to the way data is stored in memory,
which can differ on different processors.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	The handle that identifies the new waveform. This handle is used later
when referring to this waveform.

create_waveform_numpy

	
nifgen.Session.create_waveform_numpy(waveform_data_array)

	Creates an onboard waveform for use in Arbitrary Waveform output mode or Arbitrary Sequence output mode.

Note

You must set nifgen.Session.output_mode to ARB or SEQ before calling this method.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	waveform_data_array (iterable of float or int16) – Array of data for the new arbitrary waveform. This may be an iterable of float or int16, or for best performance a numpy.ndarray of dtype int16 or float64.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	The handle that identifies the new waveform. This handle is used in other methods when referring to this waveform.

define_user_standard_waveform

	
nifgen.Session.define_user_standard_waveform(waveform_data_array)

	Defines a user waveform for use in either Standard Method or Frequency
List output mode.

To select the waveform, set the waveform parameter to
USER with either the nifgen.Session.configure_standard_waveform()
or the nifgen.Session.create_freq_list() method.

The waveform data must be scaled between –1.0 and 1.0. Use the
amplitude parameter in the nifgen.Session.configure_standard_waveform()
method to generate different output voltages.

Note

You must call the nifgen.Session.ConfigureOutputMode() method to set the
outputMode parameter to FUNC or
FREQ_LIST before calling this method.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	waveform_data_array (list of float) – Specifies the array of data you want to use for the new arbitrary
waveform. The array must have at least as many elements as the value
that you specify in waveformSize.

You must normalize the data points in the array to be between –1.00 and
+1.00.

Default Value: None

delete_script

	
nifgen.Session.delete_script(script_name)

	Deletes the specified script from onboard memory.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	script_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the name of the script you want to delete. The script name
appears in the text of the script following the script keyword.

delete_waveform

	
nifgen.Session.delete_waveform(waveform_name_or_handle)

	Removes a previously created arbitrary waveform from the signal generator memory.

Note

The signal generator must not be in the Generating state when you call this method.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	waveform_name_or_handle (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]) – The name (str) or handle (int) of an arbitrary waveform previously allocated with nifgen.Session.allocate_named_waveform(), nifgen.Session.allocate_waveform() or nifgen.Session.create_waveform().

disable

	
nifgen.Session.disable()

	Places the instrument in a quiescent state where it has minimal or no
impact on the system to which it is connected. The analog output and all
exported signals are disabled.

export_attribute_configuration_buffer

	
nifgen.Session.export_attribute_configuration_buffer()

	Exports the property configuration of the session to a configuration
buffer.

You can export and import session property configurations only between
devices with identical model numbers, channel counts, and onboard memory
sizes.

This method verifies that the properties you have configured for the
session are valid. If the configuration is invalid, NI‑FGEN returns an
error.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Returns

	Specifies the byte array buffer to be populated with the exported
property configuration.

export_attribute_configuration_file

	
nifgen.Session.export_attribute_configuration_file(file_path)

	Exports the property configuration of the session to the specified
file.

You can export and import session property configurations only between
devices with identical model numbers, channel counts, and onboard memory
sizes.

This method verifies that the properties you have configured for the
session are valid. If the configuration is invalid, NI‑FGEN returns an
error.

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the absolute path to the file to contain the exported
property configuration. If you specify an empty or relative path, this
method returns an error.
Default file extension: .nifgenconfig

get_channel_name

	
nifgen.Session.get_channel_name(index)

	Returns the channel string that is in the channel table at an index you
specify.

Note

This method is included for compliance with the IviFgen Class
Specification.

	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – A 1-based index into the channel table.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	Returns the channel string that is in the channel table at the index you
specify. Do not modify the contents of the channel string.

get_ext_cal_last_date_and_time

	
nifgen.Session.get_ext_cal_last_date_and_time()

	Returns the date and time of the last successful external calibration. The time returned is 24-hour (military) local time; for example, if the device was calibrated at 2:30 PM, this method returns 14 for the hour parameter and 30 for the minute parameter.

	Return type

	hightime.datetime

	Returns

	Indicates date and time of the last calibration.

get_ext_cal_last_temp

	
nifgen.Session.get_ext_cal_last_temp()

	Returns the temperature at the last successful external calibration. The
temperature is returned in degrees Celsius.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	Specifies the temperature at the last successful calibration in degrees
Celsius.

get_ext_cal_recommended_interval

	
nifgen.Session.get_ext_cal_recommended_interval()

	Returns the recommended interval between external calibrations in
months.

	Return type

	hightime.timedelta

	Returns

	Specifies the recommended interval between external calibrations in
months.

get_hardware_state

	
nifgen.Session.get_hardware_state()

	Returns the current hardware state of the device and, if the device is
in the hardware error state, the current hardware error.

Note

Hardware states do not necessarily correspond to NI-FGEN states.

	Return type

	nifgen.HardwareState

	Returns

	Returns the hardware state of the signal generator.

Defined Values

	IDLE

	The device is in the Idle state.

	WAITING_FOR_START_TRIGGER

	The device is waiting for Start Trigger.

	RUNNING

	The device is in the Running state.

	DONE

	The generation has completed successfully.

	HARDWARE_ERROR

	There is a hardware error.

get_self_cal_last_date_and_time

	
nifgen.Session.get_self_cal_last_date_and_time()

	Returns the date and time of the last successful self-calibration.

	Return type

	hightime.datetime

	Returns

	Returns the date and time the device was last calibrated.

get_self_cal_last_temp

	
nifgen.Session.get_self_cal_last_temp()

	Returns the temperature at the last successful self-calibration. The
temperature is returned in degrees Celsius.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	Specifies the temperature at the last successful calibration in degrees
Celsius.

get_self_cal_supported

	
nifgen.Session.get_self_cal_supported()

	Returns whether the device supports self–calibration.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	Returns whether the device supports self-calibration.

Defined Values

	True

	Self–calibration is supported.

	False

	Self–calibration is not supported.

import_attribute_configuration_buffer

	
nifgen.Session.import_attribute_configuration_buffer(configuration)

	Imports a property configuration to the session from the specified
configuration buffer.

You can export and import session property configurations only between
devices with identical model numbers, channel counts, and onboard memory
sizes.

Note

You cannot call this method while the session is in a running state,
such as while generating a signal.

	Parameters

	configuration (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Specifies the byte array buffer that contains the property
configuration to import.

import_attribute_configuration_file

	
nifgen.Session.import_attribute_configuration_file(file_path)

	Imports a property configuration to the session from the specified
file.

You can export and import session property configurations only between
devices with identical model numbers, channel counts, and onboard memory
sizes.

Note

You cannot call this method while the session is in a running state,
such as while generating a signal.

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the absolute path to the file containing the property
configuration to import. If you specify an empty or relative path, this
method returns an error.
Default File Extension: .nifgenconfig

initiate

	
nifgen.Session.initiate()

	Initiates signal generation. If you want to abort signal generation,
call the nifgen.Session.abort() method. After the signal generation
is aborted, you can call the nifgen.Session.initiate() method to
cause the signal generator to produce a signal again.

Note

This method will return a Python context manager that will initiate on entering and abort on exit.

is_done

	
nifgen.Session.is_done()

	Determines whether the current generation is complete. This method
sets the done parameter to True if the session is in the Idle or
Committed states.

Note

NI-FGEN only reports the done parameter as True after the
current generation is complete in Single trigger mode.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	Returns information about the completion of waveform generation.

Defined Values

	True

	Generation is complete.

	False

	Generation is not complete.

lock

	
nifgen.Session.lock()

	Obtains a multithread lock on the device session. Before doing so, the
software waits until all other execution threads release their locks
on the device session.

Other threads may have obtained a lock on this session for the
following reasons:

	The application called the nifgen.Session.lock() method.

	A call to NI-FGEN locked the session.

	After a call to the nifgen.Session.lock() method returns
successfully, no other threads can access the device session until
you call the nifgen.Session.unlock() method or exit out of the with block when using
lock context manager.

	Use the nifgen.Session.lock() method and the
nifgen.Session.unlock() method around a sequence of calls to
instrument driver methods if you require that the device retain its
settings through the end of the sequence.

You can safely make nested calls to the nifgen.Session.lock() method
within the same thread. To completely unlock the session, you must
balance each call to the nifgen.Session.lock() method with a call to
the nifgen.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls
is to use lock as a context manager

with nifgen.Session('dev1') as session:
 with session.lock():
 # Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

	Return type

	context manager

	Returns

	When used in a with statement, nifgen.Session.lock() acts as
a context manager and unlock will be called when the with block is exited

query_arb_seq_capabilities

	
nifgen.Session.query_arb_seq_capabilities()

	Returns the properties of the signal generator that are related to
creating arbitrary sequences (the nifgen.Session.max_num_sequences,
nifgen.Session.min_sequence_length,
nifgen.Session.max_sequence_length, and nifgen.Session.max_loop_count
properties).

	Return type

	tuple (maximum_number_of_sequences, minimum_sequence_length, maximum_sequence_length, maximum_loop_count)

WHERE

maximum_number_of_sequences (int):

Returns the maximum number of arbitrary waveform sequences that the
signal generator allows. NI-FGEN obtains this value from the
nifgen.Session.max_num_sequences property.

minimum_sequence_length (int):

Returns the minimum number of arbitrary waveforms the signal generator
allows in a sequence. NI-FGEN obtains this value from the
nifgen.Session.min_sequence_length property.

maximum_sequence_length (int):

Returns the maximum number of arbitrary waveforms the signal generator
allows in a sequence. NI-FGEN obtains this value from the
nifgen.Session.max_sequence_length property.

maximum_loop_count (int):

Returns the maximum number of times the signal generator can repeat an
arbitrary waveform in a sequence. NI-FGEN obtains this value from the
nifgen.Session.max_loop_count property.

query_arb_wfm_capabilities

	
nifgen.Session.query_arb_wfm_capabilities()

	Returns the properties of the signal generator that are related to
creating arbitrary waveforms. These properties are the maximum number of
waveforms, waveform quantum, minimum waveform size, and maximum waveform
size.

Note

If you do not want to obtain the waveform quantum, pass a value of
VI_NULL for this parameter.

	Return type

	tuple (maximum_number_of_waveforms, waveform_quantum, minimum_waveform_size, maximum_waveform_size)

WHERE

maximum_number_of_waveforms (int):

Returns the maximum number of arbitrary waveforms that the signal
generator allows. NI-FGEN obtains this value from the
nifgen.Session.max_num_waveforms property.

waveform_quantum (int):

The size (number of points) of each waveform must be a multiple of a
constant quantum value. This parameter obtains the quantum value that
the signal generator uses. NI-FGEN returns this value from the
nifgen.Session.waveform_quantum property.

For example, when this property returns a value of 8, all waveform
sizes must be a multiple of 8.

minimum_waveform_size (int):

Returns the minimum number of points that the signal generator allows in
a waveform. NI-FGEN obtains this value from the
nifgen.Session.min_waveform_size property.

maximum_waveform_size (int):

Returns the maximum number of points that the signal generator allows in
a waveform. NI-FGEN obtains this value from the
nifgen.Session.max_waveform_size property.

query_freq_list_capabilities

	
nifgen.Session.query_freq_list_capabilities()

	Returns the properties of the signal generator that are related to
creating frequency lists. These properties are
nifgen.Session.max_num_freq_lists,
nifgen.Session.min_freq_list_length,
nifgen.Session.max_freq_list_length,
nifgen.Session.min_freq_list_duration,
nifgen.Session.max_freq_list_duration, and
nifgen.Session.freq_list_duration_quantum.

	Return type

	tuple (maximum_number_of_freq_lists, minimum_frequency_list_length, maximum_frequency_list_length, minimum_frequency_list_duration, maximum_frequency_list_duration, frequency_list_duration_quantum)

WHERE

maximum_number_of_freq_lists (int):

Returns the maximum number of frequency lists that the signal generator
allows. NI-FGEN obtains this value from the
nifgen.Session.max_num_freq_lists property.

minimum_frequency_list_length (int):

Returns the minimum number of steps that the signal generator allows in
a frequency list. NI-FGEN obtains this value from the
nifgen.Session.min_freq_list_length property.

maximum_frequency_list_length (int):

Returns the maximum number of steps that the signal generator allows in
a frequency list. NI-FGEN obtains this value from the
nifgen.Session.max_freq_list_length property.

minimum_frequency_list_duration (float):

Returns the minimum duration that the signal generator allows in a step
of a frequency list. NI-FGEN obtains this value from the
nifgen.Session.min_freq_list_duration property.

maximum_frequency_list_duration (float):

Returns the maximum duration that the signal generator allows in a step
of a frequency list. NI-FGEN obtains this value from the
nifgen.Session.max_freq_list_duration property.

frequency_list_duration_quantum (float):

Returns the quantum of which all durations must be a multiple in a
frequency list. NI-FGEN obtains this value from the
nifgen.Session.freq_list_duration_quantum property.

read_current_temperature

	
nifgen.Session.read_current_temperature()

	Reads the current onboard temperature of the device. The temperature is
returned in degrees Celsius.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	Returns the current temperature read from onboard temperature sensors,
in degrees Celsius.

reset

	
nifgen.Session.reset()

	Resets the instrument to a known state. This method aborts the
generation, clears all routes, and resets session properties to the
default values. This method does not, however, commit the session
properties or configure the device hardware to its default state.

Note

For the NI 5401/5404/5411/5431, this method exhibits the same
behavior as the nifgen.Session.reset_device() method.

reset_device

	
nifgen.Session.reset_device()

	Performs a hard reset on the device. Generation is stopped, all routes
are released, external bidirectional terminals are tristated, FPGAs are
reset, hardware is configured to its default state, and all session
properties are reset to their default states.

reset_with_defaults

	
nifgen.Session.reset_with_defaults()

	Resets the instrument and reapplies initial user–specified settings from
the logical name that was used to initialize the session. If the session
was created without a logical name, this method is equivalent to the
nifgen.Session.reset() method.

self_cal

	
nifgen.Session.self_cal()

	Performs a full internal self-calibration on the device. If the
calibration is successful, new calibration data and constants are stored
in the onboard EEPROM.

self_test

	
nifgen.Session.self_test()

	Runs the instrument self-test routine and returns the test result(s).

Raises SelfTestError on self test failure. Properties on exception object:

	code - failure code from driver

	message - status message from driver

	Self-Test Code

	Description

	0

	Passed self-test

	1

	Self-test failed

Note

When used on some signal generators, the device is reset after the
nifgen.Session.self_test() method runs. If you use the nifgen.Session.self_test()
method, your device may not be in its previously configured state
after the method runs.

send_software_edge_trigger

	
nifgen.Session.send_software_edge_trigger(trigger, trigger_id)

	Sends a command to trigger the signal generator. This VI can act as an
override for an external edge trigger.

Note

This VI does not override external digital edge triggers of the
NI 5401/5411/5431.

	Parameters

	
	trigger (nifgen.Trigger) – Trigger specifies the type of software trigger to send

	Defined Values

	START

	SCRIPT

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	trigger_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Trigger ID specifies the Script Trigger to use for triggering.

set_next_write_position

	
nifgen.Session.set_next_write_position(waveform_name_or_handle, relative_to, offset)

	Sets the position in the waveform at which the next waveform data is
written. This method allows you to write to arbitrary locations within
the waveform. These settings apply only to the next write to the
waveform specified by the waveformHandle parameter. Subsequent writes to
that waveform begin where the last write left off, unless this method
is called again. The waveformHandle passed in must have been created by
a call to the nifgen.Session.allocate_waveform() method or one of the following
nifgen.Session.create_waveform() method.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	waveform_name_or_handle (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]) – The name (str) or handle (int) of an arbitrary waveform previously allocated with nifgen.Session.allocate_named_waveform(), nifgen.Session.allocate_waveform() or nifgen.Session.create_waveform().

	relative_to (nifgen.RelativeTo) – Specifies the reference position in the waveform. This position and
offset together determine where to start loading data into the
waveform.

Defined Values

	START (0)

	Use the start of the waveform as the reference position.

	CURRENT (1)

	Use the current position within the waveform as the reference position.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the offset from relativeTo at which to start loading the
data into the waveform.

unlock

	
nifgen.Session.unlock()

	Releases a lock that you acquired on an device session using
nifgen.Session.lock(). Refer to nifgen.Session.unlock() for additional
information on session locks.

wait_until_done

	
nifgen.Session.wait_until_done(max_time=hightime.timedelta(seconds=10.0))

	Waits until the device is done generating or until the maximum time has
expired.

	Parameters

	max_time (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or int in milliseconds) – Specifies the timeout value in milliseconds.

write_script

	
nifgen.Session.write_script(script)

	Writes a string containing one or more scripts that govern the
generation of waveforms.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	script (str [https://docs.python.org/3/library/stdtypes.html#str]) – Contains the text of the script you want to use for your generation
operation. Refer to scripting
Instructions
for more information about writing scripts.

write_waveform

	
nifgen.Session.write_waveform(waveform_name_or_handle, data)

	Writes data to the waveform in onboard memory.

By default, subsequent calls to this method
continue writing data from the position of the last sample written. You
can set the write position and offset by calling the nifgen.Session.set_next_write_position()
nifgen.Session.set_next_write_position() method.

Tip

This method requires repeated capabilities. If called directly on the
nifgen.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	waveform_name_or_handle (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]) – The name (str) or handle (int) of an arbitrary waveform previously allocated with nifgen.Session.allocate_named_waveform(), nifgen.Session.allocate_waveform() or nifgen.Session.create_waveform().

	data (list of float) – Array of data to load into the waveform. This may be an iterable of float, or for best performance a numpy.ndarray of dtype int16 or float64.

Properties

absolute_delay

	
nifgen.Session.absolute_delay

	Specifies the sub-Sample Clock delay, in seconds, to apply to the
waveform. Use this property to reduce the trigger jitter when
synchronizing multiple devices with NI-TClk. This property can also help
maintain synchronization repeatability by writing the absolute delay
value of a previous measurement to the current session.
To set this property, the waveform generator must be in the Idle
(Configuration) state.
Units: seconds (s)
Valid Values: Plus or minus half of one Sample Clock period
Default Value: 0.0
Supported Waveform Generators: PXIe-5413/5423/5433

Note

If this property is set, NI-TClk cannot perform any sub-Sample Clock
adjustment.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Absolute Delay

	C Attribute: NIFGEN_ATTR_ABSOLUTE_DELAY

all_marker_events_latched_status

	
nifgen.Session.all_marker_events_latched_status

	Returns a bit field of the latched status of all Marker Events. Write 0 to this property to clear the latched status of all Marker Events.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Marker:Advanced:All Marker Events Latched Status

	C Attribute: NIFGEN_ATTR_ALL_MARKER_EVENTS_LATCHED_STATUS

all_marker_events_live_status

	
nifgen.Session.all_marker_events_live_status

	Returns a bit field of the live status of all Marker Events.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Marker:Advanced:All Marker Events Live Status

	C Attribute: NIFGEN_ATTR_ALL_MARKER_EVENTS_LIVE_STATUS

analog_data_mask

	
nifgen.Session.analog_data_mask

	Specifies the mask to apply to the analog output. The masked data is replaced with the data in nifgen.Session.analog_static_value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Data Mask:Analog Data Mask

	C Attribute: NIFGEN_ATTR_ANALOG_DATA_MASK

analog_filter_enabled

	
nifgen.Session.analog_filter_enabled

	Controls whether the signal generator applies to an analog filter to the output signal. This property is valid in arbitrary waveform, arbitrary sequence, and script modes. This property can also be used in standard method and frequency list modes for user-defined waveforms.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Filters:Analog Filter Enabled

	C Attribute: NIFGEN_ATTR_ANALOG_FILTER_ENABLED

analog_path

	
nifgen.Session.analog_path

	Specifies the analog signal path that should be used. The main path allows you to configure gain, offset, analog filter status, output impedance, and output enable. The main path has two amplifier options, high- and low-gain.
The direct path presents a much smaller gain range, and you cannot adjust offset or the filter status. The direct path also provides a smaller output range but also lower distortion. NI-FGEN normally chooses the amplifier based on the user-specified gain.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.AnalogPath

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Analog Path

	C Attribute: NIFGEN_ATTR_ANALOG_PATH

analog_static_value

	
nifgen.Session.analog_static_value

	Specifies the static value that replaces data masked by nifgen.Session.analog_data_mask.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Data Mask:Analog Static Value

	C Attribute: NIFGEN_ATTR_ANALOG_STATIC_VALUE

arb_gain

	
nifgen.Session.arb_gain

	Specifies the factor by which the signal generator scales the arbitrary waveform data. When you create arbitrary waveforms, you must first normalize the data points to the range -1.0 to +1.0. Use this property to scale the arbitrary waveform to other ranges.
For example, when you set this property to 2.0, the output signal ranges from -2.0 V to +2.0 V.
Use this property when nifgen.Session.output_mode is set to ARB or SEQ.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Gain

	C Attribute: NIFGEN_ATTR_ARB_GAIN

arb_marker_position

	
nifgen.Session.arb_marker_position

	Specifies the position for a marker to be asserted in the arbitrary waveform. This property defaults to -1 when no marker position is specified. Use this property when nifgen.Session.output_mode is set to ARB.
Use nifgen.Session.ExportSignal() to export the marker signal.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can use repeated capabilities. If set or get directly on the
nifgen.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Arbitrary Waveform Mode:Marker Position

	C Attribute: NIFGEN_ATTR_ARB_MARKER_POSITION

arb_offset

	
nifgen.Session.arb_offset

	Specifies the value that the signal generator adds to the arbitrary waveform data. When you create arbitrary waveforms, you must first normalize the data points to the range -1.0 to +1.0. Use this property to shift the arbitrary waveform range.
For example, when you set this property to 1.0, the output signal ranges from 2.0 V to 0.0 V.
Use this property when nifgen.Session.output_mode is set to ARB or SEQ.
Units: Volts

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Offset

	C Attribute: NIFGEN_ATTR_ARB_OFFSET

arb_repeat_count

	
nifgen.Session.arb_repeat_count

	Specifies number of times to repeat the arbitrary waveform when the triggerMode parameter of nifgen.Session.ConfigureTriggerMode() is set to SINGLE or STEPPED. This property is ignored if the triggerMode parameter is set to CONTINUOUS or BURST. Use this property when nifgen.Session.output_mode is set to ARB.
When used during streaming, this property specifies the number of times to repeat the streaming waveform (the onboard memory allocated for streaming). For more information about streaming, refer to the Streaming topic.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Arbitrary Waveform Mode:Repeat Count

	C Attribute: NIFGEN_ATTR_ARB_REPEAT_COUNT

arb_sample_rate

	
nifgen.Session.arb_sample_rate

	Specifies the rate at which the signal generator outputs the points in arbitrary waveforms. Use this property when nifgen.Session.output_mode is set to ARB or SEQ.
Units: Samples/s

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Sample Clock:Rate

	C Attribute: NIFGEN_ATTR_ARB_SAMPLE_RATE

arb_sequence_handle

	
nifgen.Session.arb_sequence_handle

	This channel-based property identifies which sequence the signal generator produces. You can create multiple sequences using nifgen.Session.create_arb_sequence(). nifgen.Session.create_arb_sequence() returns a handle that you can use to identify the particular sequence. To configure the signal generator to produce a particular sequence, set this property to the sequence handle.
Use this property only when nifgen.Session.output_mode is set to SEQ.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Arbitrary Sequence Handle

	C Attribute: NIFGEN_ATTR_ARB_SEQUENCE_HANDLE

arb_waveform_handle

	
nifgen.Session.arb_waveform_handle

	Selects which arbitrary waveform the signal generator produces. You can create multiple arbitrary waveforms using one of the following niFgen Create Waveform methods:
nifgen.Session.create_waveform()
nifgen.Session.create_waveform()
nifgen.Session.create_waveform_from_file_i16()
nifgen.Session.create_waveform_from_file_f64()
nifgen.Session.CreateWaveformFromFileHWS()
These methods return a handle that you can use to identify the particular waveform. To configure the signal generator to produce a particular waveform, set this property to the waveform handle.
Use this property only when nifgen.Session.output_mode is set to ARB.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Arbitrary Waveform Mode:Arbitrary Waveform Handle

	C Attribute: NIFGEN_ATTR_ARB_WAVEFORM_HANDLE

aux_power_enabled

	
nifgen.Session.aux_power_enabled

	Controls the specified auxiliary power pin. Setting this property to TRUE energizes the auxiliary power when the session is committed. When this property is FALSE, the power pin of the connector outputs no power.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Advanced:AUX Power Enabled

	C Attribute: NIFGEN_ATTR_AUX_POWER_ENABLED

bus_type

	
nifgen.Session.bus_type

	The bus type of the signal generator.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.BusType

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Bus Type

	C Attribute: NIFGEN_ATTR_BUS_TYPE

channel_delay

	
nifgen.Session.channel_delay

	Specifies, in seconds, the delay to apply to the analog output of the channel specified by the channel string. You can use the channel delay to configure the timing relationship between channels on a multichannel device. Values for this property can be zero or positive. A value of zero indicates that the channels are aligned. A positive value delays the analog output by the specified number of seconds.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Channel Delay

	C Attribute: NIFGEN_ATTR_CHANNEL_DELAY

clock_mode

	
nifgen.Session.clock_mode

	Controls which clock mode is used for the signal generator.
For signal generators that support it, this property allows switching the sample clock to High-Resolution mode. When in Divide-Down mode, the sample rate can only be set to certain frequences, based on dividing down the update clock. However, in High-Resolution mode, the sample rate may be set to any value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ClockMode

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Sample Clock:Mode

	C Attribute: NIFGEN_ATTR_CLOCK_MODE

common_mode_offset

	
nifgen.Session.common_mode_offset

	Specifies, in volts, the value the signal generator adds to or subtracts from the arbitrary waveform data. This property applies only when you set the nifgen.Session.terminal_configuration property to DIFFERENTIAL. Common mode offset is applied to the signals generated at each differential output terminal.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Common Mode Offset

	C Attribute: NIFGEN_ATTR_COMMON_MODE_OFFSET

data_marker_events_count

	
nifgen.Session.data_marker_events_count

	Returns the number of Data Marker Events supported by the device.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Data Marker Events Count

	C Attribute: NIFGEN_ATTR_DATA_MARKER_EVENTS_COUNT

data_marker_event_data_bit_number

	
nifgen.Session.data_marker_event_data_bit_number

	Specifies the bit number to assign to the Data Marker Event.

Tip

This property can use repeated capabilities. If set or get directly on the
nifgen.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Data Marker:Data Bit Number

	C Attribute: NIFGEN_ATTR_DATA_MARKER_EVENT_DATA_BIT_NUMBER

data_marker_event_level_polarity

	
nifgen.Session.data_marker_event_level_polarity

	Specifies the output polarity of the Data marker event.

Tip

This property can use repeated capabilities. If set or get directly on the
nifgen.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.DataMarkerEventLevelPolarity

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Data Marker:Level:Active Level

	C Attribute: NIFGEN_ATTR_DATA_MARKER_EVENT_LEVEL_POLARITY

data_marker_event_output_terminal

	
nifgen.Session.data_marker_event_output_terminal

	Specifies the destination terminal for the Data Marker Event.

Tip

This property can use repeated capabilities. If set or get directly on the
nifgen.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Data Marker:Output Terminal

	C Attribute: NIFGEN_ATTR_DATA_MARKER_EVENT_OUTPUT_TERMINAL

data_transfer_block_size

	
nifgen.Session.data_transfer_block_size

	The number of samples at a time to download to onboard memory. Useful when the total data to be transferred to onboard memory is large.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Data Transfer:Data Transfer Block Size

	C Attribute: NIFGEN_ATTR_DATA_TRANSFER_BLOCK_SIZE

data_transfer_maximum_bandwidth

	
nifgen.Session.data_transfer_maximum_bandwidth

	Specifies the maximum amount of bus bandwidth (in bytes per second) to use for data transfers. The signal generator limits data transfer speeds on the PCIe bus to the value you specify for this property. Set this property to optimize bus bandwidth usage for multi-device streaming applications by preventing the signal generator from consuming all of the available bandwidth on a PCI express link when waveforms are being written to the onboard memory of the device.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Data Transfer:Maximum Bandwidth

	C Attribute: NIFGEN_ATTR_DATA_TRANSFER_MAXIMUM_BANDWIDTH

data_transfer_maximum_in_flight_reads

	
nifgen.Session.data_transfer_maximum_in_flight_reads

	Specifies the maximum number of concurrent PCI Express read requests the signal generator can issue.
When transferring data from computer memory to device onboard memory across the PCI Express bus, the signal generator can issue multiple memory reads at the same time. In general, the larger the number of read requests, the more efficiently the device uses the bus because the multiple read requests keep the data flowing, even in a PCI Express topology that has high latency due to PCI Express switches in the data path. Most NI devices can issue a large number of read requests (typically 8 or 16). By default, this property is set to the highest value the signal generator supports.
If other devices in your system cannot tolerate long data latencies, it may be helpful to decrease the number of in-flight read requests the NI signal generator issues. This helps to reduce the amount of data the signal generator reads at one time.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Data Transfer:Advanced:Maximum In-Flight Read Requests

	C Attribute: NIFGEN_ATTR_DATA_TRANSFER_MAXIMUM_IN_FLIGHT_READS

data_transfer_preferred_packet_size

	
nifgen.Session.data_transfer_preferred_packet_size

	Specifies the preferred size of the data field in a PCI Express read request packet. In general, the larger the packet size, the more efficiently the device uses the bus. By default, NI signal generators use the largest packet size allowed by the system. However, due to different system implementations, some systems may perform better with smaller packet sizes.
Recommended values for this property are powers of two between 64 and 512.
In some cases, the signal generator generates packets smaller than the preferred size you set with this property.
You cannot change this property while the device is generating a waveform. If you want to change the device configuration, call the nifgen.Session.abort() method or wait for the generation to complete.

Note

:

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Data Transfer:Advanced:Preferred Packet Size

	C Attribute: NIFGEN_ATTR_DATA_TRANSFER_PREFERRED_PACKET_SIZE

digital_data_mask

	
nifgen.Session.digital_data_mask

	Specifies the mask to apply to the output on the digital connector. The masked data is replaced with the data in nifgen.Session.digital_static_value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Data Mask:Digital Data Mask

	C Attribute: NIFGEN_ATTR_DIGITAL_DATA_MASK

digital_edge_script_trigger_edge

	
nifgen.Session.digital_edge_script_trigger_edge

	Specifies the active edge for the Script trigger. This property is used when nifgen.Session.script_trigger_type is set to Digital Edge.

Tip

This property can use repeated capabilities. If set or get directly on the
nifgen.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ScriptTriggerDigitalEdgeEdge

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Script:Digital Edge:Edge

	C Attribute: NIFGEN_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_EDGE

digital_edge_script_trigger_source

	
nifgen.Session.digital_edge_script_trigger_source

	Specifies the source terminal for the Script trigger. This property is used when nifgen.Session.script_trigger_type is set to Digital Edge.

Tip

This property can use repeated capabilities. If set or get directly on the
nifgen.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Script:Digital Edge:Source

	C Attribute: NIFGEN_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_SOURCE

digital_edge_start_trigger_edge

	
nifgen.Session.digital_edge_start_trigger_edge

	Specifies the active edge for the Start trigger. This property is used only when nifgen.Session.start_trigger_type is set to Digital Edge.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.StartTriggerDigitalEdgeEdge

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Start:Digital Edge:Edge

	C Attribute: NIFGEN_ATTR_DIGITAL_EDGE_START_TRIGGER_EDGE

digital_edge_start_trigger_source

	
nifgen.Session.digital_edge_start_trigger_source

	Specifies the source terminal for the Start trigger. This property is used only when nifgen.Session.start_trigger_type is set to Digital Edge.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Start:Digital Edge:Source

	C Attribute: NIFGEN_ATTR_DIGITAL_EDGE_START_TRIGGER_SOURCE

digital_filter_enabled

	
nifgen.Session.digital_filter_enabled

	Controls whether the signal generator applies a digital filter to the output signal. This property is valid in arbitrary waveform, arbitrary sequence, and script modes. This property can also be used in standard method and frequency list modes for user-defined waveforms.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Filters:Digital Filter Enabled

	C Attribute: NIFGEN_ATTR_DIGITAL_FILTER_ENABLED

digital_filter_interpolation_factor

	
nifgen.Session.digital_filter_interpolation_factor

	This property only affects the device when nifgen.Session.digital_filter_enabled is set to True. If you do not set this property directly, NI-FGEN automatically selects the maximum interpolation factor allowed for the current sample rate. Valid values are 2, 4, and 8.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Filters:Digital Filter Interpolation Factor

	C Attribute: NIFGEN_ATTR_DIGITAL_FILTER_INTERPOLATION_FACTOR

digital_gain

	
nifgen.Session.digital_gain

	Specifies a factor by which the signal generator digitally multiplies generated data before converting it to an analog signal in the DAC. For a digital gain greater than 1.0, the product of digital gain times the generated data must be inside the range plus or minus 1.0 (assuming floating point data). If the product exceeds these limits, the signal generator clips the output signal, and an error results.
Some signal generators support both digital gain and an analog gain (analog gain is specified with the nifgen.Session.func_amplitude property or the nifgen.Session.arb_gain property). Digital gain can be changed during generation without the glitches that may occur when changing analog gains, due to relay switching. However, the DAC output resolution is a method of analog gain, so only analog gain makes full use of the resolution of the DAC.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Digital Gain

	C Attribute: NIFGEN_ATTR_DIGITAL_GAIN

digital_pattern_enabled

	
nifgen.Session.digital_pattern_enabled

	Controls whether the signal generator generates a digital pattern of the output signal.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Advanced:Digital Pattern Enabled

	C Attribute: NIFGEN_ATTR_DIGITAL_PATTERN_ENABLED

digital_static_value

	
nifgen.Session.digital_static_value

	Specifies the static value that replaces data masked by nifgen.Session.digital_data_mask.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Data Mask:Digital Static Value

	C Attribute: NIFGEN_ATTR_DIGITAL_STATIC_VALUE

done_event_output_terminal

	
nifgen.Session.done_event_output_terminal

	Specifies the destination terminal for the Done Event.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Done:Output Terminal

	C Attribute: NIFGEN_ATTR_DONE_EVENT_OUTPUT_TERMINAL

driver_setup

	
nifgen.Session.driver_setup

	Specifies the driver setup portion of the option string that was passed into the nifgen.Session.InitWithOptions() method.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIFGEN_ATTR_DRIVER_SETUP

exported_onboard_reference_clock_output_terminal

	
nifgen.Session.exported_onboard_reference_clock_output_terminal

	Specifies the terminal to which to export the Onboard Reference Clock.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Reference Clock:Onboard Reference Clock:Export Output Terminal

	C Attribute: NIFGEN_ATTR_EXPORTED_ONBOARD_REFERENCE_CLOCK_OUTPUT_TERMINAL

exported_reference_clock_output_terminal

	
nifgen.Session.exported_reference_clock_output_terminal

	Specifies the terminal to which to export the Reference Clock.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Reference Clock:Export Output Terminal

	C Attribute: NIFGEN_ATTR_EXPORTED_REFERENCE_CLOCK_OUTPUT_TERMINAL

exported_sample_clock_divisor

	
nifgen.Session.exported_sample_clock_divisor

	Specifies the factor by which to divide the Sample clock, also known as the Update clock, before it is exported. To export the Sample clock, use the nifgen.Session.ExportSignal() method or the nifgen.Session.exported_sample_clock_output_terminal property.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Sample Clock:Exported Sample Clock Divisor

	C Attribute: NIFGEN_ATTR_EXPORTED_SAMPLE_CLOCK_DIVISOR

exported_sample_clock_output_terminal

	
nifgen.Session.exported_sample_clock_output_terminal

	Specifies the terminal to which to export the Sample Clock.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Sample Clock:Export Output Terminal

	C Attribute: NIFGEN_ATTR_EXPORTED_SAMPLE_CLOCK_OUTPUT_TERMINAL

exported_sample_clock_timebase_divisor

	
nifgen.Session.exported_sample_clock_timebase_divisor

	Specifies the factor by which to divide the sample clock timebase (board clock) before it is exported. To export the Sample clock timebase, use the nifgen.Session.ExportSignal() method or the nifgen.Session.exported_sample_clock_timebase_output_terminal property.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Sample Clock Timebase:Exported Sample Clock Timebase Divisor

	C Attribute: NIFGEN_ATTR_EXPORTED_SAMPLE_CLOCK_TIMEBASE_DIVISOR

exported_sample_clock_timebase_output_terminal

	
nifgen.Session.exported_sample_clock_timebase_output_terminal

	Specifies the terminal to which to export the Sample clock timebase. If you specify a divisor with the nifgen.Session.exported_sample_clock_timebase_divisor property, the Sample clock exported with the nifgen.Session.exported_sample_clock_timebase_output_terminal property is the value of the Sample clock timebase after it is divided-down. For a list of the terminals available on your device, refer to the Device Routes tab in MAX.
To change the device configuration, call nifgen.Session.abort() or wait for the generation to complete.

Note

The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Sample Clock Timebase:Export Output Terminal

	C Attribute: NIFGEN_ATTR_EXPORTED_SAMPLE_CLOCK_TIMEBASE_OUTPUT_TERMINAL

exported_script_trigger_output_terminal

	
nifgen.Session.exported_script_trigger_output_terminal

	Specifies the output terminal for the exported Script trigger.
Setting this property to an empty string means that when you commit the session, the signal is removed from that terminal and, if possible, the terminal is tristated.

Tip

This property can use repeated capabilities. If set or get directly on the
nifgen.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Script:Output Terminal

	C Attribute: NIFGEN_ATTR_EXPORTED_SCRIPT_TRIGGER_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

	
nifgen.Session.exported_start_trigger_output_terminal

	Specifies the destination terminal for exporting the Start trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Start:Output Terminal

	C Attribute: NIFGEN_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

external_clock_delay_binary_value

	
nifgen.Session.external_clock_delay_binary_value

	Binary value of the external clock delay.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Advanced:External Clock Delay Binary Value

	C Attribute: NIFGEN_ATTR_EXTERNAL_CLOCK_DELAY_BINARY_VALUE

external_sample_clock_multiplier

	
nifgen.Session.external_sample_clock_multiplier

	Specifies a multiplication factor to use to obtain a desired sample rate from an external Sample clock. The resulting sample rate is equal to this factor multiplied by the external Sample clock rate. You can use this property to generate samples at a rate higher than your external clock rate. When using this property, you do not need to explicitly set the external clock rate.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Advanced:External Sample Clock Multiplier

	C Attribute: NIFGEN_ATTR_EXTERNAL_SAMPLE_CLOCK_MULTIPLIER

file_transfer_block_size

	
nifgen.Session.file_transfer_block_size

	The number of samples at a time to read from the file and download to onboard memory. Used in conjunction with the Create From File and Write From File methods.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Data Transfer:File Transfer Block Size

	C Attribute: NIFGEN_ATTR_FILE_TRANSFER_BLOCK_SIZE

filter_correction_frequency

	
nifgen.Session.filter_correction_frequency

	Controls the filter correction frequency of the analog filter. This property corrects for the ripples in the analog filter frequency response at the frequency specified. For standard waveform output, the filter correction frequency should be set to be the same as the frequency of the standard waveform. To have no filter correction, set this property to 0 Hz.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:5401/5411/5431:Filter Correction Frequency

	C Attribute: NIFGEN_ATTR_FILTER_CORRECTION_FREQUENCY

flatness_correction_enabled

	
nifgen.Session.flatness_correction_enabled

	When True, the signal generator applies a flatness correction factor to the generated sine wave in order to ensure the same output power level at all frequencies.
This property should be set to False when performing Flatness Calibration.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Filters:Flatness Correction Enabled

	C Attribute: NIFGEN_ATTR_FLATNESS_CORRECTION_ENABLED

fpga_bitfile_path

	
nifgen.Session.fpga_bitfile_path

	Gets the absolute file path to the bitfile loaded on the FPGA.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:FPGA Bitfile Path

	C Attribute: NIFGEN_ATTR_FPGA_BITFILE_PATH

freq_list_duration_quantum

	
nifgen.Session.freq_list_duration_quantum

	Returns the quantum of which all durations must be a multiple in a frequency list.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Frequency List Mode:Frequency List Duration Quantum

	C Attribute: NIFGEN_ATTR_FREQ_LIST_DURATION_QUANTUM

freq_list_handle

	
nifgen.Session.freq_list_handle

	Sets which frequency list the signal generator produces. Create a frequency list using nifgen.Session.create_freq_list(). nifgen.Session.create_freq_list() returns a handle that you can use to identify the list.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Frequency List Mode:Frequency List Handle

	C Attribute: NIFGEN_ATTR_FREQ_LIST_HANDLE

func_amplitude

	
nifgen.Session.func_amplitude

	Controls the amplitude of the standard waveform that the signal generator produces. This value is the amplitude at the output terminal.
For example, to produce a waveform ranging from -5.00 V to +5.00 V, set the amplitude to 10.00 V.
set the Waveform parameter to DC.
Units: Vpk-pk

Note

This parameter does not affect signal generator behavior when you

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Amplitude

	C Attribute: NIFGEN_ATTR_FUNC_AMPLITUDE

func_buffer_size

	
nifgen.Session.func_buffer_size

	This property contains the number of samples used in the standard method waveform buffer. This property is only valid on devices that implement standard method mode in software, and is read-only for all other devices.
implementation of Standard Method Mode on your device.

Note

Refer to the Standard Method Mode topic for more information on the

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Standard Function Mode:Buffer Size

	C Attribute: NIFGEN_ATTR_FUNC_BUFFER_SIZE

func_dc_offset

	
nifgen.Session.func_dc_offset

	Controls the DC offset of the standard waveform that the signal generator produces. This value is the offset at the output terminal. The value is the offset from ground to the center of the waveform that you specify with the Waveform parameter.
For example, to configure a waveform with an amplitude of 10.00 V to range from 0.00 V to +10.00 V, set DC Offset to 5.00 V.
Units: volts

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:DC Offset

	C Attribute: NIFGEN_ATTR_FUNC_DC_OFFSET

func_duty_cycle_high

	
nifgen.Session.func_duty_cycle_high

	Controls the duty cycle of the square wave the signal generator produces. Specify this property as a percentage of the time the square wave is high in a cycle.
set the Waveform parameter to SQUARE.
Units: Percentage of time the waveform is high

Note

This parameter only affects signal generator behavior when you

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Duty Cycle High

	C Attribute: NIFGEN_ATTR_FUNC_DUTY_CYCLE_HIGH

func_frequency

	
nifgen.Session.func_frequency

	Controls the frequency of the standard waveform that the signal generator produces.
Units: hertz
(1) This parameter does not affect signal generator behavior when you set the Waveform parameter of the nifgen.Session.configure_standard_waveform() method to DC.
(2) For SINE, the range is between 0 MHz and 16 MHz, but the range is between 0 MHz and 1 MHz for all other waveforms.

Note

:

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Standard Function Mode:Frequency

	C Attribute: NIFGEN_ATTR_FUNC_FREQUENCY

func_max_buffer_size

	
nifgen.Session.func_max_buffer_size

	This property sets the maximum number of samples that can be used in the standard method waveform buffer. Increasing this value may increase the quality of the waveform. This property is only valid on devices that implement standard method mode in software, and is read-only for all other devices.
implementation of Standard Method Mode on your device.

Note

Refer to the Standard Method Mode topic for more information on the

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Standard Function Mode:Maximum Buffer Size

	C Attribute: NIFGEN_ATTR_FUNC_MAX_BUFFER_SIZE

func_start_phase

	
nifgen.Session.func_start_phase

	Controls horizontal offset of the standard waveform the signal generator produces. Specify this property in degrees of one waveform cycle.
A start phase of 180 degrees means output generation begins halfway through the waveform. A start phase of 360 degrees offsets the output by an entire waveform cycle, which is identical to a start phase of 0 degrees.
set the Waveform parameter to DC.
Units: Degrees of one cycle

Note

This parameter does not affect signal generator behavior when you

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Start Phase

	C Attribute: NIFGEN_ATTR_FUNC_START_PHASE

func_waveform

	
nifgen.Session.func_waveform

	This channel-based property specifies which standard waveform the signal generator produces.
Use this property only when nifgen.Session.output_mode is set to FUNC.
SINE - Sinusoid waveform
SQUARE - Square waveform
TRIANGLE - Triangle waveform
RAMP_UP - Positive ramp waveform
RAMP_DOWN - Negative ramp waveform
DC - Constant voltage
NOISE - White noise
USER - User-defined waveform as defined with
nifgen.Session.define_user_standard_waveform()

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Waveform

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Waveform

	C Attribute: NIFGEN_ATTR_FUNC_WAVEFORM

idle_behavior

	
nifgen.Session.idle_behavior

	Specifies the behavior of the output during the Idle state. The output can be configured to hold the last generated voltage before entering the Idle state or jump to the Idle Value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.IdleBehavior

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Advanced:Idle Behavior

	C Attribute: NIFGEN_ATTR_IDLE_BEHAVIOR

idle_value

	
nifgen.Session.idle_value

	Specifies the value to generate in the Idle state. The Idle Behavior must be configured to jump to this value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Advanced:Idle Value

	C Attribute: NIFGEN_ATTR_IDLE_VALUE

instrument_firmware_revision

	
nifgen.Session.instrument_firmware_revision

	A string that contains the firmware revision information for the device that you are currently using.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Inherent IVI Attributes:Instrument Identification:Firmware Revision

	C Attribute: NIFGEN_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

	
nifgen.Session.instrument_manufacturer

	A string that contains the name of the device manufacturer you are currently using.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Inherent IVI Attributes:Instrument Identification:Manufacturer

	C Attribute: NIFGEN_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

	
nifgen.Session.instrument_model

	A string that contains the model number or name of the device that you are currently using.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Inherent IVI Attributes:Instrument Identification:Model

	C Attribute: NIFGEN_ATTR_INSTRUMENT_MODEL

io_resource_descriptor

	
nifgen.Session.io_resource_descriptor

	Indicates the resource descriptor that NI-FGEN uses to identify the physical device.
If you initialize NI-FGEN with a logical name, this property contains the resource descriptor that corresponds to the entry in the IVI Configuration Utility.
If you initialize NI-FGEN with the resource descriptor, this property contains that value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Inherent IVI Attributes:Advanced Session Information:Resource Descriptor

	C Attribute: NIFGEN_ATTR_IO_RESOURCE_DESCRIPTOR

load_impedance

	
nifgen.Session.load_impedance

	This channel-based property specifies the load impedance connected to the analog output of the channel. If you set this property to NIFGEN_VAL_MATCHED_LOAD_IMPEDANCE (-1.0), NI-FGEN assumes that the load impedance matches the output impedance. NI-FGEN compensates to give the desired peak-to-peak voltage amplitude or arbitrary gain (relative to 1 V).

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Load Impedance

	C Attribute: NIFGEN_ATTR_LOAD_IMPEDANCE

logical_name

	
nifgen.Session.logical_name

	A string containing the logical name that you specified when opening the current IVI session.
You may pass a logical name to nifgen.Session.init() or nifgen.Session.InitWithOptions(). The IVI Configuration Utility must contain an entry for the logical name. The logical name entry refers to a virtual instrument section in the IVI Configuration file. The virtual instrument section specifies a physical device and initial user options.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Inherent IVI Attributes:Advanced Session Information:Logical Name

	C Attribute: NIFGEN_ATTR_LOGICAL_NAME

marker_events_count

	
nifgen.Session.marker_events_count

	Returns the number of markers supported by the device. Use this property when nifgen.Session.output_mode is set to SCRIPT.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Marker Events Count

	C Attribute: NIFGEN_ATTR_MARKER_EVENTS_COUNT

marker_event_output_terminal

	
nifgen.Session.marker_event_output_terminal

	Specifies the destination terminal for the Marker Event.

Tip

This property can use repeated capabilities. If set or get directly on the
nifgen.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Marker:Output Terminal

	C Attribute: NIFGEN_ATTR_MARKER_EVENT_OUTPUT_TERMINAL

max_freq_list_duration

	
nifgen.Session.max_freq_list_duration

	Returns the maximum duration of any one step in the frequency list.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Frequency List Mode:Maximum Frequency List Duration

	C Attribute: NIFGEN_ATTR_MAX_FREQ_LIST_DURATION

max_freq_list_length

	
nifgen.Session.max_freq_list_length

	Returns the maximum number of steps that can be in a frequency list.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Frequency List Mode:Maximum Frequency List Length

	C Attribute: NIFGEN_ATTR_MAX_FREQ_LIST_LENGTH

max_loop_count

	
nifgen.Session.max_loop_count

	Returns the maximum number of times that the signal generator can repeat a waveform in a sequence. Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Max Loop Count

	C Attribute: NIFGEN_ATTR_MAX_LOOP_COUNT

max_num_freq_lists

	
nifgen.Session.max_num_freq_lists

	Returns the maximum number of frequency lists the signal generator allows.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Frequency List Mode:Maximum Number Of Frequency Lists

	C Attribute: NIFGEN_ATTR_MAX_NUM_FREQ_LISTS

max_num_sequences

	
nifgen.Session.max_num_sequences

	Returns the maximum number of arbitrary sequences that the signal generator allows. Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Max Number of Sequences

	C Attribute: NIFGEN_ATTR_MAX_NUM_SEQUENCES

max_num_waveforms

	
nifgen.Session.max_num_waveforms

	Returns the maximum number of arbitrary waveforms that the signal generator allows. Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Capabilities:Max Number of Waveforms

	C Attribute: NIFGEN_ATTR_MAX_NUM_WAVEFORMS

max_sequence_length

	
nifgen.Session.max_sequence_length

	Returns the maximum number of arbitrary waveforms that the signal generator allows in a sequence. Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Max Sequence Length

	C Attribute: NIFGEN_ATTR_MAX_SEQUENCE_LENGTH

max_waveform_size

	
nifgen.Session.max_waveform_size

	Returns the size, in samples, of the largest waveform that can be created. This property reflects the space currently available, taking into account previously allocated waveforms and instructions.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Capabilities:Max Waveform Size

	C Attribute: NIFGEN_ATTR_MAX_WAVEFORM_SIZE

memory_size

	
nifgen.Session.memory_size

	The total amount of memory, in bytes, on the signal generator.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Memory Size

	C Attribute: NIFGEN_ATTR_MEMORY_SIZE

min_freq_list_duration

	
nifgen.Session.min_freq_list_duration

	Returns the minimum number of steps that can be in a frequency list.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Frequency List Mode:Minimum Frequency List Duration

	C Attribute: NIFGEN_ATTR_MIN_FREQ_LIST_DURATION

min_freq_list_length

	
nifgen.Session.min_freq_list_length

	Returns the minimum number of frequency lists that the signal generator allows.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Standard Function:Frequency List Mode:Minimum Frequency List Length

	C Attribute: NIFGEN_ATTR_MIN_FREQ_LIST_LENGTH

min_sequence_length

	
nifgen.Session.min_sequence_length

	Returns the minimum number of arbitrary waveforms that the signal generator allows in a sequence. Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Arbitrary Sequence Mode:Min Sequence Length

	C Attribute: NIFGEN_ATTR_MIN_SEQUENCE_LENGTH

min_waveform_size

	
nifgen.Session.min_waveform_size

	Returns the minimum number of points that the signal generator allows in an arbitrary waveform. Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Capabilities:Min Waveform Size

	C Attribute: NIFGEN_ATTR_MIN_WAVEFORM_SIZE

module_revision

	
nifgen.Session.module_revision

	A string that contains the module revision for the device that you are currently using.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Inherent IVI Attributes:Instrument Identification:Module Revision

	C Attribute: NIFGEN_ATTR_MODULE_REVISION

channel_count

	
nifgen.Session.channel_count

	Indicates the number of channels that the specific instrument driver supports.
For each property for which IVI_VAL_MULTI_CHANNEL is set, the IVI Engine maintains a separate cache value for each channel.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Capabilities:Channel Count

	C Attribute: NIFGEN_ATTR_NUM_CHANNELS

output_enabled

	
nifgen.Session.output_enabled

	This channel-based property specifies whether the signal that the signal generator produces appears at the output connector.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Output Enabled

	C Attribute: NIFGEN_ATTR_OUTPUT_ENABLED

output_impedance

	
nifgen.Session.output_impedance

	This channel-based property specifies the signal generator output impedance at the output connector. NI signal sources modules have an output impedance of 50 ohms and an optional 75 ohms on select modules. If the load impedance matches the output impedance, then the voltage at the signal output connector is at the needed level. The voltage at the signal output connector varies with load output impedance, up to doubling the voltage for a high-impedance load.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Output Impedance

	C Attribute: NIFGEN_ATTR_OUTPUT_IMPEDANCE

output_mode

	
nifgen.Session.output_mode

	Sets which output mode the signal generator will use. The value you specify determines which methods and properties you use to configure the waveform the signal generator produces.

