NI Modular Instruments Python API

Documentation
Release 1.4.2

NI

Aug 03, 2022

Drivers

About 1
Installation 3
Contributing 5
Support / Feedback 7
Bugs / Feature Requests 9
Documentation 11
6.1 Additional Documentation e e e e e e e e e e e e e 11
License 13
7.1 nidecpowermoduleo 13
7.1.1 Installation L e e e e e e e e e 13
T1.2 0 USage . . . o o e 13
7.1.3 APIReference e e e e 14
7.2 nidigital module L L e e e e e e e e e 212
7.2.1 Installation L L L e e e e e e e e e e e e e e e e e 212
T2.2 0 USAZE . o v v e e e e e e e e e e e 212
723 APIReference e e e e 213
7.3 nidmmmodule L L L e e e e e e 316
7.3.1 Installation L L e e e e e e e e e e e e e e e 316
T332 USAZE . v v v o e e e e e e e e e e 316
733 APIReference e e e 316
74 nifgenmodule L e e 383
7.4.1 Installation L e e e e e e e e e e e e e e e e 383
TA2 USAZE . o v v o e e e e e e e e e e e e e e e 384
7.43 APIReference e e e e e e e e 384
7.5 miscopemodule L e e e 491
7.5.1 Installation L L e e e e e e e e e 491
752 Usage e 491
7.5.3 APIReference e e e e e 493
7.6 niswitchmodule e e e e e 623
7.6.1 Installation L. e e e e e e e e e e e e e e e e e 623
7.6.2 Usage e 623

7.6.3 APIReference e e e e
7.7 misemodule L e e e e e e e
7.7.1 Installation e e e e e e
T2 USage oo e e
773 APIReference e
7.8 nimodinstmodule L e e e e e
7.8.1 Installation L e e e e e e e e e e e e e e e e
T.B.2 USAZE . v v v o e e e e e e e e e e
7.8.3 APIReference e e e e e e e
7.9 nitclkmodule L e e e e e e
7.9.1 Installation e e e e e e e e e e e
T9.2 USAZE . . v v e e e e e e e e e e e e e e e e
7.9.3 APIReference e e e e e
8 Indices and tables
Python Module Index
Index

CHAPTER 1

About

The nimi-python repository generates Python bindings (Application Programming Interface) for interacting with the
Modular Instrument drivers. The following drivers are supported:

NI-DCPower (Python module: nidcpower)
NI-Digital Pattern Driver (Python module: nidigital)
NI-DMM (Python module: nidmm)

NI-FGEN (Python module: nifgen)

NI-ModInst (Python module: nimodinst)
NI-SCOPE (Python module: niscope)

NI Switch Executive (Python module: nise)
NI-SWITCH (Python module: niswitch)

NI-TClk (Python module: nitclk)

It is implemented as a set of Mako templates and per-driver metafiles that produce a Python module for each driver.
The driver is called through its public C API using the ctypes Python library.

nimi-python supports all the Operating Systems supported by the underlying driver.

nimi-python follows Python Software Foundation support policy for different versions. At this time this includes
Python 3.6 and above using CPython.

http://makotemplates.org
https://docs.python.org/2/library/ctypes.html
https://devguide.python.org/#status-of-python-branches

NI Modular Instruments Python APl Documentation, Release 1.4.2

2 Chapter 1. About

CHAPTER 2

Installation

Driver specific installation instructions can be found on Read The Docs:
* nidcpower
* nidigital
* nidmm
* nifgen
* nimodinst
* niscope
* nise
* niswitch

¢ nitclk

http://nimi-python.readthedocs.io/en/master/nidcpower.html#installation
http://nimi-python.readthedocs.io/en/master/nidigital.html#installation
http://nimi-python.readthedocs.io/en/master/nidmm.html#installation
http://nimi-python.readthedocs.io/en/master/nifgen.html#installation
http://nimi-python.readthedocs.io/en/master/nimodinst.html#installation
http://nimi-python.readthedocs.io/en/master/niscope.html#installation
http://nimi-python.readthedocs.io/en/master/nise.html#installation
http://nimi-python.readthedocs.io/en/master/niswitch.html#installation
http://nimi-python.readthedocs.io/en/master/nitclk.html#installation

NI Modular Instruments Python APl Documentation, Release 1.4.2

4 Chapter 2. Installation

CHAPTER 3

Contributing

We welcome contributions! You can clone the project repository, build it, and install it by following these instructions.

https://github.com/ni/nimi-python/blob/master/CONTRIBUTING.md

NI Modular Instruments Python APl Documentation, Release 1.4.2

6 Chapter 3. Contributing

CHAPTER 4

Support / Feedback

The packages included in nimi-python package are supported by NI. For support, open a request through the NI
support portal at ni.com.

http://www.ni.com

NI Modular Instruments Python APl Documentation, Release 1.4.2

8 Chapter 4. Support / Feedback

CHAPTER B

Bugs / Feature Requests

To report a bug or submit a feature request specific to NI Modular Instruments Python bindings (nimi-python), please
use the GitHub issues page.