Note

The signal generator must not be in the Generating state when you change this property. To change the device configuration, call nifgen.Session.abort() or wait for the generation to complete.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.OutputMode

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Output Mode

	C Attribute: NIFGEN_ATTR_OUTPUT_MODE

ready_for_start_event_output_terminal

	
nifgen.Session.ready_for_start_event_output_terminal

	Specifies the destination terminal for the Ready for Start Event.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Ready For Start:Output Terminal

	C Attribute: NIFGEN_ATTR_READY_FOR_START_EVENT_OUTPUT_TERMINAL

reference_clock_source

	
nifgen.Session.reference_clock_source

	Specifies the reference clock source used by the signal generator.
The signal generator derives the frequencies and sample rates that it uses to generate waveforms from the source you specify. For example, when you set this property to ClkIn, the signal generator uses the signal it receives at the CLK IN front panel connector as the Reference clock.
To change the device configuration, call nifgen.Session.abort() or wait for the generation to complete.

Note

The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ReferenceClockSource

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Reference Clock:Source

	C Attribute: NIFGEN_ATTR_REFERENCE_CLOCK_SOURCE

ref_clock_frequency

	
nifgen.Session.ref_clock_frequency

	Sets the frequency of the signal generator reference clock. The signal generator uses the reference clock to derive frequencies and sample rates when generating output.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Reference Clock:Frequency

	C Attribute: NIFGEN_ATTR_REF_CLOCK_FREQUENCY

sample_clock_source

	
nifgen.Session.sample_clock_source

	Specifies the Sample clock source. If you specify a divisor with the nifgen.Session.exported_sample_clock_divisor property, the Sample clock exported with the nifgen.Session.exported_sample_clock_output_terminal property is the value of the Sample clock after it is divided-down. For a list of the terminals available on your device, refer to the Device Routes tab in MAX.
To change the device configuration, call nifgen.Session.abort() or wait for the generation to complete.

Note

The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.SampleClockSource

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Sample Clock:Source

	C Attribute: NIFGEN_ATTR_SAMPLE_CLOCK_SOURCE

sample_clock_timebase_rate

	
nifgen.Session.sample_clock_timebase_rate

	Specifies the Sample clock timebase rate. This property applies only to external Sample clock timebases.
To change the device configuration, call nifgen.Session.abort() or wait for the generation to complete.

Note

The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Sample Clock Timebase:Rate

	C Attribute: NIFGEN_ATTR_SAMPLE_CLOCK_TIMEBASE_RATE

sample_clock_timebase_source

	
nifgen.Session.sample_clock_timebase_source

	Specifies the Sample Clock Timebase source.
To change the device configuration, call the nifgen.Session.abort() method or wait for the generation to complete.

Note

The signal generator must not be in the Generating state when you change this property.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.SampleClockTimebaseSource

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocks:Sample Clock Timebase:Source

	C Attribute: NIFGEN_ATTR_SAMPLE_CLOCK_TIMEBASE_SOURCE

script_to_generate

	
nifgen.Session.script_to_generate

	Specifies which script the generator produces. To configure the generator to run a particular script, set this property to the name of the script. Use nifgen.Session.write_script() to create multiple scripts. Use this property when nifgen.Session.output_mode is set to SCRIPT.

Note

The signal generator must not be in the Generating state when you change this property. To change the device configuration, call nifgen.Session.abort() or wait for the generation to complete.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Script Mode:Script to Generate

	C Attribute: NIFGEN_ATTR_SCRIPT_TO_GENERATE

script_triggers_count

	
nifgen.Session.script_triggers_count

	Specifies the number of Script triggers supported by the device. Use this property when nifgen.Session.output_mode is set to SCRIPT.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Script Triggers Count

	C Attribute: NIFGEN_ATTR_SCRIPT_TRIGGERS_COUNT

script_trigger_type

	
nifgen.Session.script_trigger_type

	Specifies the Script trigger type. Depending upon the value of this property, additional properties may need to be configured to fully configure the trigger.

Tip

This property can use repeated capabilities. If set or get directly on the
nifgen.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
nifgen.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ScriptTriggerType

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Script:Trigger Type

	C Attribute: NIFGEN_ATTR_SCRIPT_TRIGGER_TYPE

serial_number

	
nifgen.Session.serial_number

	The signal generator’s serial number.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Serial Number

	C Attribute: NIFGEN_ATTR_SERIAL_NUMBER

simulate

	
nifgen.Session.simulate

	Specifies whether to simulate NI-FGEN I/O operations. If simulation is enabled, NI-FGEN methods perform range checking and call Ivi_GetAttribute and Ivi_SetAttribute, but they do not perform device I/O. For output parameters that represent device data, NI-FGEN methods return calculated values.
Default Value: False
Use nifgen.Session.InitWithOptions() to override default value.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Inherent IVI Attributes:User Options:Simulate

	C Attribute: NIFGEN_ATTR_SIMULATE

specific_driver_description

	
nifgen.Session.specific_driver_description

	Returns a brief description of NI-FGEN.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Identification:Description

	C Attribute: NIFGEN_ATTR_SPECIFIC_DRIVER_DESCRIPTION

major_version

	
nifgen.Session.major_version

	Returns the major version number of NI-FGEN.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Obsolete:Major Version

	C Attribute: NIFGEN_ATTR_SPECIFIC_DRIVER_MAJOR_VERSION

minor_version

	
nifgen.Session.minor_version

	Returns the minor version number of NI-FGEN.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Obsolete:Minor Version

	C Attribute: NIFGEN_ATTR_SPECIFIC_DRIVER_MINOR_VERSION

specific_driver_revision

	
nifgen.Session.specific_driver_revision

	A string that contains additional version information about NI-FGEN.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Identification:Revision

	C Attribute: NIFGEN_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

	
nifgen.Session.specific_driver_vendor

	A string that contains the name of the vendor that supplies NI-FGEN.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Identification:Driver Vendor

	C Attribute: NIFGEN_ATTR_SPECIFIC_DRIVER_VENDOR

started_event_output_terminal

	
nifgen.Session.started_event_output_terminal

	Specifies the destination terminal for the Started Event.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Started:Output Terminal

	C Attribute: NIFGEN_ATTR_STARTED_EVENT_OUTPUT_TERMINAL

start_trigger_type

	
nifgen.Session.start_trigger_type

	Specifies whether you want the Start trigger to be a Digital Edge, or Software trigger. You can also choose None as the value for this property.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.StartTriggerType

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Start:Trigger Type

	C Attribute: NIFGEN_ATTR_START_TRIGGER_TYPE

streaming_space_available_in_waveform

	
nifgen.Session.streaming_space_available_in_waveform

	Indicates the space available (in samples) in the streaming waveform for writing new data. During generation, this available space may be in multiple locations with, for example, part of the available space at the end of the streaming waveform and the rest at the beginning. In this situation, writing a block of waveform data the size of the total space available in the streaming waveform causes NI-FGEN to return an error, as NI-FGEN will not wrap the data from the end of the waveform to the beginning and cannot write data past the end of the waveform buffer.
To avoid writing data past the end of the waveform, write new data to the waveform in a fixed size that is an integer divisor of the total size of the streaming waveform.
Used in conjunction with the nifgen.Session.streaming_waveform_handle or nifgen.Session.streaming_waveform_name properties.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Data Transfer:Streaming:Space Available in Streaming Waveform

	C Attribute: NIFGEN_ATTR_STREAMING_SPACE_AVAILABLE_IN_WAVEFORM

streaming_waveform_handle

	
nifgen.Session.streaming_waveform_handle

	Specifies the waveform handle of the waveform used to continuously stream data during generation. This property defaults to -1 when no streaming waveform is specified.
Used in conjunction with nifgen.Session.streaming_space_available_in_waveform.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Data Transfer:Streaming:Streaming Waveform Handle

	C Attribute: NIFGEN_ATTR_STREAMING_WAVEFORM_HANDLE

streaming_waveform_name

	
nifgen.Session.streaming_waveform_name

	Specifies the name of the waveform used to continuously stream data during generation. This property defaults to // when no streaming waveform is specified.
Use in conjunction with nifgen.Session.streaming_space_available_in_waveform.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Data Transfer:Streaming:Streaming Waveform Name

	C Attribute: NIFGEN_ATTR_STREAMING_WAVEFORM_NAME

streaming_write_timeout

	
nifgen.Session.streaming_write_timeout

	Specifies the maximum amount of time allowed to complete a streaming write operation.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Data Transfer:Streaming:Streaming Write Timeout

	C Attribute: NIFGEN_ATTR_STREAMING_WRITE_TIMEOUT

supported_instrument_models

	
nifgen.Session.supported_instrument_models

	Returns a model code of the device. For NI-FGEN versions that support more than one device, this property contains a comma-separated list of supported device models.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Instrument:Inherent IVI Attributes:Driver Capabilities:Supported Instrument Models

	C Attribute: NIFGEN_ATTR_SUPPORTED_INSTRUMENT_MODELS

terminal_configuration

	
nifgen.Session.terminal_configuration

	Specifies whether gain and offset values will be analyzed based on single-ended or differential operation.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TerminalConfiguration

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Terminal Configuration

	C Attribute: NIFGEN_ATTR_TERMINAL_CONFIGURATION

trigger_mode

	
nifgen.Session.trigger_mode

	Controls the trigger mode.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerMode

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Trigger Mode

	C Attribute: NIFGEN_ATTR_TRIGGER_MODE

wait_behavior

	
nifgen.Session.wait_behavior

	Specifies the behavior of the output while waiting for a script trigger or during a wait instruction. The output can be configured to hold the last generated voltage before waiting or jump to the Wait Value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.WaitBehavior

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Advanced:Wait Behavior

	C Attribute: NIFGEN_ATTR_WAIT_BEHAVIOR

wait_value

	
nifgen.Session.wait_value

	Specifies the value to generate while waiting. The Wait Behavior must be configured to jump to this value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output:Advanced:Wait Value

	C Attribute: NIFGEN_ATTR_WAIT_VALUE

waveform_quantum

	
nifgen.Session.waveform_quantum

	The size of each arbitrary waveform must be a multiple of a quantum value. This property returns the quantum value that the signal generator allows.
For example, when this property returns a value of 8, all waveform sizes must be a multiple of 8. Typically, this value is constant for the signal generator.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Arbitrary Waveform:Capabilities:Waveform Quantum

	C Attribute: NIFGEN_ATTR_WAVEFORM_QUANTUM

NI-TClk Support

	
nifgen.Session.tclk

	This is used to get and set NI-TClk attributes on the session.

See also

See nitclk.SessionReference for a complete list of attributes.

Session

	Session

	Methods

	abort

	allocate_named_waveform

	allocate_waveform

	clear_arb_memory

	clear_arb_sequence

	clear_freq_list

	clear_user_standard_waveform

	close

	commit

	configure_arb_sequence

	configure_arb_waveform

	configure_freq_list

	configure_standard_waveform

	create_advanced_arb_sequence

	create_arb_sequence

	create_freq_list

	create_waveform_from_file_f64

	create_waveform_from_file_i16

	create_waveform_numpy

	define_user_standard_waveform

	delete_script

	delete_waveform

	disable

	export_attribute_configuration_buffer

	export_attribute_configuration_file

	get_channel_name

	get_ext_cal_last_date_and_time

	get_ext_cal_last_temp

	get_ext_cal_recommended_interval

	get_hardware_state

	get_self_cal_last_date_and_time

	get_self_cal_last_temp

	get_self_cal_supported

	import_attribute_configuration_buffer

	import_attribute_configuration_file

	initiate

	is_done

	lock

	query_arb_seq_capabilities

	query_arb_wfm_capabilities

	query_freq_list_capabilities

	read_current_temperature

	reset

	reset_device

	reset_with_defaults

	self_cal

	self_test

	send_software_edge_trigger

	set_next_write_position

	unlock

	wait_until_done

	write_script

	write_waveform

	Properties

	absolute_delay

	all_marker_events_latched_status

	all_marker_events_live_status

	analog_data_mask

	analog_filter_enabled

	analog_path

	analog_static_value

	arb_gain

	arb_marker_position

	arb_offset

	arb_repeat_count

	arb_sample_rate

	arb_sequence_handle

	arb_waveform_handle

	aux_power_enabled

	bus_type

	channel_delay

	clock_mode

	common_mode_offset

	data_marker_events_count

	data_marker_event_data_bit_number

	data_marker_event_level_polarity

	data_marker_event_output_terminal

	data_transfer_block_size

	data_transfer_maximum_bandwidth

	data_transfer_maximum_in_flight_reads

	data_transfer_preferred_packet_size

	digital_data_mask

	digital_edge_script_trigger_edge

	digital_edge_script_trigger_source

	digital_edge_start_trigger_edge

	digital_edge_start_trigger_source

	digital_filter_enabled

	digital_filter_interpolation_factor

	digital_gain

	digital_pattern_enabled

	digital_static_value

	done_event_output_terminal

	driver_setup

	exported_onboard_reference_clock_output_terminal

	exported_reference_clock_output_terminal

	exported_sample_clock_divisor

	exported_sample_clock_output_terminal

	exported_sample_clock_timebase_divisor

	exported_sample_clock_timebase_output_terminal

	exported_script_trigger_output_terminal

	exported_start_trigger_output_terminal

	external_clock_delay_binary_value

	external_sample_clock_multiplier

	file_transfer_block_size

	filter_correction_frequency

	flatness_correction_enabled

	fpga_bitfile_path

	freq_list_duration_quantum

	freq_list_handle

	func_amplitude

	func_buffer_size

	func_dc_offset

	func_duty_cycle_high

	func_frequency

	func_max_buffer_size

	func_start_phase

	func_waveform

	idle_behavior

	idle_value

	instrument_firmware_revision

	instrument_manufacturer

	instrument_model

	io_resource_descriptor

	load_impedance

	logical_name

	marker_events_count

	marker_event_output_terminal

	max_freq_list_duration

	max_freq_list_length

	max_loop_count

	max_num_freq_lists

	max_num_sequences

	max_num_waveforms

	max_sequence_length

	max_waveform_size

	memory_size

	min_freq_list_duration

	min_freq_list_length

	min_sequence_length

	min_waveform_size

	module_revision

	channel_count

	output_enabled

	output_impedance

	output_mode

	ready_for_start_event_output_terminal

	reference_clock_source

	ref_clock_frequency

	sample_clock_source

	sample_clock_timebase_rate

	sample_clock_timebase_source

	script_to_generate

	script_triggers_count

	script_trigger_type

	serial_number

	simulate

	specific_driver_description

	major_version

	minor_version

	specific_driver_revision

	specific_driver_vendor

	started_event_output_terminal

	start_trigger_type

	streaming_space_available_in_waveform

	streaming_waveform_handle

	streaming_waveform_name

	streaming_write_timeout

	supported_instrument_models

	terminal_configuration

	trigger_mode

	wait_behavior

	wait_value

	waveform_quantum

	NI-TClk Support

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the
underlying driver function call. This can be the actual function based on the Session
method being called, or it can be the appropriate Get/Set Attribute function, such as niFgen_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities.
The parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or
an integer. If it is a string, you can indicate a range using the same format as the driver: ‘0-2’ or
‘0:2’

Some repeated capabilities use a prefix before the number and this is optional

channels

	
nifgen.Session.channels[]

	session.channels['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

script_triggers

	
nifgen.Session.script_triggers[]

	If no prefix is added to the items in the parameter, the correct prefix will be added when
the driver function call is made.

session.script_triggers['0-2'].channel_enabled = True

passes a string of ‘ScriptTrigger0, ScriptTrigger1, ScriptTrigger2’ to the set attribute function.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix
for the specific repeated capability.

session.script_triggers['ScriptTrigger0-ScriptTrigger2'].channel_enabled = True

passes a string of ‘ScriptTrigger0, ScriptTrigger1, ScriptTrigger2’ to the set attribute function.

markers

	
nifgen.Session.markers[]

	If no prefix is added to the items in the parameter, the correct prefix will be added when
the driver function call is made.

session.markers['0-2'].channel_enabled = True

passes a string of ‘Marker0, Marker1, Marker2’ to the set attribute function.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix
for the specific repeated capability.

session.markers['Marker0-Marker2'].channel_enabled = True

passes a string of ‘Marker0, Marker1, Marker2’ to the set attribute function.

Enums

Enums used in NI-FGEN

AnalogPath

	
class nifgen.AnalogPath

	
	
MAIN

	Specifies use of the main path. NI-FGEN chooses the amplifier based on the user-specified gain.

	
DIRECT

	Specifies use of the direct path.

	
FIXED_LOW_GAIN

	Specifies use of the low-gain amplifier in the main path, no matter what value the user specifies for gain. This setting limits the output range.

	
FIXED_HIGH_GAIN

	Specifies use of the high-gain amplifier in the main path.

BusType

	
class nifgen.BusType

	
	
INVALID

	Indicates an invalid bus type.

	
AT

	Indicates the signal generator is the AT bus type.

	
PCI

	Indicates the signal generator is the PCI bus type.

	
PXI

	Indicates the signal generator is the PXI bus type.

	
VXI

	Indicates the signal generator is the VXI bus type.

	
PCMCIA

	Indicates the signal generator is the PCI-CMA bus type.

	
PXIE

	Indicates the signal generator is the PXI Express bus type.

ByteOrder

	
class nifgen.ByteOrder

	
	
LITTLE

	

	
BIG

	

ClockMode

	
class nifgen.ClockMode

	
	
HIGH_RESOLUTION

	High resolution sampling—Sample rate is generated by a high–resolution clock source.

	
DIVIDE_DOWN

	Divide down sampling—Sample rates are generated by dividing the source frequency.

	
AUTOMATIC

	Automatic Selection—NI-FGEN selects between the divide–down and high–resolution clocking modes.

DataMarkerEventLevelPolarity

	
class nifgen.DataMarkerEventLevelPolarity

	
	
HIGH

	When the operation is ready to start, the Ready for Start event level is high.

	
LOW

	When the operation is ready to start, the Ready for Start event level is low.

HardwareState

	
class nifgen.HardwareState

	
	
IDLE

	

	
WAITING_FOR_START_TRIGGER

	

	
RUNNING

	

	
DONE

	

	
HARDWARE_ERROR

	

IdleBehavior

	
class nifgen.IdleBehavior

	
	
HOLD_LAST

	While in an Idle or Wait state, the output signal remains at the last voltage generated prior to entering the state.

	
JUMP_TO

	While in an Idle or Wait state, the output signal remains at the value configured in the Idle or Wait value property.

OutputMode

	
class nifgen.OutputMode

	
	
FUNC

	Standard Method mode— Generates standard method waveforms such as sine, square, triangle, and so on.

	
ARB

	Arbitrary waveform mode—Generates waveforms from user-created/provided waveform arrays of numeric data.

	
SEQ

	Arbitrary sequence mode — Generates downloaded waveforms in an order your specify.

	
FREQ_LIST

	Frequency List mode—Generates a standard method using a list of frequencies you define.

	
SCRIPT

	Script mode—Allows you to use scripting to link and loop multiple
waveforms in complex combinations.

ReferenceClockSource

	
class nifgen.ReferenceClockSource

	
	
CLOCK_IN

	Specifies that the CLK IN input signal from the front panel connector is
used as the Reference Clock source.

	
NONE

	Specifies that a Reference Clock is not used.

	
ONBOARD_REFERENCE_CLOCK

	Specifies that the onboard Reference Clock is used as the Reference
Clock source.

	
PXI_CLOCK

	Specifies the PXI Clock is used as the Reference Clock source.

	
RTSI_7

	Specifies that the RTSI line 7 is used as the Reference Clock source.

RelativeTo

	
class nifgen.RelativeTo

	
	
START

	

	
CURRENT

	

SampleClockSource

	
class nifgen.SampleClockSource

	
	
CLOCK_IN

	Specifies that the signal at the CLK IN front panel connector is used as
the Sample Clock source.

	
DDC_CLOCK_IN

	Specifies that the Sample Clock from DDC connector is used as the Sample
Clock source.

	
ONBOARD_CLOCK

	Specifies that the onboard clock is used as the Sample Clock source.

	
PXI_STAR_LINE

	Specifies that the PXI_STAR trigger line is used as the Sample Clock
source.

	
PXI_TRIGGER_LINE_0_RTSI_0

	Specifies that the PXI or RTSI line 0 is used as the Sample Clock
source.

	
PXI_TRIGGER_LINE_1_RTSI_1

	Specifies that the PXI or RTSI line 1 is used as the Sample Clock
source.

	
PXI_TRIGGER_LINE_2_RTSI_2

	Specifies that the PXI or RTSI line 2 is used as the Sample Clock
source.

	
PXI_TRIGGER_LINE_3_RTSI_3

	Specifies that the PXI or RTSI line 3 is used as the Sample Clock
source.

	
PXI_TRIGGER_LINE_4_RTSI_4

	Specifies that the PXI or RTSI line 4 is used as the Sample Clock
source.

	
PXI_TRIGGER_LINE_5_RTSI_5

	Specifies that the PXI or RTSI line 5 is used as the Sample Clock
source.

	
PXI_TRIGGER_LINE_6_RTSI_6

	Specifies that the PXI or RTSI line 6 is used as the Sample Clock
source.

	
PXI_TRIGGER_LINE_7_RTSI_7

	Specifies that the PXI or RTSI line 7 is used as the Sample Clock
source.

SampleClockTimebaseSource

	
class nifgen.SampleClockTimebaseSource

	
	
CLOCK_IN

	Specifies that the external signal on the CLK IN front panel connector
is used as the source.

	
ONBOARD_CLOCK

	Specifies that the onboard Sample Clock timebase is used as the source.

ScriptTriggerDigitalEdgeEdge

	
class nifgen.ScriptTriggerDigitalEdgeEdge

	
	
RISING

	Rising Edge

	
FALLING

	Falling Edge

ScriptTriggerType

	
class nifgen.ScriptTriggerType

	
	
TRIG_NONE

	No trigger is configured. Signal generation starts immediately.

	
DIGITAL_EDGE

	Trigger is asserted when a digital edge is detected.

	
DIGITAL_LEVEL

	Trigger is asserted when a digital level is detected.

	
SOFTWARE_EDGE

	Trigger is asserted when a software edge is detected.

StartTriggerDigitalEdgeEdge

	
class nifgen.StartTriggerDigitalEdgeEdge

	
	
RISING

	Rising Edge

	
FALLING

	Falling Edge

StartTriggerType

	
class nifgen.StartTriggerType

	
	
TRIG_NONE

	None

	
DIGITAL_EDGE

	Digital Edge

	
SOFTWARE_EDGE

	Software Edge

	
P2P_ENDPOINT_FULLNESS

	P2P Endpoint Fullness

TerminalConfiguration

	
class nifgen.TerminalConfiguration

	
	
SINGLE_ENDED

	Single-ended operation

	
DIFFERENTIAL

	Differential operation

Trigger

	
class nifgen.Trigger

	
	
START

	

	
SCRIPT

	

TriggerMode

	
class nifgen.TriggerMode

	
	
SINGLE

	Single Trigger Mode - The waveform you describe in the sequence list is generated only once by going through the entire staging list. Only one trigger is required to start the waveform generation. You can use Single trigger mode with the output mode in any mode. After a trigger is received, the waveform generation starts from the first stage and continues through to the last stage. Then, the last stage generates repeatedly until you stop the waveform generation.

	
CONTINUOUS

	Continuous Trigger Mode - The waveform you describe in the staging list generates infinitely by repeatedly cycling through the staging list. After a trigger is received, the waveform generation starts from the first stage and continues through to the last stage. After the last stage completes, the waveform generation loops back to the start of the first stage and continues until it is stopped. Only one trigger is required to start the waveform generation.

	
STEPPED

	Stepped Trigger Mode - After a start trigger is received, the waveform described by the first stage generates. Then, the device waits for the next trigger signal. On the next trigger, the waveform described by the second stage generates, and so on. After the staging list completes, the waveform generation returns to the first stage and continues in a cyclic fashion. After any stage has generated completely, the first eight samples of the next stage are repeated continuously until the next trigger is received.
trigger mode.

Note

In Frequency List mode, Stepped trigger mode is the same as Burst

	
BURST

	Burst Trigger Mode - After a start trigger is received, the waveform described by the first stage generates until another trigger is received. At the next trigger, the buffer of the previous stage completes, and then the waveform described by the second stage generates. After the staging list completes, the waveform generation returns to the first stage and continues in a cyclic fashion. In Frequency List mode, the duration instruction is ignored, and the trigger switches the frequency to the next frequency in the list.
trigger mode.

Note

In Frequency List mode, Stepped trigger mode is the same as Burst

WaitBehavior

	
class nifgen.WaitBehavior

	
	
HOLD_LAST

	While in an Idle or Wait state, the output signal remains at the last voltage generated prior to entering the state.

	
JUMP_TO

	While in an Idle or Wait state, the output signal remains at the value configured in the Idle or Wait value property.

Waveform

	
class nifgen.Waveform

	
	
SINE

	Sinusoid waveform

	
SQUARE

	Square waveform

	
TRIANGLE

	Triange waveform

	
RAMP_UP

	Positive ramp waveform

	
RAMP_DOWN

	Negative ramp waveform

	
DC

	Constant voltage

	
NOISE

	White noise

	
USER

	User-defined waveform as defined by the nifgen.Session.define_user_standard_waveform() method.

Exceptions and Warnings

Error

	
exception nifgen.errors.Error

	Base exception type that all NI-FGEN exceptions derive from

DriverError

	
exception nifgen.errors.DriverError

	An error originating from the NI-FGEN driver

UnsupportedConfigurationError

	
exception nifgen.errors.UnsupportedConfigurationError

	An error due to using this module in an usupported platform.

DriverNotInstalledError

	
exception nifgen.errors.DriverNotInstalledError

	An error due to using this module without the driver runtime installed.

InvalidRepeatedCapabilityError

	
exception nifgen.errors.InvalidRepeatedCapabilityError

	An error due to an invalid character in a repeated capability

SelfTestError

	
exception nifgen.errors.SelfTestError

	An error due to a failed self-test

DriverWarning

	
exception nifgen.errors.DriverWarning

	A warning originating from the NI-FGEN driver

Examples

You can download all nifgen examples here [https://github.com/ni/nimi-python/releases/download/1.3.1/nifgen_examples.zip]

nifgen_arb_waveform.py

(nifgen_arb_waveform.py) [https://github.com/ni/nimi-python/blob/master/src/nifgen/examples/nifgen_arb_waveform.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

	#!/usr/bin/python

import argparse
import math
import nifgen
import sys
import time

def create_waveform_data(number_of_samples):
 waveform_data = []
 angle_per_sample = (2 * math.pi) / number_of_samples
 for i in range(number_of_samples):
 waveform_data.append(math.sin(i * angle_per_sample) * math.sin(i * angle_per_sample * 20))
 return waveform_data

def example(resource_name, options, samples, gain, offset, gen_time):
 waveform_data = create_waveform_data(samples)
 with nifgen.Session(resource_name=resource_name, options=options) as session:
 session.output_mode = nifgen.OutputMode.ARB
 waveform = session.create_waveform(waveform_data_array=waveform_data)
 session.configure_arb_waveform(waveform_handle=waveform, gain=gain, offset=offset)
 with session.initiate():
 time.sleep(gen_time)

def _main(argsv):
 parser = argparse.ArgumentParser(description='Continuously generates an arbitrary waveform.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments Arbitrary Waveform Generator')
 parser.add_argument('-s', '--samples', default=100000, type=int, help='Number of samples')
 parser.add_argument('-g', '--gain', default=1.0, type=float, help='Gain')
 parser.add_argument('-o', '--offset', default=0.0, type=float, help='DC offset (V)')
 parser.add_argument('-t', '--time', default=5.0, type=float, help='Generation time (s)')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.option_string, args.samples, args.gain, args.offset, args.time)

def main():
 _main(sys.argv[1:])

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '5433 (2CH)', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', options, 100000, 1.0, 0.0, 5.0)

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5433 (2CH);BoardType:PXIe',]
 _main(cmd_line)

if __name__ == '__main__':
 main()

nifgen_script.py

(nifgen_script.py) [https://github.com/ni/nimi-python/blob/master/src/nifgen/examples/nifgen_script.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

	#!/usr/bin/python

import argparse
import nifgen
import numpy as np
from scipy import signal
import sys
import time

number_of_points = 256

def calculate_sinewave():
 time = np.linspace(start=0, stop=10, num=number_of_points) # np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
 amplitude = np.sin(time)
 sinewave = amplitude.tolist() # List of Float
 return sinewave

def calculate_rampup():
 ramp = np.linspace(start=0, stop=0.5, num=number_of_points) # np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
 ramp_up = ramp.tolist() # List of Float
 return ramp_up

def calculate_rampdown():
 ramp = np.linspace(start=0, stop=0.5, num=number_of_points) # np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
 ramp_down = ramp.tolist() # List of Float
 ramp_down.reverse() # Reverse list to get a ramp down
 return ramp_down

def calculate_square():
 time = np.linspace(start=0, stop=10, num=number_of_points) # np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
 square_build = signal.square(t=time, duty=0.5) # signal.square(t, duty=0.5)
 square = square_build.tolist() # List of Float
 return square

def calculate_triangle():
 time = np.linspace(start=0, stop=1, num=number_of_points) # np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
 triangle_build = signal.sawtooth(t=time) # signal.sawtooth(t, width=1)
 triangle = triangle_build.tolist() # List of Float
 return triangle

def calculate_gaussian_noise():
 random_noise = np.random.normal(loc=0, scale=0.1, size=number_of_points) # random.normal(loc=0.0, scale=1.0, size=None)
 noise = random_noise.tolist() # List of Float
 return noise

SCRIPT_ALL = '''
script scriptmulti
 repeat until scriptTrigger0
 generate rampup
 generate sine
 generate rampdown
 end repeat
 repeat until scriptTrigger0
 generate rampdown
 generate square
 generate rampup
 end repeat
 repeat until scriptTrigger0
 generate rampup
 generate rampdown
 end repeat
 repeat until scriptTrigger0
 generate sine
 end repeat
 repeat until scriptTrigger0
 generate triangle
 end repeat
 repeat until scriptTrigger0
 generate rampdown
 generate noise
 generate rampup
 end repeat
end script

script scriptsine
 repeat until scriptTrigger0
 generate sine
 end repeat
end script

script scriptrampup
 repeat until scriptTrigger0
 generate rampup
 end repeat
end script

script scriptrampdown
 repeat until scriptTrigger0
 generate rampdown
 end repeat
end script

script scriptsquare
 repeat until scriptTrigger0
 generate square
 end repeat
end script

script scripttriangle
 repeat until scriptTrigger0
 generate triangle
 end repeat
end script

script scriptnoise
 repeat until scriptTrigger0
 generate noise
 end repeat
end script
'''

def example(resource_name, options, shape, channel):
 with nifgen.Session(resource_name=resource_name, options=options, channel_name=channel) as session:
 # CONFIGURATION
 # 1 - Set the mode to Script
 session.output_mode = nifgen.OutputMode.SCRIPT

 # 2 - Configure Trigger:
 # SOFTWARE TRIGGER: used in the script
 session.script_triggers[0].script_trigger_type = nifgen.ScriptTriggerType.SOFTWARE_EDGE # TRIG_NONE / DIGITAL_EDGE / DIGITAL_LEVEL / SOFTWARE_EDGE
 session.script_triggers[0].digital_edge_script_trigger_edge = nifgen.ScriptTriggerDigitalEdgeEdge.RISING # RISING / FAILING

 # 3 - Calculate and write different waveform data to the device's onboard memory
 session.channels[channel].write_waveform('sine', calculate_sinewave()) # (waveform_name, data)
 session.channels[channel].write_waveform('rampup', calculate_rampup())
 session.channels[channel].write_waveform('rampdown', calculate_rampdown())
 session.channels[channel].write_waveform('square', calculate_square())
 session.channels[channel].write_waveform('triangle', calculate_triangle())
 session.channels[channel].write_waveform('noise', calculate_gaussian_noise())

 # 4 - Script to generate
 # supported shapes: SINE / SQUARE / TRIANGLE / RAMPUP / RAMPDOWN / NOISE / MULTI
 script_name = 'script{}'.format(shape.lower())
 num_triggers = 6 if shape.upper() == 'MULTI' else 1 # Only multi needs two triggers, all others need one

 session.channels[channel].write_script(SCRIPT_ALL)
 session.script_to_generate = script_name

 # LAUNCH
 with session.initiate():
 for x in range(num_triggers):
 time.sleep(10)
 session.script_triggers[0].send_software_edge_trigger()

def _main(argsv):
 parser = argparse.ArgumentParser(description='Generate different shape waveforms.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments Arbitrary Waveform Generator')
 parser.add_argument('-s', '--shape', default='SINE', help='Shape of the signal to generate')
 parser.add_argument('-c', '--channel', default='0', help='Channel to use when generating')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.option_string, args.shape.upper(), args.channel)

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '5433 (2CH)', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', options, 'SINE', '0')

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5433 (2CH);BoardType:PXIe', '--channel', '0',]
 _main(cmd_line)

def main():
 _main(sys.argv[1:])

if __name__ == '__main__':
 main()

nifgen_standard_function.py

(nifgen_standard_function.py) [https://github.com/ni/nimi-python/blob/master/src/nifgen/examples/nifgen_standard_function.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	#!/usr/bin/python

import argparse
import nifgen
import sys
import time

def example(resource_name, options, waveform, frequency, amplitude, offset, phase, gen_time):
 with nifgen.Session(resource_name=resource_name, options=options) as session:
 session.output_mode = nifgen.OutputMode.FUNC
 session.configure_standard_waveform(waveform=nifgen.Waveform[waveform], amplitude=amplitude, frequency=frequency, dc_offset=offset, start_phase=phase)
 with session.initiate():
 time.sleep(gen_time)

def _main(argsv):
 supported_waveforms = list(nifgen.Waveform.__members__.keys())[:-1] # no support for user-defined waveforms in example
 parser = argparse.ArgumentParser(description='Generates the standard function.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments Function Generator')
 parser.add_argument('-w', '--waveform', default=supported_waveforms[0], choices=supported_waveforms, type=str.upper, help='Standard waveform')
 parser.add_argument('-f', '--frequency', default=1000, type=float, help='Frequency (Hz)')
 parser.add_argument('-a', '--amplitude', default=1.0, type=float, help='Amplitude (Vpk-pk)')
 parser.add_argument('-o', '--offset', default=0.0, type=float, help='DC offset (V)')
 parser.add_argument('-p', '--phase', default=0.0, type=float, help='Start phase (deg)')
 parser.add_argument('-t', '--time', default=5.0, type=float, help='Generation time (s)')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.option_string, args.waveform, args.frequency, args.amplitude, args.offset, args.phase, args.time)

def main():
 _main(sys.argv[1:])

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '5433 (2CH)', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', options, 'SINE', 1000, 1.0, 0.0, 0.0, 5.0)

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5433 (2CH);BoardType:PXIe',]
 _main(cmd_line)

if __name__ == '__main__':
 main()

niscope module

Installation

As a prerequisite to using the niscope module, you must install the NI-SCOPE runtime on your system. Visit ni.com/downloads [http://www.ni.com/downloads/] to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-SCOPE) can be installed with pip [http://pypi.python.org/pypi/pip]:

$ python -m pip install niscope~=1.3.1

Or easy_install from
setuptools [http://pypi.python.org/pypi/setuptools]:

$ python -m easy_install niscope

Usage

The following is a basic example of using the niscope module to open a session to a High Speed Digitizer and capture a single record of 1000 points.

import niscope
with niscope.Session("Dev1") as session:
 session.channels[0].configure_vertical(range=1.0, coupling=niscope.VerticalCoupling.AC)
 session.channels[1].configure_vertical(range=10.0, coupling=niscope.VerticalCoupling.DC)
 session.configure_horizontal_timing(min_sample_rate=50000000, min_num_pts=1000, ref_position=50.0, num_records=5, enforce_realtime=True)
 with session.initiate():
 waveforms = session.channels[0,1].fetch(num_records=5)
 for wfm in waveforms:
 print('Channel {0}, record {1} samples acquired: {2:,}\n'.format(wfm.channel, wfm.record, len(wfm.samples)))

 # Find all channel 1 records (Note channel name is always a string even if integers used in channel[])
 chan1 = [wfm for wfm in waveforms if wfm.channel == '0']

 # Find all record number 3
 rec3 = [wfm for wfm in waveforms if wfm.record == 3]

The waveform returned from fetch is a flat list of Python objects

	Attributes:

	relative_initial_x (float) the time (in seconds) from the trigger to the first sample in the fetched waveform

	absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This timestamp is comparable between records and acquisitions; devices that do not support this parameter use 0 for this output.

	x_increment (float) the time between points in the acquired waveform in seconds

	channel (str) channel name this waveform was acquired from

	record (int) record number of this waveform

	gain (float) the gain factor of the given channel; useful for scaling binary data with the following formula:

voltage = binary data * gain factor + offset

	offset (float) the offset factor of the given channel; useful for scaling binary data with the following formula:

voltage = binary data * gain factor + offset

	samples (array of float) floating point array of samples. Length will be of the actual samples acquired

	Such that all record 0 waveforms are first. For example, with a channel list of 0,1, you would have the following index values:

	index 0 = record 0, channel 0

	index 1 = record 0, channel 1

	index 2 = record 1, channel 0

	index 3 = record 1, channel 1

	etc.

If you need more performance or need to work with SciPy [https://www.scipy.org/], you can use the fetch_into() method instead of fetch(). This
method takes an already allocated numpy [http://www.numpy.org/] array and puts the acquired samples in it. Data types supported:

	numpy.float64

	numpy.int8

	numpy.in16

	numpy.int32

voltage_range = 1.0
record_length = 2000
channels = [0, 1]
num_channels = len(channels)
num_records = 5
wfm = numpy.ndarray(num_channels * record_length, dtype=numpy.int8)
session.configure_vertical(voltage_range, niscope.VerticalCoupling.AC)
session.configure_horizontal_timing(50000000, record_length, 50.0, num_records, True)
with session.initiate():
 waveform_infos = session.channels[channels].fetch_into(wfm=wfm, num_records=num_records)

The waveform_infos returned from fetch_into is a 1D list of Python objects

	Attributes:

	relative_initial_x (float) the time (in seconds) from the trigger to the first sample in the fetched waveform

	absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This timestamp is comparable between records and acquisitions; devices that do not support this parameter use 0 for this output.

	x_increment (float) the time between points in the acquired waveform in seconds

	channel (str) channel name this waveform was asquire from

	record (int) record number of this waveform

	gain (float) the gain factor of the given channel; useful for scaling binary data with the following formula:

voltage = binary data * gain factor + offset

	offset (float) the offset factor of the given channel; useful for scaling binary data with the following formula:

voltage = binary data * gain factor + offset

	samples (numpy array of datatype used) floating point array of samples. Length will be of the actual samples acquired

Note

Python 3 only

	Such that all record 0 waveforms are first. For example, with a channel list of 0,1, you would have the following index values:

	index 0 = record 0, channel 0

	index 1 = record 0, channel 1

	index 2 = record 1, channel 0

	index 3 = record 1, channel 1

	etc.

Note

When using Python 2, the waveform_infos objects do not include the waveform for that record. Instead, samples are in the waveform passed into the function using the following layout:

	index 0 = record 0, channel 0

	index x = record 0, channel 1

	index 2x = record 1, channel 0

	index 3x = record 1, channel 1

	etc.

	Where x = the record length

Additional examples for NI-SCOPE are located in src/niscope/examples/ directory.

API Reference

	Session

	Methods
	abort

	acquisition_status

	auto_setup

	close

	commit

	configure_chan_characteristics

	configure_equalization_filter_coefficients

	configure_horizontal_timing

	configure_trigger_digital

	configure_trigger_edge

	configure_trigger_hysteresis

	configure_trigger_immediate

	configure_trigger_software

	configure_trigger_video

	configure_trigger_window

	configure_vertical

	disable

	export_attribute_configuration_buffer

	export_attribute_configuration_file

	fetch

	fetch_into

	get_equalization_filter_coefficients

	import_attribute_configuration_buffer

	import_attribute_configuration_file

	initiate

	lock

	probe_compensation_signal_start

	probe_compensation_signal_stop

	read

	reset

	reset_device

	reset_with_defaults

	self_cal

	self_test

	send_software_trigger_edge

	unlock

	Properties
	absolute_sample_clock_offset

	acquisition_start_time

	acquisition_type

	acq_arm_source

	advance_trigger_terminal_name

	adv_trig_src

	allow_more_records_than_memory

	arm_ref_trig_src

	backlog

	bandpass_filter_enabled

	binary_sample_width

	cable_sense_mode

	cable_sense_signal_enable

	cable_sense_voltage

	channel_count

	channel_enabled

	channel_terminal_configuration

	data_transfer_block_size

	data_transfer_maximum_bandwidth

	data_transfer_preferred_packet_size

	device_temperature

	enabled_channels

	enable_dc_restore

	enable_time_interleaved_sampling

	end_of_acquisition_event_output_terminal

	end_of_acquisition_event_terminal_name

	end_of_record_event_output_terminal

	end_of_record_event_terminal_name

	end_of_record_to_advance_trigger_holdoff

	equalization_filter_enabled

	equalization_num_coefficients

	exported_advance_trigger_output_terminal

	exported_ref_trigger_output_terminal

	exported_start_trigger_output_terminal

	flex_fir_antialias_filter_type

	fpga_bitfile_path

	glitch_condition

	glitch_polarity

	glitch_width

	high_pass_filter_frequency

	horz_enforce_realtime

	horz_min_num_pts

	horz_num_records

	horz_record_length

	horz_record_ref_position

	horz_sample_rate

	horz_time_per_record

	input_clock_source

	input_impedance

	instrument_firmware_revision

	instrument_manufacturer

	instrument_model

	interleaving_offset_correction_enabled

	io_resource_descriptor

	is_probe_comp_on

	logical_name

	master_enable

	max_input_frequency

	max_real_time_sampling_rate

	max_ris_rate

	min_sample_rate

	onboard_memory_size

	output_clock_source

	pll_lock_status

	points_done

	poll_interval

	probe_attenuation

	ready_for_advance_event_output_terminal

	ready_for_advance_event_terminal_name

	ready_for_ref_event_output_terminal

	ready_for_ref_event_terminal_name

	ready_for_start_event_output_terminal

	ready_for_start_event_terminal_name

	records_done

	record_arm_source

	ref_clk_rate

	ref_trigger_detector_location

	ref_trigger_minimum_quiet_time

	ref_trigger_terminal_name

	ref_trig_tdc_enable

	resolution

	ris_in_auto_setup_enable

	ris_method

	ris_num_averages

	runt_high_threshold

	runt_low_threshold

	runt_polarity

	runt_time_condition

	runt_time_high_limit

	runt_time_low_limit

	sample_mode

	samp_clk_timebase_div

	sample_clock_timebase_multiplier

	samp_clk_timebase_rate

	samp_clk_timebase_src

	serial_number

	accessory_gain

	accessory_offset

	simulate

	specific_driver_description

	specific_driver_revision

	specific_driver_vendor

	start_to_ref_trigger_holdoff

	start_trigger_terminal_name

	supported_instrument_models

	trigger_auto_triggered

	trigger_coupling

	trigger_delay_time

	trigger_holdoff

	trigger_hysteresis

	trigger_impedance

	trigger_level

	trigger_modifier

	trigger_slope

	trigger_source

	trigger_type

	trigger_window_high_level

	trigger_window_low_level

	trigger_window_mode

	tv_trigger_event

	tv_trigger_line_number

	tv_trigger_polarity

	tv_trigger_signal_format

	use_spec_initial_x

	vertical_coupling

	vertical_offset

	vertical_range

	width_condition

	width_high_threshold

	width_low_threshold

	width_polarity

	NI-TClk Support

	Repeated Capabilities
	channels

	Enums
	AcquisitionStatus

	AcquisitionType

	CableSenseMode

	FetchRelativeTo

	FlexFIRAntialiasFilterType

	GlitchCondition

	GlitchPolarity

	Option

	RISMethod

	RefTriggerDetectorLocation

	RuntPolarity

	RuntTimeCondition

	TerminalConfiguration

	TriggerCoupling

	TriggerModifier

	TriggerSlope

	TriggerType

	TriggerWindowMode

	VerticalCoupling

	VideoPolarity

	VideoSignalFormat

	VideoTriggerEvent

	WhichTrigger

	WidthCondition

	WidthPolarity

	Exceptions and Warnings
	Error

	DriverError

	UnsupportedConfigurationError

	DriverNotInstalledError

	InvalidRepeatedCapabilityError

	SelfTestError

	DriverWarning

	Examples
	niscope_fetch.py

	niscope_fetch_forever.py

	niscope_read.py

Session

	
class niscope.Session(self, resource_name, id_query=False, reset_device=False, options={})

	Performs the following initialization actions:

	Creates a new IVI instrument driver and optionally sets the initial
state of the following session properties: Range Check, Cache,
Simulate, Record Value Coercions

	Opens a session to the specified device using the interface and
address you specify for the resourceName

	Resets the digitizer to a known state if resetDevice is set to
True

	Queries the instrument ID and verifies that it is valid for this
instrument driver if the IDQuery is set to True

	Returns an instrument handle that you use to identify the instrument
in all subsequent instrument driver method calls

	Parameters

	
	resource_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –
Caution

Traditional NI-DAQ and NI-DAQmx device names are not case-sensitive.
However, all IVI names, such as logical names, are case-sensitive. If
you use logical names, driver session names, or virtual names in your
program, you must make sure that the name you use matches the name in
the IVI Configuration Store file exactly, without any variations in the
case of the characters.

Specifies the resource name of the device to initialize

For Traditional NI-DAQ devices, the syntax is DAQ::n, where n is
the device number assigned by MAX, as shown in Example 1.

For NI-DAQmx devices, the syntax is just the device name specified in
MAX, as shown in Example 2. Typical default names for NI-DAQmx devices
in MAX are Dev1 or PXI1Slot1. You can rename an NI-DAQmx device by
right-clicking on the name in MAX and entering a new name.

An alternate syntax for NI-DAQmx devices consists of DAQ::NI-DAQmx
device name, as shown in Example 3. This naming convention allows for
the use of an NI-DAQmx device in an application that was originally
designed for a Traditional NI-DAQ device. For example, if the
application expects DAQ::1, you can rename the NI-DAQmx device to 1 in
MAX and pass in DAQ::1 for the resource name, as shown in Example 4.

If you use the DAQ::n syntax and an NI-DAQmx device name already
exists with that same name, the NI-DAQmx device is matched first.

You can also pass in the name of an IVI logical name or an IVI virtual
name configured with the IVI Configuration utility, as shown in Example
5. A logical name identifies a particular virtual instrument. A virtual
name identifies a specific device and specifies the initial settings for
the session.

	Example

	Device Type

	Syntax

	1

	Traditional NI-DAQ device

	DAQ::1 (1 = device number)

	2

	NI-DAQmx device

	myDAQmxDevice (myDAQmxDevice = device name)

	3

	NI-DAQmx device

	DAQ::myDAQmxDevice (myDAQmxDevice = device name)

	4

	NI-DAQmx device

	DAQ::2 (2 = device name)

	5

	IVI logical name or IVI virtual name

	myLogicalName (myLogicalName = name)

	id_query (bool [https://docs.python.org/3/library/functions.html#bool]) – Specify whether to perform an ID query.

When you set this parameter to True, NI-SCOPE verifies that the
device you initialize is a type that it supports.

When you set this parameter to False, the method initializes the
device without performing an ID query.

Defined Values

True—Perform ID query

False—Skip ID query

Default Value: True

	reset_device (bool [https://docs.python.org/3/library/functions.html#bool]) – Specify whether to reset the device during the initialization process.

Default Value: True

Defined Values

True (1)—Reset device

False (0)—Do not reset device

Note

For the NI 5112, repeatedly resetting the device may cause excessive
wear on the electromechanical relays. Refer to NI 5112
Electromechanical Relays
for recommended programming practices.

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned
value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not
specify a value for a property, the default value is used.

Advanced Example:
{ ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’, ‘BoardType’: ‘<type>’ } }

	Property

	Default

	range_check

	True

	query_instrument_status

	False

	cache

	True

	simulate

	False

	record_value_coersions

	False

	driver_setup

	{}

Methods

abort

	
niscope.Session.abort()

	Aborts an acquisition and returns the digitizer to the Idle state. Call
this method if the digitizer times out waiting for a trigger.

acquisition_status

	
niscope.Session.acquisition_status()

	Returns status information about the acquisition to the status
output parameter.

	Return type

	niscope.AcquisitionStatus

	Returns

	Returns whether the acquisition is complete, in progress, or unknown.

Defined Values

COMPLETE

IN_PROGRESS

STATUS_UNKNOWN

auto_setup

	
niscope.Session.auto_setup()

	Automatically configures the instrument. When you call this method,
the digitizer senses the input signal and automatically configures many
of the instrument settings. If a signal is detected on a channel, the
driver chooses the smallest available vertical range that is larger than
the signal range. For example, if the signal is a 1.2 Vpk-pk
sine wave, and the device supports 1 V and 2 V vertical ranges, the
driver will choose the 2 V vertical range for that channel.

If no signal is found on any analog input channel, a warning is
returned, and all channels are enabled. A channel is considered to have
a signal present if the signal is at least 10% of the smallest vertical
range available for that channel.

The following settings are changed:

	General

	

	Acquisition mode

	Normal

	Reference clock

	Internal

	Vertical

	

	Vertical coupling

	AC (DC for NI 5621)

	Vertical bandwidth

	Full

	Vertical range

	Changed by auto setup

	Vertical offset

	0 V

	Probe attenuation

	Unchanged by auto setup

	Input impedance

	Unchanged by auto setup

	Horizontal

	

	Sample rate

	Changed by auto setup

	Min record length

	Changed by auto setup

	Enforce realtime

	True

	Number of Records

	Changed to 1

	Triggering

	

	Trigger type

	Edge if signal present, otherwise immediate

	Trigger channel

	Lowest numbered channel with a signal present

	Trigger slope

	Positive

	Trigger coupling

	DC

	Reference position

	50%

	Trigger level

	50% of signal on trigger channel

	Trigger delay

	0

	Trigger holdoff

	0

	Trigger output

	None

close

	
niscope.Session.close()

	When you are finished using an instrument driver session, you must call
this method to perform the following actions:

	Closes the instrument I/O session.

	Destroys the IVI session and all of its properties.

	Deallocates any memory resources used by the IVI session.

Note

This method is not needed when using the session context manager

commit

	
niscope.Session.commit()

	Commits to hardware all the parameter settings associated with the task.
Use this method if you want a parameter change to be immediately
reflected in the hardware. This method is not supported for
Traditional NI-DAQ (Legacy) devices.

configure_chan_characteristics

	
niscope.Session.configure_chan_characteristics(input_impedance, max_input_frequency)

	Configures the properties that control the electrical characteristics of
the channel—the input impedance and the bandwidth.

Tip

This method requires repeated capabilities. If called directly on the
niscope.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	input_impedance (float [https://docs.python.org/3/library/functions.html#float]) – The input impedance for the channel; NI-SCOPE sets
niscope.Session.input_impedance to this value.

	max_input_frequency (float [https://docs.python.org/3/library/functions.html#float]) – The bandwidth for the channel; NI-SCOPE sets
niscope.Session.max_input_frequency to this value. Pass 0 for this
value to use the hardware default bandwidth. Pass –1 for this value to
achieve full bandwidth.

configure_equalization_filter_coefficients

	
niscope.Session.configure_equalization_filter_coefficients(coefficients)

	Configures the custom coefficients for the equalization FIR filter on
the device. This filter is designed to compensate the input signal for
artifacts introduced to the signal outside of the digitizer. Because
this filter is a generic FIR filter, any coefficients are valid.
Coefficient values should be between +1 and –1.

Tip

This method requires repeated capabilities. If called directly on the
niscope.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling this method on the result.

	Parameters

	coefficients (list of float) – The custom coefficients for the equalization FIR filter on the device.
These coefficients should be between +1 and –1. You can obtain the
number of coefficients from the
:py:attr:`niscope.Session.equalization_num_coefficients <cvi:py:attr:niscope.Session.equalization_num_coefficients.html>`__
property. The
:py:attr:`niscope.Session.equalization_filter_enabled <cvi:py:attr:niscope.Session.equalization_filter_enabled.html>`__
property must be set to TRUE to enable the filter.

configure_horizontal_timing

	
niscope.Session.configure_horizontal_timing(min_sample_rate, min_num_pts, ref_position, num_records, enforce_realtime)

	Configures the common properties of the horizontal subsystem for a
multirecord acquisition in terms of minimum sample rate.

	Parameters

	
	min_sample_rate (float [https://docs.python.org/3/library/functions.html#float]) – The sampling rate for the acquisition. Refer to
niscope.Session.min_sample_rate for more information.

	min_num_pts (int [https://docs.python.org/3/library/functions.html#int]) – The minimum number of points you need in the record for each channel;
call niscope.Session.ActualRecordLength() to obtain the actual record length
used.

Valid Values: Greater than 1; limited by available memory

Note

One or more of the referenced methods are not in the Python API for this driver.

	ref_position (float [https://docs.python.org/3/library/functions.html#float]) – The position of the Reference Event in the waveform record specified as
a percentage.

	num_records (int [https://docs.python.org/3/library/functions.html#int]) – The number of records to acquire

	enforce_realtime (bool [https://docs.python.org/3/library/functions.html#bool]) – Indicates whether the digitizer enforces real-time measurements or
allows equivalent-time (RIS) measurements; not all digitizers support
RIS—refer to Features Supported by
Device for
more information.

Default value: True

Defined Values

True—Allow real-time acquisitions only

False—Allow real-time and equivalent-time acquisitions

configure_trigger_digital

	
niscope.Session.configure_trigger_digital(trigger_source, slope=niscope.TriggerSlope.POSITIVE, holdoff=hightime.timedelta(seconds=0.0), delay=hightime.timedelta(seconds=0.0))

	Configures the common properties of a digital trigger.

When you initiate an acquisition, the digitizer waits for the start
trigger, which is configured through the niscope.Session.acq_arm_source
(Start Trigger Source) property. The default is immediate. Upon
receiving the start trigger the digitizer begins sampling pretrigger
points. After the digitizer finishes sampling pretrigger points, the
digitizer waits for a reference (stop) trigger that you specify with a
method such as this one. Upon receiving the reference trigger the
digitizer finishes the acquisition after completing posttrigger
sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of
trigger delay.

Note

For multirecord acquisitions, all records after the first record are
started by using the Advance Trigger Source. The default is immediate.

You can adjust the amount of pre-trigger and post-trigger samples using
the reference position parameter on the
niscope.Session.configure_horizontal_timing() method. The default is half of the
record length.

Some features are not supported by all digitizers. Refer to Features
Supported by
Device for
more information.

Digital triggering is not supported in RIS mode.

	Parameters

	
	trigger_source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the trigger source. Refer to niscope.Session.trigger_source
for defined values.

	slope (niscope.TriggerSlope) – Specifies whether you want a rising edge or a falling edge to trigger
the digitizer. Refer to niscope.Session.trigger_slope for more
information.

	holdoff (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

	delay (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_edge

	
niscope.Session.configure_trigger_edge(trigger_source, level, trigger_coupling, slope=niscope.TriggerSlope.POSITIVE, holdoff=hightime.timedelta(seconds=0.0), delay=hightime.timedelta(seconds=0.0))

	Configures common properties for analog edge triggering.

When you initiate an acquisition, the digitizer waits for the start
trigger, which is configured through the niscope.Session.acq_arm_source
(Start Trigger Source) property. The default is immediate. Upon
receiving the start trigger the digitizer begins sampling pretrigger
points. After the digitizer finishes sampling pretrigger points, the
digitizer waits for a reference (stop) trigger that you specify with a
method such as this one. Upon receiving the reference trigger the
digitizer finishes the acquisition after completing posttrigger
sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of
trigger delay.

Note

Some features are not supported by all digitizers. Refer to Features
Supported by
Device for
more information.

	Parameters

	
	trigger_source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the trigger source. Refer to niscope.Session.trigger_source
for defined values.

	level (float [https://docs.python.org/3/library/functions.html#float]) – The voltage threshold for the trigger. Refer to
niscope.Session.trigger_level for more information.

	trigger_coupling (niscope.TriggerCoupling) – Applies coupling and filtering options to the trigger signal. Refer to
niscope.Session.trigger_coupling for more information.

	slope (niscope.TriggerSlope) – Specifies whether you want a rising edge or a falling edge to trigger
the digitizer. Refer to niscope.Session.trigger_slope for more
information.

	holdoff (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

	delay (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_hysteresis

	
niscope.Session.configure_trigger_hysteresis(trigger_source, level, hysteresis, trigger_coupling, slope=niscope.TriggerSlope.POSITIVE, holdoff=hightime.timedelta(seconds=0.0), delay=hightime.timedelta(seconds=0.0))

	Configures common properties for analog hysteresis triggering. This kind
of trigger specifies an additional value, specified in the
hysteresis parameter, that a signal must pass through before a
trigger can occur. This additional value acts as a kind of buffer zone
that keeps noise from triggering an acquisition.

When you initiate an acquisition, the digitizer waits for the start
trigger, which is configured through the
niscope.Session.acq_arm_source. The default is immediate. Upon
receiving the start trigger the digitizer begins sampling pretrigger
points. After the digitizer finishes sampling pretrigger points, the
digitizer waits for a reference (stop) trigger that you specify with a
method such as this one. Upon receiving the reference trigger the
digitizer finishes the acquisition after completing posttrigger
sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of
trigger delay.

Note

Some features are not supported by all digitizers. Refer to Features
Supported by
Device for
more information.

	Parameters

	
	trigger_source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the trigger source. Refer to niscope.Session.trigger_source
for defined values.

	level (float [https://docs.python.org/3/library/functions.html#float]) – The voltage threshold for the trigger. Refer to
niscope.Session.trigger_level for more information.

	hysteresis (float [https://docs.python.org/3/library/functions.html#float]) – The size of the hysteresis window on either side of the level in
volts; the digitizer triggers when the trigger signal passes through the
hysteresis value you specify with this parameter, has the slope you
specify with slope, and passes through the level. Refer to
niscope.Session.trigger_hysteresis for defined values.

	trigger_coupling (niscope.TriggerCoupling) – Applies coupling and filtering options to the trigger signal. Refer to
niscope.Session.trigger_coupling for more information.

	slope (niscope.TriggerSlope) – Specifies whether you want a rising edge or a falling edge to trigger
the digitizer. Refer to niscope.Session.trigger_slope for more
information.

	holdoff (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

	delay (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_immediate

	
niscope.Session.configure_trigger_immediate()

	Configures common properties for immediate triggering. Immediate
triggering means the digitizer triggers itself.

When you initiate an acquisition, the digitizer waits for a trigger. You
specify the type of trigger that the digitizer waits for with a
Configure Trigger method, such as niscope.Session.configure_trigger_immediate().

configure_trigger_software

	
niscope.Session.configure_trigger_software(holdoff=hightime.timedelta(seconds=0.0), delay=hightime.timedelta(seconds=0.0))

	Configures common properties for software triggering.

When you initiate an acquisition, the digitizer waits for the start
trigger, which is configured through the niscope.Session.acq_arm_source
(Start Trigger Source) property. The default is immediate. Upon
receiving the start trigger the digitizer begins sampling pretrigger
points. After the digitizer finishes sampling pretrigger points, the
digitizer waits for a reference (stop) trigger that you specify with a
method such as this one. Upon receiving the reference trigger the
digitizer finishes the acquisition after completing posttrigger
sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of
trigger delay.

To trigger the acquisition, use niscope.Session.send_software_trigger_edge().

Note

Some features are not supported by all digitizers. Refer to Features
Supported by
Device for
more information.

	Parameters

	
	holdoff (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

	delay (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_video

	
niscope.Session.configure_trigger_video(trigger_source, signal_format, event, polarity, trigger_coupling, enable_dc_restore=False, line_number=1, holdoff=hightime.timedelta(seconds=0.0), delay=hightime.timedelta(seconds=0.0))

	Configures the common properties for video triggering, including the
signal format, TV event, line number, polarity, and enable DC restore. A
video trigger occurs when the digitizer finds a valid video signal sync.

When you initiate an acquisition, the digitizer waits for the start
trigger, which is configured through the niscope.Session.acq_arm_source
(Start Trigger Source) property. The default is immediate. Upon
receiving the start trigger the digitizer begins sampling pretrigger
points. After the digitizer finishes sampling pretrigger points, the
digitizer waits for a reference (stop) trigger that you specify with a
method such as this one. Upon receiving the reference trigger the
digitizer finishes the acquisition after completing posttrigger
sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of
trigger delay.

Note

Some features are not supported by all digitizers. Refer to Features
Supported by
Device for
more information.

	Parameters

	
	trigger_source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the trigger source. Refer to niscope.Session.trigger_source
for defined values.

	signal_format (niscope.VideoSignalFormat) – Specifies the type of video signal sync the digitizer should look for.
Refer to niscope.Session.tv_trigger_signal_format for more
information.

	event (niscope.VideoTriggerEvent) – Specifies the TV event you want to trigger on. You can trigger on a
specific or on the next coming line or field of the signal.

	polarity (niscope.VideoPolarity) – Specifies the polarity of the video signal sync.

	trigger_coupling (niscope.TriggerCoupling) – Applies coupling and filtering options to the trigger signal. Refer to
niscope.Session.trigger_coupling for more information.

	enable_dc_restore (bool [https://docs.python.org/3/library/functions.html#bool]) – Offsets each video line so the clamping level (the portion of the video
line between the end of the color burst and the beginning of the active
image) is moved to zero volt. Refer to
niscope.Session.enable_dc_restore for defined values.

	line_number (int [https://docs.python.org/3/library/functions.html#int]) – Selects the line number to trigger on. The line number range covers an
entire frame and is referenced as shown on Vertical Blanking and
Synchronization
Signal. Refer to
niscope.Session.tv_trigger_line_number for more information.

Default value: 1

	holdoff (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

	delay (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_window

	
niscope.Session.configure_trigger_window(trigger_source, low_level, high_level, window_mode, trigger_coupling, holdoff=hightime.timedelta(seconds=0.0), delay=hightime.timedelta(seconds=0.0))

	Configures common properties for analog window triggering. A window
trigger occurs when a signal enters or leaves a window you specify with
the high level or low level parameters.

When you initiate an acquisition, the digitizer waits for the start
trigger, which is configured through the niscope.Session.acq_arm_source
(Start Trigger Source) property. The default is immediate. Upon
receiving the start trigger the digitizer begins sampling pretrigger
points. After the digitizer finishes sampling pretrigger points, the
digitizer waits for a reference (stop) trigger that you specify with a
method such as this one. Upon receiving the reference trigger the
digitizer finishes the acquisition after completing posttrigger
sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of
trigger delay.

To trigger the acquisition, use niscope.Session.send_software_trigger_edge().

Note

Some features are not supported by all digitizers.

	Parameters

	
	trigger_source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the trigger source. Refer to niscope.Session.trigger_source
for defined values.

	low_level (float [https://docs.python.org/3/library/functions.html#float]) – Passes the voltage threshold you want the digitizer to use for low
triggering.

	high_level (float [https://docs.python.org/3/library/functions.html#float]) – Passes the voltage threshold you want the digitizer to use for high
triggering.

	window_mode (niscope.TriggerWindowMode) – Specifies whether you want the trigger to occur when the signal enters
or leaves a window.

	trigger_coupling (niscope.TriggerCoupling) – Applies coupling and filtering options to the trigger signal. Refer to
niscope.Session.trigger_coupling for more information.

	holdoff (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

	delay (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_vertical

	
niscope.Session.configure_vertical(range, coupling, offset=0.0, probe_attenuation=1.0, enabled=True)

	Configures the most commonly configured properties of the digitizer
vertical subsystem, such as the range, offset, coupling, probe
attenuation, and the channel.

Tip

This method requires repeated capabilities. If called directly on the
niscope.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	range (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the vertical range Refer to niscope.Session.vertical_range for
more information.

	coupling (niscope.VerticalCoupling) – Specifies how to couple the input signal. Refer to
niscope.Session.vertical_coupling for more information.

	offset (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the vertical offset. Refer to niscope.Session.vertical_offset
for more information.

	probe_attenuation (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the probe attenuation. Refer to
niscope.Session.probe_attenuation for valid values.

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether the channel is enabled for acquisition. Refer to
niscope.Session.channel_enabled for more information.

disable

	
niscope.Session.disable()

	Aborts any current operation, opens data channel relays, and releases
RTSI and PFI lines.

export_attribute_configuration_buffer

	
niscope.Session.export_attribute_configuration_buffer()

	Exports the property configuration of the session to a configuration
buffer.

You can export and import session property configurations only between
devices with identical model numbers, channel counts, and onboard memory
sizes.

This method verifies that the properties you have configured for the
session are valid. If the configuration is invalid, NI‑SCOPE returns an
error.

Related Topics:

Properties and Property
Methods

Setting Properties Before Reading
Properties

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Returns

	Specifies the byte array buffer to be populated with the exported
property configuration.

export_attribute_configuration_file

	
niscope.Session.export_attribute_configuration_file(file_path)

	Exports the property configuration of the session to the specified
file.

You can export and import session property configurations only between
devices with identical model numbers, channel counts, and onboard memory
sizes.

This method verifies that the properties you have configured for the
session are valid. If the configuration is invalid, NI‑SCOPE returns an
error.

Related Topics:

Properties and Property
Methods

Setting Properties Before Reading
Properties

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the absolute path to the file to contain the exported
property configuration. If you specify an empty or relative path, this
method returns an error.
Default file extension: .niscopeconfig

fetch

	
niscope.Session.fetch(num_samples=None, relative_to=niscope.FetchRelativeTo.PRETRIGGER, offset=0, record_number=0, num_records=None, timeout=hightime.timedelta(seconds=5.0))

	Returns the waveform from a previously initiated acquisition that the
digitizer acquires for the specified channel. This method returns
scaled voltage waveforms.

This method may return multiple waveforms depending on the number of
channels, the acquisition type, and the number of records you specify.

Note

Some functionality, such as time stamping, is not supported in all digitizers.

Tip

This method requires repeated capabilities. If called directly on the
niscope.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	num_samples (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of samples to fetch for each waveform. If the acquisition finishes with fewer points than requested, some devices return partial data if the acquisition finished, was aborted, or a timeout of 0 was used. If it fails to complete within the timeout period, the method raises.

	relative_to (niscope.FetchRelativeTo) – Position to start fetching within one record.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Offset in samples to start fetching data within each record. The offset can be positive or negative.

	record_number (int [https://docs.python.org/3/library/functions.html#int]) – Zero-based index of the first record to fetch.

	num_records (int [https://docs.python.org/3/library/functions.html#int]) – Number of records to fetch. Use -1 to fetch all configured records.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The time to wait for data to be acquired; using 0 for this parameter tells NI-SCOPE to fetch whatever is currently available. Using -1 seconds for this parameter implies infinite timeout.

	Return type

	list of WaveformInfo

	Returns

	Returns a list of class instances with the following timing and scaling information about each waveform:

	relative_initial_x (float) the time (in seconds) from the trigger to the first sample in the fetched waveform

	absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This timestamp is comparable between records and acquisitions; devices that do not support this parameter use 0 for this output.

	x_increment (float) the time between points in the acquired waveform in seconds

	channel (str) channel name this waveform was acquired from

	record (int) record number of this waveform

	gain (float) the gain factor of the given channel; useful for scaling binary data with the following formula:

\[voltage = binary data * gain factor + offset\]

	offset (float) the offset factor of the given channel; useful for scaling binary data with the following formula:

\[voltage = binary data * gain factor + offset\]

	samples (array of float) floating point array of samples. Length will be of the actual samples acquired

fetch_into

	
niscope.Session.fetch_into(waveform, relative_to=niscope.FetchRelativeTo.PRETRIGGER, offset=0, record_number=0, num_records=None, timeout=hightime.timedelta(seconds=5.0))

	Returns the waveform from a previously initiated acquisition that the
digitizer acquires for the specified channel. This method returns
scaled voltage waveforms.

This method may return multiple waveforms depending on the number of
channels, the acquisition type, and the number of records you specify.

Note

Some functionality, such as time stamping, is not supported in all digitizers.

Tip

This method requires repeated capabilities. If called directly on the
niscope.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	waveform (array.array [https://docs.python.org/3/library/array.html#array.array]("d")) – numpy array of the appropriate type and size that should be acquired as a 1D array. Size should be num_samples times number of waveforms. Call niscope.Session._actual_num_wfms() to determine the number of waveforms.

Types supported are

	numpy.float64

	numpy.int8

	numpy.in16

	numpy.int32

Example:

waveform = numpy.ndarray(num_samples * session.actual_num_wfms(), dtype=numpy.float64)
wfm_info = session['0,1'].fetch_into(waveform, timeout=5.0)

	relative_to (niscope.FetchRelativeTo) – Position to start fetching within one record.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Offset in samples to start fetching data within each record.The offset can be positive or negative.

	record_number (int [https://docs.python.org/3/library/functions.html#int]) – Zero-based index of the first record to fetch.

	num_records (int [https://docs.python.org/3/library/functions.html#int]) – Number of records to fetch. Use -1 to fetch all configured records.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The time to wait in seconds for data to be acquired; using 0 for this parameter tells NI-SCOPE to fetch whatever is currently available. Using -1 for this parameter implies infinite timeout.

	Return type

	list of WaveformInfo

	Returns

	Returns a list of class instances with the following timing and scaling information about each waveform:

	relative_initial_x (float) the time (in seconds) from the trigger to the first sample in the fetched waveform

	absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This timestamp is comparable between records and acquisitions; devices that do not support this parameter use 0 for this output.

	x_increment (float) the time between points in the acquired waveform in seconds

	channel (str) channel name this waveform was acquired from

	record (int) record number of this waveform

	gain (float) the gain factor of the given channel; useful for scaling binary data with the following formula:

\[voltage = binary data * gain factor + offset\]

	offset (float) the offset factor of the given channel; useful for scaling binary data with the following formula:

\[voltage = binary data * gain factor + offset\]

	samples (array of float) floating point array of samples. Length will be of the actual samples acquired

get_equalization_filter_coefficients

	
niscope.Session.get_equalization_filter_coefficients()

	Retrieves the custom coefficients for the equalization FIR filter on the device. This filter is designed to compensate the input signal for artifacts introduced to the signal outside of the digitizer. Because this filter is a generic FIR filter, any coefficients are valid. Coefficient values should be between +1 and –1.

Tip

This method requires repeated capabilities. If called directly on the
niscope.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling this method on the result.

import_attribute_configuration_buffer

	
niscope.Session.import_attribute_configuration_buffer(configuration)

	Imports a property configuration to the session from the specified
configuration buffer.

You can export and import session property configurations only between
devices with identical model numbers, channel counts, and onboard memory
sizes.

Related Topics:

Properties and Property
Methods

Setting Properties Before Reading
Properties

Note

You cannot call this method while the session is in a running state,
such as while acquiring a signal.

	Parameters

	configuration (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Specifies the byte array buffer that contains the property
configuration to import.

import_attribute_configuration_file

	
niscope.Session.import_attribute_configuration_file(file_path)

	Imports a property configuration to the session from the specified
file.

You can export and import session property configurations only between
devices with identical model numbers, channel counts, and onboard memory
sizes.

Related Topics:

Properties and Property
Methods

Setting Properties Before Reading
Properties

Note

You cannot call this method while the session is in a running state,
such as while acquiring a signal.

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the absolute path to the file containing the property
configuration to import. If you specify an empty or relative path, this
method returns an error.
Default File Extension: .niscopeconfig

initiate

	
niscope.Session.initiate()

	Initiates a waveform acquisition.

After calling this method, the digitizer leaves the Idle state and
waits for a trigger. The digitizer acquires a waveform for each channel
you enable with niscope.Session.configure_vertical().

Note

This method will return a Python context manager that will initiate on entering and abort on exit.

lock

	
niscope.Session.lock()

	Obtains a multithread lock on the device session. Before doing so, the
software waits until all other execution threads release their locks
on the device session.

Other threads may have obtained a lock on this session for the
following reasons:

	The application called the niscope.Session.lock() method.

	A call to NI-SCOPE locked the session.

	After a call to the niscope.Session.lock() method returns
successfully, no other threads can access the device session until
you call the niscope.Session.unlock() method or exit out of the with block when using
lock context manager.

	Use the niscope.Session.lock() method and the
niscope.Session.unlock() method around a sequence of calls to
instrument driver methods if you require that the device retain its
settings through the end of the sequence.

You can safely make nested calls to the niscope.Session.lock() method
within the same thread. To completely unlock the session, you must
balance each call to the niscope.Session.lock() method with a call to
the niscope.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls
is to use lock as a context manager

with niscope.Session('dev1') as session:
 with session.lock():
 # Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

	Return type

	context manager

	Returns

	When used in a with statement, niscope.Session.lock() acts as
a context manager and unlock will be called when the with block is exited

probe_compensation_signal_start

	
niscope.Session.probe_compensation_signal_start()

	Starts the 1 kHz square wave output on PFI 1 for probe compensation.

probe_compensation_signal_stop

	
niscope.Session.probe_compensation_signal_stop()

	Stops the 1 kHz square wave output on PFI 1 for probe compensation.

read

	
niscope.Session.read(num_samples=None, relative_to=niscope.FetchRelativeTo.PRETRIGGER, offset=0, record_number=0, num_records=None, timeout=hightime.timedelta(seconds=5.0))

	Initiates an acquisition, waits for it to complete, and retrieves the
data. The process is similar to calling niscope.Session._initiate_acquisition(),
niscope.Session.acquisition_status(), and niscope.Session.fetch(). The only difference is
that with niscope.Session.read(), you enable all channels specified with
channelList before the acquisition; in the other method, you enable
the channels with niscope.Session.configure_vertical().

This method may return multiple waveforms depending on the number of
channels, the acquisition type, and the number of records you specify.

Note

Some functionality, such as time stamping, is not supported in all digitizers.

Tip

This method requires repeated capabilities. If called directly on the
niscope.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling this method on the result.

	Parameters

	
	num_samples (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of samples to fetch for each waveform. If the acquisition finishes with fewer points than requested, some devices return partial data if the acquisition finished, was aborted, or a timeout of 0 was used. If it fails to complete within the timeout period, the method raises.

	relative_to (niscope.FetchRelativeTo) – Position to start fetching within one record.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Offset in samples to start fetching data within each record. The offset can be positive or negative.

	record_number (int [https://docs.python.org/3/library/functions.html#int]) – Zero-based index of the first record to fetch.

	num_records (int [https://docs.python.org/3/library/functions.html#int]) – Number of records to fetch. Use -1 to fetch all configured records.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The time to wait for data to be acquired; using 0 for this parameter tells NI-SCOPE to fetch whatever is currently available. Using -1 seconds for this parameter implies infinite timeout.

	Return type

	list of WaveformInfo

	Returns

	Returns a list of class instances with the following timing and scaling information about each waveform:

	relative_initial_x (float) the time (in seconds) from the trigger to the first sample in the fetched waveform

	absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This timestamp is comparable between records and acquisitions; devices that do not support this parameter use 0 for this output.

	x_increment (float) the time between points in the acquired waveform in seconds

	channel (str) channel name this waveform was acquired from

	record (int) record number of this waveform

	gain (float) the gain factor of the given channel; useful for scaling binary data with the following formula:

\[voltage = binary data * gain factor + offset\]

	offset (float) the offset factor of the given channel; useful for scaling binary data with the following formula:

\[voltage = binary data * gain factor + offset\]

	samples (array of float) floating point array of samples. Length will be of the actual samples acquired

reset

	
niscope.Session.reset()

	Stops the acquisition, releases routes, and all session properties are
reset to their default
states.

reset_device

	
niscope.Session.reset_device()

	Performs a hard reset of the device. Acquisition stops, all routes are
released, RTSI and PFI lines are tristated, hardware is configured to
its default state, and all session properties are reset to their default
state.

	Thermal Shutdown

reset_with_defaults

	
niscope.Session.reset_with_defaults()

	Performs a software reset of the device, returning it to the default
state and applying any initial default settings from the IVI
Configuration Store.

self_cal

	
niscope.Session.self_cal(option=niscope.Option.SELF_CALIBRATE_ALL_CHANNELS)

	Self-calibrates most NI digitizers, including all SMC-based devices and
most Traditional NI-DAQ (Legacy) devices. To verify that your digitizer
supports self-calibration, refer to Features Supported by
Device.

For SMC-based digitizers, if the self-calibration is performed
successfully in a regular session, the calibration constants are
immediately stored in the self-calibration area of the EEPROM. If the
self-calibration is performed in an external calibration session, the
calibration constants take effect immediately for the duration of the
session. However, they are not stored in the EEPROM until
niscope.Session.CalEnd() is called with action set to
NISCOPE_VAL_ACTION_STORE and no errors occur.

Note

One or more of the referenced methods are not in the Python API for this driver.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

Tip

This method requires repeated capabilities. If called directly on the
niscope.Session object, then the method will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling this method on the result.

	Parameters

	option (niscope.Option) – The calibration option. Use VI_NULL for a normal self-calibration
operation or NISCOPE_VAL_CAL_RESTORE_EXTERNAL_CALIBRATION to
restore the previous calibration.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

self_test

	
niscope.Session.self_test()

	Runs the instrument self-test routine and returns the test result(s). Refer to the
device-specific help topics for an explanation of the message contents.

Raises SelfTestError on self test failure. Properties on exception object:

	code - failure code from driver

	message - status message from driver

	Self-Test Code

	Description

	0

	Passed self-test

	1

	Self-test failed

send_software_trigger_edge

	
niscope.Session.send_software_trigger_edge(which_trigger)

	Sends the selected trigger to the digitizer. Call this method if you
called niscope.Session.configure_trigger_software() when you want the Reference
trigger to occur. You can also call this method to override a misused
edge, digital, or hysteresis trigger. If you have configured
niscope.Session.acq_arm_source, niscope.Session.arm_ref_trig_src, or
niscope.Session.adv_trig_src, call this method when you want to send
the corresponding trigger to the digitizer.

	Parameters

	which_trigger (niscope.WhichTrigger) – Specifies the type of trigger to send to the digitizer.

Defined Values

START (0L)

ARM_REFERENCE (1L)

REFERENCE (2L)

ADVANCE (3L)

unlock

	
niscope.Session.unlock()

	Releases a lock that you acquired on an device session using
niscope.Session.lock(). Refer to niscope.Session.unlock() for additional
information on session locks.

Properties

absolute_sample_clock_offset

	
niscope.Session.absolute_sample_clock_offset

	Gets or sets the absolute time offset of the sample clock relative to
the reference clock in terms of seconds.

Note

Configures the sample clock relationship with respect to the reference
clock. This parameter is factored into NI-TClk adjustments and is
typically used to improve the repeatability of NI-TClk Synchronization.
When this parameter is read, the currently programmed value is returned.
The range of the absolute sample clock offset is [-.5 sample clock
periods, .5 sample clock periods]. The default absolute sample clock
offset is 0s.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Advanced:Absolute Sample Clock Offset

	C Attribute: NISCOPE_ATTR_ABSOLUTE_SAMPLE_CLOCK_OFFSET

acquisition_start_time

	
niscope.Session.acquisition_start_time

	Specifies the length of time from the trigger event to the first point in the waveform record in seconds. If the value is positive, the first point in the waveform record occurs after the trigger event (same as specifying niscope.Session.trigger_delay_time). If the value is negative, the first point in the waveform record occurs before the trigger event (same as specifying niscope.Session.horz_record_ref_position).

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Advanced:Acquisition Start Time

	C Attribute: NISCOPE_ATTR_ACQUISITION_START_TIME

acquisition_type

	
niscope.Session.acquisition_type

	Specifies how the digitizer acquires data and fills the waveform record.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.AcquisitionType

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Acquisition:Acquisition Type

	C Attribute: NISCOPE_ATTR_ACQUISITION_TYPE

acq_arm_source

	
niscope.Session.acq_arm_source

	Specifies the source the digitizer monitors for a start (acquisition arm) trigger. When the start trigger is received, the digitizer begins acquiring pretrigger samples.
Valid Values:
NISCOPE_VAL_IMMEDIATE (‘VAL_IMMEDIATE’) - Triggers immediately
NISCOPE_VAL_RTSI_0 (‘VAL_RTSI_0’) - RTSI 0
NISCOPE_VAL_RTSI_1 (‘VAL_RTSI_1’) - RTSI 1
NISCOPE_VAL_RTSI_2 (‘VAL_RTSI_2’) - RTSI 2
NISCOPE_VAL_RTSI_3 (‘VAL_RTSI_3’) - RTSI 3
NISCOPE_VAL_RTSI_4 (‘VAL_RTSI_4’) - RTSI 4
NISCOPE_VAL_RTSI_5 (‘VAL_RTSI_5’) - RTSI 5
NISCOPE_VAL_RTSI_6 (‘VAL_RTSI_6’) - RTSI 6
NISCOPE_VAL_PFI_0 (‘VAL_PFI_0’) - PFI 0
NISCOPE_VAL_PFI_1 (‘VAL_PFI_1’) - PFI 1
NISCOPE_VAL_PFI_2 (‘VAL_PFI_2’) - PFI 2
NISCOPE_VAL_PXI_STAR (‘VAL_PXI_STAR’) - PXI Star Trigger

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Start Trigger (Acq. Arm):Source

	C Attribute: NISCOPE_ATTR_ACQ_ARM_SOURCE

advance_trigger_terminal_name

	
niscope.Session.advance_trigger_terminal_name

	Returns the fully qualified name for the Advance Trigger terminal. You can use this terminal as the source for another trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Advance Trigger:Terminal Name

	C Attribute: NISCOPE_ATTR_ADVANCE_TRIGGER_TERMINAL_NAME

adv_trig_src

	
niscope.Session.adv_trig_src

	Specifies the source the digitizer monitors for an advance trigger. When the advance trigger is received, the digitizer begins acquiring pretrigger samples.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Advance Trigger:Source

	C Attribute: NISCOPE_ATTR_ADV_TRIG_SRC

allow_more_records_than_memory

	
niscope.Session.allow_more_records_than_memory

	Indicates whether more records can be configured with niscope.Session.configure_horizontal_timing() than fit in the onboard memory. If this property is set to True, it is necessary to fetch records while the acquisition is in progress. Eventually, some of the records will be overwritten. An error is returned from the fetch method if you attempt to fetch a record that has been overwritten.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Enable Records > Memory

	C Attribute: NISCOPE_ATTR_ALLOW_MORE_RECORDS_THAN_MEMORY

arm_ref_trig_src

	
niscope.Session.arm_ref_trig_src

	Specifies the source the digitizer monitors for an arm reference trigger. When the arm reference trigger is received, the digitizer begins looking for a reference (stop) trigger from the user-configured trigger source.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Arm Reference Trigger:Source

	C Attribute: NISCOPE_ATTR_ARM_REF_TRIG_SRC

backlog

	
niscope.Session.backlog

	Returns the number of samples (niscope.Session.points_done) that have been acquired but not fetched for the record specified by niscope.Session.fetch_record_number.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Fetch:Fetch Backlog

	C Attribute: NISCOPE_ATTR_BACKLOG

bandpass_filter_enabled

	
niscope.Session.bandpass_filter_enabled

	Enables the bandpass filter on the specificed channel. The default value is FALSE.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Advanced:Bandpass Filter Enabled

	C Attribute: NISCOPE_ATTR_BANDPASS_FILTER_ENABLED

binary_sample_width

	
niscope.Session.binary_sample_width

	Indicates the bit width of the binary data in the acquired waveform. Useful for determining which Binary Fetch method to use. Compare to niscope.Session.resolution.
To configure the device to store samples with a lower resolution that the native, set this property to the desired binary width.
This can be useful for streaming at faster speeds at the cost of resolution. The least significant bits will be lost with this configuration.
Valid Values: 8, 16, 32

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Acquisition:Binary Sample Width

	C Attribute: NISCOPE_ATTR_BINARY_SAMPLE_WIDTH

cable_sense_mode

	
niscope.Session.cable_sense_mode

	Specifies whether and how the oscilloscope is configured to generate a CableSense signal on the specified channels when the niscope.Session.CableSenseSignalStart() method is called.

	Device-Specific Behavior:

	
	PXIe-5160/5162

	
	The value of this property must be identical across all channels whose input impedance is set to 50 ohms.

	If this property is set to a value other than DISABLED for any channel(s), the input impedance of all channels for which this property is set to DISABLED must be set to 1 M Ohm.

	Supported Devices

	PXIe-5110

	PXIe-5111

	PXIe-5113

	PXIe-5160

	PXIe-5162

Note

the input impedance of the channel(s) to convey the CableSense signal must be set to 50 ohms.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.CableSenseMode

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_CABLE_SENSE_MODE

cable_sense_signal_enable

	
niscope.Session.cable_sense_signal_enable

	TBD

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_CABLE_SENSE_SIGNAL_ENABLE

cable_sense_voltage

	
niscope.Session.cable_sense_voltage

	Returns the voltage of the CableSense signal that is written to the EEPROM of the oscilloscope during factory calibration.

	Supported Devices

	PXIe-5110

	PXIe-5111

	PXIe-5113

	PXIe-5160

	PXIe-5162

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_CABLE_SENSE_VOLTAGE

channel_count

	
niscope.Session.channel_count

	Indicates the number of channels that the specific instrument driver supports.
For channel-based properties, the IVI engine maintains a separate cache value for each channel.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Channel Count

	C Attribute: NISCOPE_ATTR_CHANNEL_COUNT

channel_enabled

	
niscope.Session.channel_enabled

	Specifies whether the digitizer acquires a waveform for the channel.
Valid Values:
True (1) - Acquire data on this channel
False (0) - Don’t acquire data on this channel

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Channel Enabled

	C Attribute: NISCOPE_ATTR_CHANNEL_ENABLED

channel_terminal_configuration

	
niscope.Session.channel_terminal_configuration

	Specifies the terminal configuration for the channel.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TerminalConfiguration

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Channel Terminal Configuration

	C Attribute: NISCOPE_ATTR_CHANNEL_TERMINAL_CONFIGURATION

data_transfer_block_size

	
niscope.Session.data_transfer_block_size

	Specifies the maximum number of samples to transfer at one time from the device to host memory. Increasing this number should result in better fetching performance because the driver does not need to restart the transfers as often. However, increasing this number may also increase the amount of page-locked memory required from the system.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Fetch:Data Transfer Block Size

	C Attribute: NISCOPE_ATTR_DATA_TRANSFER_BLOCK_SIZE

data_transfer_maximum_bandwidth

	
niscope.Session.data_transfer_maximum_bandwidth

	This property specifies the maximum bandwidth that the device is allowed to consume.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Fetch:Advanced:Maximum Bandwidth

	C Attribute: NISCOPE_ATTR_DATA_TRANSFER_MAXIMUM_BANDWIDTH

data_transfer_preferred_packet_size

	
niscope.Session.data_transfer_preferred_packet_size

	This property specifies the size of (read request|memory write) data payload. Due to alignment of the data buffers, the hardware may not always generate a packet of this size.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Fetch:Advanced:Preferred Packet Size

	C Attribute: NISCOPE_ATTR_DATA_TRANSFER_PREFERRED_PACKET_SIZE

device_temperature

	
niscope.Session.device_temperature

	Returns the temperature of the device in degrees Celsius from the onboard sensor.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Device:Temperature

	C Attribute: NISCOPE_ATTR_DEVICE_TEMPERATURE

enabled_channels

	
niscope.Session.enabled_channels

	Returns a comma-separated list of the channels enabled for the session in ascending order.

If no channels are enabled, this property returns an empty string, “”.
If all channels are enabled, this property enumerates all of the channels.

Because this property returns channels in ascending order, but the order in which you specify channels for the input is important, the value of this property may not necessarily reflect the order in which NI-SCOPE performs certain actions.

Refer to Channel String Syntax in the NI High-Speed Digitizers Help for more information on the effects of channel order in NI-SCOPE.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_ENABLED_CHANNELS

enable_dc_restore

	
niscope.Session.enable_dc_restore

	Restores the video-triggered data retrieved by the digitizer to the video signal’s zero reference point.
Valid Values:
True - Enable DC restore
False - Disable DC restore

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Video:Enable DC Restore

	C Attribute: NISCOPE_ATTR_ENABLE_DC_RESTORE

enable_time_interleaved_sampling

	
niscope.Session.enable_time_interleaved_sampling

	Specifies whether the digitizer acquires the waveform using multiple ADCs for the channel enabling a higher maximum real-time sampling rate.
Valid Values:
True (1) - Use multiple interleaved ADCs on this channel
False (0) - Use only this channel’s ADC to acquire data for this channel

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Enable Time Interleaved Sampling

	C Attribute: NISCOPE_ATTR_ENABLE_TIME_INTERLEAVED_SAMPLING

end_of_acquisition_event_output_terminal

	
niscope.Session.end_of_acquisition_event_output_terminal

	Specifies the destination for the End of Acquisition Event. When this event is asserted, the digitizer has completed sampling for all records.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:End of Acquisition:Output Terminal

	C Attribute: NISCOPE_ATTR_END_OF_ACQUISITION_EVENT_OUTPUT_TERMINAL

end_of_acquisition_event_terminal_name

	
niscope.Session.end_of_acquisition_event_terminal_name

	Returns the fully qualified name for the End of Acquisition Event terminal. You can use this terminal as the source for a trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:End of Acquisition:Terminal Name

	C Attribute: NISCOPE_ATTR_END_OF_ACQUISITION_EVENT_TERMINAL_NAME

end_of_record_event_output_terminal

	
niscope.Session.end_of_record_event_output_terminal

	Specifies the destination for the End of Record Event. When this event is asserted, the digitizer has completed sampling for the current record.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:End of Record:Output Terminal

	C Attribute: NISCOPE_ATTR_END_OF_RECORD_EVENT_OUTPUT_TERMINAL

end_of_record_event_terminal_name

	
niscope.Session.end_of_record_event_terminal_name

	Returns the fully qualified name for the End of Record Event terminal. You can use this terminal as the source for a trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:End of Record:Terminal Name

	C Attribute: NISCOPE_ATTR_END_OF_RECORD_EVENT_TERMINAL_NAME

end_of_record_to_advance_trigger_holdoff

	
niscope.Session.end_of_record_to_advance_trigger_holdoff

	End of Record to Advance Trigger Holdoff is the length of time (in
seconds) that a device waits between the completion of one record and
the acquisition of pre-trigger samples for the next record. During this
time, the acquisition engine state delays the transition to the Wait for
Advance Trigger state, and will not store samples in onboard memory,
accept an Advance Trigger, or trigger on the input signal..
Supported Devices: NI 5185/5186

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:End of Record to Advance Trigger Holdoff

	C Attribute: NISCOPE_ATTR_END_OF_RECORD_TO_ADVANCE_TRIGGER_HOLDOFF

equalization_filter_enabled

	
niscope.Session.equalization_filter_enabled

	Enables the onboard signal processing FIR block. This block is connected directly to the input signal. This filter is designed to compensate the input signal for artifacts introduced to the signal outside of the digitizer. However, since this is a generic FIR filter any coefficients are valid. Coefficients should be between +1 and -1 in value.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Onboard Signal Processing:Equalization:Equalization Filter Enabled

	C Attribute: NISCOPE_ATTR_EQUALIZATION_FILTER_ENABLED

equalization_num_coefficients

	
niscope.Session.equalization_num_coefficients

	Returns the number of coefficients that the FIR filter can accept. This filter is designed to compensate the input signal for artifacts introduced to the signal outside of the digitizer. However, since this is a generic FIR filter any coefficients are valid. Coefficients should be between +1 and -1 in value.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Onboard Signal Processing:Equalization:Equalization Num Coefficients

	C Attribute: NISCOPE_ATTR_EQUALIZATION_NUM_COEFFICIENTS

exported_advance_trigger_output_terminal

	
niscope.Session.exported_advance_trigger_output_terminal

	Specifies the destination to export the advance trigger. When the advance trigger is received, the digitizer begins acquiring samples for the Nth record.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Advance Trigger:Output Terminal

	C Attribute: NISCOPE_ATTR_EXPORTED_ADVANCE_TRIGGER_OUTPUT_TERMINAL

exported_ref_trigger_output_terminal

	
niscope.Session.exported_ref_trigger_output_terminal

	Specifies the destination export for the reference (stop) trigger.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Output Terminal

	C Attribute: NISCOPE_ATTR_EXPORTED_REF_TRIGGER_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

	
niscope.Session.exported_start_trigger_output_terminal

	Specifies the destination to export the Start trigger. When the start trigger is received, the digitizer begins acquiring samples.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Start Trigger (Acq. Arm):Output Terminal

	C Attribute: NISCOPE_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

flex_fir_antialias_filter_type

	
niscope.Session.flex_fir_antialias_filter_type

	The NI 5922 flexible-resolution digitizer uses an onboard FIR lowpass antialias filter.
Use this property to select from several types of filters to achieve desired filtering characteristics.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.FlexFIRAntialiasFilterType

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Advanced:Flex FIR Antialias Filter Type

	C Attribute: NISCOPE_ATTR_FLEX_FIR_ANTIALIAS_FILTER_TYPE

fpga_bitfile_path

	
niscope.Session.fpga_bitfile_path

	Gets the absolute file path to the bitfile loaded on the FPGA.

Note

Gets the absolute file path to the bitfile loaded on the FPGA.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Device:FPGA Bitfile Path

	C Attribute: NISCOPE_ATTR_FPGA_BITFILE_PATH

glitch_condition

	
niscope.Session.glitch_condition

	Specifies whether the oscilloscope triggers on pulses of duration less than or greater than the value specified by the niscope.Session.glitch_width property.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.GlitchCondition

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_GLITCH_CONDITION

glitch_polarity

	
niscope.Session.glitch_polarity

	Specifies the polarity of pulses that trigger the oscilloscope for glitch triggering.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.GlitchPolarity

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_GLITCH_POLARITY

glitch_width

	
niscope.Session.glitch_width

	Specifies the glitch duration, in seconds.

The oscilloscope triggers when it detects of pulse of duration either less than or greater than this value depending on the value of the niscope.Session.glitch_condition property.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_GLITCH_WIDTH

high_pass_filter_frequency

	
niscope.Session.high_pass_filter_frequency

	Specifies the frequency for the highpass filter in Hz. The device uses
one of the valid values listed below. If an invalid value is specified,
no coercion occurs. The default value is 0.
(PXIe-5164) Valid Values:
0 90 450
Related topics:
Digital Filtering

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Advanced:High Pass Filter Frequency

	C Attribute: NISCOPE_ATTR_HIGH_PASS_FILTER_FREQUENCY

horz_enforce_realtime

	
niscope.Session.horz_enforce_realtime

	Indicates whether the digitizer enforces real-time measurements or allows equivalent-time measurements.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Enforce Realtime

	C Attribute: NISCOPE_ATTR_HORZ_ENFORCE_REALTIME

horz_min_num_pts

	
niscope.Session.horz_min_num_pts

	Specifies the minimum number of points you require in the waveform record for each channel. NI-SCOPE uses the value you specify to configure the record length that the digitizer uses for waveform acquisition. niscope.Session.horz_record_length returns the actual record length.
Valid Values: 1 - available onboard memory

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Min Number of Points

	C Attribute: NISCOPE_ATTR_HORZ_MIN_NUM_PTS

horz_num_records

	
niscope.Session.horz_num_records

	Specifies the number of records to acquire. Can be used for multi-record acquisition and single-record acquisitions. Setting this to 1 indicates a single-record acquisition.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Number of Records

	C Attribute: NISCOPE_ATTR_HORZ_NUM_RECORDS

horz_record_length

	
niscope.Session.horz_record_length

	Returns the actual number of points the digitizer acquires for each channel. The value is equal to or greater than the minimum number of points you specify with niscope.Session.horz_min_num_pts.
Allocate a ViReal64 array of this size or greater to pass as the WaveformArray parameter of the Read and Fetch methods. This property is only valid after a call to the one of the Configure Horizontal methods.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Actual Record Length

	C Attribute: NISCOPE_ATTR_HORZ_RECORD_LENGTH

horz_record_ref_position

	
niscope.Session.horz_record_ref_position

	Specifies the position of the Reference Event in the waveform record. When the digitizer detects a trigger, it waits the length of time the niscope.Session.trigger_delay_time property specifies. The event that occurs when the delay time elapses is the Reference Event. The Reference Event is relative to the start of the record and is a percentage of the record length. For example, the value 50.0 corresponds to the center of the waveform record and 0.0 corresponds to the first element in the waveform record.
Valid Values: 0.0 - 100.0

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Reference Position

	C Attribute: NISCOPE_ATTR_HORZ_RECORD_REF_POSITION

horz_sample_rate

	
niscope.Session.horz_sample_rate

	Returns the effective sample rate using the current configuration. The units are samples per second. This property is only valid after a call to the one of the Configure Horizontal methods.
Units: Hertz (Samples / Second)

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Actual Sample Rate

	C Attribute: NISCOPE_ATTR_HORZ_SAMPLE_RATE

horz_time_per_record

	
niscope.Session.horz_time_per_record

	Specifies the length of time that corresponds to the record length.
Units: Seconds

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Advanced:Time Per Record

	C Attribute: NISCOPE_ATTR_HORZ_TIME_PER_RECORD

input_clock_source

	
niscope.Session.input_clock_source

	Specifies the input source for the PLL reference clock (the 1 MHz to 20 MHz clock on the NI 5122, the 10 MHz clock for the NI 5112/5620/5621/5911) to which the digitizer will be phase-locked; for the NI 5102, this is the source of the board clock.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Reference (Input) Clock Source

	C Attribute: NISCOPE_ATTR_INPUT_CLOCK_SOURCE

input_impedance

	
niscope.Session.input_impedance

	Specifies the input impedance for the channel in Ohms.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Input Impedance

	C Attribute: NISCOPE_ATTR_INPUT_IMPEDANCE

instrument_firmware_revision

	
niscope.Session.instrument_firmware_revision

	A string that contains the firmware revision information for the instrument you are currently using.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Firmware Revision

	C Attribute: NISCOPE_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

	
niscope.Session.instrument_manufacturer

	A string that contains the name of the instrument manufacturer.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Manufacturer

	C Attribute: NISCOPE_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

	
niscope.Session.instrument_model

	A string that contains the model number of the current instrument.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Model

	C Attribute: NISCOPE_ATTR_INSTRUMENT_MODEL

interleaving_offset_correction_enabled

	
niscope.Session.interleaving_offset_correction_enabled

	Enables the interleaving offset correction on the specified channel. The
default value is TRUE.
Related topics:
Timed Interleaved
Sampling

Note

If disabled, warranted specifications are not guaranteed.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Advanced:Interleaving Offset Correction Enabled

	C Attribute: NISCOPE_ATTR_INTERLEAVING_OFFSET_CORRECTION_ENABLED

io_resource_descriptor

	
niscope.Session.io_resource_descriptor

	Indicates the resource descriptor the driver uses to identify the physical device. If you initialize the driver with a logical name, this property contains the resource descriptor that corresponds to the entry in the IVI Configuration utility.
If you initialize the instrument driver with the resource descriptor, this property contains that value.You can pass a logical name to niscope.Session.Init() or niscope.Session.__init__(). The IVI Configuration utility must contain an entry for the logical name. The logical name entry refers to a virtual instrument section in the IVI Configuration file. The virtual instrument section specifies a physical device and initial user options.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Resource Descriptor

	C Attribute: NISCOPE_ATTR_IO_RESOURCE_DESCRIPTOR

is_probe_comp_on

	
niscope.Session.is_probe_comp_on

	
Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_IS_PROBE_COMP_ON

logical_name

	
niscope.Session.logical_name

	A string containing the logical name you specified when opening the current IVI session. You can pass a logical name to niscope.Session.Init() or niscope.Session.__init__(). The IVI Configuration utility must contain an entry for the logical name. The logical name entry refers to a virtual instrument section in the IVI Configuration file. The virtual instrument section specifies a physical device and initial user options.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name

	C Attribute: NISCOPE_ATTR_LOGICAL_NAME

master_enable

	
niscope.Session.master_enable

	Specifies whether you want the device to be a master or a slave. The master typically originates the trigger signal and clock sync pulse. For a standalone device, set this property to False.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Master Enable

	C Attribute: NISCOPE_ATTR_MASTER_ENABLE

max_input_frequency

	
niscope.Session.max_input_frequency

	Specifies the bandwidth of the channel. Express this value as the frequency at which the input circuitry attenuates the input signal by 3 dB. The units are hertz.
Defined Values:
NISCOPE_VAL_BANDWIDTH_FULL (-1.0)
NISCOPE_VAL_BANDWIDTH_DEVICE_DEFAULT (0.0)
NISCOPE_VAL_20MHZ_BANDWIDTH (20000000.0)
NISCOPE_VAL_100MHZ_BANDWIDTH (100000000.0)
NISCOPE_VAL_20MHZ_MAX_INPUT_FREQUENCY (20000000.0)
NISCOPE_VAL_100MHZ_MAX_INPUT_FREQUENCY (100000000.0)

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Maximum Input Frequency

	C Attribute: NISCOPE_ATTR_MAX_INPUT_FREQUENCY

max_real_time_sampling_rate

	
niscope.Session.max_real_time_sampling_rate

	Returns the maximum real time sample rate in Hz.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Maximum Real Time Sample Rate

	C Attribute: NISCOPE_ATTR_MAX_REAL_TIME_SAMPLING_RATE

max_ris_rate

	
niscope.Session.max_ris_rate

	Returns the maximum sample rate in RIS mode in Hz.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Maximum RIS Rate

	C Attribute: NISCOPE_ATTR_MAX_RIS_RATE

min_sample_rate

	
niscope.Session.min_sample_rate

	Specify the sampling rate for the acquisition in Samples per second.
Valid Values:
The combination of sampling rate and min record length must allow the digitizer to sample at a valid sampling rate for the acquisition type specified in niscope.Session.ConfigureAcquisition() and not require more memory than the onboard memory module allows.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Min Sample Rate

	C Attribute: NISCOPE_ATTR_MIN_SAMPLE_RATE

onboard_memory_size

	
niscope.Session.onboard_memory_size

	Returns the total combined amount of onboard memory for all channels in bytes.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Memory Size

	C Attribute: NISCOPE_ATTR_ONBOARD_MEMORY_SIZE

output_clock_source

	
niscope.Session.output_clock_source

	Specifies the output source for the 10 MHz clock to which another digitizer’s sample clock can be phased-locked.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Output Clock Source

	C Attribute: NISCOPE_ATTR_OUTPUT_CLOCK_SOURCE

pll_lock_status

	
niscope.Session.pll_lock_status

	If TRUE, the PLL has remained locked to the external reference clock since it was last checked. If FALSE, the PLL has become unlocked from the external reference clock since it was last checked.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:PLL Lock Status

	C Attribute: NISCOPE_ATTR_PLL_LOCK_STATUS

points_done

	
niscope.Session.points_done

	Actual number of samples acquired in the record specified by niscope.Session.fetch_record_number from the niscope.Session.fetch_relative_to and niscope.Session.fetch_offset properties.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Fetch:Points Done

	C Attribute: NISCOPE_ATTR_POINTS_DONE

poll_interval

	
niscope.Session.poll_interval

	Specifies the poll interval in milliseconds to use during RIS acquisitions to check whether the acquisition is complete.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_POLL_INTERVAL

probe_attenuation

	
niscope.Session.probe_attenuation

	Specifies the probe attenuation for the input channel. For example, for a 10:1 probe, set this property to 10.0.
Valid Values:
Any positive real number. Typical values are 1, 10, and 100.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Probe Attenuation

	C Attribute: NISCOPE_ATTR_PROBE_ATTENUATION

ready_for_advance_event_output_terminal

	
niscope.Session.ready_for_advance_event_output_terminal

	Specifies the destination for the Ready for Advance Event. When this event is asserted, the digitizer is ready to receive an advance trigger.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Ready for Advance:Output Terminal

	C Attribute: NISCOPE_ATTR_READY_FOR_ADVANCE_EVENT_OUTPUT_TERMINAL

ready_for_advance_event_terminal_name

	
niscope.Session.ready_for_advance_event_terminal_name

	Returns the fully qualified name for the Ready for Advance Event terminal. You can use this terminal as the source for a trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Ready for Advance:Terminal Name

	C Attribute: NISCOPE_ATTR_READY_FOR_ADVANCE_EVENT_TERMINAL_NAME

ready_for_ref_event_output_terminal

	
niscope.Session.ready_for_ref_event_output_terminal

	Specifies the destination for the Ready for Reference Event. When this event is asserted, the digitizer is ready to receive a reference trigger.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Ready for Reference:Output Terminal

	C Attribute: NISCOPE_ATTR_READY_FOR_REF_EVENT_OUTPUT_TERMINAL

ready_for_ref_event_terminal_name

	
niscope.Session.ready_for_ref_event_terminal_name

	Returns the fully qualified name for the Ready for Reference Event terminal. You can use this terminal as the source for a trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Ready for Reference:Terminal Name

	C Attribute: NISCOPE_ATTR_READY_FOR_REF_EVENT_TERMINAL_NAME

ready_for_start_event_output_terminal

	
niscope.Session.ready_for_start_event_output_terminal

	Specifies the destination for the Ready for Start Event. When this event is asserted, the digitizer is ready to receive a start trigger.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Ready for Start:Output Terminal

	C Attribute: NISCOPE_ATTR_READY_FOR_START_EVENT_OUTPUT_TERMINAL

ready_for_start_event_terminal_name

	
niscope.Session.ready_for_start_event_terminal_name

	Returns the fully qualified name for the Ready for Start Event terminal. You can use this terminal as the source for a trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Ready for Start:Terminal Name

	C Attribute: NISCOPE_ATTR_READY_FOR_START_EVENT_TERMINAL_NAME

records_done

	
niscope.Session.records_done

	Specifies the number of records that have been completely acquired.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Fetch:Records Done

	C Attribute: NISCOPE_ATTR_RECORDS_DONE

record_arm_source

	
niscope.Session.record_arm_source

	Specifies the record arm source.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Record Arm Source

	C Attribute: NISCOPE_ATTR_RECORD_ARM_SOURCE

ref_clk_rate

	
niscope.Session.ref_clk_rate

	If niscope.Session.input_clock_source is an external source, this property specifies the frequency of the input, or reference clock, to which the internal sample clock timebase is synchronized. The frequency is in hertz.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Reference Clock Rate

	C Attribute: NISCOPE_ATTR_REF_CLK_RATE

ref_trigger_detector_location

	
niscope.Session.ref_trigger_detector_location

	Indicates which analog compare circuitry to use on the device.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.RefTriggerDetectorLocation

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Onboard Signal Processing:Ref Trigger Detection Location

	C Attribute: NISCOPE_ATTR_REF_TRIGGER_DETECTOR_LOCATION

ref_trigger_minimum_quiet_time

	
niscope.Session.ref_trigger_minimum_quiet_time

	The amount of time the trigger circuit must not detect a signal above the trigger level before the trigger is armed. This property is useful for triggering at the beginning and not in the middle of signal bursts.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Onboard Signal Processing:Ref Trigger Min Quiet Time

	C Attribute: NISCOPE_ATTR_REF_TRIGGER_MINIMUM_QUIET_TIME

ref_trigger_terminal_name

	
niscope.Session.ref_trigger_terminal_name

	Returns the fully qualified name for the Reference Trigger terminal. You can use this terminal as the source for another trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Terminal Name

	C Attribute: NISCOPE_ATTR_REF_TRIGGER_TERMINAL_NAME

ref_trig_tdc_enable

	
niscope.Session.ref_trig_tdc_enable

	This property controls whether the TDC is used to compute an accurate trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Advanced:Enable TDC

	C Attribute: NISCOPE_ATTR_REF_TRIG_TDC_ENABLE

resolution

	
niscope.Session.resolution

	Indicates the bit width of valid data (as opposed to padding bits) in the acquired waveform. Compare to niscope.Session.binary_sample_width.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Acquisition:Resolution

	C Attribute: NISCOPE_ATTR_RESOLUTION

ris_in_auto_setup_enable

	
niscope.Session.ris_in_auto_setup_enable

	Indicates whether the digitizer should use RIS sample rates when searching for a frequency in autosetup.
Valid Values:
True (1) - Use RIS sample rates in autosetup
False (0) - Do not use RIS sample rates in autosetup

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Acquisition:Advanced:Enable RIS in Auto Setup

	C Attribute: NISCOPE_ATTR_RIS_IN_AUTO_SETUP_ENABLE

ris_method

	
niscope.Session.ris_method

	Specifies the algorithm for random-interleaved sampling, which is used if the sample rate exceeds the value of niscope.Session.max_real_time_sampling_rate.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.RISMethod

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:RIS Method

	C Attribute: NISCOPE_ATTR_RIS_METHOD

ris_num_averages

	
niscope.Session.ris_num_averages

	The number of averages for each bin in an RIS acquisition. The number of averages times the oversampling factor is the minimum number of real-time acquisitions necessary to reconstruct the RIS waveform. Averaging is useful in RIS because the trigger times are not evenly spaced, so adjacent points in the reconstructed waveform not be accurately spaced. By averaging, the errors in both time and voltage are smoothed.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:RIS Num Avg

	C Attribute: NISCOPE_ATTR_RIS_NUM_AVERAGES

runt_high_threshold

	
niscope.Session.runt_high_threshold

	Specifies the higher of two thresholds, in volts, that bound the vertical range to examine for runt pulses.

The runt threshold that causes the oscilloscope to trigger depends on the runt polarity you select. Refer to the niscope.Session.runt_polarity property for more information.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_RUNT_HIGH_THRESHOLD

runt_low_threshold

	
niscope.Session.runt_low_threshold

	Specifies the lower of two thresholds, in volts, that bound the vertical range to examine for runt pulses.

The runt threshold that causes the oscilloscope to trigger depends on the runt polarity you select. Refer to the niscope.Session.runt_polarity property for more information.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_RUNT_LOW_THRESHOLD

runt_polarity

	
niscope.Session.runt_polarity

	Specifies the polarity of pulses that trigger the oscilloscope for runt triggering.

	When set to POSITIVE, the oscilloscope triggers when the following conditions are met:

	
	The leading edge of a pulse crosses the niscope.Session.runt_low_threshold in a positive direction;

	The trailing edge of the pulse crosses the niscope.Session.runt_low_threshold in a negative direction; and

	No portion of the pulse crosses the niscope.Session.runt_high_threshold.

	When set to NEGATIVE, the oscilloscope triggers when the following conditions are met:

	
	The leading edge of a pulse crosses the niscope.Session.runt_high_threshold in a negative direction;

	The trailing edge of the pulse crosses the niscope.Session.runt_high_threshold in a positive direction; and

	No portion of the pulse crosses the niscope.Session.runt_low_threshold.

When set to EITHER, the oscilloscope triggers in either case.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.RuntPolarity

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_RUNT_POLARITY

runt_time_condition

	
niscope.Session.runt_time_condition

	Specifies whether runt triggers are time qualified, and if so, how the oscilloscope triggers in relation to the duration range bounded by the niscope.Session.runt_time_low_limit and niscope.Session.runt_time_high_limit properties.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.RuntTimeCondition

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_RUNT_TIME_CONDITION

runt_time_high_limit

	
niscope.Session.runt_time_high_limit

	Specifies, in seconds, the high runt threshold time.

This property sets the upper bound on the duration of runt pulses that may trigger the oscilloscope. The niscope.Session.runt_time_condition property determines how the oscilloscope triggers in relation to the runt time limits.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_RUNT_TIME_HIGH_LIMIT

runt_time_low_limit

	
niscope.Session.runt_time_low_limit

	Specifies, in seconds, the low runt threshold time.

This property sets the lower bound on the duration of runt pulses that may trigger the oscilloscope. The niscope.Session.runt_time_condition property determines how the oscilloscope triggers in relation to the runt time limits.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_RUNT_TIME_LOW_LIMIT

sample_mode

	
niscope.Session.sample_mode

	Indicates the sample mode the digitizer is currently using.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Acquisition:Sample Mode

	C Attribute: NISCOPE_ATTR_SAMPLE_MODE

samp_clk_timebase_div

	
niscope.Session.samp_clk_timebase_div

	If niscope.Session.samp_clk_timebase_src is an external source, specifies the ratio between the sample clock timebase rate and the actual sample rate, which can be slower.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Sample Clock Timebase Divisor

	C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_DIV

sample_clock_timebase_multiplier

	
niscope.Session.sample_clock_timebase_multiplier

	If niscope.Session.samp_clk_timebase_src is an external source, this property specifies the ratio between the niscope.Session.samp_clk_timebase_rate and the actual sample rate, which can be higher. This property can be used in conjunction with niscope.Session.samp_clk_timebase_div.
Some devices use multiple ADCs to sample the same channel at an effective sample rate that is greater than the specified clock rate. When providing an external sample clock use this property to indicate when you want a higher sample rate. Valid values for this property vary by device and current configuration.

Related topics:
Sample Clock

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_MULT

samp_clk_timebase_rate

	
niscope.Session.samp_clk_timebase_rate

	If niscope.Session.samp_clk_timebase_src is an external source, specifies the frequency in hertz of the external clock used as the timebase source.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Sample Clock Timebase Rate

	C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_RATE

samp_clk_timebase_src

	
niscope.Session.samp_clk_timebase_src

	Specifies the source of the sample clock timebase, which is the timebase used to control waveform sampling. The actual sample rate may be the timebase itself or a divided version of the timebase, depending on the niscope.Session.min_sample_rate (for internal sources) or the niscope.Session.samp_clk_timebase_div (for external sources).

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Sample Clock Timebase Source

	C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_SRC

serial_number

	
niscope.Session.serial_number

	Returns the serial number of the device.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Device:Serial Number

	C Attribute: NISCOPE_ATTR_SERIAL_NUMBER

accessory_gain

	
niscope.Session.accessory_gain

	Returns the calibration gain for the current device configuration.

Related topics:
NI 5122/5124/5142 Calibration

Note

This property is supported only by the NI PXI-5900 differential amplifier.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_SIGNAL_COND_GAIN

accessory_offset

	
niscope.Session.accessory_offset

	Returns the calibration offset for the current device configuration.

Related topics:
NI 5122/5124/5142 Calibration

Note

This property is supported only by the NI PXI-5900 differential amplifier.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_SIGNAL_COND_OFFSET

simulate

	
niscope.Session.simulate

	Specifies whether or not to simulate instrument driver I/O operations. If simulation is enabled, instrument driver methods perform range checking and call Ivi_GetAttribute and Ivi_SetAttribute methods, but they do not perform instrument I/O. For output parameters that represent instrument data, the instrument driver methods return calculated values.
The default value is False. Use the niscope.Session.__init__() method to override this value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:User Options:Simulate

	C Attribute: NISCOPE_ATTR_SIMULATE

specific_driver_description

	
niscope.Session.specific_driver_description

	A string that contains a brief description of the specific driver

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Description

	C Attribute: NISCOPE_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_revision

	
niscope.Session.specific_driver_revision

	A string that contains additional version information about this instrument driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Revision

	C Attribute: NISCOPE_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

	
niscope.Session.specific_driver_vendor

	A string that contains the name of the vendor that supplies this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Vendor

	C Attribute: NISCOPE_ATTR_SPECIFIC_DRIVER_VENDOR

start_to_ref_trigger_holdoff

	
niscope.Session.start_to_ref_trigger_holdoff

	Pass the length of time you want the digitizer to wait after it starts acquiring data until the digitizer enables the trigger system to detect a reference (stop) trigger.
Units: Seconds
Valid Values: 0.0 - 171.8

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Start To Ref Trigger Holdoff

	C Attribute: NISCOPE_ATTR_START_TO_REF_TRIGGER_HOLDOFF

start_trigger_terminal_name

	
niscope.Session.start_trigger_terminal_name

	Returns the fully qualified name for the Start Trigger terminal. You can use this terminal as the source for another trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Start Trigger (Acq. Arm):Terminal Name

	C Attribute: NISCOPE_ATTR_START_TRIGGER_TERMINAL_NAME

supported_instrument_models

	
niscope.Session.supported_instrument_models

	A string that contains a comma-separated list of the instrument model numbers supported by this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Supported Instrument Models

	C Attribute: NISCOPE_ATTR_SUPPORTED_INSTRUMENT_MODELS

trigger_auto_triggered

	
niscope.Session.trigger_auto_triggered

	Specifies if the last acquisition was auto triggered. You can use the Auto Triggered property to find out if the last acquisition was triggered.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Auto Triggered

	C Attribute: NISCOPE_ATTR_TRIGGER_AUTO_TRIGGERED

trigger_coupling

	
niscope.Session.trigger_coupling

	Specifies how the digitizer couples the trigger source. This property affects instrument operation only when niscope.Session.trigger_type is set to EDGE, HYSTERESIS, or WINDOW.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerCoupling

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Coupling

	C Attribute: NISCOPE_ATTR_TRIGGER_COUPLING

trigger_delay_time

	
niscope.Session.trigger_delay_time

	Specifies the trigger delay time in seconds. The trigger delay time is the length of time the digitizer waits after it receives the trigger. The event that occurs when the trigger delay elapses is the Reference Event.
Valid Values: 0.0 - 171.8

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Delay

	C Attribute: NISCOPE_ATTR_TRIGGER_DELAY_TIME

trigger_holdoff

	
niscope.Session.trigger_holdoff

	Specifies the length of time (in seconds) the digitizer waits after detecting a trigger before enabling the trigger subsystem to detect another trigger. This property affects instrument operation only when the digitizer requires multiple acquisitions to build a complete waveform. The digitizer requires multiple waveform acquisitions when it uses equivalent-time sampling or when the digitizer is configured for a multi-record acquisition through a call to niscope.Session.configure_horizontal_timing().
Valid Values: 0.0 - 171.8

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Holdoff

	C Attribute: NISCOPE_ATTR_TRIGGER_HOLDOFF

trigger_hysteresis

	
niscope.Session.trigger_hysteresis

	Specifies the size of the hysteresis window on either side of the trigger level. The digitizer triggers when the trigger signal passes through the threshold you specify with the Trigger Level parameter, has the slope you specify with the Trigger Slope parameter, and passes through the hysteresis window that you specify with this parameter.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Hysteresis

	C Attribute: NISCOPE_ATTR_TRIGGER_HYSTERESIS

trigger_impedance

	
niscope.Session.trigger_impedance

	Specifies the input impedance for the external analog trigger channel in Ohms.
Valid Values:
50 - 50 ohms
1000000 - 1 mega ohm

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Impedance

	C Attribute: NISCOPE_ATTR_TRIGGER_IMPEDANCE

trigger_level

	
niscope.Session.trigger_level

	Specifies the voltage threshold for the trigger subsystem. The units are volts. This property affects instrument behavior only when the niscope.Session.trigger_type is set to EDGE, HYSTERESIS, or WINDOW.
Valid Values:
The values of the range and offset parameters in niscope.Session.configure_vertical() determine the valid range for the trigger level on the channel you use as the Trigger Source. The value you pass for this parameter must meet the following conditions:

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Level

	C Attribute: NISCOPE_ATTR_TRIGGER_LEVEL

trigger_modifier

	
niscope.Session.trigger_modifier

	Configures the device to automatically complete an acquisition if a trigger has not been received.
Valid Values:
None (1) - Normal triggering
Auto Trigger (2) - Auto trigger acquisition if no trigger arrives

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerModifier

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Modifier

	C Attribute: NISCOPE_ATTR_TRIGGER_MODIFIER

trigger_slope

	
niscope.Session.trigger_slope

	Specifies if a rising or a falling edge triggers the digitizer. This property affects instrument operation only when niscope.Session.trigger_type is set to EDGE, HYSTERESIS, or WINDOW.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerSlope

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Slope

	C Attribute: NISCOPE_ATTR_TRIGGER_SLOPE

trigger_source

	
niscope.Session.trigger_source

	Specifies the source the digitizer monitors for the trigger event.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Source

	C Attribute: NISCOPE_ATTR_TRIGGER_SOURCE

trigger_type

	
niscope.Session.trigger_type

	Specifies the type of trigger to use.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Type

	C Attribute: NISCOPE_ATTR_TRIGGER_TYPE

trigger_window_high_level

	
niscope.Session.trigger_window_high_level

	Pass the upper voltage threshold you want the digitizer to use for window triggering.
The digitizer triggers when the trigger signal enters or leaves the window you specify with niscope.Session.trigger_window_low_level and niscope.Session.trigger_window_high_level
Valid Values:
The values of the Vertical Range and Vertical Offset parameters in niscope.Session.configure_vertical() determine the valid range for the High Window Level on the channel you use as the Trigger Source parameter in niscope.Session.ConfigureTriggerSource(). The value you pass for this parameter must meet the following conditions.
High Trigger Level <= Vertical Range/2 + Vertical Offset
High Trigger Level >= (-Vertical Range/2) + Vertical Offset
High Trigger Level > Low Trigger Level

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Window:High Level

	C Attribute: NISCOPE_ATTR_TRIGGER_WINDOW_HIGH_LEVEL

trigger_window_low_level

	
niscope.Session.trigger_window_low_level

	Pass the lower voltage threshold you want the digitizer to use for window triggering.
The digitizer triggers when the trigger signal enters or leaves the window you specify with niscope.Session.trigger_window_low_level and niscope.Session.trigger_window_high_level.
Units: Volts
Valid Values:
The values of the Vertical Range and Vertical Offset parameters in niscope.Session.configure_vertical() determine the valid range for the Low Window Level on the channel you use as the Trigger Source parameter in niscope.Session.ConfigureTriggerSource(). The value you pass for this parameter must meet the following conditions.
Low Trigger Level <= Vertical Range/2 + Vertical Offset
Low Trigger Level >= (-Vertical Range/2) + Vertical Offset
Low Trigger Level < High Trigger Level

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Window:Low Level

	C Attribute: NISCOPE_ATTR_TRIGGER_WINDOW_LOW_LEVEL

trigger_window_mode

	
niscope.Session.trigger_window_mode

	Specifies whether you want a trigger to occur when the signal enters or leaves the window specified by niscope.Session.trigger_window_low_level, or niscope.Session.trigger_window_high_level.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerWindowMode

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Window:Window Mode

	C Attribute: NISCOPE_ATTR_TRIGGER_WINDOW_MODE

tv_trigger_event

	
niscope.Session.tv_trigger_event

	Specifies the condition in the video signal that causes the digitizer to trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.VideoTriggerEvent

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Video:Event

	C Attribute: NISCOPE_ATTR_TV_TRIGGER_EVENT

tv_trigger_line_number

	
niscope.Session.tv_trigger_line_number

	Specifies the line on which to trigger, if niscope.Session.tv_trigger_event is set to line number. The valid ranges of the property depend on the signal format selected. M-NTSC has a valid range of 1 to 525. B/G-PAL, SECAM, 576i, and 576p have a valid range of 1 to 625. 720p has a valid range of 1 to 750. 1080i and 1080p have a valid range of 1125.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Video:Line Number

	C Attribute: NISCOPE_ATTR_TV_TRIGGER_LINE_NUMBER

tv_trigger_polarity

	
niscope.Session.tv_trigger_polarity

	Specifies whether the video signal sync is positive or negative.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.VideoPolarity

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Video:Polarity

	C Attribute: NISCOPE_ATTR_TV_TRIGGER_POLARITY

tv_trigger_signal_format

	
niscope.Session.tv_trigger_signal_format

	Specifies the type of video signal, such as NTSC, PAL, or SECAM.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.VideoSignalFormat

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Video:Signal Format

	C Attribute: NISCOPE_ATTR_TV_TRIGGER_SIGNAL_FORMAT

use_spec_initial_x

	
niscope.Session.use_spec_initial_x

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_USE_SPEC_INITIAL_X

vertical_coupling

	
niscope.Session.vertical_coupling

	Specifies how the digitizer couples the input signal for the channel. When input coupling changes, the input stage takes a finite amount of time to settle.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.VerticalCoupling

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Vertical Coupling

	C Attribute: NISCOPE_ATTR_VERTICAL_COUPLING

vertical_offset

	
niscope.Session.vertical_offset

	Specifies the location of the center of the range. The value is with respect to ground and is in volts. For example, to acquire a sine wave that spans between 0.0 and 10.0 V, set this property to 5.0 V.

Note

This property is not supported by all digitizers.Refer to the NI High-Speed Digitizers Help for a list of vertical offsets supported for each device.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Vertical Offset

	C Attribute: NISCOPE_ATTR_VERTICAL_OFFSET

vertical_range

	
niscope.Session.vertical_range

	Specifies the absolute value of the input range for a channel in volts. For example, to acquire a sine wave that spans between -5 and +5 V, set this property to 10.0 V.
Refer to the NI High-Speed Digitizers Help for a list of supported vertical ranges for each device. If the specified range is not supported by a device, the value is coerced up to the next valid range.

Tip

This property can use repeated capabilities. If set or get directly on the
niscope.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niscope.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Vertical Range

	C Attribute: NISCOPE_ATTR_VERTICAL_RANGE

width_condition

	
niscope.Session.width_condition

	Specifies whether the oscilloscope triggers on pulses within or outside the duration range bounded by the niscope.Session.width_low_threshold and niscope.Session.width_high_threshold properties.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.WidthCondition

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_WIDTH_CONDITION

width_high_threshold

	
niscope.Session.width_high_threshold

	Specifies the high width threshold, in seconds.

This properties sets the upper bound on the duration range that triggers the oscilloscope. The niscope.Session.width_condition property determines how the oscilloscope triggers in relation to the width thresholds.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_WIDTH_HIGH_THRESHOLD

width_low_threshold

	
niscope.Session.width_low_threshold

	Specifies the low width threshold, in seconds.

This property sets the lower bound on the duration range that triggers the oscilloscope. The niscope.Session.width_condition property determines how the oscilloscope triggers in relation to the width thresholds.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_WIDTH_LOW_THRESHOLD

width_polarity

	
niscope.Session.width_polarity

	Specifies the polarity of pulses that trigger the oscilloscope for width triggering.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.WidthPolarity

	Permissions

	read-write

	Channel Based

	No

	Resettable

	Yes

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_WIDTH_POLARITY

NI-TClk Support

	
niscope.Session.tclk

	This is used to get and set NI-TClk attributes on the session.

See also

See nitclk.SessionReference for a complete list of attributes.

Session

	Session

	Methods

	abort

	acquisition_status

	auto_setup

	close

	commit

	configure_chan_characteristics

	configure_equalization_filter_coefficients

	configure_horizontal_timing

	configure_trigger_digital

	configure_trigger_edge

	configure_trigger_hysteresis

	configure_trigger_immediate

	configure_trigger_software

	configure_trigger_video

	configure_trigger_window

	configure_vertical

	disable

	export_attribute_configuration_buffer

	export_attribute_configuration_file

	fetch

	fetch_into

	get_equalization_filter_coefficients

	import_attribute_configuration_buffer

	import_attribute_configuration_file

	initiate

	lock

	probe_compensation_signal_start

	probe_compensation_signal_stop

	read

	reset

	reset_device

	reset_with_defaults

	self_cal

	self_test

	send_software_trigger_edge

	unlock

	Properties

	absolute_sample_clock_offset

	acquisition_start_time

	acquisition_type

	acq_arm_source

	advance_trigger_terminal_name

	adv_trig_src

	allow_more_records_than_memory

	arm_ref_trig_src

	backlog

	bandpass_filter_enabled

	binary_sample_width

	cable_sense_mode

	cable_sense_signal_enable

	cable_sense_voltage

	channel_count

	channel_enabled

	channel_terminal_configuration

	data_transfer_block_size

	data_transfer_maximum_bandwidth

	data_transfer_preferred_packet_size

	device_temperature

	enabled_channels

	enable_dc_restore

	enable_time_interleaved_sampling

	end_of_acquisition_event_output_terminal

	end_of_acquisition_event_terminal_name

	end_of_record_event_output_terminal

	end_of_record_event_terminal_name

	end_of_record_to_advance_trigger_holdoff

	equalization_filter_enabled

	equalization_num_coefficients

	exported_advance_trigger_output_terminal

	exported_ref_trigger_output_terminal

	exported_start_trigger_output_terminal

	flex_fir_antialias_filter_type

	fpga_bitfile_path

	glitch_condition

	glitch_polarity

	glitch_width

	high_pass_filter_frequency

	horz_enforce_realtime

	horz_min_num_pts

	horz_num_records

	horz_record_length

	horz_record_ref_position

	horz_sample_rate

	horz_time_per_record

	input_clock_source

	input_impedance

	instrument_firmware_revision

	instrument_manufacturer

	instrument_model

	interleaving_offset_correction_enabled

	io_resource_descriptor

	is_probe_comp_on

	logical_name

	master_enable

	max_input_frequency

	max_real_time_sampling_rate

	max_ris_rate

	min_sample_rate

	onboard_memory_size

	output_clock_source

	pll_lock_status

	points_done

	poll_interval

	probe_attenuation

	ready_for_advance_event_output_terminal

	ready_for_advance_event_terminal_name

	ready_for_ref_event_output_terminal

	ready_for_ref_event_terminal_name

	ready_for_start_event_output_terminal

	ready_for_start_event_terminal_name

	records_done

	record_arm_source

	ref_clk_rate

	ref_trigger_detector_location

	ref_trigger_minimum_quiet_time

	ref_trigger_terminal_name

	ref_trig_tdc_enable

	resolution

	ris_in_auto_setup_enable

	ris_method

	ris_num_averages

	runt_high_threshold

	runt_low_threshold

	runt_polarity

	runt_time_condition

	runt_time_high_limit

	runt_time_low_limit

	sample_mode

	samp_clk_timebase_div

	sample_clock_timebase_multiplier

	samp_clk_timebase_rate

	samp_clk_timebase_src

	serial_number

	accessory_gain

	accessory_offset

	simulate

	specific_driver_description

	specific_driver_revision

	specific_driver_vendor

	start_to_ref_trigger_holdoff

	start_trigger_terminal_name

	supported_instrument_models

	trigger_auto_triggered

	trigger_coupling

	trigger_delay_time

	trigger_holdoff

	trigger_hysteresis

	trigger_impedance

	trigger_level

	trigger_modifier

	trigger_slope

	trigger_source

	trigger_type

	trigger_window_high_level

	trigger_window_low_level

	trigger_window_mode

	tv_trigger_event

	tv_trigger_line_number

	tv_trigger_polarity

	tv_trigger_signal_format

	use_spec_initial_x

	vertical_coupling

	vertical_offset

	vertical_range

	width_condition

	width_high_threshold

	width_low_threshold

	width_polarity

	NI-TClk Support

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the
underlying driver function call. This can be the actual function based on the Session
method being called, or it can be the appropriate Get/Set Attribute function, such as niScope_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities.
The parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or
an integer. If it is a string, you can indicate a range using the same format as the driver: ‘0-2’ or
‘0:2’

Some repeated capabilities use a prefix before the number and this is optional

channels

	
niscope.Session.channels[]

	session.channels['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

Enums

Enums used in NI-SCOPE

AcquisitionStatus

	
class niscope.AcquisitionStatus

	
	
COMPLETE

	

	
IN_PROGRESS

	

	
STATUS_UNKNOWN

	

AcquisitionType

	
class niscope.AcquisitionType

	
	
NORMAL

	Sets the digitizer to normal resolution mode. The digitizer can use real-time sampling or equivalent-time sampling.

	
FLEXRES

	Sets the digitizer to flexible resolution mode if supported. The digitizer uses different hardware configurations to change the resolution depending on the sampling rate used.

	
DDC

	Sets the digitizer to DDC mode on the NI 5620/5621.

CableSenseMode

	
class niscope.CableSenseMode

	
	
DISABLED

	The oscilloscope is not configured to emit a CableSense signal.

	
ON_DEMAND

	The oscilloscope is configured to emit a single CableSense pulse.

FetchRelativeTo

	
class niscope.FetchRelativeTo

	
	
READ_POINTER

	The read pointer is set to zero when a new acquisition is initiated. After every fetch the read pointer is incremeted to be the sample after the last sample retrieved. Therefore, you can repeatedly fetch relative to the read pointer for a continuous acquisition program.

	
PRETRIGGER

	Fetches relative to the first pretrigger point requested with niscope.Session.configure_horizontal_timing().

	
NOW

	Fetch data at the last sample acquired.

	
START

	Fetch data starting at the first point sampled by the digitizer.

	
TRIGGER

	Fetch at the first posttrigger sample.

FlexFIRAntialiasFilterType

	
class niscope.FlexFIRAntialiasFilterType

	
	
FOURTYEIGHT_TAP_STANDARD

	This filter is optimized for alias protection and frequency-domain flatness

	
FOURTYEIGHT_TAP_HANNING

	This filter is optimized for the lowest possible bandwidth for a 48 tap filter and maximizes the SNR

	
SIXTEEN_TAP_HANNING

	This filter is optimized for the lowest possible bandwidth for a 16 tap filter and maximizes the SNR

	
EIGHT_TAP_HANNING

	This filter is optimized for the lowest possible bandwidth for a 8 tap filter and maximizes the SNR

GlitchCondition

	
class niscope.GlitchCondition

	
	
GREATER

	Trigger on pulses with a duration greater than the specified glitch width.

	
LESS

	Trigger on pulses with a duration shorter than the specified glitch width.

GlitchPolarity

	
class niscope.GlitchPolarity

	
	
POSITIVE

	Trigger on pulses of positive polarity relative to the trigger threshold.

	
NEGATIVE

	Trigger on pulses of negative polarity relative to the trigger threshold.

	
EITHER

	Trigger on pulses of either positive or negative polarity.

Option

	
class niscope.Option

	
	
SELF_CALIBRATE_ALL_CHANNELS

	Self Calibrating all Channels

	
RESTORE_EXTERNAL_CALIBRATION

	Restore External Calibration.

RISMethod

	
class niscope.RISMethod

	
	
EXACT_NUM_AVERAGES

	Acquires exactly the specified number of records for each bin in the RIS acquisition. An error is returned from the fetch method if the RIS acquisition does not successfully acquire the specified number of waveforms within the timeout period. You may call the fetch method again to allow more time for the acquisition to finish.

	
MIN_NUM_AVERAGES

	Each RIS sample is the average of a least a minimum number of randomly
distributed points.

	
INCOMPLETE

	Returns the RIS waveform after the specified timeout even if it is incomplete. If no waveforms have been acquired in certain bins, these bins will have a NaN (when fetching scaled data) or a zero (when fetching binary data). A warning (positive error code) is returned from the fetch method if the RIS acquisition did not finish. The acquisition aborts when data is returned.

	
LIMITED_BIN_WIDTH

	Limits the waveforms in the various bins to be within 200 ps of the center of the bin.

RefTriggerDetectorLocation

	
class niscope.RefTriggerDetectorLocation

	
	
ANALOG_DETECTION_CIRCUIT

	use the hardware analog circuitry to implement the reference trigger. This option will trigger before any onboard signal processing.

	
DDC_OUTPUT

	use the onboard signal processing logic to implement the reference trigger. This option will trigger based on the onboard signal processed data.

RuntPolarity

	
class niscope.RuntPolarity

	
	
POSITIVE

	Trigger on pulses of positive polarity relative to niscope.Session.runt_low_threshold that do not cross niscope.Session.runt_high_threshold.

	
NEGATIVE

	Trigger on pulses of negative polarity relative to niscope.Session.runt_high_threshold that do not cross niscope.Session.runt_low_threshold.

	
EITHER

	Trigger on pulses of either positive or negative polarity.

RuntTimeCondition

	
class niscope.RuntTimeCondition

	
	
NONE

	Time qualification is disabled. Trigger on runt pulses based solely on the voltage level of the pulses.

	
WITHIN

	Trigger on pulses that, in addition to meeting runt voltage criteria, have a duration within the range bounded by niscope.Session.runt_time_low_limit and niscope.Session.runt_time_high_limit.

	
OUTSIDE

	Trigger on pulses that, in addition to meeting runt voltage criteria, have a duration not within the range bounded by niscope.Session.runt_time_low_limit and niscope.Session.runt_time_high_limit.

TerminalConfiguration

	
class niscope.TerminalConfiguration

	
	
SINGLE_ENDED

	Channel is single ended

	
UNBALANCED_DIFFERENTIAL

	Channel is unbalanced differential

	
DIFFERENTIAL

	Channel is differential

TriggerCoupling

	
class niscope.TriggerCoupling

	
	
AC

	AC coupling

	
DC

	DC coupling

	
HF_REJECT

	Highpass filter coupling

	
LF_REJECT

	Lowpass filter coupling

	
AC_PLUS_HF_REJECT

	Highpass and lowpass filter coupling

TriggerModifier

	
class niscope.TriggerModifier

	
	
NO_TRIGGER_MOD

	Normal triggering.

	
AUTO

	Software will trigger an acquisition automatically if no trigger arrives
after a certain amount of time.

	
AUTO_LEVEL

	

TriggerSlope

	
class niscope.TriggerSlope

	
	
NEGATIVE

	Falling edge

	
POSITIVE

	Rising edge

	
SLOPE_EITHER

	Either edge

TriggerType

	
class niscope.TriggerType

	
	
EDGE

	Configures the digitizer for edge triggering. An edge trigger occurs when the trigger signal crosses the trigger level specified with the set trigger slope. You configure the trigger level and slope with niscope.Session.configure_trigger_edge().

	
HYSTERESIS

	Configures the digitizer for hysteresis triggering. A hysteresis trigger occurs when the trigger signal crosses the trigger level with the specified slope and passes through the hysteresis window you specify. You configure the trigger level, slope, and hysteresis with niscope.Session.configure_trigger_hysteresis().

	
DIGITAL

	Configures the digitizer for digital triggering. A digital trigger occurs when the trigger signal has the specified slope. You configure the trigger slope with niscope.Session.configure_trigger_digital().

	
WINDOW

	Configures the digitizer for window triggering. A window trigger occurs when the trigger signal enters or leaves the window defined by the values you specify with the Low Window Level, High Window Level, and Window Mode Parameters. You configure the low window level high window level, and window mode with niscope.Session.configure_trigger_window().

	
SOFTWARE

	Configures the digitizer for software triggering. A software trigger occurs when niscope.Session.SendSoftwareTrigger() is called.

	
TV

	Configures the digitizer for video/TV triggering. You configure the video trigger parameters like signal Format, Line to trigger off of, Polarity, and Enable DC Restore with niscope.Session.configure_trigger_video().

	
GLITCH

	

	
WIDTH

	

	
RUNT

	

	
IMMEDIATE

	Configures the digitizer for immediate triggering. An immediate trigger occurs as soon as the pretrigger samples are acquired.

TriggerWindowMode

	
class niscope.TriggerWindowMode

	
	
ENTERING

	Trigger upon entering the window

	
LEAVING

	Trigger upon leaving the window

	
ENTERING_OR_LEAVING

	

VerticalCoupling

	
class niscope.VerticalCoupling

	
	
AC

	AC coupling

	
DC

	DC coupling

	
GND

	GND coupling

VideoPolarity

	
class niscope.VideoPolarity

	
	
POSITIVE

	Specifies that the video signal has positive polarity.

	
NEGATIVE

	Specifies that the video signal has negative polarity.

VideoSignalFormat

	
class niscope.VideoSignalFormat

	
	
NTSC

	NTSC signal format supports line numbers from 1 to 525

	
PAL

	PAL signal format supports line numbers from 1 to 625

	
SECAM

	SECAM signal format supports line numbers from 1 to 625

	
M_PAL

	M-PAL signal format supports line numbers from 1 to 525

	
VIDEO_480I_59_94_FIELDS_PER_SECOND

	480 lines, interlaced, 59.94 fields per second

	
VIDEO_480I_60_FIELDS_PER_SECOND

	480 lines, interlaced, 60 fields per second

	
VIDEO_480P_59_94_FRAMES_PER_SECOND

	480 lines, progressive, 59.94 frames per second

	
VIDEO_480P_60_FRAMES_PER_SECOND

	480 lines, progressive,60 frames per second

	
VIDEO_576I_50_FIELDS_PER_SECOND

	576 lines, interlaced, 50 fields per second

	
VIDEO_576P_50_FRAMES_PER_SECOND

	576 lines, progressive, 50 frames per second

	
VIDEO_720P_50_FRAMES_PER_SECOND

	720 lines, progressive, 50 frames per second

	
VIDEO_720P_59_94_FRAMES_PER_SECOND

	720 lines, progressive, 59.94 frames per second

	
VIDEO_720P_60_FRAMES_PER_SECOND

	720 lines, progressive, 60 frames per second

	
VIDEO_1080I_50_FIELDS_PER_SECOND

	1,080 lines, interlaced, 50 fields per second

	
VIDEO_1080I_59_94_FIELDS_PER_SECOND

	1,080 lines, interlaced, 59.94 fields per second

	
VIDEO_1080I_60_FIELDS_PER_SECOND

	1,080 lines, interlaced, 60 fields per second

	
VIDEO_1080P_24_FRAMES_PER_SECOND

	1,080 lines, progressive, 24 frames per second

VideoTriggerEvent

	
class niscope.VideoTriggerEvent

	
	
FIELD1

	Trigger on field 1 of the signal

	
FIELD2

	Trigger on field 2 of the signal

	
ANY_FIELD

	Trigger on the first field acquired

	
ANY_LINE

	Trigger on the first line acquired

	
LINE_NUMBER

	Trigger on a specific line of a video signal. Valid values vary depending on the signal format configured.

WhichTrigger

	
class niscope.WhichTrigger

	
	
START

	

	
ARM_REFERENCE

	

	
REFERENCE

	

	
ADVANCE

	

WidthCondition

	
class niscope.WidthCondition

	
	
WITHIN

	Trigger on pulses with a duration within the range bounded by niscope.Session.width_low_threshold and niscope.Session.width_high_threshold.

	
OUTSIDE

	Trigger on pulses with a duration not within the range bounded by niscope.Session.width_low_threshold and niscope.Session.width_high_threshold.

WidthPolarity

	
class niscope.WidthPolarity

	
	
POSITIVE

	Trigger on pulses of positive polarity relative to the trigger threshold.

	
NEGATIVE

	Trigger on pulses of negative polarity relative to the trigger threshold.

	
EITHER

	Trigger on pulses of either positive or negative polarity.

Exceptions and Warnings

Error

	
exception niscope.errors.Error

	Base exception type that all NI-SCOPE exceptions derive from

DriverError

	
exception niscope.errors.DriverError

	An error originating from the NI-SCOPE driver

UnsupportedConfigurationError

	
exception niscope.errors.UnsupportedConfigurationError

	An error due to using this module in an usupported platform.

DriverNotInstalledError

	
exception niscope.errors.DriverNotInstalledError

	An error due to using this module without the driver runtime installed.

InvalidRepeatedCapabilityError

	
exception niscope.errors.InvalidRepeatedCapabilityError

	An error due to an invalid character in a repeated capability

SelfTestError

	
exception niscope.errors.SelfTestError

	An error due to a failed self-test

DriverWarning

	
exception niscope.errors.DriverWarning

	A warning originating from the NI-SCOPE driver

Examples

You can download all niscope examples here [https://github.com/ni/nimi-python/releases/download/1.3.1/niscope_examples.zip]

niscope_fetch.py

(niscope_fetch.py) [https://github.com/ni/nimi-python/blob/master/src/niscope/examples/niscope_fetch.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

	#!/usr/bin/python

import argparse
import niscope
import pprint
import sys

pp = pprint.PrettyPrinter(indent=4, width=80)

def example(resource_name, channels, options, length, voltage):
 with niscope.Session(resource_name=resource_name, options=options) as session:
 session.configure_vertical(range=voltage, coupling=niscope.VerticalCoupling.AC)
 session.configure_horizontal_timing(min_sample_rate=50000000, min_num_pts=length, ref_position=50.0, num_records=1, enforce_realtime=True)
 with session.initiate():
 waveforms = session.channels[channels].fetch(num_samples=length)
 for i in range(len(waveforms)):
 print('Waveform {0} information:'.format(i))
 print(str(waveforms[i]) + '\n\n')

def _main(argsv):
 parser = argparse.ArgumentParser(description='Acquires one record from the given channels.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments Digitizer')
 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
 parser.add_argument('-l', '--length', default=1000, type=int, help='Measure record length')
 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage range (V)')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.channels, args.option_string, args.length, args.voltage)

def main():
 _main(sys.argv[1:])

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', '0', options, 1000, 1.0)

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe',]
 _main(cmd_line)

if __name__ == '__main__':
 main()

niscope_fetch_forever.py

(niscope_fetch_forever.py) [https://github.com/ni/nimi-python/blob/master/src/niscope/examples/niscope_fetch_forever.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

	#!/usr/bin/python

import argparse
import hightime
import niscope
import numpy as np
import pprint
import sys

pp = pprint.PrettyPrinter(indent=4, width=80)

We use fetch_into which allows us to allocate a single buffer per channel and "fetch into" it a section at a time without having to
reconstruct the waveform once we are done
def example(resource_name, options, total_acquisition_time_in_seconds, voltage, sample_rate_in_hz, samples_per_fetch):
 total_samples = int(total_acquisition_time_in_seconds * sample_rate_in_hz)
 # 1. Opening session
 with niscope.Session(resource_name=resource_name, options=options) as session:
 # We will acquire on all channels of the device
 channel_list = [c for c in range(session.channel_count)] # Need an actual list and not a range

 # 2. Creating numpy arrays
 waveforms = [np.ndarray(total_samples, dtype=np.float64) for c in channel_list]

 # 3. Configuring
 session.configure_horizontal_timing(min_sample_rate=sample_rate_in_hz, min_num_pts=1, ref_position=0.0, num_records=1, enforce_realtime=True)
 session.channels[channel_list].configure_vertical(voltage, coupling=niscope.VerticalCoupling.DC, enabled=True)
 # Configure software trigger, but never send the trigger.
 # This starts an infinite acquisition, until you call session.abort() or session.close()
 session.configure_trigger_software()
 current_pos = 0
 # 4. initiating
 with session.initiate():
 while current_pos < total_samples:
 # We fetch each channel at a time so we don't have to de-interleave afterwards
 # We do not keep the wfm_info returned from fetch_into
 for channel, waveform in zip(channel_list, waveforms):
 # 5. fetching - we return the slice of the waveform array that we want to "fetch into"
 session.channels[channel].fetch_into(waveform[current_pos:current_pos + samples_per_fetch], relative_to=niscope.FetchRelativeTo.READ_POINTER,
 offset=0, record_number=0, num_records=1, timeout=hightime.timedelta(seconds=5.0))
 current_pos += samples_per_fetch

def _main(argsv):
 parser = argparse.ArgumentParser(description='Fetch more samples than will fit in memory.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments Digitizer')
 parser.add_argument('-t', '--time', default=10, type=int, help='Time to sample (s)')
 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage range (V)')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 parser.add_argument('-r', '--sample-rate', default=1000.0, type=float, help='Sample Rate (Hz)')
 parser.add_argument('-s', '--samples-per-fetch', default=100, type=int, help='Samples per fetch')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.option_string, args.time, args.voltage, args.sample_rate, args.samples_per_fetch)

def main():
 _main(sys.argv[1:])

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', options, 10, 1.0, 1000.0, 100)

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe',]
 _main(cmd_line)

if __name__ == '__main__':
 main()

niscope_read.py

(niscope_read.py) [https://github.com/ni/nimi-python/blob/master/src/niscope/examples/niscope_read.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	#!/usr/bin/python

import argparse
import niscope
import pprint
import sys

pp = pprint.PrettyPrinter(indent=4, width=80)

def example(resource_name, channels, options, length, voltage):
 with niscope.Session(resource_name=resource_name, options=options) as session:
 session.configure_vertical(range=voltage, coupling=niscope.VerticalCoupling.AC)
 session.configure_horizontal_timing(min_sample_rate=50000000, min_num_pts=length, ref_position=50.0, num_records=1, enforce_realtime=True)
 waveforms = session.channels[channels].read(num_samples=length)
 for i in range(len(waveforms)):
 print('Waveform {0} information:'.format(i))
 print(str(waveforms[i]) + '\n\n')

def _main(argsv):
 parser = argparse.ArgumentParser(description='Acquires one record from the given channels.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments Digitizer')
 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
 parser.add_argument('-l', '--length', default=1000, type=int, help='Measure record length')
 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage range (V)')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.channels, args.option_string, args.length, args.voltage)

def main():
 _main(sys.argv[1:])

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', '0', options, 1000, 1.0)

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe',]
 _main(cmd_line)

if __name__ == '__main__':
 main()

niswitch module

Installation

As a prerequisite to using the niswitch module, you must install the NI-SWITCH runtime on your system. Visit ni.com/downloads [http://www.ni.com/downloads/] to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-SWITCH) can be installed with pip [http://pypi.python.org/pypi/pip]:

$ python -m pip install niswitch~=1.3.1

Or easy_install from
setuptools [http://pypi.python.org/pypi/setuptools]:

$ python -m easy_install niswitch

Usage

The following is a basic example of using the niswitch module to open a session to a Switch and connect channels.

import niswitch
with niswitch.Session("Dev1") as session:
 session.connect(channel1='r0', channel2='c0')

Additional examples for NI-SWITCH are located in src/niswitch/examples/ directory.

API Reference

	Session

	Methods
	abort

	can_connect

	close

	commit

	connect

	connect_multiple

	disable

	disconnect

	disconnect_all

	disconnect_multiple

	get_channel_name

	get_path

	get_relay_count

	get_relay_name

	get_relay_position

	initiate

	lock

	relay_control

	reset

	reset_with_defaults

	route_scan_advanced_output

	route_trigger_input

	self_test

	send_software_trigger

	set_path

	unlock

	wait_for_debounce

	wait_for_scan_complete

	Properties
	analog_bus_sharing_enable

	bandwidth

	channel_count

	characteristic_impedance

	continuous_scan

	digital_filter_enable

	driver_setup

	handshaking_initiation

	instrument_firmware_revision

	instrument_manufacturer

	instrument_model

	io_resource_descriptor

	is_configuration_channel

	is_debounced

	is_scanning

	is_source_channel

	is_waiting_for_trig

	logical_name

	max_ac_voltage

	max_carry_ac_current

	max_carry_ac_power

	max_carry_dc_current

	max_carry_dc_power

	max_dc_voltage

	max_switching_ac_current

	max_switching_ac_power

	max_switching_dc_current

	max_switching_dc_power

	number_of_relays

	num_of_columns

	num_of_rows

	power_down_latching_relays_after_debounce

	scan_advanced_output

	scan_advanced_polarity

	scan_delay

	scan_list

	scan_mode

	serial_number

	settling_time

	simulate

	specific_driver_description

	specific_driver_revision

	specific_driver_vendor

	supported_instrument_models

	temperature

	trigger_input

	trigger_input_polarity

	wire_mode

	Repeated Capabilities
	channels

	Enums
	HandshakingInitiation

	PathCapability

	RelayAction

	RelayPosition

	ScanAdvancedOutput

	ScanAdvancedPolarity

	ScanMode

	TriggerInput

	TriggerInputPolarity

	Exceptions and Warnings
	Error

	DriverError

	UnsupportedConfigurationError

	DriverNotInstalledError

	InvalidRepeatedCapabilityError

	SelfTestError

	DriverWarning

	Examples
	niswitch_connect_channels.py

	niswitch_get_device_info.py

	niswitch_relay_control.py

Session

	
class niswitch.Session(self, resource_name, topology="Configured Topology", simulate=False, reset_device=False)

	Returns a session handle used to identify the switch in all subsequent
instrument driver calls and sets the topology of the switch.
niswitch.Session.__init__() creates a new IVI instrument driver session
for the switch specified in the resourceName parameter. The driver uses
the topology specified in the topology parameter and overrides the
topology specified in MAX. Note: When initializing an NI SwitchBlock
device with topology, you must specify the toplogy created when you
configured the device in MAX, using either
NISWITCH_TOPOLOGY_CONFIGURED_TOPOLOGY or the toplogy string of the
device. Refer to the Initializing with Toplogy for NI SwitchBlock
Devices topic in the NI Switches Help for information about determining
the topology string of an NI SwitchBlock device. By default, the switch
is reset to a known state. Enable simulation by specifying the topology
and setting the simulate parameter to True.

	Parameters

	
	resource_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Resource name of the switch module to initialize. Default value: None
Syntax: Optional fields are shown in square brackets ([]). Configured in
MAX Under Valid Syntax Devices and Interfaces DeviceName Traditional
NI-DAQ Devices SCXI[chassis ID]::slot number PXI System PXI[bus
number]::device number TIP: IVI logical names are also valid for the
resource name. Default values for optional fields: chassis ID = 1 bus
number = 0 Example resource names: Resource Name Description SC1Mod3
NI-DAQmx module in chassis “SC1” slot 3 MySwitch NI-DAQmx module renamed
to “MySwitch” SCXI1::3 Traditional NI-DAQ module in chassis 1, slot 3
SCXI::3 Traditional NI-DAQ module in chassis 1, slot 3 PXI0::16 PXI bus
0, device number 16 PXI::16 PXI bus 0, device number 16

	topology (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pass the topology name you want to use for the switch you specify with
Resource Name parameter. You can also pass
NISWITCH_TOPOLOGY_CONFIGURED_TOPOLOGY to use the last topology that
was configured for the device in MAX. Default Value:
NISWITCH_TOPOLOGY_CONFIGURED_TOPOLOGY Valid Values:
NISWITCH_TOPOLOGY_1127_1_WIRE_64X1_MUX
NISWITCH_TOPOLOGY_1127_2_WIRE_32X1_MUX
NISWITCH_TOPOLOGY_1127_2_WIRE_4X8_MATRIX
NISWITCH_TOPOLOGY_1127_4_WIRE_16X1_MUX
NISWITCH_TOPOLOGY_1127_INDEPENDENT
NISWITCH_TOPOLOGY_1128_1_WIRE_64X1_MUX
NISWITCH_TOPOLOGY_1128_2_WIRE_32X1_MUX
NISWITCH_TOPOLOGY_1128_2_WIRE_4X8_MATRIX
NISWITCH_TOPOLOGY_1128_4_WIRE_16X1_MUX
NISWITCH_TOPOLOGY_1128_INDEPENDENT
NISWITCH_TOPOLOGY_1129_2_WIRE_16X16_MATRIX
NISWITCH_TOPOLOGY_1129_2_WIRE_8X32_MATRIX
NISWITCH_TOPOLOGY_1129_2_WIRE_4X64_MATRIX
NISWITCH_TOPOLOGY_1129_2_WIRE_DUAL_8X16_MATRIX
NISWITCH_TOPOLOGY_1129_2_WIRE_DUAL_4X32_MATRIX
NISWITCH_TOPOLOGY_1129_2_WIRE_QUAD_4X16_MATRIX
NISWITCH_TOPOLOGY_1130_1_WIRE_256X1_MUX
NISWITCH_TOPOLOGY_1130_1_WIRE_DUAL_128X1_MUX
NISWITCH_TOPOLOGY_1130_1_WIRE_4X64_MATRIX
NISWITCH_TOPOLOGY_1130_1_WIRE_8x32_MATRIX
NISWITCH_TOPOLOGY_1130_1_WIRE_OCTAL_32X1_MUX
NISWITCH_TOPOLOGY_1130_1_WIRE_QUAD_64X1_MUX
NISWITCH_TOPOLOGY_1130_1_WIRE_SIXTEEN_16X1_MUX
NISWITCH_TOPOLOGY_1130_2_WIRE_4X32_MATRIX
NISWITCH_TOPOLOGY_1130_2_WIRE_128X1_MUX
NISWITCH_TOPOLOGY_1130_2_WIRE_OCTAL_16X1_MUX
NISWITCH_TOPOLOGY_1130_2_WIRE_QUAD_32X1_MUX
NISWITCH_TOPOLOGY_1130_4_WIRE_64X1_MUX
NISWITCH_TOPOLOGY_1130_4_WIRE_QUAD_16X1_MUX
NISWITCH_TOPOLOGY_1130_INDEPENDENT NISWITCH_TOPOLOGY_1160_16_SPDT
NISWITCH_TOPOLOGY_1161_8_SPDT
NISWITCH_TOPOLOGY_1163R_OCTAL_4X1_MUX
NISWITCH_TOPOLOGY_1166_16_DPDT NISWITCH_TOPOLOGY_1166_32_SPDT
NISWITCH_TOPOLOGY_1167_INDEPENDENT
NISWITCH_TOPOLOGY_1169_100_SPST NISWITCH_TOPOLOGY_1169_50_DPST
NISWITCH_TOPOLOGY_1175_1_WIRE_196X1_MUX
NISWITCH_TOPOLOGY_1175_2_WIRE_98X1_MUX
NISWITCH_TOPOLOGY_1175_2_WIRE_95X1_MUX
NISWITCH_TOPOLOGY_1190_QUAD_4X1_MUX
NISWITCH_TOPOLOGY_1191_QUAD_4X1_MUX
NISWITCH_TOPOLOGY_1192_8_SPDT NISWITCH_TOPOLOGY_1193_32X1_MUX
NISWITCH_TOPOLOGY_1193_16X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_1193_DUAL_16X1_MUX
NISWITCH_TOPOLOGY_1193_DUAL_8X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_1193_QUAD_8X1_MUX
NISWITCH_TOPOLOGY_1193_QUAD_4X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_1193_INDEPENDENT
NISWITCH_TOPOLOGY_1194_QUAD_4X1_MUX
NISWITCH_TOPOLOGY_1195_QUAD_4X1_MUX
NISWITCH_TOPOLOGY_2501_1_WIRE_48X1_MUX
NISWITCH_TOPOLOGY_2501_1_WIRE_48X1_AMPLIFIED_MUX
NISWITCH_TOPOLOGY_2501_2_WIRE_24X1_MUX
NISWITCH_TOPOLOGY_2501_2_WIRE_24X1_AMPLIFIED_MUX
NISWITCH_TOPOLOGY_2501_2_WIRE_DUAL_12X1_MUX
NISWITCH_TOPOLOGY_2501_2_WIRE_QUAD_6X1_MUX
NISWITCH_TOPOLOGY_2501_2_WIRE_4X6_MATRIX
NISWITCH_TOPOLOGY_2501_4_WIRE_12X1_MUX
NISWITCH_TOPOLOGY_2503_1_WIRE_48X1_MUX
NISWITCH_TOPOLOGY_2503_2_WIRE_24X1_MUX
NISWITCH_TOPOLOGY_2503_2_WIRE_DUAL_12X1_MUX
NISWITCH_TOPOLOGY_2503_2_WIRE_QUAD_6X1_MUX
NISWITCH_TOPOLOGY_2503_2_WIRE_4X6_MATRIX
NISWITCH_TOPOLOGY_2503_4_WIRE_12X1_MUX
NISWITCH_TOPOLOGY_2510_INDEPENDENT
NISWITCH_TOPOLOGY_2512_INDEPENDENT
NISWITCH_TOPOLOGY_2514_INDEPENDENT
NISWITCH_TOPOLOGY_2515_INDEPENDENT NISWITCH_TOPOLOGY_2520_80_SPST
NISWITCH_TOPOLOGY_2521_40_DPST NISWITCH_TOPOLOGY_2522_53_SPDT
NISWITCH_TOPOLOGY_2523_26_DPDT
NISWITCH_TOPOLOGY_2524_1_WIRE_128X1_MUX
NISWITCH_TOPOLOGY_2524_1_WIRE_DUAL_64X1_MUX
NISWITCH_TOPOLOGY_2524_1_WIRE_QUAD_32X1_MUX
NISWITCH_TOPOLOGY_2524_1_WIRE_OCTAL_16X1_MUX
NISWITCH_TOPOLOGY_2524_1_WIRE_SIXTEEN_8X1_MUX
NISWITCH_TOPOLOGY_2525_2_WIRE_64X1_MUX
NISWITCH_TOPOLOGY_2525_2_WIRE_DUAL_32X1_MUX
NISWITCH_TOPOLOGY_2525_2_WIRE_QUAD_16X1_MUX
NISWITCH_TOPOLOGY_2525_2_WIRE_OCTAL_8X1_MUX
NISWITCH_TOPOLOGY_2525_2_WIRE_SIXTEEN_4X1_MUX
NISWITCH_TOPOLOGY_2526_1_WIRE_158X1_MUX
NISWITCH_TOPOLOGY_2526_2_WIRE_79X1_MUX
NISWITCH_TOPOLOGY_2527_1_WIRE_64X1_MUX
NISWITCH_TOPOLOGY_2527_1_WIRE_DUAL_32X1_MUX
NISWITCH_TOPOLOGY_2527_2_WIRE_32X1_MUX
NISWITCH_TOPOLOGY_2527_2_WIRE_DUAL_16X1_MUX
NISWITCH_TOPOLOGY_2527_4_WIRE_16X1_MUX
NISWITCH_TOPOLOGY_2527_INDEPENDENT
NISWITCH_TOPOLOGY_2529_2_WIRE_DUAL_4X16_MATRIX
NISWITCH_TOPOLOGY_2529_2_WIRE_8X16_MATRIX
NISWITCH_TOPOLOGY_2529_2_WIRE_4X32_MATRIX
NISWITCH_TOPOLOGY_2530_1_WIRE_128X1_MUX
NISWITCH_TOPOLOGY_2530_1_WIRE_DUAL_64X1_MUX
NISWITCH_TOPOLOGY_2530_1_WIRE_4x32_MATRIX
NISWITCH_TOPOLOGY_2530_1_WIRE_8x16_MATRIX
NISWITCH_TOPOLOGY_2530_1_WIRE_OCTAL_16X1_MUX
NISWITCH_TOPOLOGY_2530_1_WIRE_QUAD_32X1_MUX
NISWITCH_TOPOLOGY_2530_2_WIRE_4x16_MATRIX
NISWITCH_TOPOLOGY_2530_2_WIRE_64X1_MUX
NISWITCH_TOPOLOGY_2530_2_WIRE_DUAL_32X1_MUX
NISWITCH_TOPOLOGY_2530_2_WIRE_QUAD_16X1_MUX
NISWITCH_TOPOLOGY_2530_4_WIRE_32X1_MUX
NISWITCH_TOPOLOGY_2530_4_WIRE_DUAL_16X1_MUX
NISWITCH_TOPOLOGY_2530_INDEPENDENT
NISWITCH_TOPOLOGY_2531_1_WIRE_4X128_MATRIX
NISWITCH_TOPOLOGY_2531_1_WIRE_8X64_MATRIX
NISWITCH_TOPOLOGY_2531_1_WIRE_DUAL_4X64_MATRIX
NISWITCH_TOPOLOGY_2531_1_WIRE_DUAL_8X32_MATRIX
NISWITCH_TOPOLOGY_2531_2_WIRE_4X64_MATRIX
NISWITCH_TOPOLOGY_2531_2_WIRE_8X32_MATRIX
NISWITCH_TOPOLOGY_2532_1_WIRE_16X32_MATRIX
NISWITCH_TOPOLOGY_2532_1_WIRE_4X128_MATRIX
NISWITCH_TOPOLOGY_2532_1_WIRE_8X64_MATRIX
NISWITCH_TOPOLOGY_2532_1_WIRE_DUAL_16X16_MATRIX
NISWITCH_TOPOLOGY_2532_1_WIRE_DUAL_4X64_MATRIX
NISWITCH_TOPOLOGY_2532_1_WIRE_DUAL_8X32_MATRIX
NISWITCH_TOPOLOGY_2532_1_WIRE_SIXTEEN_2X16_MATRIX
NISWITCH_TOPOLOGY_2532_2_WIRE_16X16_MATRIX
NISWITCH_TOPOLOGY_2532_2_WIRE_4X64_MATRIX
NISWITCH_TOPOLOGY_2532_2_WIRE_8X32_MATRIX
NISWITCH_TOPOLOGY_2532_2_WIRE_DUAL_4X32_MATRIX
NISWITCH_TOPOLOGY_2533_1_WIRE_4X64_MATRIX
NISWITCH_TOPOLOGY_2534_1_WIRE_8X32_MATRIX
NISWITCH_TOPOLOGY_2535_1_WIRE_4X136_MATRIX
NISWITCH_TOPOLOGY_2536_1_WIRE_8X68_MATRIX
NISWITCH_TOPOLOGY_2540_1_WIRE_8X9_MATRIX
NISWITCH_TOPOLOGY_2541_1_WIRE_8X12_MATRIX
NISWITCH_TOPOLOGY_2542_QUAD_2X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_2543_DUAL_4X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_2544_8X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_2545_4X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_2546_DUAL_4X1_MUX
NISWITCH_TOPOLOGY_2547_8X1_MUX NISWITCH_TOPOLOGY_2548_4_SPDT
NISWITCH_TOPOLOGY_2549_TERMINATED_2_SPDT
NISWITCH_TOPOLOGY_2554_4X1_MUX
NISWITCH_TOPOLOGY_2555_4X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_2556_DUAL_4X1_MUX
NISWITCH_TOPOLOGY_2557_8X1_MUX NISWITCH_TOPOLOGY_2558_4_SPDT
NISWITCH_TOPOLOGY_2559_TERMINATED_2_SPDT
NISWITCH_TOPOLOGY_2564_16_SPST NISWITCH_TOPOLOGY_2564_8_DPST
NISWITCH_TOPOLOGY_2565_16_SPST NISWITCH_TOPOLOGY_2566_16_SPDT
NISWITCH_TOPOLOGY_2566_8_DPDT NISWITCH_TOPOLOGY_2567_INDEPENDENT
NISWITCH_TOPOLOGY_2568_15_DPST NISWITCH_TOPOLOGY_2568_31_SPST
NISWITCH_TOPOLOGY_2569_100_SPST NISWITCH_TOPOLOGY_2569_50_DPST
NISWITCH_TOPOLOGY_2570_20_DPDT NISWITCH_TOPOLOGY_2570_40_SPDT
NISWITCH_TOPOLOGY_2571_66_SPDT
NISWITCH_TOPOLOGY_2575_1_WIRE_196X1_MUX
NISWITCH_TOPOLOGY_2575_2_WIRE_98X1_MUX
NISWITCH_TOPOLOGY_2575_2_WIRE_95X1_MUX
NISWITCH_TOPOLOGY_2576_2_WIRE_64X1_MUX
NISWITCH_TOPOLOGY_2576_2_WIRE_DUAL_32X1_MUX
NISWITCH_TOPOLOGY_2576_2_WIRE_OCTAL_8X1_MUX
NISWITCH_TOPOLOGY_2576_2_WIRE_QUAD_16X1_MUX
NISWITCH_TOPOLOGY_2576_2_WIRE_SIXTEEN_4X1_MUX
NISWITCH_TOPOLOGY_2576_INDEPENDENT
NISWITCH_TOPOLOGY_2584_1_WIRE_12X1_MUX
NISWITCH_TOPOLOGY_2584_1_WIRE_DUAL_6X1_MUX
NISWITCH_TOPOLOGY_2584_2_WIRE_6X1_MUX
NISWITCH_TOPOLOGY_2584_INDEPENDENT
NISWITCH_TOPOLOGY_2585_1_WIRE_10X1_MUX
NISWITCH_TOPOLOGY_2586_10_SPST NISWITCH_TOPOLOGY_2586_5_DPST
NISWITCH_TOPOLOGY_2590_4X1_MUX NISWITCH_TOPOLOGY_2591_4X1_MUX
NISWITCH_TOPOLOGY_2593_16X1_MUX
NISWITCH_TOPOLOGY_2593_8X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_2593_DUAL_8X1_MUX
NISWITCH_TOPOLOGY_2593_DUAL_4X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_2593_INDEPENDENT NISWITCH_TOPOLOGY_2594_4X1_MUX
NISWITCH_TOPOLOGY_2595_4X1_MUX
NISWITCH_TOPOLOGY_2596_DUAL_6X1_MUX
NISWITCH_TOPOLOGY_2597_6X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_2598_DUAL_TRANSFER
NISWITCH_TOPOLOGY_2599_2_SPDT NISWITCH_TOPOLOGY_2720_INDEPENDENT
NISWITCH_TOPOLOGY_2722_INDEPENDENT
NISWITCH_TOPOLOGY_2725_INDEPENDENT
NISWITCH_TOPOLOGY_2727_INDEPENDENT
NISWITCH_TOPOLOGY_2737_2_WIRE_4X64_MATRIX
NISWITCH_TOPOLOGY_2738_2_WIRE_8X32_MATRIX
NISWITCH_TOPOLOGY_2739_2_WIRE_16X16_MATRIX
NISWITCH_TOPOLOGY_2746_QUAD_4X1_MUX
NISWITCH_TOPOLOGY_2747_DUAL_8X1_MUX
NISWITCH_TOPOLOGY_2748_16X1_MUX
NISWITCH_TOPOLOGY_2790_INDEPENDENT
NISWITCH_TOPOLOGY_2796_DUAL_6X1_MUX
NISWITCH_TOPOLOGY_2797_6X1_TERMINATED_MUX
NISWITCH_TOPOLOGY_2798_DUAL_TRANSFER
NISWITCH_TOPOLOGY_2799_2_SPDT

	simulate (bool [https://docs.python.org/3/library/functions.html#bool]) – Enables simulation of the switch module specified in the resource name
parameter. Valid Values: True - simulate False - Don’t simulate
(Default Value)

	reset_device (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether to reset the switch module during the initialization
process. Valid Values: True - Reset Device (Default Value) False
- Currently unsupported. The device will not reset.

Methods

abort

	
niswitch.Session.abort()

	Aborts the scan in progress. Initiate a scan with
niswitch.Session.initiate(). If the switch module is not scanning,
NISWITCH_ERROR_NO_SCAN_IN_PROGRESS error is returned.

can_connect

	
niswitch.Session.can_connect(channel1, channel2)

	Verifies that a path between channel 1 and channel 2 can be created. If
a path is possible in the switch module, the availability of that path
is returned given the existing connections. If the path is possible but
in use, a NISWITCH_WARN_IMPLICIT_CONNECTION_EXISTS warning is
returned.

	Parameters

	
	channel1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input one of the channel names of the desired path. Pass the other
channel name as the channel 2 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel
names: ch0, com0, ab0, r1, c2, cjtemp Default value: “”

	channel2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input one of the channel names of the desired path. Pass the other
channel name as the channel 1 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel
names: ch0, com0, ab0, r1, c2, cjtemp Default value: “”

	Return type

	niswitch.PathCapability

	Returns

	Indicates whether a path is valid. Possible values include:

	PATH_AVAILABLE 1

	PATH_EXISTS 2

	PATH_UNSUPPORTED 3

	RESOURCE_IN_USE 4

	SOURCE_CONFLICT 5

	CHANNEL_NOT_AVAILABLE 6

Notes: (1)
PATH_AVAILABLE indicates that the driver can create the
path at this time. (2) PATH_EXISTS indicates that the
path already exists. (3) PATH_UNSUPPORTED indicates that
the instrument is not capable of creating a path between the channels
you specify. (4) RESOURCE_IN_USE indicates that although
the path is valid, the driver cannot create the path at this moment
because the switch device is currently using one or more of the required
channels to create another path. You must destroy the other path before
creating this one. (5) SOURCE_CONFLICT indicates that
the instrument cannot create a path because both channels are connected
to a different source channel. (6)
CHANNEL_NOT_AVAILABLE indicates that the driver cannot
create a path between the two channels because one of the channels is a
configuration channel and thus unavailable for external connections.

close

	
niswitch.Session.close()

	Terminates the NI-SWITCH session and all of its properties and
deallocates any memory resources the driver uses. Notes: (1) You must
unlock the session before calling niswitch.Session._close(). (2) After calling
niswitch.Session._close(), you cannot use the instrument driver again until you
call niswitch.Session.init() or niswitch.Session.InitWithOptions().

Note

One or more of the referenced methods are not in the Python API for this driver.

Note

This method is not needed when using the session context manager

commit

	
niswitch.Session.commit()

	Downloads the configured scan list and trigger settings to hardware.
Calling niswitch.Session.commit() optional as it is implicitly called during
niswitch.Session.initiate(). Use niswitch.Session.commit() to arm triggers in a given
order or to control when expensive hardware operations are performed.

connect

	
niswitch.Session.connect(channel1, channel2)

	Creates a path between channel 1 and channel 2. The driver calculates
and uses the shortest path between the two channels. Refer to Immediate
Operations for information about Channel Usage types. If a path is not
available, the method returns one of the following errors: -
NISWITCH_ERROR_EXPLICIT_CONNECTION_EXISTS, if the two channels are
already explicitly connected by calling either the niswitch.Session.connect() or
niswitch.Session.set_path() method. -
NISWITCH_ERROR_IS_CONFIGURATION_CHANNEL, if a channel is a
configuration channel. Error elaboration contains information about
which of the two channels is a configuration channel. -
NISWITCH_ERROR_ATTEMPT_TO_CONNECT_SOURCES, if both channels are
connected to a different source. Error elaboration contains information
about sources channel 1 and 2 connect to. -
NISWITCH_ERROR_CANNOT_CONNECT_TO_ITSELF, if channels 1 and 2 are
one and the same channel. - NISWITCH_ERROR_PATH_NOT_FOUND, if the
driver cannot find a path between the two channels. Note: Paths are
bidirectional. For example, if a path exists between channels CH1 and
CH2, then the path also exists between channels CH2 and CH1.

	Parameters

	
	channel1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input one of the channel names of the desired path. Pass the other
channel name as the channel 2 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel
names: ch0, com0, ab0, r1, c2, cjtemp Default value: None

	channel2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input one of the channel names of the desired path. Pass the other
channel name as the channel 1 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel
names: ch0, com0, ab0, r1, c2, cjtemp Default value: None

connect_multiple

	
niswitch.Session.connect_multiple(connection_list)

	Creates the connections between channels specified in Connection List.
Specify connections with two endpoints only or the explicit path between
two endpoints. NI-SWITCH calculates and uses the shortest path between
the channels. Refer to Setting Source and Configuration Channels for
information about channel usage types. In the event of an error,
connecting stops at the point in the list where the error occurred. If a
path is not available, the method returns one of the following errors:
- NISWITCH_ERROR_EXPLICIT_CONNECTION_EXISTS, if the two channels are
already explicitly connected. -
NISWITCH_ERROR_IS_CONFIGURATION_CHANNEL, if a channel is a
configuration channel. Error elaboration contains information about
which of the two channels is a configuration channel. -
NISWITCH_ERROR_ATTEMPT_TO_CONNECT_SOURCES, if both channels are
connected to a different source. Error elaboration contains information
about sources channel 1 and 2 to connect. -
NISWITCH_ERROR_CANNOT_CONNECT_TO_ITSELF, if channels 1 and 2 are
one and the same channel. - NISWITCH_ERROR_PATH_NOT_FOUND, if the
driver cannot find a path between the two channels. Note: Paths are
bidirectional. For example, if a path exists between channels ch1 and
ch2, then the path also exists between channels ch1 and ch2.

	Parameters

	connection_list (str [https://docs.python.org/3/library/stdtypes.html#str]) – Connection List specifies a list of connections between channels to
make. NI-SWITCH validates the connection list, and aborts execution of
the list if errors are returned. Refer to Connection and Disconnection
List Syntax for valid connection list syntax and examples. Refer to
Devices Overview for valid channel names for the switch module. Example
of a valid connection list: c0 -> r1, [c2 -> r2 -> c3] In this example,
r2 is a configuration channel. Default value: None

disable

	
niswitch.Session.disable()

	Places the switch module in a quiescent state where it has minimal or no
impact on the system to which it is connected. All channels are
disconnected and any scan in progress is aborted.

disconnect

	
niswitch.Session.disconnect(channel1, channel2)

	This method destroys the path between two channels that you create
with the niswitch.Session.connect() or niswitch.Session.set_path() method. If a path is
not connected or not available, the method returns the
IVISWTCH_ERROR_NO_SUCH_PATH error.

	Parameters

	
	channel1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input one of the channel names of the path to break. Pass the other
channel name as the channel 2 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel
names: ch0, com0, ab0, r1, c2, cjtemp Default value: None

	channel2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input one of the channel names of the path to break. Pass the other
channel name as the channel 1 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel
names: ch0, com0, ab0, r1, c2, cjtemp Default value: None

disconnect_all

	
niswitch.Session.disconnect_all()

	Breaks all existing paths. If the switch module cannot break all paths,
NISWITCH_WARN_PATH_REMAINS warning is returned.

disconnect_multiple

	
niswitch.Session.disconnect_multiple(disconnection_list)

	Breaks the connections between channels specified in Disconnection List.
If no connections exist between channels, NI-SWITCH returns an error. In
the event of an error, the VI stops at the point in the list where the
error occurred.

	Parameters

	disconnection_list (str [https://docs.python.org/3/library/stdtypes.html#str]) – Disconnection List specifies a list of connections between channels to
break. NI-SWITCH validates the disconnection list, and aborts execution
of the list if errors are returned. Refer to Connection and
Disconnection List Syntax for valid disconnection list syntax and
examples. Refer to Devices Overview for valid channel names for the
switch module. Example of a valid disconnection list: c0 -> r1, [c2 ->
r2 -> c3] In this example, r2 is a configuration channel. Default value:
None

get_channel_name

	
niswitch.Session.get_channel_name(index)

	Returns the channel string that is in the channel table at the specified
index. Use niswitch.Session.get_channel_name() in a For Loop to get a complete list
of valid channel names for the switch module. Use the Channel Count
property to determine the number of channels.

	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – A 1-based index into the channel table. Default value: 1 Maximum value:
Value of Channel Count property.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	Returns the channel name that is in the channel table at the index you
specify.

get_path

	
niswitch.Session.get_path(channel1, channel2)

	Returns a string that identifies the explicit path created with
niswitch.Session.connect(). Pass this string to niswitch.Session.set_path() to establish
the exact same path in future connections. In some cases, multiple paths
are available between two channels. When you call niswitch.Session.connect(), the
driver selects an available path. With niswitch.Session.connect(), there is no
guarantee that the driver selected path will always be the same path
through the switch module. niswitch.Session.get_path() only returns those paths
explicitly created by niSwitch Connect Channels or niswitch.Session.set_path().
For example, if you connect channels CH1 and CH3,and then channels CH2
and CH3, an explicit path between channels CH1 and CH2 does not exist an
error is returned

	Parameters

	
	channel1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input one of the channel names of the desired path. Pass the other
channel name as the channel 2 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel
names: ch0, com0, ab0, r1, c2, cjtemp Default value: “”

	channel2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input one of the channel names of the desired path. Pass the other
channel name as the channel 1 parameter. Refer to Devices Overview for
valid channel names for the switch module. Examples of valid channel
names: ch0, com0, ab0, r1, c2, cjtemp Default value: “”

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	A string composed of comma-separated paths between channel 1 and channel
2. The first and last names in the path are the endpoints of the path.
All other channels in the path are configuration channels. Examples of
returned paths: ch0->com0, com0->ab0

get_relay_count

	
niswitch.Session.get_relay_count(relay_name)

	Returns the number of times the relay has changed from Closed to Open.
Relay count is useful for tracking relay lifetime and usage. Call
niswitch.Session.wait_for_debounce() before niswitch.Session.get_relay_count() to ensure an
accurate count. Refer to the Relay Count topic in the NI Switches Help
to determine if the switch module supports relay counting.

	Parameters

	relay_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the relay. Default value: None Examples of valid relay names:
ch0, ab0, 1wire, hlselect Refer to Devices Overview for a list of valid
relay names for the switch module.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	The number of relay cycles.

get_relay_name

	
niswitch.Session.get_relay_name(index)

	Returns the relay name string that is in the relay list at the specified
index. Use niswitch.Session.get_relay_name() in a For Loop to get a complete list
of valid relay names for the switch module. Use the Number of Relays
property to determine the number of relays.

	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – A 1-based index into the channel table. Default value: 1 Maximum value:
Value of Channel Count property.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	Returns the relay name for the index you specify.

get_relay_position

	
niswitch.Session.get_relay_position(relay_name)

	Returns the relay position for the relay specified in the Relay Name
parameter.

	Parameters

	relay_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the relay. Default value: None Examples of valid relay names:
ch0, ab0, 1wire, hlselect Refer to Devices Overview for a list of valid
relay names for the switch module.

	Return type

	niswitch.RelayPosition

	Returns

	Indicates whether the relay is open or closed. OPEN 10
CLOSED 11

initiate

	
niswitch.Session.initiate()

	Commits the configured scan list and trigger settings to hardware and
initiates the scan. If niSwitch Commit was called earlier, niSwitch
Initiate Scan only initiates the scan and returns immediately. Once the
scanning operation begins, you cannot perform any other operation other
than GetAttribute, AbortScan, or SendSoftwareTrigger. All other
methods return NISWITCH_ERROR_SCAN_IN_PROGRESS. To stop the
scanning operation, To stop the scanning operation, call
niswitch.Session.abort().

Note

This method will return a Python context manager that will initiate on entering and abort on exit.

lock

	
niswitch.Session.lock()

	Obtains a multithread lock on the device session. Before doing so, the
software waits until all other execution threads release their locks
on the device session.

Other threads may have obtained a lock on this session for the
following reasons:

	The application called the niswitch.Session.lock() method.

	A call to NI-SWITCH locked the session.

	After a call to the niswitch.Session.lock() method returns
successfully, no other threads can access the device session until
you call the niswitch.Session.unlock() method or exit out of the with block when using
lock context manager.

	Use the niswitch.Session.lock() method and the
niswitch.Session.unlock() method around a sequence of calls to
instrument driver methods if you require that the device retain its
settings through the end of the sequence.

You can safely make nested calls to the niswitch.Session.lock() method
within the same thread. To completely unlock the session, you must
balance each call to the niswitch.Session.lock() method with a call to
the niswitch.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls
is to use lock as a context manager

with niswitch.Session('dev1') as session:
 with session.lock():
 # Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

	Return type

	context manager

	Returns

	When used in a with statement, niswitch.Session.lock() acts as
a context manager and unlock will be called when the with block is exited

relay_control

	
niswitch.Session.relay_control(relay_name, relay_action)

	Controls individual relays of the switch. When controlling individual
relays, the protection offered by setting the usage of source channels
and configuration channels, and by enabling or disabling analog bus
sharing on the NI SwitchBlock, does not apply. Refer to the device book
for your switch in the NI Switches Help to determine if the switch
supports individual relay control.

	Parameters

	
	relay_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the relay. Default value: None Examples of valid relay names:
ch0, ab0, 1wire, hlselect Refer to Devices Overview for a list of valid
relay names for the switch module.

	relay_action (niswitch.RelayAction) – Specifies whether to open or close a given relay. Default value: Relay
Close Defined values: OPEN
CLOSE (Default Value)

reset

	
niswitch.Session.reset()

	Disconnects all created paths and returns the switch module to the state
at initialization. Configuration channel and source channel settings
remain unchanged.

reset_with_defaults

	
niswitch.Session.reset_with_defaults()

	Resets the switch module and applies initial user specified settings
from the logical name used to initialize the session. If the session was
created without a logical name, this method is equivalent to
niswitch.Session.reset().

route_scan_advanced_output

	
niswitch.Session.route_scan_advanced_output(scan_advanced_output_connector, scan_advanced_output_bus_line, invert=False)

	Routes the scan advanced output trigger from a trigger bus line (TTLx)
to the front or rear connector.

	Parameters

	
	scan_advanced_output_connector (niswitch.ScanAdvancedOutput) – The scan advanced trigger destination. Valid locations are the
FRONTCONNECTOR and REARCONNECTOR. Default
value: FRONTCONNECTOR

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	scan_advanced_output_bus_line (niswitch.ScanAdvancedOutput) – The trigger line to route the scan advanced output trigger from the
front or rear connector. Select NONE to break an existing
route. Default value: None Valid Values: NONE
TTL0 TTL1 TTL2
TTL3 TTL4 TTL5
TTL6 TTL7

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	invert (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, inverts the input trigger signal from falling to rising or
vice versa. Default value: False

route_trigger_input

	
niswitch.Session.route_trigger_input(trigger_input_connector, trigger_input_bus_line, invert=False)

	Routes the input trigger from the front or rear connector to a trigger
bus line (TTLx). To disconnect the route, call this method again and
specify None for trigger bus line parameter.

	Parameters

	
	trigger_input_connector (niswitch.TriggerInput) – The location of the input trigger source on the switch module. Valid
locations are the FRONTCONNECTOR and
REARCONNECTOR. Default value:
FRONTCONNECTOR

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	trigger_input_bus_line (niswitch.TriggerInput) – The trigger line to route the input trigger. Select NISWITCH_VAL_NONE
to break an existing route. Default value: None Valid Values:
NISWITCH_VAL_NONE TTL0 TTL1
TTL2 TTL3 TTL4
TTL5 TTL6 TTL7

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	invert (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, inverts the input trigger signal from falling to rising or
vice versa. Default value: False

self_test

	
niswitch.Session.self_test()

	Verifies that the driver can communicate with the switch module.

Raises SelfTestError on self test failure. Properties on exception object:

	code - failure code from driver

	message - status message from driver

	Self-Test Code

	Description

	0

	Passed self-test

	1

	Self-test failed

send_software_trigger

	
niswitch.Session.send_software_trigger()

	Sends a software trigger to the switch module specified in the NI-SWITCH
session. When the trigger input is set to SOFTWARE_TRIG
through either the niswitch.Session.ConfigureScanTrigger() or the
niswitch.Session.trigger_input property, the scan does not proceed from
a semi-colon (wait for trigger) until niswitch.Session.send_software_trigger() is
called.

Note

One or more of the referenced methods are not in the Python API for this driver.

set_path

	
niswitch.Session.set_path(path_list)

	Connects two channels by specifying an explicit path in the path list
parameter. niswitch.Session.set_path() is particularly useful where path
repeatability is important, such as in calibrated signal paths. If this
is not necessary, use niswitch.Session.connect().

	Parameters

	path_list (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string composed of comma-separated paths between channel 1 and channel
2. The first and last names in the path are the endpoints of the path.
Every other channel in the path are configuration channels. Example of a
valid path list string: ch0->com0, com0->ab0. In this example, com0 is a
configuration channel. Default value: None Obtain the path list for a
previously created path with niswitch.Session.get_path().

unlock

	
niswitch.Session.unlock()

	Releases a lock that you acquired on an device session using
niswitch.Session.lock(). Refer to niswitch.Session.unlock() for additional
information on session locks.

wait_for_debounce

	
niswitch.Session.wait_for_debounce(maximum_time_ms=hightime.timedelta(milliseconds=5000))

	Pauses until all created paths have settled. If the time you specify
with the Maximum Time (ms) parameter elapsed before the switch paths
have settled, this method returns the
NISWITCH_ERROR_MAX_TIME_EXCEEDED error.

	Parameters

	maximum_time_ms (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or int in milliseconds) – Specifies the maximum length of time to wait for all relays in the
switch module to activate or deactivate. If the specified time elapses
before all relays active or deactivate, a timeout error is returned.
Default Value:5000 ms

wait_for_scan_complete

	
niswitch.Session.wait_for_scan_complete(maximum_time_ms=hightime.timedelta(milliseconds=5000))

	Pauses until the switch module stops scanning or the maximum time has
elapsed and returns a timeout error. If the time you specify with the
Maximum Time (ms) parameter elapsed before the scanning operation has
finished, this method returns the NISWITCH_ERROR_MAX_TIME_EXCEEDED
error.

	Parameters

	maximum_time_ms (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or int in milliseconds) – Specifies the maximum length of time to wait for the switch module to
stop scanning. If the specified time elapses before the scan ends,
NISWITCH_ERROR_MAX_TIME_EXCEEDED error is returned. Default
Value:5000 ms

Properties

analog_bus_sharing_enable

	
niswitch.Session.analog_bus_sharing_enable

	Enables or disables sharing of an analog bus line so that multiple NI SwitchBlock devices may connect to it simultaneously. To enable multiple NI SwitchBlock devices to share an analog bus line, set this property to True for each device on the channel that corresponds with the shared analog bus line. The default value for all devices is False, which disables sharing of the analog bus.
Refer to the Using the Analog Bus on an NI SwitchBlock Carrier topic in the NI Switches Help for more information about sharing the analog bus.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Channel Configuration:Analog Bus Sharing Enable

	C Attribute: NISWITCH_ATTR_ANALOG_BUS_SHARING_ENABLE

bandwidth

	
niswitch.Session.bandwidth

	This channel-based property returns the bandwidth for the channel.
The units are hertz.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Bandwidth

	C Attribute: NISWITCH_ATTR_BANDWIDTH

channel_count

	
niswitch.Session.channel_count

	Indicates the number of channels that the specific instrument driver supports.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Channel Count

	C Attribute: NISWITCH_ATTR_CHANNEL_COUNT

characteristic_impedance

	
niswitch.Session.characteristic_impedance

	This channel-based property returns the characteristic impedance for the channel.
The units are ohms.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Characteristic Impedance

	C Attribute: NISWITCH_ATTR_CHARACTERISTIC_IMPEDANCE

continuous_scan

	
niswitch.Session.continuous_scan

	When a switch device is scanning, the swich can either stop scanning when the end of the scan (False) or continue scanning from the top of the scan list again (True).
Notice that if you set the scan to continuous (True), the Wait For Scan Complete operation will always time out and you must call Abort to stop the scan.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Scanning Configuration:Continuous Scan

	C Attribute: NISWITCH_ATTR_CONTINUOUS_SCAN

digital_filter_enable

	
niswitch.Session.digital_filter_enable

	This property specifies whether to apply the pulse width filter to the Trigger Input. Enabling the Digital Filter (True) prevents the switch module from being triggered by pulses that are less than 150 ns on PXI trigger lines 0–7.
When Digital Filter is disabled (False), it is possible for the switch module to be triggered by noise on the PXI trigger lines. If the device triggering the switch is capable of sending pulses greater than 150 ns, you should not disable the Digital Filter.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Scanning Configuration:Digital Filter Enable

	C Attribute: NISWITCH_ATTR_DIGITAL_FILTER_ENABLE

driver_setup

	
niswitch.Session.driver_setup

	This property indicates the Driver Setup string that the user specified when initializing the driver.
Some cases exist where the end-user must specify instrument driver options at initialization time. An example of this is specifying a particular instrument model from among a family of instruments that the driver supports. This is useful when using simulation. The end-user can specify driver-specific options through the DriverSetup keyword in the optionsString parameter to the niswitch.Session.InitWithOptions() method, or through the IVI Configuration Utility.
If the user does not specify a Driver Setup string, this property returns an empty string.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Driver Setup

	C Attribute: NISWITCH_ATTR_DRIVER_SETUP

handshaking_initiation

	
niswitch.Session.handshaking_initiation

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.HandshakingInitiation

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Scanning Configuration:Handshaking Initiation

	C Attribute: NISWITCH_ATTR_HANDSHAKING_INITIATION

instrument_firmware_revision

	
niswitch.Session.instrument_firmware_revision

	A string that contains the firmware revision information for the instrument you are currently using.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Firmware Revision

	C Attribute: NISWITCH_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

	
niswitch.Session.instrument_manufacturer

	A string that contains the name of the instrument manufacturer you are currently using.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Manufacturer

	C Attribute: NISWITCH_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

	
niswitch.Session.instrument_model

	A string that contains the model number or name of the instrument that you are currently using.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Model

	C Attribute: NISWITCH_ATTR_INSTRUMENT_MODEL

io_resource_descriptor

	
niswitch.Session.io_resource_descriptor

	Indicates the resource descriptor the driver uses to identify the physical device.
If you initialize the driver with a logical name, this property contains the resource descriptor that corresponds to the entry in the IVI Configuration utility.
If you initialize the instrument driver with the resource descriptor, this property contains that value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:IO Resource Descriptor

	C Attribute: NISWITCH_ATTR_IO_RESOURCE_DESCRIPTOR

is_configuration_channel

	
niswitch.Session.is_configuration_channel

	This channel-based property specifies whether to reserve the channel for internal path creation. A channel that is available for internal path creation is called a configuration channel. The driver may use configuration channels to create paths between two channels you specify in the niswitch.Session.connect() method. Configuration channels are not available for external connections.
Set this property to True to mark the channel as a configuration channel. Set this property to False to mark the channel as available for external connections.
After you identify a channel as a configuration channel, you cannot use that channel for external connections. The niswitch.Session.connect() method returns the NISWITCH_ERROR_IS_CONFIGURATION_CHANNEL error when you attempt to establish a connection between a configuration channel and any other channel.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Channel Configuration:Is Configuration Channel

	C Attribute: NISWITCH_ATTR_IS_CONFIGURATION_CHANNEL

is_debounced

	
niswitch.Session.is_debounced

	This property indicates whether the entire switch device has settled since the last switching command. A value of True indicates that all signals going through the switch device are valid.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Is Debounced

	C Attribute: NISWITCH_ATTR_IS_DEBOUNCED

is_scanning

	
niswitch.Session.is_scanning

	If True, the switch module is currently scanning through the scan list (i.e. it is not in the Idle state). If False, the switch module is not currently scanning through the scan list (i.e. it is in the Idle state).

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Scanning Configuration:Is Scanning

	C Attribute: NISWITCH_ATTR_IS_SCANNING

is_source_channel

	
niswitch.Session.is_source_channel

	This channel-based property specifies whether you want to identify the channel as a source channel. Typically, you set this property to True when you attach the channel to a power supply, a method generator, or an active measurement point on the unit under test, and you do not want to connect the channel to another source. The driver prevents source channels from connecting to each other. The niswitch.Session.connect() method returns the NISWITCH_ERROR_ATTEMPT_TO_CONNECT_SOURCES when you attempt to connect two channels that you identify as source channels.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Channel Configuration:Is Source Channel

	C Attribute: NISWITCH_ATTR_IS_SOURCE_CHANNEL

is_waiting_for_trig

	
niswitch.Session.is_waiting_for_trig

	In a scan list, a semi-colon (;) is used to indicate that at that point in the scan list, the scan engine should pause until a trigger is received from the trigger input. If that trigger is user generated through either a hardware pulse or the Send SW Trigger operation, it is necessary for the user to know when the scan engine has reached such a state.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Scanning Configuration:Is Waiting for Trigger?

	C Attribute: NISWITCH_ATTR_IS_WAITING_FOR_TRIG

logical_name

	
niswitch.Session.logical_name

	A string containing the logical name you specified when opening the current IVI session.
You may pass a logical name to the niswitch.Session.init() or niswitch.Session.InitWithOptions() methods. The IVI Configuration utility must contain an entry for the logical name. The logical name entry refers to a virtual instrument section in the IVI Configuration file. The virtual instrument section specifies a physical device and initial user options.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name

	C Attribute: NISWITCH_ATTR_LOGICAL_NAME

max_ac_voltage

	
niswitch.Session.max_ac_voltage

	This channel-based property returns the maximum AC voltage the channel can switch.
The units are volts RMS.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Maximum AC Voltage

	C Attribute: NISWITCH_ATTR_MAX_AC_VOLTAGE

max_carry_ac_current

	
niswitch.Session.max_carry_ac_current

	This channel-based property returns the maximum AC current the channel can carry.
The units are amperes RMS.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Maximum Carry AC Current

	C Attribute: NISWITCH_ATTR_MAX_CARRY_AC_CURRENT

max_carry_ac_power

	
niswitch.Session.max_carry_ac_power

	This channel-based property returns the maximum AC power the channel can carry.
The units are volt-amperes.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Maximum Carry AC Power

	C Attribute: NISWITCH_ATTR_MAX_CARRY_AC_POWER

max_carry_dc_current

	
niswitch.Session.max_carry_dc_current

	This channel-based property returns the maximum DC current the channel can carry.
The units are amperes.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Maximum Carry DC Current

	C Attribute: NISWITCH_ATTR_MAX_CARRY_DC_CURRENT

max_carry_dc_power

	
niswitch.Session.max_carry_dc_power

	This channel-based property returns the maximum DC power the channel can carry.
The units are watts.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Maximum Carry DC Power

	C Attribute: NISWITCH_ATTR_MAX_CARRY_DC_POWER

max_dc_voltage

	
niswitch.Session.max_dc_voltage

	This channel-based property returns the maximum DC voltage the channel can switch.
The units are volts.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Maximum DC Voltage

	C Attribute: NISWITCH_ATTR_MAX_DC_VOLTAGE

max_switching_ac_current

	
niswitch.Session.max_switching_ac_current

	This channel-based property returns the maximum AC current the channel can switch.
The units are amperes RMS.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Maximum Switching AC Current

	C Attribute: NISWITCH_ATTR_MAX_SWITCHING_AC_CURRENT

max_switching_ac_power

	
niswitch.Session.max_switching_ac_power

	This channel-based property returns the maximum AC power the channel can switch.
The units are volt-amperes.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Maximum Switching AC Power

	C Attribute: NISWITCH_ATTR_MAX_SWITCHING_AC_POWER

max_switching_dc_current

	
niswitch.Session.max_switching_dc_current

	This channel-based property returns the maximum DC current the channel can switch.
The units are amperes.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Maximum Switching DC Current

	C Attribute: NISWITCH_ATTR_MAX_SWITCHING_DC_CURRENT

max_switching_dc_power

	
niswitch.Session.max_switching_dc_power

	This channel-based property returns the maximum DC power the channel can switch.
The units are watts.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Maximum Switching DC Power

	C Attribute: NISWITCH_ATTR_MAX_SWITCHING_DC_POWER

number_of_relays

	
niswitch.Session.number_of_relays

	This property returns the number of relays.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Number of Relays

	C Attribute: NISWITCH_ATTR_NUMBER_OF_RELAYS

num_of_columns

	
niswitch.Session.num_of_columns

	This property returns the number of channels on the column of a matrix or scanner. If the switch device is a scanner, this value is the number of input channels.
The niswitch.Session.wire_mode property affects the number of available columns. For example, if your device has 8 input lines and you use the four-wire mode, then the number of columns you have available is 2.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Matrix Configuration:Number of Columns

	C Attribute: NISWITCH_ATTR_NUM_OF_COLUMNS

num_of_rows

	
niswitch.Session.num_of_rows

	This property returns the number of channels on the row of a matrix or scanner. If the switch device is a scanner, this value is the number of output channels.
The niswitch.Session.wire_mode property affects the number of available rows. For example, if your device has 8 input lines and you use the two-wire mode, then the number of columns you have available is 4.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Matrix Configuration:Number of Rows

	C Attribute: NISWITCH_ATTR_NUM_OF_ROWS

power_down_latching_relays_after_debounce

	
niswitch.Session.power_down_latching_relays_after_debounce

	This property specifies whether to power down latching relays after calling Wait For Debounce.
When Power Down Latching Relays After Debounce is enabled (True), a call to Wait For Debounce ensures that the relays are settled and the latching relays are powered down.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Power Down Latching Relays After Debounce

	C Attribute: NISWITCH_ATTR_POWER_DOWN_LATCHING_RELAYS_AFTER_DEBOUNCE

scan_advanced_output

	
niswitch.Session.scan_advanced_output

	This property specifies the method you want to use to notify another instrument that all signals going through the switch device have settled following the processing of one entry in the scan list.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ScanAdvancedOutput

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Scanning Configuration:Scan Advanced Output

	C Attribute: NISWITCH_ATTR_SCAN_ADVANCED_OUTPUT

scan_advanced_polarity

	
niswitch.Session.scan_advanced_polarity

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ScanAdvancedPolarity

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Scanning Configuration:Scan Advanced Polarity

	C Attribute: NISWITCH_ATTR_SCAN_ADVANCED_POLARITY

scan_delay

	
niswitch.Session.scan_delay

	This property specifies the minimum amount of time the switch device waits before it asserts the scan advanced output trigger after opening or closing the switch. The switch device always waits for debounce before asserting the trigger. The units are seconds.
the greater value of the settling time and the value you specify as the scan delay.

Note

NI PXI-2501/2503/2565/2590/2591 Users–the actual delay will always be

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Scanning Configuration:Scan Delay

	C Attribute: NISWITCH_ATTR_SCAN_DELAY

scan_list

	
niswitch.Session.scan_list

	This property contains a scan list, which is a string that specifies channel connections and trigger conditions. The niswitch.Session.initiate() method makes or breaks connections and waits for triggers according to the instructions in the scan list.
The scan list is comprised of channel names that you separate with special characters. These special characters determine the operations the scanner performs on the channels when it executes this scan list.
To create a path between two channels, use the following character between the two channel names:
-> (a dash followed by a ‘>’ sign)
Example: ‘CH1->CH2’ tells the switch to make a path from channel CH1 to channel CH2.
To break or clear a path, use the following character as a prefix before the path:
~ (tilde)
Example: ‘~CH1->CH2’ tells the switch to break the path from channel CH1 to channel CH2.
To tell the switch device to wait for a trigger event, use the following character as a separator between paths:
; (semi-colon)
Example: ‘CH1->CH2;CH3->CH4’ tells the switch to make the path from channel CH1 to channel CH2, wait for a trigger, and then make the path from CH3 to CH4.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Scanning Configuration:Scan List

	C Attribute: NISWITCH_ATTR_SCAN_LIST

scan_mode

	
niswitch.Session.scan_mode

	This property specifies what happens to existing connections that conflict with the connections you make in a scan list. For example, if CH1 is already connected to CH2 and the scan list instructs the switch device to connect CH1 to CH3, this property specifies what happens to the connection between CH1 and CH2.
If the value of this property is NONE, the switch device takes no action on existing paths. If the value is BREAK_BEFORE_MAKE, the switch device breaks conflicting paths before making new ones. If the value is BREAK_AFTER_MAKE, the switch device breaks conflicting paths after making new ones.
Most switch devices support only one of the possible values. In such cases, this property serves as an indicator of the device’s behavior.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ScanMode

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Scanning Configuration:Scan Mode

	C Attribute: NISWITCH_ATTR_SCAN_MODE

serial_number

	
niswitch.Session.serial_number

	This read-only property returns the serial number for the switch device controlled by this instrument driver. If the device does not return a serial number, the driver returns the IVI_ERROR_ATTRIBUTE_NOT_SUPPORTED error.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Serial Number

	C Attribute: NISWITCH_ATTR_SERIAL_NUMBER

settling_time

	
niswitch.Session.settling_time

	This channel-based property returns the maximum length of time from after you make a connection until the signal flowing through the channel settles. The units are seconds.
the greater value of the settling time and the value you specify as the scan delay.

Note

NI PXI-2501/2503/2565/2590/2591 Users–the actual delay will always be

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Settling Time

	C Attribute: NISWITCH_ATTR_SETTLING_TIME

simulate

	
niswitch.Session.simulate

	Specifies whether or not to simulate instrument driver I/O operations. If simulation is enabled, instrument driver methods perform range checking and call Ivi_GetAttribute and Ivi_SetAttribute methods, but they do not perform instrument I/O. For output parameters that represent instrument data, the instrument driver methods return calculated values.
The default value is False. Use the niswitch.Session.InitWithOptions() method to override this value.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:User Options:Simulate

	C Attribute: NISWITCH_ATTR_SIMULATE

specific_driver_description

	
niswitch.Session.specific_driver_description

	A string that contains a brief description of the specific driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Description

	C Attribute: NISWITCH_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_revision

	
niswitch.Session.specific_driver_revision

	A string that contains additional version information about this instrument driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Revision

	C Attribute: NISWITCH_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

	
niswitch.Session.specific_driver_vendor

	A string that contains the name of the vendor that supplies this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Vendor

	C Attribute: NISWITCH_ATTR_SPECIFIC_DRIVER_VENDOR

supported_instrument_models

	
niswitch.Session.supported_instrument_models

	Contains a comma-separated list of supported instrument models.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Supported Instrument Models

	C Attribute: NISWITCH_ATTR_SUPPORTED_INSTRUMENT_MODELS

temperature

	
niswitch.Session.temperature

	This property returns the temperature as read by the Switch module. The units are degrees Celsius.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Temperature

	C Attribute: NISWITCH_ATTR_TEMPERATURE

trigger_input

	
niswitch.Session.trigger_input

	This property specifies the source of the trigger for which the switch device can wait when processing a scan list. The switch device waits for a trigger when it encounters a semi-colon in a scan list. When the trigger occurs, the switch device advances to the next entry in the scan list.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerInput

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Scanning Configuration:Trigger Input

	C Attribute: NISWITCH_ATTR_TRIGGER_INPUT

trigger_input_polarity

	
niswitch.Session.trigger_input_polarity

	Determines the behavior of the trigger Input.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerInputPolarity

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Scanning Configuration:Trigger Input Polarity

	C Attribute: NISWITCH_ATTR_TRIGGER_INPUT_POLARITY

wire_mode

	
niswitch.Session.wire_mode

	This property returns the wire mode of the switch device.
This property affects the values of the niswitch.Session.num_of_rows and niswitch.Session.num_of_columns properties. The actual number of input and output lines on the switch device is fixed, but the number of channels depends on how many lines constitute each channel.

Tip

This property can use repeated capabilities. If set or get directly on the
niswitch.Session object, then the set/get will use all repeated capabilities in the session.
You can specify a subset of repeated capabilities using the Python index notation on an
niswitch.Session repeated capabilities container, and calling set/get value on the result.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	Yes

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Module Characteristics:Wire mode

	C Attribute: NISWITCH_ATTR_WIRE_MODE

Session

	Session

	Methods

	abort

	can_connect

	close

	commit

	connect

	connect_multiple

	disable

	disconnect

	disconnect_all

	disconnect_multiple

	get_channel_name

	get_path

	get_relay_count

	get_relay_name

	get_relay_position

	initiate

	lock

	relay_control

	reset

	reset_with_defaults

	route_scan_advanced_output

	route_trigger_input

	self_test

	send_software_trigger

	set_path

	unlock

	wait_for_debounce

	wait_for_scan_complete

	Properties

	analog_bus_sharing_enable

	bandwidth

	channel_count

	characteristic_impedance

	continuous_scan

	digital_filter_enable

	driver_setup

	handshaking_initiation

	instrument_firmware_revision

	instrument_manufacturer

	instrument_model

	io_resource_descriptor

	is_configuration_channel

	is_debounced

	is_scanning

	is_source_channel

	is_waiting_for_trig

	logical_name

	max_ac_voltage

	max_carry_ac_current

	max_carry_ac_power

	max_carry_dc_current

	max_carry_dc_power

	max_dc_voltage

	max_switching_ac_current

	max_switching_ac_power

	max_switching_dc_current

	max_switching_dc_power

	number_of_relays

	num_of_columns

	num_of_rows

	power_down_latching_relays_after_debounce

	scan_advanced_output

	scan_advanced_polarity

	scan_delay

	scan_list

	scan_mode

	serial_number

	settling_time

	simulate

	specific_driver_description

	specific_driver_revision

	specific_driver_vendor

	supported_instrument_models

	temperature

	trigger_input

	trigger_input_polarity

	wire_mode

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the
underlying driver function call. This can be the actual function based on the Session
method being called, or it can be the appropriate Get/Set Attribute function, such as niSwitch_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities.
The parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or
an integer. If it is a string, you can indicate a range using the same format as the driver: ‘0-2’ or
‘0:2’

Some repeated capabilities use a prefix before the number and this is optional

channels

	
niswitch.Session.channels[]

	session.channels['0-2'].channel_enabled = True

passes a string of ‘0, 1, 2’ to the set attribute function.

Enums

Enums used in NI-SWITCH

HandshakingInitiation

	
class niswitch.HandshakingInitiation

	
	
MEASUREMENT_DEVICE

	The niSwitch Initiate
Scan <switchviref.chm::/:py:meth:`niswitch.Session.Initiate_Scan.html>`__ VI does not
return until the switch hardware is waiting for a trigger input. This
ensures that if you initiate the measurement device after calling the
niSwitch Initiate
Scan <switchviref.chm::/:py:meth:`niswitch.Session.Initiate_Scan.html>`__ VI , the switch
is sure to receive the first measurement complete (MC) signal sent by
the measurement device. The measurement device should be configured to
first take a measurement, send MC, then wait for scanner advanced output
signal. Thus, the first MC of the measurement device initiates
handshaking.

	
SWITCH

	The niSwitch Initiate
Scan <switchviref.chm::/:py:meth:`niswitch.Session.Initiate_Scan.html>`__ VI returns
immediately after beginning scan list execution. It is assumed that the
measurement device has already been configured and is waiting for the
scanner advanced signal. The measurement should be configured to first
wait for a trigger, then take a measurement. Thus, the first scanner
advanced output signal of the switch module initiates handshaking.

PathCapability

	
class niswitch.PathCapability

	
	
PATH_AVAILABLE

	Path Available

	
PATH_EXISTS

	Path Exists

	
PATH_UNSUPPORTED

	Path Unsupported

	
RESOURCE_IN_USE

	Resource in use

	
SOURCE_CONFLICT

	Source conflict

	
CHANNEL_NOT_AVAILABLE

	Channel not available

RelayAction

	
class niswitch.RelayAction

	
	
OPEN

	Open Relay

	
CLOSE

	Close Relay

RelayPosition

	
class niswitch.RelayPosition

	
	
OPEN

	Open

	
CLOSED

	Closed

ScanAdvancedOutput

	
class niswitch.ScanAdvancedOutput

	
	
NONE

	The switch device does not produce a Scan Advanced Output trigger.

	
EXTERNAL

	External Trigger. The switch device produces the Scan Advanced Output trigger on the external trigger output.

	
TTL0

	The switch device produces the Scan Advanced Output on the PXI TRIG0 line.

	
TTL1

	The switch device produces the Scan Advanced Output on the PXI TRIG1 line.

	
TTL2

	The switch device produces the Scan Advanced Output on the PXI TRIG2 line.

	
TTL3

	The switch device produces the Scan Advanced Output on the PXI TRIG3 line.

	
TTL4

	The switch device produces the Scan Advanced Output on the PXI TRIG4 line.

	
TTL5

	The switch device produces the Scan Advanced Output on the PXI TRIG5 line.

	
TTL6

	The switch device produces the Scan Advanced Output on the PXI TRIG6 line.

	
TTL7

	The switch device produces the Scan Advanced Output on the PXI TRIG7 line.

	
PXI_STAR

	The switch module produces the Scan Advanced Output Trigger on the PXI
Star trigger bus before processing the next entry in the scan list.

	
REARCONNECTOR

	The switch device produces the Scan Advanced Output trigger on the rear connector.

	
FRONTCONNECTOR

	The switch device produces the Scan Advanced Output trigger on the front connector.

	
REARCONNECTOR_MODULE1

	The switch module produces the Scan Advanced Output Trigger on the rear
connector module 1.

	
REARCONNECTOR_MODULE2

	The switch module produces the Scan Advanced Output Trigger on the rear
connector module 2.

	
REARCONNECTOR_MODULE3

	The switch module produces the Scan Advanced Output Trigger on the rear
connector module 3.

	
REARCONNECTOR_MODULE4

	The switch module produces the Scan Advanced Output Trigger on the rear
connector module 4.

	
REARCONNECTOR_MODULE5

	The switch module produces the Scan Advanced Output Trigger on the rear
connector module 5.

	
REARCONNECTOR_MODULE6

	The switch module produces the Scan Advanced Output Trigger on the rear
connector module 6.

	
REARCONNECTOR_MODULE7

	The switch module produces the Scan Advanced Output Trigger on the rear
connector module 7.

	
REARCONNECTOR_MODULE8

	The switch module produces the Scan Advanced Output Trigger on the rear
connector module 8.

	
REARCONNECTOR_MODULE9

	The switch module produces the Scan Advanced Ouptut Trigger on the rear
connector module 9.

	
REARCONNECTOR_MODULE10

	The switch module produces the Scan Advanced Output Trigger on the rear
connector module 10.

	
REARCONNECTOR_MODULE11

	The switch module produces the Scan Advanced Output Trigger on the rear
connector module 11.

	
REARCONNECTOR_MODULE12

	The switch module produces the Scan Advanced Output Trigger on the rear
connector module 12.

	
FRONTCONNECTOR_MODULE1

	The switch module produces the Scan Advanced Output Trigger on the front
connector module 1.

	
FRONTCONNECTOR_MODULE2

	The switch module produces the Scan Advanced Output Trigger on the front
connector module 2.

	
FRONTCONNECTOR_MODULE3

	The switch module produces the Scan Advanced Output Trigger on the front
connector module 3.

	
FRONTCONNECTOR_MODULE4

	The switch module produces the Scan Advanced Output Trigger on the front
connector module 4.

	
FRONTCONNECTOR_MODULE5

	The switch module produces the Scan Advanced Output Trigger on the front
connector module 5.

	
FRONTCONNECTOR_MODULE6

	The switch module produces the Scan Advanced Output Trigger on the front
connector module 6.

	
FRONTCONNECTOR_MODULE7

	The switch module produces the Scan Advanced Output Trigger on the front
connector module 7.

	
FRONTCONNECTOR_MODULE8

	The switch module produces the Scan Advanced Output Trigger on the front
connector module 8.

	
FRONTCONNECTOR_MODULE9

	The switch module produces the Scan Advanced Output Trigger on the front
connector module 9.

	
FRONTCONNECTOR_MODULE10

	The switch module produces the Scan Advanced Output Trigger on the front
connector module 10.

	
FRONTCONNECTOR_MODULE11

	The switch module produces the Scan Advanced Output Trigger on the front
connector module 11.

	
FRONTCONNECTOR_MODULE12

	The switch module produces the Scan Advanced Output Trigger on the front
connector module 12.

ScanAdvancedPolarity

	
class niswitch.ScanAdvancedPolarity

	
	
RISING

	The trigger occurs on the rising edge of the signal.

	
FALLING

	The trigger occurs on the falling edge of the signal.

ScanMode

	
class niswitch.ScanMode

	
	
NONE

	No implicit action on connections when scanning.

	
BREAK_BEFORE_MAKE

	When scanning, the switch device breaks existing connections before making new connections.

	
BREAK_AFTER_MAKE

	When scanning, the switch device breaks existing connections after making new connections.

TriggerInput

	
class niswitch.TriggerInput

	
	
IMMEDIATE

	Immediate Trigger. The switch device does not wait for a trigger before processing the next entry in the scan list.

	
EXTERNAL

	External Trigger. The switch device waits until it receives a trigger from an external source through the external trigger input before processing the next entry in the scan list.

	
SOFTWARE_TRIG

	The switch device waits until you call the niswitch.Session.send_software_trigger() method before processing the next entry in the scan list.

	
TTL0

	The switch device waits until it receives a trigger on the PXI TRIG0 line before processing the next entry in the scan list.

	
TTL1

	The switch device waits until it receives a trigger on the PXI TRIG1 line before processing the next entry in the scan list.

	
TTL2

	The switch device waits until it receives a trigger on the PXI TRIG2 line before processing the next entry in the scan list.

	
TTL3

	The switch device waits until it receives a trigger on the PXI TRIG3 line before processing the next entry in the scan list.

	
TTL4

	The switch device waits until it receives a trigger on the PXI TRIG4 line before processing the next entry in the scan list.

	
TTL5

	The switch device waits until it receives a trigger on the PXI TRIG5 line before processing the next entry in the scan list.

	
TTL6

	The switch device waits until it receives a trigger on the PXI TRIG6 line before processing the next entry in the scan list.

	
TTL7

	The switch device waits until it receives a trigger on the PXI TRIG7 line before processing the next entry in the scan list.

	
PXI_STAR

	The switch device waits until it receives a trigger on the PXI STAR trigger bus before processing the next entry in the scan list.

	
REARCONNECTOR

	The switch device waits until it receives a trigger on the rear connector.

	
FRONTCONNECTOR

	The switch device waits until it receives a trigger on the front connector.

	
REARCONNECTOR_MODULE1

	The switch module waits until it receives a trigger on the rear
connector module 1.

	
REARCONNECTOR_MODULE2

	The switch module waits until it receives a trigger on the rear
connector module 2.

	
REARCONNECTOR_MODULE3

	The switch module waits until it receives a trigger on the rear
connector module 3.

	
REARCONNECTOR_MODULE4

	The switch module waits until it receives a trigger on the rear
connector module 4.

	
REARCONNECTOR_MODULE5

	The switch module waits until it receives a trigger on the rear
connector module 5.

	
REARCONNECTOR_MODULE6

	The switch module waits until it receives a trigger on the rear
connector module 6.

	
REARCONNECTOR_MODULE7

	The switch module waits until it receives a trigger on the rear
connector module 7.

	
REARCONNECTOR_MODULE8

	The switch module waits until it receives a trigger on the rear
connector module 8.

	
REARCONNECTOR_MODULE9

	The switch module waits until it receives a trigger on the rear
connector module 9.

	
REARCONNECTOR_MODULE10

	The switch module waits until it receives a trigger on the rear
connector module 10.

	
REARCONNECTOR_MODULE11

	The switch module waits until it receives a trigger on the rear
connector module 11.

	
REARCONNECTOR_MODULE12

	The switch module waits until it receives a trigger on the rear
connector module 12.

	
FRONTCONNECTOR_MODULE1

	The switch module waits until it receives a trigger on the front
connector module 1.

	
FRONTCONNECTOR_MODULE2

	The switch module waits until it receives a trigger on the front
connector module 2.

	
FRONTCONNECTOR_MODULE3

	The switch module waits until it receives a trigger on the front
connector module 3.

	
FRONTCONNECTOR_MODULE4

	The switch module waits until it receives a trigger on the front
connector module 4.

	
FRONTCONNECTOR_MODULE5

	The switch module waits until it receives a trigger on the front
connector module 5.

	
FRONTCONNECTOR_MODULE6

	The switch module waits until it receives a trigger on the front
connector module 6.

	
FRONTCONNECTOR_MODULE7

	The switch module waits until it receives a trigger on the front
connector module 7.

	
FRONTCONNECTOR_MODULE8

	The switch module waits until it receives a trigger on the front
connector module 8.

	
FRONTCONNECTOR_MODULE9

	The switch module waits until it receives a trigger on the front
connector module 9.

	
FRONTCONNECTOR_MODULE10

	The switch module waits until it receives a trigger on the front
connector module 10.

	
FRONTCONNECTOR_MODULE11

	The switch module waits until it receives a trigger on the front
connector module 11.

	
FRONTCONNECTOR_MODULE12

	The switch module waits until it receives a trigger on the front
connector module 12.

TriggerInputPolarity

	
class niswitch.TriggerInputPolarity

	
	
RISING

	The trigger occurs on the rising edge of the signal.

	
FALLING

	The trigger occurs on the falling edge of the signal.

Exceptions and Warnings

Error

	
exception niswitch.errors.Error

	Base exception type that all NI-SWITCH exceptions derive from

DriverError

	
exception niswitch.errors.DriverError

	An error originating from the NI-SWITCH driver

UnsupportedConfigurationError

	
exception niswitch.errors.UnsupportedConfigurationError

	An error due to using this module in an usupported platform.

DriverNotInstalledError

	
exception niswitch.errors.DriverNotInstalledError

	An error due to using this module without the driver runtime installed.

InvalidRepeatedCapabilityError

	
exception niswitch.errors.InvalidRepeatedCapabilityError

	An error due to an invalid character in a repeated capability

SelfTestError

	
exception niswitch.errors.SelfTestError

	An error due to a failed self-test

DriverWarning

	
exception niswitch.errors.DriverWarning

	A warning originating from the NI-SWITCH driver

Examples

You can download all niswitch examples here [https://github.com/ni/nimi-python/releases/download/1.3.1/niswitch_examples.zip]

niswitch_connect_channels.py

(niswitch_connect_channels.py) [https://github.com/ni/nimi-python/blob/master/src/niswitch/examples/niswitch_connect_channels.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	#!/usr/bin/python

import argparse
import niswitch
import sys

def example(resource_name, channel1, channel2, topology, simulate):
 # if we are simulating resource name must be blank
 resource_name = '' if simulate else resource_name

 with niswitch.Session(resource_name=resource_name, topology=topology, simulate=simulate) as session:
 session.connect(channel1=channel1, channel2=channel2)
 print('Channel ', channel1, ' and ', channel2, ' are now connected.')
 session.disconnect(channel1=channel1, channel2=channel2)
 print('Channel ', channel1, ' and ', channel2, ' are now disconnected.')

def _main(argsv):
 parser = argparse.ArgumentParser(description='Performs a connection with NI-SWITCH Channels.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments Switch.')
 parser.add_argument('-ch1', '--channel1', default='c0', help='Channel One.')
 parser.add_argument('-ch2', '--channel2', default='r0', help='Channel Two.')
 parser.add_argument('-t', '--topology', default='Configured Topology', help='Topology.')
 parser.add_argument('-s', '--simulate', default=False, action='store_true', help='Simulate device.')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.channel1, args.channel2, args.topology, args.simulate)

def test_example():
 example('', 'c0', 'r0', '2737/2-Wire 4x64 Matrix', True)

def test_main():
 cmd_line = ['--topology', '2737/2-Wire 4x64 Matrix', '--simulate']
 _main(cmd_line)

def main():
 _main(sys.argv[1:])

if __name__ == '__main__':
 main()

niswitch_get_device_info.py

(niswitch_get_device_info.py) [https://github.com/ni/nimi-python/blob/master/src/niswitch/examples/niswitch_get_device_info.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	#!/usr/bin/python

import argparse
import niswitch
import sys

def example(resource_name, topology, simulate, device, channel, relay):
 # if we are simulating resource name must be blank
 resource_name = '' if simulate else resource_name

 with niswitch.Session(resource_name=resource_name, topology=topology, simulate=simulate) as session:
 if device:
 print('Device Info:')
 row_format = '{:<18}' * (2)
 print(row_format.format('Device Name: ', session.io_resource_descriptor))
 print(row_format.format('Device Model: ', session.instrument_model))
 print(row_format.format('Driver Revision: ', session.specific_driver_revision))
 print(row_format.format('Channel count: ', session.channel_count))
 print(row_format.format('Relay count: ', session.number_of_relays))
 if channel:
 print('Channel Info:')
 row_format = '{:6}' + ' ' * 12 + '{:<15}{:<22}{:6}'
 print(row_format.format('Number', 'Name', 'Is Configuration', 'Is Source'))
 for i in range(1, session.channel_count + 1):
 channel_name = session.get_channel_name(index=i)
 channel = session.channels[channel_name]
 print(row_format.format(i, channel_name, str(channel.is_configuration_channel), str(channel.is_source_channel)))
 if relay:
 print('Relay Info:')
 row_format = '{:6}' + ' ' * 12 + '{:<15}{:<22}{:6}'
 print(row_format.format('Number', 'Name', 'Position', 'Count'))
 for i in range(1, session.number_of_relays + 1):
 relay_name = session.get_relay_name(index=i)
 print(row_format.format(i, relay_name, session.get_relay_position(relay_name=relay_name), session.get_relay_count(relay_name=relay_name)))

def _main(argsv):
 parser = argparse.ArgumentParser(description='Prints information for the specified National Instruments Switch module.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments Switch.')
 parser.add_argument('-d', '--device', default=False, action='store_true', help='Prints information for the device')
 parser.add_argument('-c', '--channel', default=False, action='store_true', help='Prints information for all channels on the device')
 parser.add_argument('-r', '--relay', default=False, action='store_true', help='Prints information for all relays on the device')
 parser.add_argument('-t', '--topology', default='Configured Topology', help='Topology.')
 parser.add_argument('-s', '--simulate', default=False, action='store_true', help='Simulate device.')
 args = parser.parse_args(argsv)

 if not (args.device or args.channel or args.relay):
 print('You must specify at least one of -d, -c, or -r!')
 parser.print_help()
 sys.exit(1)

 example(args.resource_name, args.topology, args.simulate, args.device, args.channel, args.relay)

def test_example():
 example('', '2737/2-Wire 4x64 Matrix', True, True, True, True)

def test_main():
 cmd_line = ['--topology', '2737/2-Wire 4x64 Matrix', '--simulate', '--device', '--channel', '--relay',]
 _main(cmd_line)

def main():
 _main(sys.argv[1:])

if __name__ == '__main__':
 main()

niswitch_relay_control.py

(niswitch_relay_control.py) [https://github.com/ni/nimi-python/blob/master/src/niswitch/examples/niswitch_relay_control.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	#!/usr/bin/python

import argparse
import niswitch
import sys

def example(resource_name, topology, simulate, relay, action):
 # if we are simulating resource name must be blank
 resource_name = '' if simulate else resource_name

 with niswitch.Session(resource_name=resource_name, topology=topology, simulate=simulate) as session:
 session.relay_control(relay_name=relay, relay_action=niswitch.RelayAction[action])
 print('Relay ', relay, ' has had the action ', action, ' performed.')

def _main(argsv):
 parser = argparse.ArgumentParser(description='Performs relay control with NI-SWITCH relays.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments Switch.')
 parser.add_argument('-r', '--relay', default='k0', help='Relay Name.')
 parser.add_argument('-a', '--action', default='OPEN', choices=niswitch.RelayAction.__members__.keys(), type=str.upper, help='Relay Action.')
 parser.add_argument('-t', '--topology', default='Configured Topology', help='Topology.')
 parser.add_argument('-s', '--simulate', default=False, action='store_true', help='Simulate device.')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.topology, args.simulate, args.relay, args.action)

def test_example():
 example('', '2737/2-Wire 4x64 Matrix', True, 'kr0c0', 'OPEN')

def test_main():
 cmd_line = ['--topology', '2737/2-Wire 4x64 Matrix', '--simulate', '--relay', 'kr0c0']
 _main(cmd_line)

def main():
 _main(sys.argv[1:])

if __name__ == '__main__':
 main()

nise module

Installation

As a prerequisite to using the nise module, you must install the NI Switch Executive runtime on your system. Visit ni.com/downloads [http://www.ni.com/downloads/] to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI Switch Executive) can be installed with pip [http://pypi.python.org/pypi/pip]:

$ python -m pip install nise~=1.3.1

Or easy_install from
setuptools [http://pypi.python.org/pypi/setuptools]:

$ python -m easy_install nise

Usage

The following is a basic example of using the nise module to open a session to a Switch Executive Virtual Device and connect a routegroup.

import nise
with nise.Session('SwitchExecutiveExample') as session:
 session.connect('DIOToUUT')

Additional examples for NI Switch Executive are located in src/nise/examples/ directory.

API Reference

	Session

	Methods
	close

	connect

	connect_and_disconnect

	disconnect

	disconnect_all

	expand_route_spec

	find_route

	get_all_connections

	is_connected

	is_debounced

	wait_for_debounce

	Enums
	ExpandAction

	MulticonnectMode

	OperationOrder

	PathCapability

	Exceptions and Warnings
	Error

	DriverError

	UnsupportedConfigurationError

	DriverNotInstalledError

	InvalidRepeatedCapabilityError

	DriverWarning

	Examples
	nise_basic_example.py

Session

	
class nise.Session(self, virtual_device_name, options={})

	Opens a session to a specified NI Switch Executive virtual device. Opens
communications with all of the IVI switches associated with the
specified NI Switch Executive virtual device. Returns a session handle
that you use to identify the virtual device in all subsequent NI Switch
Executive method calls. NI Switch Executive uses a reference counting
scheme to manage open session handles to an NI Switch Executive virtual
device. Each call to nise.Session.__init__() must be matched with a subsequent
call to nise.Session.close(). Successive calls to nise.Session.__init__() with
the same virtual device name always returns the same session handle. NI
Switch Executive disconnects its communication with the IVI switches
after all session handles are closed to a given virtual device. The
session handles may be used safely in multiple threads of an
application. Sessions may only be opened to a given NI Switch Executive
virtual device from a single process at a time.

	Parameters

	
	virtual_device_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the NI Switch Executive virtual device.

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned
value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not
specify a value for a property, the default value is used.

Advanced Example:
{ ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’, ‘BoardType’: ‘<type>’ } }

	Property

	Default

	range_check

	True

	query_instrument_status

	False

	cache

	True

	simulate

	False

	record_value_coersions

	False

	driver_setup

	{}

Methods

close

	
nise.Session.close()

	Reduces the reference count of open sessions by one. If the reference
count goes to 0, the method deallocates any memory resources the
driver uses and closes any open IVI switch sessions. After calling the
nise.Session.close() method, you should not use the NI Switch Executive
virtual device again until you call nise.Session.__init__().

Note

This method is not needed when using the session context manager

connect

	
nise.Session.connect(connect_spec, multiconnect_mode=nise.MulticonnectMode.DEFAULT, wait_for_debounce=True)

	Connects the routes specified by the connection specification. When
connecting, it may allow for multiconnection based on the
multiconnection mode. In the event of an error, the call to
nise.Session.connect() will attempt to undo any connections made so that the
system will be left in the same state that it was in before the call was
made. Some errors can be caught before manipulating hardware, although
it is feasible that a hardware call could fail causing some connections
to be momentarily closed and then reopened. If the wait for debounce
parameter is set, the method will not return until the switch system
has debounced.

	Parameters

	
	connect_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – String describing the connections to be made. The route specification
strings are best summarized as a series of routes delimited by
ampersands. The specified routes may be route names, route group names,
or fully specified route paths delimited by square brackets. Some
examples of route specification strings are: MyRoute MyRouteGroup
MyRoute & MyRouteGroup [A->Switch1/r0->B] MyRoute & MyRouteGroup &
[A->Switch1/r0->B] Refer to Route Specification Strings in the NI Switch
Executive Help for more information.

	multiconnect_mode (nise.MulticonnectMode) – This value sets the connection mode for the method. The mode might be
one of the following: NISE_VAL_USE_DEFAULT_MODE (-1) - uses the mode
selected as the default for the route in the NI Switch Executive virtual
device configuration. If a mode has not been selected for the route in
the NI Switch Executive virtual device, this parameter defaults to
NISE_VAL_MULTICONNECT_ROUTES. NO_MULTICONNECT (0) -
routes specified in the connection specification must be disconnected
before they can be reconnected. Calling Connect on a route that was
connected using No Multiconnect mode results in an error condition.
NISE_VAL_MULTICONNECT_ROUTES (1)- routes specified in the connection
specification can be connected multiple times. The first call to Connect
performs the physical hardware connection. Successive calls to Connect
increase a connection reference count. Similarly, calls to Disconnect
decrease the reference count. Once it reaches 0, the hardware is
physically disconnected. Multiconnecting routes applies to entire routes
and not to route segments.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	wait_for_debounce (bool [https://docs.python.org/3/library/functions.html#bool]) – Waits (if true) for switches to debounce between its connect and
disconnect operations. If false, it immediately begins the second
operation after completing the first. The order of connect and
disconnect operation is set by the Operation Order input.

connect_and_disconnect

	
nise.Session.connect_and_disconnect(connect_spec, disconnect_spec, multiconnect_mode=nise.MulticonnectMode.DEFAULT, operation_order=nise.OperationOrder.AFTER, wait_for_debounce=True)

	Connects routes and disconnects routes in a similar fashion to
nise.Session.connect() and nise.Session.disconnect() except that the operations happen in
the context of a single method call. This method is useful for
switching from one state to another state. nise.Session.connect_and_disconnect()
manipulates the hardware connections and disconnections only when the
routes are different between the connection and disconnection
specifications. If any routes are common between the connection and
disconnection specifications, NI Switch Executive determines whether or
not the relays need to be switched. This functionality has the distinct
advantage of increased throughput for shared connections, because
hardware does not have to be involved and potentially increases relay
lifetime by decreasing the number of times that the relay has to be
switched. In the event of an error, the call to
nise.Session.connect_and_disconnect() attempts to undo any connections made, but
does not attempt to reconnect disconnections. Some errors can be caught
before manipulating hardware, although it is feasible that a hardware
call could fail causing some connections to be momentarily closed and
then reopened.

	Parameters

	
	connect_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – String describing the connections to be made. The route specification
strings are best summarized as a series of routes delimited by
ampersands. The specified routes may be route names, route group names,
or fully specified route paths delimited by square brackets. Some
examples of route specification strings are: MyRoute MyRouteGroup
MyRoute & MyRouteGroup [A->Switch1/r0->B] MyRoute & MyRouteGroup &
[A->Switch1/r0->B] Refer to Route Specification Strings in the NI Switch
Executive Help for more information.

	disconnect_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – String describing the disconnections to be made. The route specification
strings are best summarized as a series of routes delimited by
ampersands. The specified routes may be route names, route group names,
or fully specified route paths delimited by square brackets. Some
examples of route specification strings are: MyRoute MyRouteGroup
MyRoute & MyRouteGroup [A->Switch1/r0->B] MyRoute & MyRouteGroup &
[A->Switch1/r0->B] Refer to Route Specification Strings in the NI Switch
Executive Help for more information.

	multiconnect_mode (nise.MulticonnectMode) – This value sets the connection mode for the method. The mode might be
one of the following: NISE_VAL_USE_DEFAULT_MODE (-1) - uses the mode
selected as the default for the route in the NI Switch Executive virtual
device configuration. If a mode has not been selected for the route in
the NI Switch Executive virtual device, this parameter defaults to
NISE_VAL_MULTICONNECT_ROUTES. NO_MULTICONNECT (0) -
routes specified in the connection specification must be disconnected
before they can be reconnected. Calling Connect on a route that was
connected using No Multiconnect mode results in an error condition.
NISE_VAL_MULTICONNECT_ROUTES (1) - routes specified in the connection
specification can be connected multiple times. The first call to Connect
performs the physical hardware connection. Successive calls to Connect
increase a connection reference count. Similarly, calls to Disconnect
decrease the reference count. Once it reaches 0, the hardware is
physically disconnected. This behavior is slightly different with SPDT
relays. For more information, refer to the Exclusions and SPDT Relays
topic in the NI Switch Executive Help. Multiconnecting routes applies to
entire routes and not to route segments.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	operation_order (nise.OperationOrder) – Sets the order of the operation for the method. Defined values are
Break Before Make and Break After Make. BEFORE
(1) - The method disconnects the routes specified in the disconnect
specification before connecting the routes specified in the connect
specification. This is the typical mode of operation.
AFTER (2) - The method connects the routes
specified in the connection specification before connecting the routes
specified in the disconnection specification. This mode of operation is
normally used when you are switching current and want to ensure that a
load is always connected to your source. The order of operation is to
connect first or disconnect first.

	wait_for_debounce (bool [https://docs.python.org/3/library/functions.html#bool]) – Waits (if true) for switches to debounce between its connect and
disconnect operations. If false, it immediately begins the second
operation after completing the first. The order of connect and
disconnect operation is set by the Operation Order input.

disconnect

	
nise.Session.disconnect(disconnect_spec)

	Disconnects the routes specified in the Disconnection Specification. If
any of the specified routes were originally connected in a
multiconnected mode, the call to nise.Session.disconnect() reduces the reference
count on the route by 1. If the reference count reaches 0, it is
disconnected. If a specified route does not exist, it is an error
condition. In the event of an error, the call to nise.Session.disconnect()
continues to try to disconnect everything specified by the route
specification string but reports the error on completion.

	Parameters

	disconnect_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – String describing the disconnections to be made. The route specification
strings are best summarized as a series of routes delimited by
ampersands. The specified routes may be route names, route group names,
or fully specified route paths delimited by square brackets. Some
examples of route specification strings are: MyRoute MyRouteGroup
MyRoute & MyRouteGroup [A->Switch1/r0->B] MyRoute & MyRouteGroup &
[A->Switch1/r0->B] Refer to Route Specification Strings in the NI Switch
Executive Help for more information.

disconnect_all

	
nise.Session.disconnect_all()

	Disconnects all connections on every IVI switch device managed by the
NISE session reference passed to this method. nise.Session.disconnect_all()
ignores all multiconnect modes. Calling nise.Session.disconnect_all() resets all
of the switch states for the system.

expand_route_spec

	
nise.Session.expand_route_spec(route_spec, expand_action=nise.ExpandAction.ROUTES, expanded_route_spec_size=[1024])

	Expands a route spec string to yield more information about the routes
and route groups within the spec. The route specification string
returned from nise.Session.expand_route_spec() can be passed to other Switch
Executive API methods (such as nise.Session.connect(), nise.Session.disconnect(), and
nise.Session.connect_and_disconnect()) that use route specification strings.

	Parameters

	
	route_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – String describing the routes and route groups to expand. The route
specification strings are best summarized as a series of routes
delimited by ampersands. The specified routes may be route names, route
group names, or fully specified route paths delimited by square
brackets. Some examples of route specification strings are: MyRoute
MyRouteGroup MyRoute & MyRouteGroup [A->Switch1/r0->B] MyRoute &
MyRouteGroup & [A->Switch1/r0->B] Refer to Route Specification Strings
in the NI Switch Executive Help for more information.

	expand_action (nise.ExpandAction) – This value sets the expand action for the method. The action might be
one of the following: ROUTES (0) - expands the
route spec to routes. Converts route groups to their constituent routes.
PATHS (1) - expands the route spec to paths.
Converts routes and route groups to their constituent square bracket
route spec strings. Example: [Dev1/c0->Dev1/r0->Dev1/c1]

	expanded_route_spec_size (list of int) – The routeSpecSize is an ViInt32 that is passed by reference into the
method. As an input, it is the size of the route spec string buffer
being passed. If the route spec string is larger than the string buffer
being passed, only the portion of the route spec string that can fit in
the string buffer is copied into it. On return from the method,
routeSpecSize holds the size required to hold the entire route spec
string. Note that this size may be larger than the buffer size as the
method always returns the size needed to hold the entire buffer. You
may pass NULL for this parameter if you are not interested in the return
value for routeSpecSize and routeSpec.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	The expanded route spec. Route specification strings can be directly
passed to nise.Session.connect(), nise.Session.disconnect(), or nise.Session.connect_and_disconnect()
Refer to Route Specification Strings in the NI Switch Executive Help for
more information. You may pass NULL for this parameter if you are not
interested in the return value. To obtain the route specification
string, you should pass a buffer to this parameter. The size of the
buffer required may be obtained by calling the method with NULL for
this parameter and a valid ViInt32 to routeSpecSize. The routeSpecSize
will contain the size needed to hold the entire route specification
(including the NULL termination character). Common operation is to call
the method twice. The first time you call the method you can
determine the size needed to hold the route specification string.
Allocate a buffer of the appropriate size and then re-call the method
to obtain the entire buffer.

find_route

	
nise.Session.find_route(channel1, channel2, route_spec_size=[1024])

	Finds an existing or potential route between channel 1 and channel 2.
The returned route specification contains the route specification and
the route capability determines whether or not the route existed, is
possible, or is not possible for various reasons. The route
specification string returned from nise.Session.find_route() can be passed to
other Switch Executive API methods (such as nise.Session.connect(),
nise.Session.disconnect(), and nise.Session.connect_and_disconnect()) that use route
specification strings.

	Parameters

	
	channel1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Channel name of one of the endpoints of the route to find. The channel
name must either be a channel alias name or a name in the
device/ivichannel syntax. Examples: MyChannel Switch1/R0

	channel2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Channel name of one of the endpoints of the route to find. The channel
name must either be a channel alias name or a name in the
device/ivichannel syntax. Examples: MyChannel Switch1/R0

	route_spec_size (list of int) – The routeSpecSize is an ViInt32 that is passed by reference into the
method. As an input, it is the size of the route string buffer being
passed. If the route string is larger than the string buffer being
passed, only the portion of the route string that can fit in the string
buffer is copied into it. On return from the method, routeSpecSize
holds the size required to hold the entire route string. Note that this
size may be larger than the buffer size as the method always returns
the size needed to hold the entire buffer. You may pass NULL for this
parameter if you are not interested in the return value for
routeSpecSize and routeSpec.

	Return type

	tuple (route_spec, path_capability)

WHERE

route_spec (str):

The fully specified route path complete with delimiting square
brackets if the route exists or is possible. An example of a fully
specified route string is: [A->Switch1/r0->B] Route specification
strings can be directly passed to nise.Session.connect(), nise.Session.disconnect(), or
nise.Session.connect_and_disconnect() Refer to Route Specification Strings in the
NI Switch Executive Help for more information. You may pass NULL for
this parameter if you are not interested in the return value. To obtain
the route specification string, you should pass a buffer to this
parameter. The size of the buffer required may be obtained by calling
the method with NULL for this parameter and a valid ViInt32 to
routeSpecSize. The routeSpecSize will contain the size needed to hold
the entire route specification (including the NULL termination
character). Common operation is to call the method twice. The first
time you call the method you can determine the size needed to hold the
route specification string. Allocate a buffer of the appropriate size
and then re-call the method to obtain the entire buffer.

path_capability (nise.PathCapability):

The return value which expresses the capability of finding a valid route
between Channel 1 and Channel 2. Refer to the table below for value
descriptions. You may pass NULL for this parameter if you are not
interested in the return value. Route capability might be one of the
following: Path Available (1) A path between channel 1 and channel 2 is
available. The route specification parameter returns a string describing
the available path. Path Exists (2) A path between channel 1 and channel
2 already exists. The route specification parameter returns a string
describing the existing path. Path Unsupported (3) There is no potential
path between channel 1 and channel 2 given the current configuration.
Resource In Use (4) There is a potential path between channel 1 and
channel 2, although a resource needed to complete the path is already in
use. Source Conflict (5) Channel 1 and channel 2 cannot be connected
because their connection would result in an exclusion violation. Channel
Not Available (6) One of the channels is not useable as an endpoint
channel. Make sure that it is not marked as a reserved for routing.
Channels Hardwired (7) The two channels reside on the same hardwire. An
implicit path already exists.

get_all_connections

	
nise.Session.get_all_connections(route_spec_size=[1024])

	Returns the top-level connected routes and route groups. The route
specification string returned from nise.Session.get_all_connections() can be passed
to other Switch Executive API methods (such as nise.Session.connect(),
nise.Session.disconnect(), nise.Session.connect_and_disconnect(), and nise.Session.expand_route_spec())
that use route specification strings.

	Parameters

	route_spec_size (list of int) – The routeSpecSize is an ViInt32 that is passed by reference into the
method. As an input, it is the size of the route spec string buffer
being passed. If the route spec string is larger than the string buffer
being passed, only the portion of the route spec string that can fit in
the string buffer is copied into it. On return from the method,
routeSpecSize holds the size required to hold the entire route spec
string. Note that this size may be larger than the buffer size as the
method always returns the size needed to hold the entire buffer. You
may pass NULL for this parameter if you are not interested in the return
value for routeSpecSize and routeSpec.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	The route spec of all currently connected routes and route groups. Route
specification strings can be directly passed to nise.Session.connect(),
nise.Session.disconnect(), nise.Session.connect_and_disconnect(), or nise.Session.expand_route_spec()
Refer to Route Specification Strings in the NI Switch Executive Help for
more information. You may pass NULL for this parameter if you are not
interested in the return value. To obtain the route specification
string, you should pass a buffer to this parameter. The size of the
buffer required may be obtained by calling the method with NULL for
this parameter and a valid ViInt32 to routeSpecSize. The routeSpecSize
will contain the size needed to hold the entire route specification
(including the NULL termination character). Common operation is to call
the method twice. The first time you call the method you can
determine the size needed to hold the route specification string.
Allocate a buffer of the appropriate size and then re-call the method
to obtain the entire buffer.

is_connected

	
nise.Session.is_connected(route_spec)

	Checks whether the specified routes and routes groups are connected. It
returns true if connected.

	Parameters

	route_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – String describing the connections to check. The route specification
strings are best summarized as a series of routes delimited by
ampersands. The specified routes may be route names, route group names,
or fully specified route paths delimited by square brackets. Some
examples of route specification strings are: MyRoute MyRouteGroup
MyRoute & MyRouteGroup [A->Switch1/r0->B] MyRoute & MyRouteGroup &
[A->Switch1/r0->B] Refer to Route Specification Strings in the NI Switch
Executive Help for more information.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	Returns TRUE if the routes and routes groups are connected or FALSE if
they are not.

is_debounced

	
nise.Session.is_debounced()

	Checks to see if the switching system is debounced or not. This method
does not wait for debouncing to occur. It returns true if the system is
fully debounced. This method is similar to the IviSwtch specific
method.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	Returns TRUE if the system is fully debounced or FALSE if it is still
settling.

wait_for_debounce

	
nise.Session.wait_for_debounce(maximum_time_ms=hightime.timedelta(milliseconds=-1))

	Waits for all of the switches in the NI Switch Executive virtual device
to debounce. This method does not return until either the switching
system is completely debounced and settled or the maximum time has
elapsed and the system is not yet debounced. In the event that the
maximum time elapses, the method returns an error indicating that a
timeout has occurred. To ensure that all of the switches have settled,
NI recommends calling nise.Session.wait_for_debounce() after a series of connection
or disconnection operations and before taking any measurements of the
signals connected to the switching system.

	Parameters

	maximum_time_ms (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or int in milliseconds) – The amount of time to wait (in milliseconds) for the debounce to
complete. A value of 0 checks for debouncing once and returns an error
if the system is not debounced at that time. A value of -1 means to
block for an infinite period of time until the system is debounced.

Session

	Session

	Methods

	close

	connect

	connect_and_disconnect

	disconnect

	disconnect_all

	expand_route_spec

	find_route

	get_all_connections

	is_connected

	is_debounced

	wait_for_debounce

Enums

Enums used in NI Switch Executive

ExpandAction

	
class nise.ExpandAction

	
	
ROUTES

	Expand to routes

	
PATHS

	Expand to paths

MulticonnectMode

	
class nise.MulticonnectMode

	
	
DEFAULT

	Default

	
NO_MULTICONNECT

	No multiconnect

	
MULTICONNECT

	Multiconnect

OperationOrder

	
class nise.OperationOrder

	
	
BEFORE

	Break before make

	
AFTER

	Break after make

PathCapability

	
class nise.PathCapability

	
	
PATH_NEEDS_HARDWIRE

	Path needs hardwire

	
PATH_NEEDS_CONFIG_CHANNEL

	Path needs config channel

	
PATH_AVAILABLE

	Path available

	
PATH_EXISTS

	Path exists

	
PATH_UNSUPPORTED

	Path Unsupported

	
RESOURCE_IN_USE

	Resource in use

	
EXCLUSION_CONFLICT

	Exclusion conflict

	
CHANNEL_NOT_AVAILABLE

	Channel not available

	
CHANNELS_HARDWIRED

	Channels hardwired

Exceptions and Warnings

Error

	
exception nise.errors.Error

	Base exception type that all NI Switch Executive exceptions derive from

DriverError

	
exception nise.errors.DriverError

	An error originating from the NI Switch Executive driver

UnsupportedConfigurationError

	
exception nise.errors.UnsupportedConfigurationError

	An error due to using this module in an usupported platform.

DriverNotInstalledError

	
exception nise.errors.DriverNotInstalledError

	An error due to using this module without the driver runtime installed.

InvalidRepeatedCapabilityError

	
exception nise.errors.InvalidRepeatedCapabilityError

	An error due to an invalid character in a repeated capability

DriverWarning

	
exception nise.errors.DriverWarning

	A warning originating from the NI Switch Executive driver

Examples

You can download all nise examples here [https://github.com/ni/nimi-python/releases/download/1.3.1/nise_examples.zip]

nise_basic_example.py

(nise_basic_example.py) [https://github.com/ni/nimi-python/blob/master/src/nise/examples/nise_basic_example.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	#!/usr/bin/python
import argparse
import nise
import sys

def example(virtual_device_name, connection):
 with nise.Session(virtual_device_name=virtual_device_name) as session:
 session.connect(connection)
 print(connection, ' is now connected.')

def _main(argsv):
 parser = argparse.ArgumentParser(description='Connects the specified connection specification', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--virtual-device', default='SwitchExecutiveExample', help='NI Switch Executive Virtual Device name')
 parser.add_argument('-c', '--connection', default='DIOToUUT', help='Connection Specification')
 args = parser.parse_args(argsv)
 example(args.virtual_device, args.connection)

def main():
 _main(sys.argv[1:])

def test_example():
 example('SwitchExecutiveExample', 'DIOToUUT')

def test_main():
 cmd_line = []
 _main(cmd_line)

if __name__ == '__main__':
 main()

nimodinst module

Installation

As a prerequisite to using the nimodinst module, you must install the NI-ModInst runtime on your system. Visit ni.com/downloads [http://www.ni.com/downloads/] to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-ModInst) can be installed with pip [http://pypi.python.org/pypi/pip]:

$ python -m pip install nimodinst~=1.3.1

Or easy_install from
setuptools [http://pypi.python.org/pypi/setuptools]:

$ python -m easy_install nimodinst

Usage

The following is a basic example of using the nimodinst module to retrieve information on all High Speed Digitizers currently in the system.

import nimodinst
with nimodinst.Session("niscope") as session:
 for device in session:
 print("{: >20} {: >15} {: >10}".format(device.device_name, device.device_model, device.serial_number))

Additional examples for NI-ModInst are located in src/nimodinst/examples/ directory.

API Reference

	Session

	Methods
	close

	Properties
	bus_number

	chassis_number

	device_model

	device_name

	max_pciexpress_link_width

	pciexpress_link_width

	serial_number

	slot_number

	socket_number

	Exceptions and Warnings
	Error

	DriverError

	UnsupportedConfigurationError

	DriverNotInstalledError

	DriverWarning

	Examples
	nimodinst_all_devices.py

Session

	
class nimodinst.Session(self, driver)

	Creates a handle to a list of installed devices supported by the
specified driver. Call this method and pass in the name of a National
Instruments instrument driver, such as “NI-SCOPE”. This method
searches the system and constructs a list of all the installed devices
that are supported by that driver, and then returns both a handle to
this list and the number of devices found. The handle is used with other
methods to query for properties such as device name and model, and to
safely discard the list when finished. Note This handle reflects the
system state when the handle is created (that is, when you call this
method. If you remove devices from the system or rename them in
Measurement & Automation Explorer (MAX), this handle may not refer to an
accurate list of devices. You should destroy the handle using
nimodinst.Session._close_installed_devices_session() and create a new handle using
this method.

	Parameters

	driver (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string specifying the driver whose supported devices you want to find.
This string is not case-sensitive. Some examples are: NI-SCOPE niScope
NI-FGEN niFgen NI-HSDIO niHSDIO NI-DMM niDMM NI-SWITCH niSwitch Note If
you use the empty string for this parameter, NI-ModInst creates a list
of all Modular Instruments devices installed in the system.

Methods

close

	
nimodinst.Session.close()

	Cleans up the NI-ModInst session created by a call to
nimodinst.Session._open_installed_devices_session(). Call this method when you are
finished using the session handle and do not use this handle again.

Note

This method is not needed when using the session context manager

Properties

bus_number

	
nimodinst.Session.bus_number

	The bus on which the device has been enumerated.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIMODINST_ATTR_BUS_NUMBER

chassis_number

	
nimodinst.Session.chassis_number

	The number of the chassis in which the device is installed. This property can only be queried for PXI devices installed in a chassis that has been properly identified in MAX.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIMODINST_ATTR_CHASSIS_NUMBER

device_model

	
nimodinst.Session.device_model

	The model of the device (for example, NI PXI-5122)

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIMODINST_ATTR_DEVICE_MODEL

device_name

	
nimodinst.Session.device_name

	The name of the device, which can be used to open an instrument driver session for that device

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIMODINST_ATTR_DEVICE_NAME

max_pciexpress_link_width

	
nimodinst.Session.max_pciexpress_link_width

	MAX_PCIEXPRESS_LINK_WIDTH

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIMODINST_ATTR_MAX_PCIEXPRESS_LINK_WIDTH

pciexpress_link_width

	
nimodinst.Session.pciexpress_link_width

	PCIEXPRESS_LINK_WIDTH

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIMODINST_ATTR_PCIEXPRESS_LINK_WIDTH

serial_number

	
nimodinst.Session.serial_number

	The serial number of the device

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIMODINST_ATTR_SERIAL_NUMBER

slot_number

	
nimodinst.Session.slot_number

	The slot (for example, in a PXI chassis) in which the device is installed. This property can only be queried for PXI devices installed in a chassis that has been properly identified in MAX.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIMODINST_ATTR_SLOT_NUMBER

socket_number

	
nimodinst.Session.socket_number

	The socket number on which the device has been enumerated

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIMODINST_ATTR_SOCKET_NUMBER

Session

	Session

	Methods

	close

	Properties

	bus_number

	chassis_number

	device_model

	device_name

	max_pciexpress_link_width

	pciexpress_link_width

	serial_number

	slot_number

	socket_number

Exceptions and Warnings

Error

	
exception nimodinst.errors.Error

	Base exception type that all NI-ModInst exceptions derive from

DriverError

	
exception nimodinst.errors.DriverError

	An error originating from the NI-ModInst driver

UnsupportedConfigurationError

	
exception nimodinst.errors.UnsupportedConfigurationError

	An error due to using this module in an usupported platform.

DriverNotInstalledError

	
exception nimodinst.errors.DriverNotInstalledError

	An error due to using this module without the driver runtime installed.

DriverWarning

	
exception nimodinst.errors.DriverWarning

	A warning originating from the NI-ModInst driver

Examples

You can download all nimodinst examples here [https://github.com/ni/nimi-python/releases/download/1.3.1/nimodinst_examples.zip]

nimodinst_all_devices.py

(nimodinst_all_devices.py) [https://github.com/ni/nimi-python/blob/master/src/nimodinst/examples/nimodinst_all_devices.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	#!/usr/bin/python

import nimodinst

def example():
 with nimodinst.Session('') as session:
 if len(session) > 0:
 print("%d items" % len(session))
 print("{: >20} {: >15} {: >10}".format('Name', 'Model', 'S/N'))
 for d in session:
 print("{: >20} {: >15} {: >10}".format(d.device_name, d.device_model, d.serial_number))

def _main():
 example()

def test_example():
 example()

if __name__ == '__main__':
 _main()

nitclk module

Installation

As a prerequisite to using the nitclk module, you must install the NI-TClk runtime on your system. Visit ni.com/downloads [http://www.ni.com/downloads/] to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-TClk) can be installed with pip [http://pypi.python.org/pypi/pip]:

$ python -m pip install nitclk~=1.3.1

Or easy_install from
setuptools [http://pypi.python.org/pypi/setuptools]:

$ python -m easy_install nitclk

Usage

The following is a basic example of using the nitclk module

import nitclk

Additional examples for NI-TClk are located in src/nitclk/examples/ directory.

API Reference

	Public API
	configure_for_homogeneous_triggers

	finish_sync_pulse_sender_synchronize

	initiate

	is_done

	setup_for_sync_pulse_sender_synchronize

	synchronize

	synchronize_to_sync_pulse_sender

	wait_until_done

	SessionReference
	exported_sync_pulse_output_terminal

	exported_tclk_output_terminal

	pause_trigger_master_session

	ref_trigger_master_session

	sample_clock_delay

	sequencer_flag_master_session

	start_trigger_master_session

	sync_pulse_clock_source

	sync_pulse_sender_sync_pulse_source

	sync_pulse_source

	tclk_actual_period

	Exceptions and Warnings
	Error

	DriverError

	UnsupportedConfigurationError

	DriverNotInstalledError

	DriverWarning

	Examples
	nitclk_configure.py

Public API

The nitclk module provides synchronization facilites to allow multiple instruments to simultaneously
respond to triggers, to align Sample Clocks on multiple instruments, and/or to simultaneously start multiple
instruments.

It consists of a set of functions that act on a list of SessionReference objects or nimi-python Session
objects for drivers that support NI-TClk. SessionReference also has a set of properties for configuration.

with niscope.Session('dev1') as scope1, niscope.Session('dev2') as scope2:
 nitclk.configure_for_homogeneous_triggers([scope1, scope2])
 nitclk.initiate([scope1, scope2])
 wfm1 = scope1.fetch()
 wfm2 = scope2.fetch()

configure_for_homogeneous_triggers

	
nitclk.configure_for_homogeneous_triggers(sessions)

	Configures the properties commonly required for the TClk synchronization
of device sessions with homogeneous triggers in a single PXI chassis or
a single PC. Use nitclk.configure_for_homogeneous_triggers() to configure
the properties for the reference clocks, start triggers, reference
triggers, script triggers, and pause triggers. If
nitclk.configure_for_homogeneous_triggers() cannot perform all the steps
appropriate for the given sessions, it returns an error. If an error is
returned, use the instrument driver methods and properties for signal
routing, along with the following NI-TClk properties:
nitclk.SessionReference.start_trigger_master_session
nitclk.SessionReference.ref_trigger_master_session
nitclk.SessionReference.script_trigger_master_session
nitclk.SessionReference.pause_trigger_master_session
nitclk.configure_for_homogeneous_triggers() affects the following clocks and
triggers: - Reference clocks - Start triggers - Reference triggers -
Script triggers - Pause triggers Reference Clocks
nitclk.configure_for_homogeneous_triggers() configures the reference clocks
if they are needed. Specifically, if the internal sample clocks or
internal sample clock timebases are used, and the reference clock source
is not configured–or is set to None (no trigger
configured)–nitclk.configure_for_homogeneous_triggers() configures the
following: PXI–The reference clock source on all devices is set to be
the 10 MHz PXI backplane clock (PXI_CLK10). PCI–One of the devices
exports its 10 MHz onboard reference clock to RTSI 7. The reference
clock source on all devices is set to be RTSI 7. Note: If the reference
clock source is set to a value other than None,
nitclk.configure_for_homogeneous_triggers() cannot configure the reference
clock source. Start Triggers If the start trigger is set to None (no
trigger configured) for all sessions, the sessions are configured to
share the start trigger. The start trigger is shared by: - Implicitly
exporting the start trigger from one session - Configuring the other
sessions for digital edge start triggers with sources corresponding to
the exported start trigger - Setting
nitclk.SessionReference.start_trigger_master_session to the session that is
exporting the trigger for all sessions If the start triggers are None
for all except one session, nitclk.configure_for_homogeneous_triggers()
configures the sessions to share the start trigger from the one excepted
session. The start trigger is shared by: - Implicitly exporting start
trigger from the session with the start trigger that is not None -
Configuring the other sessions for digital-edge start triggers with
sources corresponding to the exported start trigger - Setting
nitclk.SessionReference.start_trigger_master_session to the session that is
exporting the trigger for all sessions If start triggers are configured
for all sessions, nitclk.configure_for_homogeneous_triggers() does not
affect the start triggers. Start triggers are considered to be
configured for all sessions if either of the following conditions is
true: - No session has a start trigger that is None - One session has a
start trigger that is None, and all other sessions have start triggers
other than None. The one session with the None trigger must have
nitclk.SessionReference.start_trigger_master_session set to itself, indicating
that the session itself is the start trigger master Reference Triggers
nitclk.configure_for_homogeneous_triggers() configures sessions that support
reference triggers to share the reference triggers if the reference
triggers are None (no trigger configured) for all except one session.
The reference triggers are shared by: - Implicitly exporting the
reference trigger from the session whose reference trigger is not None -
Configuring the other sessions that support the reference trigger for
digital-edge reference triggers with sources corresponding to the
exported reference trigger - Setting
nitclk.SessionReference.ref_trigger_master_session to the session that is
exporting the trigger for all sessions that support reference trigger If
the reference triggers are configured for all sessions that support
reference triggers, nitclk.configure_for_homogeneous_triggers() does not
affect the reference triggers. Reference triggers are considered to be
configured for all sessions if either one or the other of the following
conditions is true: - No session has a reference trigger that is None -
One session has a reference trigger that is None, and all other sessions
have reference triggers other than None. The one session with the None
trigger must have nitclk.SessionReference.ref_trigger_master_session set to
itself, indicating that the session itself is the reference trigger
master Reference Trigger Holdoffs Acquisition sessions may be configured
with the reference trigger. For acquisition sessions, when the reference
trigger is shared, nitclk.configure_for_homogeneous_triggers() configures
the holdoff properties (which are instrument driver specific) on the
reference trigger master session so that the session does not recognize
the reference trigger before the other sessions are ready. This
condition is only relevant when the sample clock rates, sample clock
timebase rates, sample counts, holdoffs, and/or any delays for the
acquisitions are different. When the sample clock rates, sample clock
timebase rates, and/or the sample counts are different in acquisition
sessions sharing the reference trigger, you should also set the holdoff
properties for the reference trigger master using the instrument driver.
Script Triggers nitclk.configure_for_homogeneous_triggers() configures
sessions that support script triggers to share them, if the script
triggers are None (no trigger configured) for all except one session.
The script triggers are shared in the following ways: - Implicitly
exporting the script trigger from the session whose script trigger is
not None - Configuring the other sessions that support the script
trigger for digital-edge script triggers with sources corresponding to
the exported script trigger - Setting
nitclk.SessionReference.script_trigger_master_session to the session that is
exporting the trigger for all sessions that support script triggers If
the script triggers are configured for all sessions that support script
triggers, nitclk.configure_for_homogeneous_triggers() does not affect script
triggers. Script triggers are considered to be configured for all
sessions if either one or the other of the following conditions are
true: - No session has a script trigger that is None - One session has a
script trigger that is None and all other sessions have script triggers
other than None. The one session with the None trigger must have
nitclk.SessionReference.script_trigger_master_session set to itself, indicating
that the session itself is the script trigger master Pause Triggers
nitclk.configure_for_homogeneous_triggers() configures generation sessions
that support pause triggers to share them, if the pause triggers are
None (no trigger configured) for all except one session. The pause
triggers are shared by: - Implicitly exporting the pause trigger from
the session whose script trigger is not None - Configuring the other
sessions that support the pause trigger for digital-edge pause triggers
with sources corresponding to the exported pause trigger - Setting
nitclk.SessionReference.pause_trigger_master_session to the session that is
exporting the trigger for all sessions that support script triggers If
the pause triggers are configured for all generation sessions that
support pause triggers, nitclk.configure_for_homogeneous_triggers() does not
affect pause triggers. Pause triggers are considered to be configured
for all sessions if either one or the other of the following conditions
is true: - No session has a pause trigger that is None - One session has
a pause trigger that is None and all other sessions have pause triggers
other than None. The one session with the None trigger must have
nitclk.SessionReference.pause_trigger_master_session set to itself, indicating
that the session itself is the pause trigger master Note: TClk
synchronization is not supported for pause triggers on acquisition
sessions.

	Parameters

	sessions (list of (Driver Session or nitclk.SessionReference)) – sessions is an array of sessions that are being synchronized.

finish_sync_pulse_sender_synchronize

	
nitclk.finish_sync_pulse_sender_synchronize(sessions, min_time=hightime.timedelta(seconds=0.0))

	Finishes synchronizing the Sync Pulse Sender.

	Parameters

	
	sessions (list of (nimi-python Session class or nitclk.SessionReference)) – sessions is an array of sessions that are being synchronized.

	min_time (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – Minimal period of TClk, expressed in seconds. Supported values are
between 0.0 s and 0.050 s (50 ms). Minimal period for a single
chassis/PC is 200 ns. If the specified value is less than 200 ns,
NI-TClk automatically coerces minTime to 200 ns. For multichassis
synchronization, adjust this value to account for propagation delays
through the various devices and cables.

initiate

	
nitclk.initiate(sessions)

	Initiates the acquisition or generation sessions specified, taking into
consideration any special requirements needed for synchronization. For
example, the session exporting the TClk-synchronized start trigger is
not initiated until after nitclk.initiate() initiates all the sessions
that import the TClk-synchronized start trigger.

	Parameters

	sessions (list of (Driver Session or nitclk.SessionReference)) – sessions is an array of sessions that are being synchronized.

is_done

	
nitclk.is_done(sessions)

	Monitors the progress of the acquisitions and/or generations
corresponding to sessions.

	Parameters

	sessions (list of (Driver Session or nitclk.SessionReference)) – sessions is an array of sessions that are being synchronized.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	Indicates that the operation is done. The operation is done when each
session has completed without any errors or when any one of the sessions
reports an error.

setup_for_sync_pulse_sender_synchronize

	
nitclk.setup_for_sync_pulse_sender_synchronize(sessions, min_time=hightime.timedelta(seconds=0.0))

	Configures the TClks on all the devices and prepares the Sync Pulse Sender for synchronization

	Parameters

	
	sessions (list of (Driver Session or nitclk.SessionReference)) – sessions is an array of sessions that are being synchronized.

	min_time (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – Minimal period of TClk, expressed in seconds. Supported values are
between 0.0 s and 0.050 s (50 ms). Minimal period for a single
chassis/PC is 200 ns. If the specified value is less than 200 ns,
NI-TClk automatically coerces minTime to 200 ns. For multichassis
synchronization, adjust this value to account for propagation delays
through the various devices and cables.

synchronize

	
nitclk.synchronize(sessions, min_tclk_period=hightime.timedelta(seconds=0.0))

	Synchronizes the TClk signals on the given sessions. After
nitclk.synchronize() executes, TClk signals from all sessions are
synchronized. Note: Before using this NI-TClk method, verify that your
system is configured as specified in the PXI Trigger Lines and RTSI
Lines topic of the NI-TClk Synchronization Help. You can locate this
help file at Start>>Programs>>National Instruments>>NI-TClk.

	Parameters

	
	sessions (list of (Driver Session or nitclk.SessionReference)) – sessions is an array of sessions that are being synchronized.

	min_tclk_period (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – Minimal period of TClk, expressed in seconds. Supported values are
between 0.0 s and 0.050 s (50 ms). Minimal period for a single
chassis/PC is 200 ns. If the specified value is less than 200 ns,
NI-TClk automatically coerces minTime to 200 ns. For multichassis
synchronization, adjust this value to account for propagation delays
through the various devices and cables.

synchronize_to_sync_pulse_sender

	
nitclk.synchronize_to_sync_pulse_sender(sessions, min_time=hightime.timedelta(seconds=0.0))

	Synchronizes the other devices to the Sync Pulse Sender.

	Parameters

	
	sessions (list of (Driver Session or nitclk.SessionReference)) – sessions is an array of sessions that are being synchronized.

	min_time (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – Minimal period of TClk, expressed in seconds. Supported values are
between 0.0 s and 0.050 s (50 ms). Minimal period for a single
chassis/PC is 200 ns. If the specified value is less than 200 ns,
NI-TClk automatically coerces minTime to 200 ns. For multichassis
synchronization, adjust this value to account for propagation delays
through the various devices and cables.

wait_until_done

	
nitclk.wait_until_done(sessions, timeout=hightime.timedelta(seconds=0.0))

	Call this method to pause execution of your program until the
acquisitions and/or generations corresponding to sessions are done or
until the method returns a timeout error. nitclk.wait_until_done() is a
blocking method that periodically checks the operation status. It
returns control to the calling program if the operation completes
successfully or an error occurs (including a timeout error). This
method is most useful for finite data operations that you expect to
complete within a certain time.

	Parameters

	
	sessions (list of (Driver Session or nitclk.SessionReference)) – sessions is an array of sessions that are being synchronized.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The amount of time in seconds that nitclk.wait_until_done() waits for the
sessions to complete. If timeout is exceeded, nitclk.wait_until_done()
returns an error.

SessionReference

	
class nitclk.SessionReference(session_number)

	Helper class that contains all NI-TClk properties. This class is what is returned by
any nimi-python Session class tclk attribute when the driver supports NI-TClk

with niscope.Session('dev1') as session:
 session.tclk.sample_clock_delay = .42

..note:: Constructing this class is an advanced use case and should not be needed in most circumstances.

	Parameters

	session_number (int [https://docs.python.org/3/library/functions.html#int], nimi-python Session class, SessionReference) – nitclk session

exported_sync_pulse_output_terminal

	
nitclk.SessionReference.exported_sync_pulse_output_terminal

	Specifies the destination of the Sync Pulse. This property is most often used when synchronizing a multichassis system.
Values
Empty string. Empty string is a valid value, indicating that the signal is not exported.
PXI Devices - ‘PXI_Trig0’ through ‘PXI_Trig7’ and device-specific settings
PCI Devices - ‘RTSI_0’ through ‘RTSI_7’ and device-specific settings
Examples of Device-Specific Settings
- NI PXI-5122 supports ‘PFI0’ and ‘PFI1’
- NI PXI-5421 supports ‘PFI0’, ‘PFI1’, ‘PFI4’, and ‘PFI5’
- NI PXI-6551/6552 supports ‘PFI0’, ‘PFI1’, ‘PFI2’, and ‘PFI3’
Default Value is empty string

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Export Sync Pulse Output Terminal

	C Attribute: NITCLK_ATTR_EXPORTED_SYNC_PULSE_OUTPUT_TERMINAL

exported_tclk_output_terminal

	
nitclk.SessionReference.exported_tclk_output_terminal

	Specifies the destination of the device’s TClk signal.
Values
Empty string. Empty string is a valid value, indicating that the signal is not exported.
PXI Devices - ‘PXI_Trig0’ through ‘PXI_Trig7’ and device-specific settings
PCI Devices - ‘RTSI_0’ through ‘RTSI_7’ and device-specific settings
Examples of Device-Specific Settings
- NI PXI-5122 supports ‘PFI0’ and ‘PFI1’
- NI PXI-5421 supports ‘PFI0’, ‘PFI1’, ‘PFI4’, and ‘PFI5’
- NI PXI-6551/6552 supports ‘PFI0’, ‘PFI1’, ‘PFI2’, and ‘PFI3’
Default Value is empty string

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Output Terminal

	C Attribute: NITCLK_ATTR_EXPORTED_TCLK_OUTPUT_TERMINAL

pause_trigger_master_session

	
nitclk.SessionReference.pause_trigger_master_session

	Specifies the pause trigger master session.
For external triggers, the session that originally receives the trigger. For None (no trigger configured) or software triggers, the session that originally generates the trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	Driver Session or nitclk.SessionReference

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Pause Trigger Master Session

	C Attribute: NITCLK_ATTR_PAUSE_TRIGGER_MASTER_SESSION

ref_trigger_master_session

	
nitclk.SessionReference.ref_trigger_master_session

	Specifies the reference trigger master session.
For external triggers, the session that originally receives the trigger. For None (no trigger configured) or software triggers, the session that originally generates the trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	Driver Session or nitclk.SessionReference

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Reference Trigger Master Session

	C Attribute: NITCLK_ATTR_REF_TRIGGER_MASTER_SESSION

sample_clock_delay

	
nitclk.SessionReference.sample_clock_delay

	Specifies the sample clock delay.
Specifies the delay, in seconds, to apply to the session sample clock relative to the other synchronized sessions. During synchronization, NI-TClk aligns the sample clocks on the synchronized devices. If you want to delay the sample clocks, set this property before calling nitclk.synchronize().
not supported for acquisition sessions.
Values - Between minus one and plus one period of the sample clock.
One sample clock period is equal to (1/sample clock rate). For example, for a session with sample rate of 100 MS/s, you can specify sample clock delays between -10.0 ns and +10.0 ns.
Default Value is 0

Note

Sample clock delay is supported for generation sessions only; it is

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Sample Clock Delay

	C Attribute: NITCLK_ATTR_SAMPLE_CLOCK_DELAY

sequencer_flag_master_session

	
nitclk.SessionReference.sequencer_flag_master_session

	Specifies the sequencer flag master session.
For external triggers, the session that originally receives the trigger.
For None (no trigger configured) or software triggers, the session that
originally generates the trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	Driver Session or nitclk.SessionReference

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Sequencer Flag Master Session

	C Attribute: NITCLK_ATTR_SEQUENCER_FLAG_MASTER_SESSION

start_trigger_master_session

	
nitclk.SessionReference.start_trigger_master_session

	Specifies the start trigger master session.
For external triggers, the session that originally receives the trigger. For None (no trigger configured) or software triggers, the session that originally generates the trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	Driver Session or nitclk.SessionReference

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Start Trigger Master Session

	C Attribute: NITCLK_ATTR_START_TRIGGER_MASTER_SESSION

sync_pulse_clock_source

	
nitclk.SessionReference.sync_pulse_clock_source

	Specifies the Sync Pulse Clock source. This property is typically used to synchronize PCI devices when you want to control RTSI 7 yourself. Make sure that a 10 MHz clock is driven onto RTSI 7.
Values
PCI Devices - ‘RTSI_7’ and ‘None’
PXI Devices - ‘PXI_CLK10’ and ‘None’
Default Value - ‘None’ directs nitclk.synchronize() to create the necessary routes. For PCI, one of the synchronized devices drives a 10 MHz clock on RTSI 7 unless that line is already being driven.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Sync Pulse Clock Source

	C Attribute: NITCLK_ATTR_SYNC_PULSE_CLOCK_SOURCE

sync_pulse_sender_sync_pulse_source

	
nitclk.SessionReference.sync_pulse_sender_sync_pulse_source

	Specifies the external sync pulse source for the Sync Pulse Sender. You can use this source to synchronize the Sync Pulse Sender with an external non-TClk source.
Values
Empty string. Empty string is a valid value, indicating that the signal is not exported.
PXI Devices - ‘PXI_Trig0’ through ‘PXI_Trig7’ and device-specific settings
PCI Devices - ‘RTSI_0’ through ‘RTSI_7’ and device-specific settings
Examples of Device-Specific Settings
- NI PXI-5122 supports ‘PFI0’ and ‘PFI1’
- NI PXI-5421 supports ‘PFI0’, ‘PFI1’, ‘PFI4’, and ‘PFI5’
- NI PXI-6551/6552 supports ‘PFI0’, ‘PFI1’, ‘PFI2’, and ‘PFI3’
Default Value is empty string

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: External Pulse Source

	C Attribute: NITCLK_ATTR_SYNC_PULSE_SENDER_SYNC_PULSE_SOURCE

sync_pulse_source

	
nitclk.SessionReference.sync_pulse_source

	Specifies the Sync Pulse source. This property is most often used when synchronizing a multichassis system.
Values
Empty string
PXI Devices - ‘PXI_Trig0’ through ‘PXI_Trig7’ and device-specific settings
PCI Devices - ‘RTSI_0’ through ‘RTSI_7’ and device-specific settings
Examples of Device-Specific Settings
- NI PXI-5122 supports ‘PFI0’ and ‘PFI1’
- NI PXI-5421 supports ‘PFI0’, ‘PFI1’, ‘PFI2’, and ‘PFI3’
- NI PXI-6551/6552 supports ‘PFI0’, ‘PFI1’, ‘PFI2’, and ‘PFI3’
Default Value - Empty string. This default value directs nitclk.synchronize() to set this property when all the synchronized devices are in one PXI chassis. To synchronize a multichassis system, you must set this property before calling nitclk.synchronize().

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Sync Pulse Source

	C Attribute: NITCLK_ATTR_SYNC_PULSE_SOURCE

tclk_actual_period

	
nitclk.SessionReference.tclk_actual_period

	Indicates the computed TClk period that will be used during the acquisition.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Channel Based

	No

	Resettable

	No

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Period

	C Attribute: NITCLK_ATTR_TCLK_ACTUAL_PERIOD

nitclk

	Public API

	configure_for_homogeneous_triggers

	finish_sync_pulse_sender_synchronize

	initiate

	is_done

	setup_for_sync_pulse_sender_synchronize

	synchronize

	synchronize_to_sync_pulse_sender

	wait_until_done

	SessionReference

	exported_sync_pulse_output_terminal

	exported_tclk_output_terminal

	pause_trigger_master_session

	ref_trigger_master_session

	sample_clock_delay

	sequencer_flag_master_session

	start_trigger_master_session

	sync_pulse_clock_source

	sync_pulse_sender_sync_pulse_source

	sync_pulse_source

	tclk_actual_period

Exceptions and Warnings

Error

	
exception nitclk.errors.Error

	Base exception type that all NI-TClk exceptions derive from

DriverError

	
exception nitclk.errors.DriverError

	An error originating from the NI-TClk driver

UnsupportedConfigurationError

	
exception nitclk.errors.UnsupportedConfigurationError

	An error due to using this module in an usupported platform.

DriverNotInstalledError

	
exception nitclk.errors.DriverNotInstalledError

	An error due to using this module without the driver runtime installed.

DriverWarning

	
exception nitclk.errors.DriverWarning

	A warning originating from the NI-TClk driver

Examples

You can download all nitclk examples here [https://github.com/ni/nimi-python/releases/download/1.3.1/nitclk_examples.zip]

nitclk_configure.py

(nitclk_configure.py) [https://github.com/ni/nimi-python/blob/master/src/nitclk/examples/nitclk_configure.py]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	#!/usr/bin/python

import argparse
import nitclk
import pprint
import sys

pp = pprint.PrettyPrinter(indent=4, width=80)

def example(resource_name, channels, options, length, voltage):
 pass

def _main(argsv):
 parser = argparse.ArgumentParser(description='Acquires one record from the given channels.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of a National Instruments Digitizer')
 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
 parser.add_argument('-l', '--length', default=1000, type=int, help='Measure record length')
 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage range (V)')
 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 args = parser.parse_args(argsv)
 example(args.resource_name, args.channels, args.option_string, args.length, args.voltage)

def main():
 _main(sys.argv[1:])

def test_example():
 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe', }, }
 example('PXI1Slot2', '0', options, 1000, 1.0)

def test_main():
 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe',]
 _main(cmd_line)

if __name__ == '__main__':
 main()

 Python Module Index

 n

 		 	

 		
 n	

 	
 	
 nidcpower	

 	
 	
 nidigital	

 	
 	
 nidmm	

 	
 	
 nifgen	

 	
 	
 nimodinst	

 	
 	
 niscope	

 	
 	
 nise	

 	
 	
 niswitch	

 	
 	
 nitclk	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

A

 	
 	abort() (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	abort_keep_alive() (in module nidigital.Session)

 	absolute_delay (in module nifgen.Session)

 	absolute_sample_clock_offset (in module niscope.Session)

 	AC (nidmm.WaveformCoupling attribute)

 	(niscope.TriggerCoupling attribute)

 	(niscope.VerticalCoupling attribute)

 	AC_CURRENT (nidmm.Function attribute)

 	ac_max_freq (in module nidmm.Session)

 	ac_min_freq (in module nidmm.Session)

 	AC_PLUS_HF_REJECT (niscope.TriggerCoupling attribute)

 	AC_VOLTS (nidmm.Function attribute)

 	AC_VOLTS_DC_COUPLED (nidmm.Function attribute)

 	accessory_gain (in module niscope.Session)

 	accessory_offset (in module niscope.Session)

 	acq_arm_source (in module niscope.Session)

 	acquisition_start_time (in module niscope.Session)

 	acquisition_status() (in module niscope.Session)

 	acquisition_type (in module niscope.Session)

 	AcquisitionStatus (class in nidmm)

 	(class in niscope)

 	AcquisitionType (class in niscope)

 	active_advanced_sequence (in module nidcpower.Session)

 	active_advanced_sequence_step (in module nidcpower.Session)

 	ACTIVE_LOAD (nidigital.TerminationMode attribute)

 	active_load_ioh (in module nidigital.Session)

 	active_load_iol (in module nidigital.Session)

 	active_load_vcom (in module nidigital.Session)

 	actual_power_allocation (in module nidcpower.Session)

 	adc_calibration (in module nidmm.Session)

 	ADCCalibration (class in nidmm)

 	adv_trig_src (in module niscope.Session)

 	ADVANCE (niscope.WhichTrigger attribute)

 	advance_trigger_terminal_name (in module niscope.Session)

 	AFTER (nise.OperationOrder attribute)

 	ALL (nidigital.HistoryRAMCyclesToAcquire attribute)

 	all_marker_events_latched_status (in module nifgen.Session)

 	all_marker_events_live_status (in module nifgen.Session)

 	allocate_named_waveform() (in module nifgen.Session)

 	allocate_waveform() (in module nifgen.Session)

 	allow_more_records_than_memory (in module niscope.Session)

 	analog_bus_sharing_enable (in module niswitch.Session)

 	analog_data_mask (in module nifgen.Session)

 	
 	ANALOG_DETECTION_CIRCUIT (niscope.RefTriggerDetectorLocation attribute)

 	analog_filter_enabled (in module nifgen.Session)

 	analog_path (in module nifgen.Session)

 	analog_static_value (in module nifgen.Session)

 	AnalogPath (class in nifgen)

 	ANY_FIELD (niscope.VideoTriggerEvent attribute)

 	ANY_LINE (niscope.VideoTriggerEvent attribute)

 	aperture_time (in module nidcpower.Session)

 	(in module nidmm.Session)

 	aperture_time_units (in module nidcpower.Session)

 	(in module nidmm.Session)

 	ApertureTimeUnits (class in nidcpower)

 	(class in nidmm)

 	apply_levels_and_timing() (in module nidigital.Session)

 	apply_tdr_offsets() (in module nidigital.Session)

 	ARB (nifgen.OutputMode attribute)

 	arb_gain (in module nifgen.Session)

 	arb_marker_position (in module nifgen.Session)

 	arb_offset (in module nifgen.Session)

 	arb_repeat_count (in module nifgen.Session)

 	arb_sample_rate (in module nifgen.Session)

 	arb_sequence_handle (in module nifgen.Session)

 	arb_waveform_handle (in module nifgen.Session)

 	arm_ref_trig_src (in module niscope.Session)

 	ARM_REFERENCE (niscope.WhichTrigger attribute)

 	ASYMMETRIC (nidcpower.ComplianceLimitSymmetry attribute)

 	AT (nifgen.BusType attribute)

 	AUTO (nidmm.ADCCalibration attribute)

 	(nidmm.AutoZero attribute)

 	(nidmm.DCNoiseRejection attribute)

 	(nidmm.LCCalculationModel attribute)

 	(niscope.TriggerModifier attribute)

 	AUTO_LEVEL (niscope.TriggerModifier attribute)

 	auto_range_value (in module nidmm.Session)

 	auto_setup() (in module niscope.Session)

 	auto_zero (in module nidcpower.Session)

 	(in module nidmm.Session)

 	AUTOMATIC (nidcpower.PowerAllocationMode attribute)

 	(nidcpower.PowerSource attribute)

 	(nifgen.ClockMode attribute)

 	AUTOMATICALLY_AFTER_SOURCE_COMPLETE (nidcpower.MeasureWhen attribute)

 	AutoZero (class in nidcpower)

 	(class in nidmm)

 	aux_power_enabled (in module nifgen.Session)

 	AUX_TRIG1 (nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	AUXILIARY (nidcpower.PowerSource attribute)

 	(nidcpower.PowerSourceInUse attribute)

 	auxiliary_power_source_available (in module nidcpower.Session)

B

 	
 	B (nidmm.ThermocoupleType attribute)

 	backlog (in module niscope.Session)

 	bandpass_filter_enabled (in module niscope.Session)

 	bandwidth (in module niswitch.Session)

 	BEFORE (nise.OperationOrder attribute)

 	BIG (nifgen.ByteOrder attribute)

 	binary_sample_width (in module niscope.Session)

 	BitOrder (class in nidigital)

 	BREAK_AFTER_MAKE (niswitch.ScanMode attribute)

 	
 	BREAK_BEFORE_MAKE (niswitch.ScanMode attribute)

 	BROADCAST (nidigital.SourceDataMapping attribute)

 	buffer_size (in module nidmm.Session)

 	BURST (nifgen.TriggerMode attribute)

 	burst_pattern() (in module nidigital.Session)

 	bus_number (in module nimodinst.Session)

 	bus_type (in module nifgen.Session)

 	BusType (class in nifgen)

 	ByteOrder (class in nifgen)

C

 	
 	cable_comp_type (in module nidmm.Session)

 	cable_sense_mode (in module niscope.Session)

 	cable_sense_signal_enable (in module niscope.Session)

 	cable_sense_voltage (in module niscope.Session)

 	CableCompensationType (class in nidmm)

 	CableSenseMode (class in niscope)

 	cache (in module nidigital.Session)

 	can_connect() (in module niswitch.Session)

 	CAPACITANCE (nidmm.Function attribute)

 	channel_count (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	channel_delay (in module nifgen.Session)

 	channel_enabled (in module niscope.Session)

 	CHANNEL_NOT_AVAILABLE (nise.PathCapability attribute)

 	(niswitch.PathCapability attribute)

 	channel_terminal_configuration (in module niscope.Session)

 	CHANNELS_HARDWIRED (nise.PathCapability attribute)

 	characteristic_impedance (in module niswitch.Session)

 	chassis_number (in module nimodinst.Session)

 	clear_arb_memory() (in module nifgen.Session)

 	clear_arb_sequence() (in module nifgen.Session)

 	clear_freq_list() (in module nifgen.Session)

 	clear_user_standard_waveform() (in module nifgen.Session)

 	clock_generator_abort() (in module nidigital.Session)

 	clock_generator_frequency (in module nidigital.Session)

 	clock_generator_generate_clock() (in module nidigital.Session)

 	clock_generator_is_running (in module nidigital.Session)

 	CLOCK_IN (nifgen.ReferenceClockSource attribute)

 	(nifgen.SampleClockSource attribute)

 	(nifgen.SampleClockTimebaseSource attribute)

 	clock_mode (in module nifgen.Session)

 	ClockMode (class in nifgen)

 	CLOSE (niswitch.RelayAction attribute)

 	close() (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module nimodinst.Session)

 	(in module niscope.Session)

 	(in module nise.Session)

 	(in module niswitch.Session)

 	CLOSED (niswitch.RelayPosition attribute)

 	commit() (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	common_mode_offset (in module nifgen.Session)

 	COMPARE_STROBE (nidigital.TimeSetEdgeType attribute)

 	COMPARE_STROBE2 (nidigital.TimeSetEdgeType attribute)

 	COMPLETE (niscope.AcquisitionStatus attribute)

 	compliance_limit_symmetry (in module nidcpower.Session)

 	ComplianceLimitSymmetry (class in nidcpower)

 	CONDITIONAL_JUMP (nidigital.SoftwareTrigger attribute)

 	conditional_jump_trigger_terminal_name (in module nidigital.Session)

 	conditional_jump_trigger_type (in module nidigital.Session)

 	configure_active_load_levels() (in module nidigital.Session)

 	configure_aperture_time() (in module nidcpower.Session)

 	configure_arb_sequence() (in module nifgen.Session)

 	configure_arb_waveform() (in module nifgen.Session)

 	configure_chan_characteristics() (in module niscope.Session)

 	configure_equalization_filter_coefficients() (in module niscope.Session)

 	configure_for_homogeneous_triggers() (in module nitclk)

 	configure_freq_list() (in module nifgen.Session)

 	configure_horizontal_timing() (in module niscope.Session)

 	configure_measurement_absolute() (in module nidmm.Session)

 	
 	configure_measurement_digits() (in module nidmm.Session)

 	configure_multi_point() (in module nidmm.Session)

 	configure_pattern_burst_sites() (in module nidigital.Session)

 	configure_rtd_custom() (in module nidmm.Session)

 	configure_rtd_type() (in module nidmm.Session)

 	configure_standard_waveform() (in module nifgen.Session)

 	configure_thermistor_custom() (in module nidmm.Session)

 	configure_thermocouple() (in module nidmm.Session)

 	configure_time_set_compare_edges_strobe() (in module nidigital.Session)

 	configure_time_set_compare_edges_strobe2x() (in module nidigital.Session)

 	configure_time_set_drive_edges() (in module nidigital.Session)

 	configure_time_set_drive_edges2x() (in module nidigital.Session)

 	configure_time_set_drive_format() (in module nidigital.Session)

 	configure_time_set_edge() (in module nidigital.Session)

 	configure_time_set_edge_multiplier() (in module nidigital.Session)

 	configure_time_set_period() (in module nidigital.Session)

 	configure_trigger() (in module nidmm.Session)

 	configure_trigger_digital() (in module niscope.Session)

 	configure_trigger_edge() (in module niscope.Session)

 	configure_trigger_hysteresis() (in module niscope.Session)

 	configure_trigger_immediate() (in module niscope.Session)

 	configure_trigger_software() (in module niscope.Session)

 	configure_trigger_video() (in module niscope.Session)

 	configure_trigger_window() (in module niscope.Session)

 	configure_vertical() (in module niscope.Session)

 	configure_voltage_levels() (in module nidigital.Session)

 	configure_waveform_acquisition() (in module nidmm.Session)

 	connect() (in module nise.Session)

 	(in module niswitch.Session)

 	connect_and_disconnect() (in module nise.Session)

 	connect_multiple() (in module niswitch.Session)

 	CONTINUOUS (nifgen.TriggerMode attribute)

 	continuous_scan (in module niswitch.Session)

 	create_advanced_arb_sequence() (in module nifgen.Session)

 	create_advanced_sequence() (in module nidcpower.Session)

 	create_advanced_sequence_step() (in module nidcpower.Session)

 	create_arb_sequence() (in module nifgen.Session)

 	create_capture_waveform_from_file_digicapture() (in module nidigital.Session)

 	create_capture_waveform_parallel() (in module nidigital.Session)

 	create_capture_waveform_serial() (in module nidigital.Session)

 	create_freq_list() (in module nifgen.Session)

 	create_source_waveform_from_file_tdms() (in module nidigital.Session)

 	create_source_waveform_parallel() (in module nidigital.Session)

 	create_source_waveform_serial() (in module nidigital.Session)

 	create_time_set() (in module nidigital.Session)

 	create_waveform_from_file_f64() (in module nifgen.Session)

 	create_waveform_from_file_i16() (in module nifgen.Session)

 	create_waveform_numpy() (in module nifgen.Session)

 	CURRENT (nidcpower.MeasurementTypes attribute)

 	(nidcpower.OutputStates attribute)

 	(nidigital.PPMUMeasurementType attribute)

 	(nidigital.PPMUOutputFunction attribute)

 	(nifgen.RelativeTo attribute)

 	current_compensation_frequency (in module nidcpower.Session)

 	current_gain_bandwidth (in module nidcpower.Session)

 	current_level (in module nidcpower.Session)

 	current_level_autorange (in module nidcpower.Session)

 	current_level_range (in module nidcpower.Session)

 	current_limit (in module nidcpower.Session)

 	current_limit_autorange (in module nidcpower.Session)

 	current_limit_behavior (in module nidcpower.Session)

 	current_limit_high (in module nidcpower.Session)

 	current_limit_low (in module nidcpower.Session)

 	current_limit_range (in module nidcpower.Session)

 	current_pole_zero_ratio (in module nidcpower.Session)

 	current_source (in module nidmm.Session)

 	CUSTOM (nidcpower.TransientResponse attribute)

 	(nidmm.RTDType attribute)

 	(nidmm.ThermistorType attribute)

 	CYCLE_NUMBER (nidigital.HistoryRAMTriggerType attribute)

 	cycle_number_history_ram_trigger_cycle_number (in module nidigital.Session)

D

 	
 	D (nidigital.PinState attribute)

 	data_marker_event_data_bit_number (in module nifgen.Session)

 	data_marker_event_level_polarity (in module nifgen.Session)

 	data_marker_event_output_terminal (in module nifgen.Session)

 	data_marker_events_count (in module nifgen.Session)

 	data_transfer_block_size (in module nifgen.Session)

 	(in module niscope.Session)

 	data_transfer_maximum_bandwidth (in module nifgen.Session)

 	(in module niscope.Session)

 	data_transfer_maximum_in_flight_reads (in module nifgen.Session)

 	data_transfer_preferred_packet_size (in module nifgen.Session)

 	(in module niscope.Session)

 	DataMarkerEventLevelPolarity (class in nifgen)

 	DC (nidmm.WaveformCoupling attribute)

 	(nifgen.Waveform attribute)

 	(niscope.TriggerCoupling attribute)

 	(niscope.VerticalCoupling attribute)

 	dc_bias (in module nidmm.Session)

 	DC_CURRENT (nidcpower.OutputFunction attribute)

 	(nidmm.Function attribute)

 	dc_noise_rejection (in module nidcpower.Session)

 	(in module nidmm.Session)

 	DC_VOLTAGE (nidcpower.OutputFunction attribute)

 	DC_VOLTS (nidmm.Function attribute)

 	DCNoiseRejection (class in nidcpower)

 	(class in nidmm)

 	DDC (niscope.AcquisitionType attribute)

 	DDC_CLOCK_IN (nifgen.SampleClockSource attribute)

 	DDC_OUTPUT (niscope.RefTriggerDetectorLocation attribute)

 	DEFAULT (nise.MulticonnectMode attribute)

 	define_user_standard_waveform() (in module nifgen.Session)

 	delete_advanced_sequence() (in module nidcpower.Session)

 	delete_all_time_sets() (in module nidigital.Session)

 	delete_script() (in module nifgen.Session)

 	delete_waveform() (in module nifgen.Session)

 	device_model (in module nimodinst.Session)

 	device_name (in module nimodinst.Session)

 	device_temperature (in module niscope.Session)

 	DIFFERENTIAL (nifgen.TerminalConfiguration attribute)

 	(niscope.TerminalConfiguration attribute)

 	DIGITAL (nidigital.SelectedFunction attribute)

 	(niscope.TriggerType attribute)

 	digital_data_mask (in module nifgen.Session)

 	DIGITAL_EDGE (nidcpower.TriggerType attribute)

 	(nidigital.TriggerType attribute)

 	(nifgen.ScriptTriggerType attribute)

 	(nifgen.StartTriggerType attribute)

 	digital_edge_conditional_jump_trigger_edge (in module nidigital.Session)

 	digital_edge_conditional_jump_trigger_source (in module nidigital.Session)

 	digital_edge_measure_trigger_input_terminal (in module nidcpower.Session)

 	digital_edge_pulse_trigger_input_terminal (in module nidcpower.Session)

 	
 	digital_edge_script_trigger_edge (in module nifgen.Session)

 	digital_edge_script_trigger_source (in module nifgen.Session)

 	digital_edge_sequence_advance_trigger_input_terminal (in module nidcpower.Session)

 	digital_edge_source_trigger_input_terminal (in module nidcpower.Session)

 	digital_edge_start_trigger_edge (in module nidigital.Session)

 	(in module nifgen.Session)

 	digital_edge_start_trigger_input_terminal (in module nidcpower.Session)

 	digital_edge_start_trigger_source (in module nidigital.Session)

 	(in module nifgen.Session)

 	digital_filter_enable (in module niswitch.Session)

 	digital_filter_enabled (in module nifgen.Session)

 	digital_filter_interpolation_factor (in module nifgen.Session)

 	digital_gain (in module nifgen.Session)

 	DIGITAL_LEVEL (nifgen.ScriptTriggerType attribute)

 	digital_pattern_enabled (in module nifgen.Session)

 	digital_static_value (in module nifgen.Session)

 	DigitalEdge (class in nidigital)

 	DIODE (nidmm.Function attribute)

 	DIRECT (nifgen.AnalogPath attribute)

 	disable() (in module nidcpower.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	disable_sites() (in module nidigital.Session)

 	DISABLED (nidcpower.PowerAllocationMode attribute)

 	(niscope.CableSenseMode attribute)

 	DISCONNECT (nidigital.SelectedFunction attribute)

 	disconnect() (in module nise.Session)

 	(in module niswitch.Session)

 	disconnect_all() (in module nise.Session)

 	(in module niswitch.Session)

 	disconnect_multiple() (in module niswitch.Session)

 	DIVIDE_DOWN (nifgen.ClockMode attribute)

 	DONE (nifgen.HardwareState attribute)

 	done_event_output_terminal (in module nifgen.Session)

 	DRIVE_DATA (nidigital.TimeSetEdgeType attribute)

 	DRIVE_DATA2 (nidigital.TimeSetEdgeType attribute)

 	DRIVE_OFF (nidigital.TimeSetEdgeType attribute)

 	DRIVE_ON (nidigital.TimeSetEdgeType attribute)

 	DRIVE_RETURN (nidigital.TimeSetEdgeType attribute)

 	DRIVE_RETURN2 (nidigital.TimeSetEdgeType attribute)

 	DriveFormat (class in nidigital)

 	driver_setup (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niswitch.Session)

 	DriverError, [1], [2], [3], [4], [5], [6], [7], [8]

 	DriverNotInstalledError, [1], [2], [3], [4], [5], [6], [7], [8]

 	DriverWarning, [1], [2], [3], [4], [5], [6], [7], [8]

E

 	
 	E (nidigital.PinState attribute)

 	(nidmm.ThermocoupleType attribute)

 	EDGE (niscope.TriggerType attribute)

 	EIGHT_TAP_HANNING (niscope.FlexFIRAntialiasFilterType attribute)

 	EITHER (niscope.GlitchPolarity attribute)

 	(niscope.RuntPolarity attribute)

 	(niscope.WidthPolarity attribute)

 	enable_dc_restore (in module niscope.Session)

 	enable_sites() (in module nidigital.Session)

 	enable_time_interleaved_sampling (in module niscope.Session)

 	enabled_channels (in module niscope.Session)

 	end_of_acquisition_event_output_terminal (in module niscope.Session)

 	end_of_acquisition_event_terminal_name (in module niscope.Session)

 	end_of_record_event_output_terminal (in module niscope.Session)

 	end_of_record_event_terminal_name (in module niscope.Session)

 	end_of_record_to_advance_trigger_holdoff (in module niscope.Session)

 	ENTERING (niscope.TriggerWindowMode attribute)

 	ENTERING_OR_LEAVING (niscope.TriggerWindowMode attribute)

 	equalization_filter_enabled (in module niscope.Session)

 	equalization_num_coefficients (in module niscope.Session)

 	Error, [1], [2], [3], [4], [5], [6], [7], [8]

 	Event (class in nidcpower)

 	EXACT_NUM_AVERAGES (niscope.RISMethod attribute)

 	EXCLUSION_CONFLICT (nise.PathCapability attribute)

 	expand_route_spec() (in module nise.Session)

 	ExpandAction (class in nise)

 	export_attribute_configuration_buffer() (in module nidcpower.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	export_attribute_configuration_file() (in module nidcpower.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	
 	exported_advance_trigger_output_terminal (in module niscope.Session)

 	exported_conditional_jump_trigger_output_terminal (in module nidigital.Session)

 	exported_measure_trigger_output_terminal (in module nidcpower.Session)

 	exported_onboard_reference_clock_output_terminal (in module nifgen.Session)

 	exported_pattern_opcode_event_output_terminal (in module nidigital.Session)

 	exported_pulse_trigger_output_terminal (in module nidcpower.Session)

 	exported_ref_trigger_output_terminal (in module niscope.Session)

 	exported_reference_clock_output_terminal (in module nifgen.Session)

 	exported_sample_clock_divisor (in module nifgen.Session)

 	exported_sample_clock_output_terminal (in module nifgen.Session)

 	exported_sample_clock_timebase_divisor (in module nifgen.Session)

 	exported_sample_clock_timebase_output_terminal (in module nifgen.Session)

 	exported_script_trigger_output_terminal (in module nifgen.Session)

 	exported_sequence_advance_trigger_output_terminal (in module nidcpower.Session)

 	exported_source_trigger_output_terminal (in module nidcpower.Session)

 	exported_start_trigger_output_terminal (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	exported_sync_pulse_output_terminal (in module nitclk.SessionReference)

 	exported_tclk_output_terminal (in module nitclk.SessionReference)

 	EXTERNAL (nidmm.MeasurementCompleteDest attribute)

 	(nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	(niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	external_clock_delay_binary_value (in module nifgen.Session)

 	external_sample_clock_multiplier (in module nifgen.Session)

F

 	
 	FAILED (nidigital.HistoryRAMCyclesToAcquire attribute)

 	FALLING (nidigital.DigitalEdge attribute)

 	(nifgen.ScriptTriggerDigitalEdgeEdge attribute)

 	(nifgen.StartTriggerDigitalEdgeEdge attribute)

 	(niswitch.ScanAdvancedPolarity attribute)

 	(niswitch.TriggerInputPolarity attribute)

 	FAST (nidcpower.TransientResponse attribute)

 	fetch() (in module nidmm.Session)

 	(in module niscope.Session)

 	fetch_backlog (in module nidcpower.Session)

 	fetch_capture_waveform() (in module nidigital.Session)

 	fetch_history_ram_cycle_information() (in module nidigital.Session)

 	fetch_into() (in module niscope.Session)

 	fetch_multi_point() (in module nidmm.Session)

 	fetch_multiple() (in module nidcpower.Session)

 	fetch_waveform() (in module nidmm.Session)

 	fetch_waveform_into() (in module nidmm.Session)

 	FetchRelativeTo (class in niscope)

 	FIELD1 (niscope.VideoTriggerEvent attribute)

 	FIELD2 (niscope.VideoTriggerEvent attribute)

 	file_transfer_block_size (in module nifgen.Session)

 	filter_correction_frequency (in module nifgen.Session)

 	find_route() (in module nise.Session)

 	finish_sync_pulse_sender_synchronize() (in module nitclk)

 	FINISHED_WITH_BACKLOG (nidmm.AcquisitionStatus attribute)

 	FINISHED_WITH_NO_BACKLOG (nidmm.AcquisitionStatus attribute)

 	FIRST_FAILURE (nidigital.HistoryRAMTriggerType attribute)

 	FIXED (nidmm.ThermocoupleReferenceJunctionType attribute)

 	FIXED_HIGH_GAIN (nifgen.AnalogPath attribute)

 	FIXED_LOW_GAIN (nifgen.AnalogPath attribute)

 	FLAG0 (nidigital.SequencerFlag attribute)

 	FLAG1 (nidigital.SequencerFlag attribute)

 	FLAG2 (nidigital.SequencerFlag attribute)

 	FLAG3 (nidigital.SequencerFlag attribute)

 	flatness_correction_enabled (in module nifgen.Session)

 	flex_fir_antialias_filter_type (in module niscope.Session)

 	FlexFIRAntialiasFilterType (class in niscope)

 	FLEXRES (niscope.AcquisitionType attribute)

 	FOUR_WIRE_RES (nidmm.Function attribute)

 	FOUR_WIRE_RTD (nidmm.TransducerType attribute)

 	FOURTYEIGHT_TAP_HANNING (niscope.FlexFIRAntialiasFilterType attribute)

 	FOURTYEIGHT_TAP_STANDARD (niscope.FlexFIRAntialiasFilterType attribute)

 	fpga_bitfile_path (in module nifgen.Session)

 	(in module niscope.Session)

 	
 	FREQ (nidmm.Function attribute)

 	FREQ_LIST (nifgen.OutputMode attribute)

 	freq_list_duration_quantum (in module nifgen.Session)

 	freq_list_handle (in module nifgen.Session)

 	freq_voltage_auto_range (in module nidmm.Session)

 	freq_voltage_range (in module nidmm.Session)

 	frequency_counter_measure_frequency() (in module nidigital.Session)

 	frequency_counter_measurement_time (in module nidigital.Session)

 	FRONTCONNECTOR (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	FRONTCONNECTOR_MODULE1 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	FRONTCONNECTOR_MODULE10 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	FRONTCONNECTOR_MODULE11 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	FRONTCONNECTOR_MODULE12 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	FRONTCONNECTOR_MODULE2 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	FRONTCONNECTOR_MODULE3 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	FRONTCONNECTOR_MODULE4 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	FRONTCONNECTOR_MODULE5 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	FRONTCONNECTOR_MODULE6 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	FRONTCONNECTOR_MODULE7 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	FRONTCONNECTOR_MODULE8 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	FRONTCONNECTOR_MODULE9 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	FUNC (nifgen.OutputMode attribute)

 	func_amplitude (in module nifgen.Session)

 	func_buffer_size (in module nifgen.Session)

 	func_dc_offset (in module nifgen.Session)

 	func_duty_cycle_high (in module nifgen.Session)

 	func_frequency (in module nifgen.Session)

 	func_max_buffer_size (in module nifgen.Session)

 	func_start_phase (in module nifgen.Session)

 	func_waveform (in module nifgen.Session)

 	Function (class in nidmm)

 	function (in module nidmm.Session)

G

 	
 	get_all_connections() (in module nise.Session)

 	get_cal_date_and_time() (in module nidmm.Session)

 	get_channel_name() (in module nidcpower.Session)

 	(in module nifgen.Session)

 	(in module niswitch.Session)

 	get_channel_names() (in module nidigital.Session)

 	get_dev_temp() (in module nidmm.Session)

 	get_equalization_filter_coefficients() (in module niscope.Session)

 	get_ext_cal_last_date_and_time() (in module nidcpower.Session)

 	(in module nifgen.Session)

 	get_ext_cal_last_temp() (in module nidcpower.Session)

 	(in module nifgen.Session)

 	get_ext_cal_recommended_interval() (in module nidcpower.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	get_fail_count() (in module nidigital.Session)

 	get_hardware_state() (in module nifgen.Session)

 	get_history_ram_sample_count() (in module nidigital.Session)

 	get_last_cal_temp() (in module nidmm.Session)

 	get_path() (in module niswitch.Session)

 	get_pattern_name() (in module nidigital.Session)

 	get_pattern_pin_names() (in module nidigital.Session)

 	get_pin_results_pin_information() (in module nidigital.Session)

 	
 	get_relay_count() (in module niswitch.Session)

 	get_relay_name() (in module niswitch.Session)

 	get_relay_position() (in module niswitch.Session)

 	get_self_cal_last_date_and_time() (in module nidcpower.Session)

 	(in module nifgen.Session)

 	get_self_cal_last_temp() (in module nidcpower.Session)

 	(in module nifgen.Session)

 	get_self_cal_supported() (in module nidmm.Session)

 	(in module nifgen.Session)

 	get_site_pass_fail() (in module nidigital.Session)

 	get_time_set_drive_format() (in module nidigital.Session)

 	get_time_set_edge() (in module nidigital.Session)

 	get_time_set_edge_multiplier() (in module nidigital.Session)

 	get_time_set_name() (in module nidigital.Session)

 	get_time_set_period() (in module nidigital.Session)

 	GLITCH (niscope.TriggerType attribute)

 	glitch_condition (in module niscope.Session)

 	glitch_polarity (in module niscope.Session)

 	glitch_width (in module niscope.Session)

 	GlitchCondition (class in niscope)

 	GlitchPolarity (class in niscope)

 	GND (niscope.VerticalCoupling attribute)

 	GREATER (niscope.GlitchCondition attribute)

 	group_capabilities (in module nidigital.Session)

H

 	
 	H (nidigital.PinState attribute)

 	halt_on_keep_alive_opcode (in module nidigital.Session)

 	handshaking_initiation (in module niswitch.Session)

 	HandshakingInitiation (class in niswitch)

 	HARDWARE_ERROR (nifgen.HardwareState attribute)

 	HardwareState (class in nifgen)

 	HF_REJECT (niscope.TriggerCoupling attribute)

 	HIGH (nidcpower.OutputCapacitance attribute)

 	(nidcpower.Polarity attribute)

 	(nifgen.DataMarkerEventLevelPolarity attribute)

 	HIGH_ORDER (nidmm.DCNoiseRejection attribute)

 	high_pass_filter_frequency (in module niscope.Session)

 	HIGH_RESOLUTION (nifgen.ClockMode attribute)

 	HIGH_Z (nidigital.TerminationMode attribute)

 	history_ram_buffer_size_per_site (in module nidigital.Session)

 	history_ram_cycles_to_acquire (in module nidigital.Session)

 	
 	history_ram_max_samples_to_acquire_per_site (in module nidigital.Session)

 	history_ram_number_of_samples_is_finite (in module nidigital.Session)

 	history_ram_pretrigger_samples (in module nidigital.Session)

 	history_ram_trigger_type (in module nidigital.Session)

 	HistoryRAMCyclesToAcquire (class in nidigital)

 	HistoryRAMTriggerType (class in nidigital)

 	HOLD_LAST (nifgen.IdleBehavior attribute)

 	(nifgen.WaitBehavior attribute)

 	horz_enforce_realtime (in module niscope.Session)

 	horz_min_num_pts (in module niscope.Session)

 	horz_num_records (in module niscope.Session)

 	horz_record_length (in module niscope.Session)

 	horz_record_ref_position (in module niscope.Session)

 	horz_sample_rate (in module niscope.Session)

 	horz_time_per_record (in module niscope.Session)

 	HYSTERESIS (niscope.TriggerType attribute)

I

 	
 	IDLE (nifgen.HardwareState attribute)

 	idle_behavior (in module nifgen.Session)

 	idle_value (in module nifgen.Session)

 	IdleBehavior (class in nifgen)

 	IMMEDIATE (nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	(niscope.TriggerType attribute)

 	(niswitch.TriggerInput attribute)

 	import_attribute_configuration_buffer() (in module nidcpower.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	import_attribute_configuration_file() (in module nidcpower.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	IN_PROGRESS (niscope.AcquisitionStatus attribute)

 	INCOMPLETE (niscope.RISMethod attribute)

 	INDUCTANCE (nidmm.Function attribute)

 	initiate() (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	(in module nitclk)

 	input_clock_source (in module niscope.Session)

 	input_impedance (in module niscope.Session)

 	input_resistance (in module nidmm.Session)

 	instrument_firmware_revision (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	instrument_manufacturer (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	
 	instrument_model (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	instrument_product_id (in module nidmm.Session)

 	interchange_check (in module nidigital.Session)

 	interleaving_offset_correction_enabled (in module niscope.Session)

 	interlock_input_open (in module nidcpower.Session)

 	INTERNAL (nidcpower.PowerSource attribute)

 	(nidcpower.PowerSourceInUse attribute)

 	INTERVAL (nidmm.SampleTrigger attribute)

 	INVALID (nifgen.BusType attribute)

 	InvalidRepeatedCapabilityError, [1], [2], [3], [4], [5], [6]

 	io_resource_descriptor (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	is_configuration_channel (in module niswitch.Session)

 	is_connected() (in module nise.Session)

 	is_debounced (in module niswitch.Session)

 	is_debounced() (in module nise.Session)

 	is_done() (in module nidigital.Session)

 	(in module nifgen.Session)

 	(in module nitclk)

 	is_keep_alive_active (in module nidigital.Session)

 	is_probe_comp_on (in module niscope.Session)

 	is_scanning (in module niswitch.Session)

 	is_site_enabled() (in module nidigital.Session)

 	is_source_channel (in module niswitch.Session)

 	is_waiting_for_trig (in module niswitch.Session)

 	IVIDMM (nidmm.OperationMode attribute)

J

 	
 	J (nidmm.ThermocoupleType attribute)

 	
 	JUMP_TO (nifgen.IdleBehavior attribute)

 	(nifgen.WaitBehavior attribute)

K

 	
 	K (nidmm.ThermocoupleType attribute)

 	
 	KEEP_IN_MEMORY (nidcpower.SelfCalibrationPersistence attribute)

L

 	
 	L (nidigital.PinState attribute)

 	LBR_TRIG0 (nidmm.MeasurementCompleteDest attribute)

 	LBR_TRIG1 (nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	lc_calculation_model (in module nidmm.Session)

 	lc_number_meas_to_average (in module nidmm.Session)

 	LCCalculationModel (class in nidmm)

 	LEAVING (niscope.TriggerWindowMode attribute)

 	LESS (niscope.GlitchCondition attribute)

 	LF_REJECT (niscope.TriggerCoupling attribute)

 	LIMITED_BIN_WIDTH (niscope.RISMethod attribute)

 	LINE_NUMBER (niscope.VideoTriggerEvent attribute)

 	LITTLE (nifgen.ByteOrder attribute)

 	load_impedance (in module nifgen.Session)

 	load_pattern() (in module nidigital.Session)

 	load_pin_map() (in module nidigital.Session)

 	load_specifications_levels_and_timing() (in module nidigital.Session)

 	
 	LOCAL (nidcpower.Sense attribute)

 	lock() (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	logical_name (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	LOW (nidcpower.OutputCapacitance attribute)

 	(nidcpower.Polarity attribute)

 	(nifgen.DataMarkerEventLevelPolarity attribute)

 	LSB (nidigital.BitOrder attribute)

M

 	
 	M (nidigital.PinState attribute)

 	M_PAL (niscope.VideoSignalFormat attribute)

 	MAIN (nifgen.AnalogPath attribute)

 	major_version (in module nifgen.Session)

 	MANUAL (nidcpower.PowerAllocationMode attribute)

 	marker_event_output_terminal (in module nifgen.Session)

 	marker_events_count (in module nifgen.Session)

 	mask_compare (in module nidigital.Session)

 	master_enable (in module niscope.Session)

 	max_ac_voltage (in module niswitch.Session)

 	max_carry_ac_current (in module niswitch.Session)

 	max_carry_ac_power (in module niswitch.Session)

 	max_carry_dc_current (in module niswitch.Session)

 	max_carry_dc_power (in module niswitch.Session)

 	max_dc_voltage (in module niswitch.Session)

 	max_freq_list_duration (in module nifgen.Session)

 	max_freq_list_length (in module nifgen.Session)

 	max_input_frequency (in module niscope.Session)

 	max_loop_count (in module nifgen.Session)

 	max_num_freq_lists (in module nifgen.Session)

 	max_num_sequences (in module nifgen.Session)

 	max_num_waveforms (in module nifgen.Session)

 	max_pciexpress_link_width (in module nimodinst.Session)

 	max_real_time_sampling_rate (in module niscope.Session)

 	max_ris_rate (in module niscope.Session)

 	max_sequence_length (in module nifgen.Session)

 	max_switching_ac_current (in module niswitch.Session)

 	max_switching_ac_power (in module niswitch.Session)

 	max_switching_dc_current (in module niswitch.Session)

 	max_switching_dc_power (in module niswitch.Session)

 	max_waveform_size (in module nifgen.Session)

 	
 	meas_complete_dest (in module nidmm.Session)

 	MEASURE (nidcpower.SendSoftwareEdgeTriggerType attribute)

 	measure() (in module nidcpower.Session)

 	measure_buffer_size (in module nidcpower.Session)

 	MEASURE_COMPLETE (nidcpower.Event attribute)

 	measure_complete_event_delay (in module nidcpower.Session)

 	measure_complete_event_output_terminal (in module nidcpower.Session)

 	measure_complete_event_pulse_polarity (in module nidcpower.Session)

 	measure_complete_event_pulse_width (in module nidcpower.Session)

 	measure_multiple() (in module nidcpower.Session)

 	measure_record_delta_time (in module nidcpower.Session)

 	measure_record_length (in module nidcpower.Session)

 	measure_record_length_is_finite (in module nidcpower.Session)

 	measure_trigger_type (in module nidcpower.Session)

 	measure_when (in module nidcpower.Session)

 	MEASUREMENT_DEVICE (niswitch.HandshakingInitiation attribute)

 	MeasurementCompleteDest (class in nidmm)

 	MeasurementTypes (class in nidcpower)

 	MeasureWhen (class in nidcpower)

 	memory_size (in module nifgen.Session)

 	min_freq_list_duration (in module nifgen.Session)

 	min_freq_list_length (in module nifgen.Session)

 	MIN_NUM_AVERAGES (niscope.RISMethod attribute)

 	min_sample_rate (in module niscope.Session)

 	min_sequence_length (in module nifgen.Session)

 	min_waveform_size (in module nifgen.Session)

 	minor_version (in module nifgen.Session)

 	module_revision (in module nifgen.Session)

 	MSB (nidigital.BitOrder attribute)

 	MULTICONNECT (nise.MulticonnectMode attribute)

 	MulticonnectMode (class in nise)

N

 	
 	N (nidmm.ThermocoupleType attribute)

 	NEGATIVE (niscope.GlitchPolarity attribute)

 	(niscope.RuntPolarity attribute)

 	(niscope.TriggerSlope attribute)

 	(niscope.VideoPolarity attribute)

 	(niscope.WidthPolarity attribute)

 	nidcpower (module)

 	nidigital (module)

 	nidmm (module)

 	nifgen (module)

 	nimodinst (module)

 	niscope (module)

 	nise (module)

 	niswitch (module)

 	nitclk (module)

 	NO_ACQUISITION_IN_PROGRESS (nidmm.AcquisitionStatus attribute)

 	NO_MULTICONNECT (nise.MulticonnectMode attribute)

 	NO_TRIGGER_MOD (niscope.TriggerModifier attribute)

 	NOISE (nifgen.Waveform attribute)

 	
 	NONE (nidcpower.TriggerType attribute)

 	(nidigital.TriggerType attribute)

 	(nidmm.CableCompensationType attribute)

 	(nidmm.MeasurementCompleteDest attribute)

 	(nifgen.ReferenceClockSource attribute)

 	(niscope.RuntTimeCondition attribute)

 	(niswitch.ScanAdvancedOutput attribute)

 	(niswitch.ScanMode attribute)

 	NORMAL (nidcpower.DCNoiseRejection attribute)

 	(nidcpower.TransientResponse attribute)

 	(nidmm.DCNoiseRejection attribute)

 	(niscope.AcquisitionType attribute)

 	NOT_A_PIN_STATE (nidigital.PinState attribute)

 	NOW (niscope.FetchRelativeTo attribute)

 	NR (nidigital.DriveFormat attribute)

 	NTSC (niscope.VideoSignalFormat attribute)

 	num_of_columns (in module niswitch.Session)

 	num_of_rows (in module niswitch.Session)

 	number_of_averages (in module nidmm.Session)

 	number_of_relays (in module niswitch.Session)

O

 	
 	OFF (nidcpower.AutoZero attribute)

 	(nidigital.SelectedFunction attribute)

 	(nidmm.ADCCalibration attribute)

 	(nidmm.AutoZero attribute)

 	offset_comp_ohms (in module nidmm.Session)

 	ON (nidcpower.AutoZero attribute)

 	(nidmm.ADCCalibration attribute)

 	(nidmm.AutoZero attribute)

 	ON_DEMAND (nidcpower.MeasureWhen attribute)

 	(niscope.CableSenseMode attribute)

 	ON_MEASURE_TRIGGER (nidcpower.MeasureWhen attribute)

 	ONBOARD_CLOCK (nifgen.SampleClockSource attribute)

 	(nifgen.SampleClockTimebaseSource attribute)

 	onboard_memory_size (in module niscope.Session)

 	ONBOARD_REFERENCE_CLOCK (nifgen.ReferenceClockSource attribute)

 	ONCE (nidcpower.AutoZero attribute)

 	(nidmm.AutoZero attribute)

 	ONE (nidigital.PinState attribute)

 	(nidigital.WriteStaticPinState attribute)

 	OPEN (nidigital.TDREndpointTermination attribute)

 	(nidmm.CableCompensationType attribute)

 	(niswitch.RelayAction attribute)

 	(niswitch.RelayPosition attribute)

 	OPEN_AND_SHORT (nidmm.CableCompensationType attribute)

 	
 	open_cable_comp_conductance (in module nidmm.Session)

 	open_cable_comp_susceptance (in module nidmm.Session)

 	operation_mode (in module nidmm.Session)

 	OperationMode (class in nidmm)

 	OperationOrder (class in nise)

 	Option (class in niscope)

 	output_capacitance (in module nidcpower.Session)

 	output_clock_source (in module niscope.Session)

 	output_connected (in module nidcpower.Session)

 	output_enabled (in module nidcpower.Session)

 	(in module nifgen.Session)

 	output_function (in module nidcpower.Session)

 	output_impedance (in module nifgen.Session)

 	output_mode (in module nifgen.Session)

 	output_resistance (in module nidcpower.Session)

 	OutputCapacitance (class in nidcpower)

 	OutputFunction (class in nidcpower)

 	OutputMode (class in nifgen)

 	OutputStates (class in nidcpower)

 	OUTSIDE (niscope.RuntTimeCondition attribute)

 	(niscope.WidthCondition attribute)

 	overranging_enabled (in module nidcpower.Session)

 	ovp_enabled (in module nidcpower.Session)

 	ovp_limit (in module nidcpower.Session)

P

 	
 	P2P_ENDPOINT_FULLNESS (nifgen.StartTriggerType attribute)

 	PAL (niscope.VideoSignalFormat attribute)

 	PARALLEL (nidmm.LCCalculationModel attribute)

 	PATH_AVAILABLE (nise.PathCapability attribute)

 	(niswitch.PathCapability attribute)

 	PATH_EXISTS (nise.PathCapability attribute)

 	(niswitch.PathCapability attribute)

 	PATH_NEEDS_CONFIG_CHANNEL (nise.PathCapability attribute)

 	PATH_NEEDS_HARDWIRE (nise.PathCapability attribute)

 	PATH_UNSUPPORTED (nise.PathCapability attribute)

 	(niswitch.PathCapability attribute)

 	PathCapability (class in nise)

 	(class in niswitch)

 	PATHS (nise.ExpandAction attribute)

 	PATTERN_LABEL (nidigital.HistoryRAMTriggerType attribute)

 	pattern_label_history_ram_trigger_cycle_offset (in module nidigital.Session)

 	pattern_label_history_ram_trigger_label (in module nidigital.Session)

 	pattern_label_history_ram_trigger_vector_offset (in module nidigital.Session)

 	pattern_opcode_event_terminal_name (in module nidigital.Session)

 	pause_trigger_master_session (in module nitclk.SessionReference)

 	PAUSED (nidmm.AcquisitionStatus attribute)

 	PCI (nifgen.BusType attribute)

 	pciexpress_link_width (in module nimodinst.Session)

 	PCMCIA (nifgen.BusType attribute)

 	perform_open_cable_comp() (in module nidmm.Session)

 	perform_short_cable_comp() (in module nidmm.Session)

 	PERIOD (nidmm.Function attribute)

 	PIN_STATE_NOT_ACQUIRED (nidigital.PinState attribute)

 	PinState (class in nidigital)

 	pll_lock_status (in module niscope.Session)

 	points_done (in module niscope.Session)

 	Polarity (class in nidcpower)

 	poll_interval (in module niscope.Session)

 	POSITIVE (niscope.GlitchPolarity attribute)

 	(niscope.RuntPolarity attribute)

 	(niscope.TriggerSlope attribute)

 	(niscope.VideoPolarity attribute)

 	(niscope.WidthPolarity attribute)

 	power_allocation_mode (in module nidcpower.Session)

 	power_down_latching_relays_after_debounce (in module niswitch.Session)

 	POWER_LINE_CYCLES (nidcpower.ApertureTimeUnits attribute)

 	(nidmm.ApertureTimeUnits attribute)

 	power_line_frequency (in module nidcpower.Session)

 	power_source (in module nidcpower.Session)

 	power_source_in_use (in module nidcpower.Session)

 	PowerAllocationMode (class in nidcpower)

 	powerline_freq (in module nidmm.Session)

 	PowerSource (class in nidcpower)

 	PowerSourceInUse (class in nidcpower)

 	PPMU (nidigital.SelectedFunction attribute)

 	ppmu_allow_extended_voltage_range (in module nidigital.Session)

 	ppmu_aperture_time (in module nidigital.Session)

 	ppmu_aperture_time_units (in module nidigital.Session)

 	ppmu_current_level (in module nidigital.Session)

 	ppmu_current_level_range (in module nidigital.Session)

 	ppmu_current_limit (in module nidigital.Session)

 	ppmu_current_limit_behavior (in module nidigital.Session)

 	ppmu_current_limit_range (in module nidigital.Session)

 	ppmu_current_limit_supported (in module nidigital.Session)

 	ppmu_measure() (in module nidigital.Session)

 	ppmu_output_function (in module nidigital.Session)

 	ppmu_source() (in module nidigital.Session)

 	ppmu_voltage_level (in module nidigital.Session)

 	ppmu_voltage_limit_high (in module nidigital.Session)

 	ppmu_voltage_limit_low (in module nidigital.Session)

 	PPMUApertureTimeUnits (class in nidigital)

 	PPMUCurrentLimitBehavior (class in nidigital)

 	PPMUMeasurementType (class in nidigital)

 	PPMUOutputFunction (class in nidigital)

 	PRETRIGGER (niscope.FetchRelativeTo attribute)

 	probe_attenuation (in module niscope.Session)

 	probe_compensation_signal_start() (in module niscope.Session)

 	probe_compensation_signal_stop() (in module niscope.Session)

 	PT3750 (nidmm.RTDType attribute)

 	PT3851 (nidmm.RTDType attribute)

 	
 	PT3911 (nidmm.RTDType attribute)

 	PT3916 (nidmm.RTDType attribute)

 	PT3920 (nidmm.RTDType attribute)

 	PT3928 (nidmm.RTDType attribute)

 	PULSE (nidcpower.SendSoftwareEdgeTriggerType attribute)

 	pulse_bias_current_level (in module nidcpower.Session)

 	pulse_bias_current_limit (in module nidcpower.Session)

 	pulse_bias_current_limit_high (in module nidcpower.Session)

 	pulse_bias_current_limit_low (in module nidcpower.Session)

 	pulse_bias_delay (in module nidcpower.Session)

 	pulse_bias_voltage_level (in module nidcpower.Session)

 	pulse_bias_voltage_limit (in module nidcpower.Session)

 	pulse_bias_voltage_limit_high (in module nidcpower.Session)

 	pulse_bias_voltage_limit_low (in module nidcpower.Session)

 	PULSE_COMPLETE (nidcpower.Event attribute)

 	pulse_complete_event_output_terminal (in module nidcpower.Session)

 	pulse_complete_event_pulse_polarity (in module nidcpower.Session)

 	pulse_complete_event_pulse_width (in module nidcpower.Session)

 	PULSE_CURRENT (nidcpower.OutputFunction attribute)

 	pulse_current_level (in module nidcpower.Session)

 	pulse_current_level_range (in module nidcpower.Session)

 	pulse_current_limit (in module nidcpower.Session)

 	pulse_current_limit_high (in module nidcpower.Session)

 	pulse_current_limit_low (in module nidcpower.Session)

 	pulse_current_limit_range (in module nidcpower.Session)

 	pulse_off_time (in module nidcpower.Session)

 	pulse_on_time (in module nidcpower.Session)

 	pulse_trigger_type (in module nidcpower.Session)

 	PULSE_VOLTAGE (nidcpower.OutputFunction attribute)

 	pulse_voltage_level (in module nidcpower.Session)

 	pulse_voltage_level_range (in module nidcpower.Session)

 	pulse_voltage_limit (in module nidcpower.Session)

 	pulse_voltage_limit_high (in module nidcpower.Session)

 	pulse_voltage_limit_low (in module nidcpower.Session)

 	pulse_voltage_limit_range (in module nidcpower.Session)

 	PXI (nifgen.BusType attribute)

 	PXI_CLOCK (nifgen.ReferenceClockSource attribute)

 	PXI_STAR (nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	(niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	PXI_STAR_LINE (nifgen.SampleClockSource attribute)

 	PXI_TRIG0 (nidmm.MeasurementCompleteDest attribute)

 	(nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	PXI_TRIG1 (nidmm.MeasurementCompleteDest attribute)

 	(nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	PXI_TRIG2 (nidmm.MeasurementCompleteDest attribute)

 	(nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	PXI_TRIG3 (nidmm.MeasurementCompleteDest attribute)

 	(nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	PXI_TRIG4 (nidmm.MeasurementCompleteDest attribute)

 	(nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	PXI_TRIG5 (nidmm.MeasurementCompleteDest attribute)

 	(nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	PXI_TRIG6 (nidmm.MeasurementCompleteDest attribute)

 	(nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	PXI_TRIG7 (nidmm.MeasurementCompleteDest attribute)

 	(nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	PXI_TRIGGER_LINE_0_RTSI_0 (nifgen.SampleClockSource attribute)

 	PXI_TRIGGER_LINE_1_RTSI_1 (nifgen.SampleClockSource attribute)

 	PXI_TRIGGER_LINE_2_RTSI_2 (nifgen.SampleClockSource attribute)

 	PXI_TRIGGER_LINE_3_RTSI_3 (nifgen.SampleClockSource attribute)

 	PXI_TRIGGER_LINE_4_RTSI_4 (nifgen.SampleClockSource attribute)

 	PXI_TRIGGER_LINE_5_RTSI_5 (nifgen.SampleClockSource attribute)

 	PXI_TRIGGER_LINE_6_RTSI_6 (nifgen.SampleClockSource attribute)

 	PXI_TRIGGER_LINE_7_RTSI_7 (nifgen.SampleClockSource attribute)

 	PXIE (nifgen.BusType attribute)

Q

 	
 	query_arb_seq_capabilities() (in module nifgen.Session)

 	query_arb_wfm_capabilities() (in module nifgen.Session)

 	query_freq_list_capabilities() (in module nifgen.Session)

 	query_in_compliance() (in module nidcpower.Session)

 	query_instrument_status (in module nidcpower.Session)

 	(in module nidigital.Session)

 	
 	query_max_current_limit() (in module nidcpower.Session)

 	query_max_voltage_level() (in module nidcpower.Session)

 	query_min_current_limit() (in module nidcpower.Session)

 	query_output_state() (in module nidcpower.Session)

R

 	
 	R (nidmm.ThermocoupleType attribute)

 	RAMP_DOWN (nifgen.Waveform attribute)

 	RAMP_UP (nifgen.Waveform attribute)

 	range (in module nidmm.Session)

 	range_check (in module nidigital.Session)

 	read() (in module nidmm.Session)

 	(in module niscope.Session)

 	read_current_temperature() (in module nidcpower.Session)

 	(in module nifgen.Session)

 	read_multi_point() (in module nidmm.Session)

 	READ_POINTER (niscope.FetchRelativeTo attribute)

 	read_sequencer_flag() (in module nidigital.Session)

 	read_sequencer_register() (in module nidigital.Session)

 	read_static() (in module nidigital.Session)

 	read_status() (in module nidmm.Session)

 	read_waveform() (in module nidmm.Session)

 	ready_for_advance_event_output_terminal (in module niscope.Session)

 	ready_for_advance_event_terminal_name (in module niscope.Session)

 	READY_FOR_PULSE_TRIGGER (nidcpower.Event attribute)

 	ready_for_pulse_trigger_event_output_terminal (in module nidcpower.Session)

 	ready_for_pulse_trigger_event_pulse_polarity (in module nidcpower.Session)

 	ready_for_pulse_trigger_event_pulse_width (in module nidcpower.Session)

 	ready_for_ref_event_output_terminal (in module niscope.Session)

 	ready_for_ref_event_terminal_name (in module niscope.Session)

 	ready_for_start_event_output_terminal (in module nifgen.Session)

 	(in module niscope.Session)

 	ready_for_start_event_terminal_name (in module niscope.Session)

 	REARCONNECTOR (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	REARCONNECTOR_MODULE1 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	REARCONNECTOR_MODULE10 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	REARCONNECTOR_MODULE11 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	REARCONNECTOR_MODULE12 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	REARCONNECTOR_MODULE2 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	REARCONNECTOR_MODULE3 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	REARCONNECTOR_MODULE4 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	REARCONNECTOR_MODULE5 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	REARCONNECTOR_MODULE6 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	REARCONNECTOR_MODULE7 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	REARCONNECTOR_MODULE8 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	REARCONNECTOR_MODULE9 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	record_arm_source (in module niscope.Session)

 	record_coercions (in module nidigital.Session)

 	records_done (in module niscope.Session)

 	ref_clk_rate (in module niscope.Session)

 	ref_clock_frequency (in module nifgen.Session)

 	ref_trig_tdc_enable (in module niscope.Session)

 	ref_trigger_detector_location (in module niscope.Session)

 	ref_trigger_master_session (in module nitclk.SessionReference)

 	ref_trigger_minimum_quiet_time (in module niscope.Session)

 	ref_trigger_terminal_name (in module niscope.Session)

 	REFERENCE (niscope.WhichTrigger attribute)

 	reference_clock_source (in module nifgen.Session)

 	ReferenceClockSource (class in nifgen)

 	RefTriggerDetectorLocation (class in niscope)

 	REGISTER0 (nidigital.SequencerRegister attribute)

 	REGISTER1 (nidigital.SequencerRegister attribute)

 	
 	REGISTER10 (nidigital.SequencerRegister attribute)

 	REGISTER11 (nidigital.SequencerRegister attribute)

 	REGISTER12 (nidigital.SequencerRegister attribute)

 	REGISTER13 (nidigital.SequencerRegister attribute)

 	REGISTER14 (nidigital.SequencerRegister attribute)

 	REGISTER15 (nidigital.SequencerRegister attribute)

 	REGISTER2 (nidigital.SequencerRegister attribute)

 	REGISTER3 (nidigital.SequencerRegister attribute)

 	REGISTER4 (nidigital.SequencerRegister attribute)

 	REGISTER5 (nidigital.SequencerRegister attribute)

 	REGISTER6 (nidigital.SequencerRegister attribute)

 	REGISTER7 (nidigital.SequencerRegister attribute)

 	REGISTER8 (nidigital.SequencerRegister attribute)

 	REGISTER9 (nidigital.SequencerRegister attribute)

 	REGULATE (nidigital.PPMUCurrentLimitBehavior attribute)

 	RelativeTo (class in nifgen)

 	relay_control() (in module niswitch.Session)

 	RelayAction (class in niswitch)

 	RelayPosition (class in niswitch)

 	REMOTE (nidcpower.Sense attribute)

 	requested_power_allocation (in module nidcpower.Session)

 	reset() (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	reset_average_before_measurement (in module nidcpower.Session)

 	reset_device() (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	reset_with_defaults() (in module nidcpower.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	resolution (in module niscope.Session)

 	resolution_absolute (in module nidmm.Session)

 	resolution_digits (in module nidmm.Session)

 	RESOURCE_IN_USE (nise.PathCapability attribute)

 	(niswitch.PathCapability attribute)

 	RESTORE_EXTERNAL_CALIBRATION (niscope.Option attribute)

 	RH (nidigital.DriveFormat attribute)

 	ris_in_auto_setup_enable (in module niscope.Session)

 	ris_method (in module niscope.Session)

 	ris_num_averages (in module niscope.Session)

 	RISING (nidigital.DigitalEdge attribute)

 	(nifgen.ScriptTriggerDigitalEdgeEdge attribute)

 	(nifgen.StartTriggerDigitalEdgeEdge attribute)

 	(niswitch.ScanAdvancedPolarity attribute)

 	(niswitch.TriggerInputPolarity attribute)

 	RISMethod (class in niscope)

 	RL (nidigital.DriveFormat attribute)

 	route_scan_advanced_output() (in module niswitch.Session)

 	route_trigger_input() (in module niswitch.Session)

 	ROUTES (nise.ExpandAction attribute)

 	RTDType (class in nidmm)

 	RTSI_7 (nifgen.ReferenceClockSource attribute)

 	RUNNING (nidmm.AcquisitionStatus attribute)

 	(nifgen.HardwareState attribute)

 	RUNT (niscope.TriggerType attribute)

 	runt_high_threshold (in module niscope.Session)

 	runt_low_threshold (in module niscope.Session)

 	runt_polarity (in module niscope.Session)

 	runt_time_condition (in module niscope.Session)

 	runt_time_high_limit (in module niscope.Session)

 	runt_time_low_limit (in module niscope.Session)

 	RuntPolarity (class in niscope)

 	RuntTimeCondition (class in niscope)

S

 	
 	S (nidmm.ThermocoupleType attribute)

 	samp_clk_timebase_div (in module niscope.Session)

 	samp_clk_timebase_rate (in module niscope.Session)

 	samp_clk_timebase_src (in module niscope.Session)

 	sample_clock_delay (in module nitclk.SessionReference)

 	sample_clock_source (in module nifgen.Session)

 	sample_clock_timebase_multiplier (in module niscope.Session)

 	sample_clock_timebase_rate (in module nifgen.Session)

 	sample_clock_timebase_source (in module nifgen.Session)

 	sample_count (in module nidmm.Session)

 	sample_interval (in module nidmm.Session)

 	sample_mode (in module niscope.Session)

 	sample_trigger (in module nidmm.Session)

 	SampleClockSource (class in nifgen)

 	SampleClockTimebaseSource (class in nifgen)

 	samples_to_average (in module nidcpower.Session)

 	SampleTrigger (class in nidmm)

 	SBC (nidigital.DriveFormat attribute)

 	scan_advanced_output (in module niswitch.Session)

 	scan_advanced_polarity (in module niswitch.Session)

 	scan_delay (in module niswitch.Session)

 	scan_list (in module niswitch.Session)

 	scan_mode (in module niswitch.Session)

 	ScanAdvancedOutput (class in niswitch)

 	ScanAdvancedPolarity (class in niswitch)

 	ScanMode (class in niswitch)

 	SCRIPT (nifgen.OutputMode attribute)

 	(nifgen.Trigger attribute)

 	script_to_generate (in module nifgen.Session)

 	script_trigger_type (in module nifgen.Session)

 	script_triggers_count (in module nifgen.Session)

 	ScriptTriggerDigitalEdgeEdge (class in nifgen)

 	ScriptTriggerType (class in nifgen)

 	SECAM (niscope.VideoSignalFormat attribute)

 	SECOND_ORDER (nidcpower.DCNoiseRejection attribute)

 	(nidmm.DCNoiseRejection attribute)

 	SECONDS (nidcpower.ApertureTimeUnits attribute)

 	(nidigital.PPMUApertureTimeUnits attribute)

 	(nidmm.ApertureTimeUnits attribute)

 	selected_function (in module nidigital.Session)

 	SelectedFunction (class in nidigital)

 	self_cal() (in module nidcpower.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	self_calibrate() (in module nidigital.Session)

 	SELF_CALIBRATE_ALL_CHANNELS (niscope.Option attribute)

 	self_calibration_persistence (in module nidcpower.Session)

 	self_test() (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	SelfCalibrationPersistence (class in nidcpower)

 	SelfTestError, [1], [2], [3], [4], [5]

 	send_software_edge_trigger() (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nifgen.Session)

 	send_software_trigger() (in module nidmm.Session)

 	(in module niswitch.Session)

 	send_software_trigger_edge() (in module niscope.Session)

 	SendSoftwareEdgeTriggerType (class in nidcpower)

 	Sense (class in nidcpower)

 	sense (in module nidcpower.Session)

 	SEQ (nifgen.OutputMode attribute)

 	SEQUENCE (nidcpower.SourceMode attribute)

 	SEQUENCE_ADVANCE (nidcpower.SendSoftwareEdgeTriggerType attribute)

 	sequence_advance_trigger_type (in module nidcpower.Session)

 	SEQUENCE_ENGINE_DONE (nidcpower.Event attribute)

 	sequence_engine_done_event_output_terminal (in module nidcpower.Session)

 	sequence_engine_done_event_pulse_polarity (in module nidcpower.Session)

 	sequence_engine_done_event_pulse_width (in module nidcpower.Session)

 	SEQUENCE_ITERATION_COMPLETE (nidcpower.Event attribute)

 	sequence_iteration_complete_event_output_terminal (in module nidcpower.Session)

 	sequence_iteration_complete_event_pulse_polarity (in module nidcpower.Session)

 	sequence_iteration_complete_event_pulse_width (in module nidcpower.Session)

 	sequence_loop_count (in module nidcpower.Session)

 	sequence_loop_count_is_finite (in module nidcpower.Session)

 	sequence_step_delta_time (in module nidcpower.Session)

 	sequence_step_delta_time_enabled (in module nidcpower.Session)

 	sequencer_flag_master_session (in module nitclk.SessionReference)

 	sequencer_flag_terminal_name (in module nidigital.Session)

 	SequencerFlag (class in nidigital)

 	SequencerRegister (class in nidigital)

 	serial_number (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module nimodinst.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	SERIES (nidmm.LCCalculationModel attribute)

 	Session (class in nidcpower)

 	(class in nidigital)

 	(class in nidmm)

 	(class in nifgen)

 	(class in nimodinst)

 	(class in niscope)

 	(class in nise)

 	(class in niswitch)

 	SessionReference (class in nitclk)

 	set_next_write_position() (in module nifgen.Session)

 	set_path() (in module niswitch.Session)

 	set_sequence() (in module nidcpower.Session)

 	
 	settle_time (in module nidmm.Session)

 	settling_time (in module niswitch.Session)

 	setup_for_sync_pulse_sender_synchronize() (in module nitclk)

 	SHORT (nidmm.CableCompensationType attribute)

 	short_cable_comp_reactance (in module nidmm.Session)

 	short_cable_comp_resistance (in module nidmm.Session)

 	SHORT_TO_GROUND (nidigital.TDREndpointTermination attribute)

 	simulate (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	SINE (nifgen.Waveform attribute)

 	SINGLE (nifgen.TriggerMode attribute)

 	SINGLE_ENDED (nifgen.TerminalConfiguration attribute)

 	(niscope.TerminalConfiguration attribute)

 	SINGLE_POINT (nidcpower.SourceMode attribute)

 	SITE_UNIQUE (nidigital.SourceDataMapping attribute)

 	SIXTEEN_TAP_HANNING (niscope.FlexFIRAntialiasFilterType attribute)

 	SLOPE_EITHER (niscope.TriggerSlope attribute)

 	slot_number (in module nimodinst.Session)

 	SLOW (nidcpower.TransientResponse attribute)

 	socket_number (in module nimodinst.Session)

 	SOFTWARE (nidigital.TriggerType attribute)

 	(niscope.TriggerType attribute)

 	SOFTWARE_EDGE (nidcpower.TriggerType attribute)

 	(nifgen.ScriptTriggerType attribute)

 	(nifgen.StartTriggerType attribute)

 	SOFTWARE_TRIG (nidmm.SampleTrigger attribute)

 	(nidmm.TriggerSource attribute)

 	(niswitch.TriggerInput attribute)

 	SoftwareTrigger (class in nidigital)

 	SOURCE (nidcpower.SendSoftwareEdgeTriggerType attribute)

 	SOURCE_COMPLETE (nidcpower.Event attribute)

 	source_complete_event_output_terminal (in module nidcpower.Session)

 	source_complete_event_pulse_polarity (in module nidcpower.Session)

 	source_complete_event_pulse_width (in module nidcpower.Session)

 	SOURCE_CONFLICT (niswitch.PathCapability attribute)

 	source_delay (in module nidcpower.Session)

 	source_mode (in module nidcpower.Session)

 	source_trigger_type (in module nidcpower.Session)

 	SourceDataMapping (class in nidigital)

 	SourceMode (class in nidcpower)

 	specific_driver_class_spec_major_version (in module nidigital.Session)

 	specific_driver_class_spec_minor_version (in module nidigital.Session)

 	specific_driver_description (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	specific_driver_major_version (in module nidmm.Session)

 	specific_driver_minor_version (in module nidmm.Session)

 	specific_driver_prefix (in module nidcpower.Session)

 	(in module nidigital.Session)

 	specific_driver_revision (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	specific_driver_vendor (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	SQUARE (nifgen.Waveform attribute)

 	START (nidcpower.SendSoftwareEdgeTriggerType attribute)

 	(nidigital.SoftwareTrigger attribute)

 	(nifgen.RelativeTo attribute)

 	(nifgen.Trigger attribute)

 	(niscope.FetchRelativeTo attribute)

 	(niscope.WhichTrigger attribute)

 	start_label (in module nidigital.Session)

 	start_to_ref_trigger_holdoff (in module niscope.Session)

 	start_trigger_master_session (in module nitclk.SessionReference)

 	start_trigger_terminal_name (in module nidigital.Session)

 	(in module niscope.Session)

 	start_trigger_type (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nifgen.Session)

 	started_event_output_terminal (in module nifgen.Session)

 	StartTriggerDigitalEdgeEdge (class in nifgen)

 	StartTriggerType (class in nifgen)

 	STATUS_UNKNOWN (niscope.AcquisitionStatus attribute)

 	STEPPED (nifgen.TriggerMode attribute)

 	streaming_space_available_in_waveform (in module nifgen.Session)

 	streaming_waveform_handle (in module nifgen.Session)

 	streaming_waveform_name (in module nifgen.Session)

 	streaming_write_timeout (in module nifgen.Session)

 	supported_instrument_models (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	SWITCH (niswitch.HandshakingInitiation attribute)

 	SYMMETRIC (nidcpower.ComplianceLimitSymmetry attribute)

 	sync_pulse_clock_source (in module nitclk.SessionReference)

 	sync_pulse_sender_sync_pulse_source (in module nitclk.SessionReference)

 	sync_pulse_source (in module nitclk.SessionReference)

 	synchronize() (in module nitclk)

 	synchronize_to_sync_pulse_sender() (in module nitclk)

T

 	
 	T (nidmm.ThermocoupleType attribute)

 	tclk (in module nidigital.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	tclk_actual_period (in module nitclk.SessionReference)

 	tdr() (in module nidigital.Session)

 	tdr_endpoint_termination (in module nidigital.Session)

 	tdr_offset (in module nidigital.Session)

 	TDREndpointTermination (class in nidigital)

 	temp_rtd_a (in module nidmm.Session)

 	temp_rtd_b (in module nidmm.Session)

 	temp_rtd_c (in module nidmm.Session)

 	temp_rtd_res (in module nidmm.Session)

 	temp_rtd_type (in module nidmm.Session)

 	temp_tc_fixed_ref_junc (in module nidmm.Session)

 	temp_tc_ref_junc_type (in module nidmm.Session)

 	temp_tc_type (in module nidmm.Session)

 	temp_thermistor_a (in module nidmm.Session)

 	temp_thermistor_b (in module nidmm.Session)

 	temp_thermistor_c (in module nidmm.Session)

 	temp_thermistor_type (in module nidmm.Session)

 	temp_transducer_type (in module nidmm.Session)

 	temperature (in module niswitch.Session)

 	TEMPERATURE (nidmm.Function attribute)

 	terminal_configuration (in module nifgen.Session)

 	TerminalConfiguration (class in nifgen)

 	(class in niscope)

 	termination_mode (in module nidigital.Session)

 	TerminationMode (class in nidigital)

 	THERMISTOR (nidmm.TransducerType attribute)

 	THERMISTOR_44004 (nidmm.ThermistorType attribute)

 	THERMISTOR_44006 (nidmm.ThermistorType attribute)

 	THERMISTOR_44007 (nidmm.ThermistorType attribute)

 	ThermistorType (class in nidmm)

 	THERMOCOUPLE (nidmm.TransducerType attribute)

 	ThermocoupleReferenceJunctionType (class in nidmm)

 	ThermocoupleType (class in nidmm)

 	TimeSetEdgeType (class in nidigital)

 	timing_absolute_delay (in module nidigital.Session)

 	timing_absolute_delay_enabled (in module nidigital.Session)

 	TransducerType (class in nidmm)

 	transient_response (in module nidcpower.Session)

 	TransientResponse (class in nidcpower)

 	TRIANGLE (nifgen.Waveform attribute)

 	TRIG_NONE (nifgen.ScriptTriggerType attribute)

 	(nifgen.StartTriggerType attribute)

 	Trigger (class in nifgen)

 	TRIGGER (niscope.FetchRelativeTo attribute)

 	trigger_auto_triggered (in module niscope.Session)

 	trigger_count (in module nidmm.Session)

 	trigger_coupling (in module niscope.Session)

 	
 	trigger_delay (in module nidmm.Session)

 	trigger_delay_time (in module niscope.Session)

 	trigger_holdoff (in module niscope.Session)

 	trigger_hysteresis (in module niscope.Session)

 	trigger_impedance (in module niscope.Session)

 	trigger_input (in module niswitch.Session)

 	trigger_input_polarity (in module niswitch.Session)

 	trigger_level (in module niscope.Session)

 	trigger_mode (in module nifgen.Session)

 	trigger_modifier (in module niscope.Session)

 	trigger_slope (in module niscope.Session)

 	trigger_source (in module nidmm.Session)

 	(in module niscope.Session)

 	trigger_type (in module niscope.Session)

 	trigger_window_high_level (in module niscope.Session)

 	trigger_window_low_level (in module niscope.Session)

 	trigger_window_mode (in module niscope.Session)

 	TriggerCoupling (class in niscope)

 	TriggerInput (class in niswitch)

 	TriggerInputPolarity (class in niswitch)

 	TriggerMode (class in nifgen)

 	TriggerModifier (class in niscope)

 	TriggerSlope (class in niscope)

 	TriggerSource (class in nidmm)

 	TriggerType (class in nidcpower)

 	(class in nidigital)

 	(class in niscope)

 	TriggerWindowMode (class in niscope)

 	TTL0 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	TTL1 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	TTL2 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	TTL3 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	TTL4 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	TTL5 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	TTL6 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	TTL7 (niswitch.ScanAdvancedOutput attribute)

 	(niswitch.TriggerInput attribute)

 	TV (niscope.TriggerType attribute)

 	tv_trigger_event (in module niscope.Session)

 	tv_trigger_line_number (in module niscope.Session)

 	tv_trigger_polarity (in module niscope.Session)

 	tv_trigger_signal_format (in module niscope.Session)

 	TWO_WIRE_RES (nidmm.Function attribute)

 	TWO_WIRE_RTD (nidmm.TransducerType attribute)

U

 	
 	UNBALANCED_DIFFERENTIAL (niscope.TerminalConfiguration attribute)

 	unload_all_patterns() (in module nidigital.Session)

 	unload_specifications() (in module nidigital.Session)

 	unlock() (in module nidcpower.Session)

 	(in module nidigital.Session)

 	(in module nidmm.Session)

 	(in module nifgen.Session)

 	(in module niscope.Session)

 	(in module niswitch.Session)

 	
 	UnsupportedConfigurationError, [1], [2], [3], [4], [5], [6], [7], [8]

 	use_spec_initial_x (in module niscope.Session)

 	USER (nifgen.Waveform attribute)

V

 	
 	V (nidigital.PinState attribute)

 	vertical_coupling (in module niscope.Session)

 	vertical_offset (in module niscope.Session)

 	vertical_range (in module niscope.Session)

 	VerticalCoupling (class in niscope)

 	VIDEO_1080I_50_FIELDS_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_1080I_59_94_FIELDS_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_1080I_60_FIELDS_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_1080P_24_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_480I_59_94_FIELDS_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_480I_60_FIELDS_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_480P_59_94_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_480P_60_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_576I_50_FIELDS_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_576P_50_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_720P_50_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_720P_59_94_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_720P_60_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VideoPolarity (class in niscope)

 	VideoSignalFormat (class in niscope)

 	VideoTriggerEvent (class in niscope)

 	
 	vih (in module nidigital.Session)

 	vil (in module nidigital.Session)

 	voh (in module nidigital.Session)

 	vol (in module nidigital.Session)

 	VOLTAGE (nidcpower.MeasurementTypes attribute)

 	(nidcpower.OutputStates attribute)

 	(nidigital.PPMUMeasurementType attribute)

 	(nidigital.PPMUOutputFunction attribute)

 	voltage_compensation_frequency (in module nidcpower.Session)

 	voltage_gain_bandwidth (in module nidcpower.Session)

 	voltage_level (in module nidcpower.Session)

 	voltage_level_autorange (in module nidcpower.Session)

 	voltage_level_range (in module nidcpower.Session)

 	voltage_limit (in module nidcpower.Session)

 	voltage_limit_autorange (in module nidcpower.Session)

 	voltage_limit_high (in module nidcpower.Session)

 	voltage_limit_low (in module nidcpower.Session)

 	voltage_limit_range (in module nidcpower.Session)

 	voltage_pole_zero_ratio (in module nidcpower.Session)

 	vterm (in module nidigital.Session)

 	VTERM (nidigital.TerminationMode attribute)

 	VXI (nifgen.BusType attribute)

W

 	
 	wait_behavior (in module nifgen.Session)

 	wait_for_debounce() (in module nise.Session)

 	(in module niswitch.Session)

 	wait_for_event() (in module nidcpower.Session)

 	wait_for_scan_complete() (in module niswitch.Session)

 	wait_until_done() (in module nidigital.Session)

 	(in module nifgen.Session)

 	(in module nitclk)

 	wait_value (in module nifgen.Session)

 	WaitBehavior (class in nifgen)

 	WAITING_FOR_START_TRIGGER (nifgen.HardwareState attribute)

 	Waveform (class in nifgen)

 	WAVEFORM (nidmm.OperationMode attribute)

 	waveform_coupling (in module nidmm.Session)

 	WAVEFORM_CURRENT (nidmm.Function attribute)

 	waveform_points (in module nidmm.Session)

 	waveform_quantum (in module nifgen.Session)

 	waveform_rate (in module nidmm.Session)

 	WAVEFORM_VOLTAGE (nidmm.Function attribute)

 	WaveformCoupling (class in nidmm)

 	WhichTrigger (class in niscope)

 	
 	WIDTH (niscope.TriggerType attribute)

 	width_condition (in module niscope.Session)

 	width_high_threshold (in module niscope.Session)

 	width_low_threshold (in module niscope.Session)

 	width_polarity (in module niscope.Session)

 	WidthCondition (class in niscope)

 	WidthPolarity (class in niscope)

 	WINDOW (niscope.TriggerType attribute)

 	wire_mode (in module niswitch.Session)

 	WITHIN (niscope.RuntTimeCondition attribute)

 	(niscope.WidthCondition attribute)

 	write_script() (in module nifgen.Session)

 	write_sequencer_flag() (in module nidigital.Session)

 	write_sequencer_register() (in module nidigital.Session)

 	write_source_waveform_broadcast() (in module nidigital.Session)

 	write_source_waveform_data_from_file_tdms() (in module nidigital.Session)

 	write_source_waveform_site_unique() (in module nidigital.Session)

 	write_static() (in module nidigital.Session)

 	WRITE_TO_EEPROM (nidcpower.SelfCalibrationPersistence attribute)

 	write_waveform() (in module nifgen.Session)

 	WriteStaticPinState (class in nidigital)

X

 	
 	X (nidigital.PinState attribute)

 	(nidigital.WriteStaticPinState attribute)

Z

 	
 	ZERO (nidigital.PinState attribute)

 	(nidigital.WriteStaticPinState attribute)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 NI Modular Instruments Python Documentation

 		
 nidcpower module

 		
 Installation

 		
 Usage

 		
 API Reference

 		
 Session

 		
 Methods

 		
 Properties

 		
 Repeated Capabilities

 		
 Enums

 		
 Exceptions and Warnings

 		
 Examples

 		
 nidigital module

 		
 Installation

 		
 Usage

 		
 API Reference

 		
 Session

 		
 Methods

 		
 Properties

 		
 NI-TClk Support

 		
 Repeated Capabilities

 		
 Enums

 		
 Exceptions and Warnings

 		
 Examples

 		
 nidmm module

 		
 Installation

 		
 Usage

 		
 API Reference

 		
 Session

 		
 Methods

 		
 Properties

 		
 Enums

 		
 Exceptions and Warnings

 		
 Examples

 		
 nifgen module

 		
 Installation

 		
 Usage

 		
 API Reference

 		
 Session

 		
 Methods

 		
 Properties

 		
 NI-TClk Support

 		
 Repeated Capabilities

 		
 Enums

 		
 Exceptions and Warnings

 		
 Examples

 		
 niscope module

 		
 Installation

 		
 Usage

 		
 API Reference

 		
 Session

 		
 Methods

 		
 Properties

 		
 NI-TClk Support

 		
 Repeated Capabilities

 		
 Enums

 		
 Exceptions and Warnings

 		
 Examples

 		
 niswitch module

 		
 Installation

 		
 Usage

 		
 API Reference

 		
 Session

 		
 Methods

 		
 Properties

 		
 Repeated Capabilities

 		
 Enums

 		
 Exceptions and Warnings

 		
 Examples

 		
 nise module

 		
 Installation

 		
 Usage

 		
 API Reference

 		
 Session

 		
 Methods

 		
 Enums

 		
 Exceptions and Warnings

 		
 Examples

 		
 nimodinst module

 		
 Installation

 		
 Usage

 		
 API Reference

 		
 Session

 		
 Methods

 		
 Properties

 		
 Exceptions and Warnings

 		
 Examples

 		
 nitclk module

 		
 Installation

 		
 Usage

 		
 API Reference

 		
 Public API

 		
 SessionReference

 		
 Exceptions and Warnings

 		
 Examples

_static/python-dmm-small.jpg

_static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