Fill in the issue template as completely as possible and we will respond as soon as we can.

For hardware support or any other questions not specific to this GitHub project, please visit NI Community Forums.

https://github.com/ni/nimi-python/issues
https://forums.ni.com/

NI Modular Instruments Python APl Documentation, Release 1.4.2

10 Chapter 5. Bugs / Feature Requests

CHAPTER O

Documentation

Documentation is available here.

6.1 Additional Documentation

Refer to your driver documentation for device-specific information and detailed API documentation.

11

http://nimi-python.readthedocs.io

NI Modular Instruments Python APl Documentation, Release 1.4.2

12 Chapter 6. Documentation

CHAPTER /

License

nimi-python is licensed under an MIT-style license (see LICENSE). Other incorporated projects may be licensed
under different licenses. All licenses allow for non-commercial and commercial use.

7.1 nidcpower module

7.1.1 Installation

As a prerequisite to using the nidcpower module, you must install the NI-DCPower runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-DCPower) can be installed with pip:

’$ python -m pip install nidcpower~=1.4.2

Or easy_install from setuptools:

’$ python -m easy_install nidcpower

7.1.2 Usage

The following is a basic example of using the nidcpower module to open a session to a Source Meter Unit and measure
voltage and current.

import nidcpower
Configure the session.

with nidcpower.Session (resource_name='PXI1Slot2/0') as session:
session.measure_record_length = 20
session.measure_record_length_is_finite = True

session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE

(continues on next page)

13

https://github.com/ni/nimi-python/blob/master/LICENSE
http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

session.voltage_level = 5.0

session.commit ()
print ('Effective measurement rate: S/s'.format (session.measure_record_delta_
—time / 1))

samples_acquired = 0
print ('Channel Num Voltage Current In Compliance')
row_format = ' !
with session.initiate():
channel_indices = '0- '.format (session.channel_count - 1)
channels = session.get_channel_names (channel_indices)
for i, channel_name in enumerate (channels) :
samples_acquired = 0
while samples_acquired < 20:
measurements = session.channels[channel name].fetch_
—multiple (count=session.fetch_backloqg)
samples_acquired += len (measurements)
for i in range(len(measurements)) :
print (row_format.format (channel_name, i, measurements[i].voltage,
—measurements[i] .current, measurements[i].in_compliance))

Other usage examples can be found on GitHub.

7.1.3 API Reference

Session

class nidcpower.Session (self, resource_name, channels=None, reset=False, options={}, indepen-

dent_channels=True)))
Creates and returns a new NI-DCPower session to the instrument(s) and channel(s) specified in resource name

to be used in all subsequent NI-DCPower method calls. With this method, you can optionally set the initial state
of the following session properties:

* nidcpower.Session.simulate
* nidcpower.Session.driver._setup
After calling this method, the specified channel or channels will be in the Uncommitted state.

To place channel(s) in a known start-up state when creating a new session, set reset to True. This action is
equivalent to using the nidcpower. Session. reset () method immediately after initializing the session.

To open a session and leave the channel(s) in an existing configuration without passing through a transitional
output state, set reset to False. Next, configure the channel(s) as in the previous session, change the desired
settings, and then call the nidcpower. Session.initiate () method to write both settings.

Details of Independent Channel Operation

With this method and channel-based NI-DCPower methods and properties, you can use any channels in the
session independently. For example, you can initiate a subset of channels in the session with nidcpower.
Session.initiate (), and the other channels in the session remain in the Uncommitted state.

When you initialize with independent channels, each channel steps through the NI-DCPower programming state
model independently of all other channels, and you can specify a subset of channels for most operations.

Note You can make concurrent calls to a session from multiple threads, but the session executes the calls one
at a time. If you specify multiple channels for a method or property, the session may perform the operation on

14 Chapter 7. License

https://github.com/ni/nimi-python/tree/master/src/nidcpower/examples

NI Modular Instruments Python APl Documentation, Release 1.4.2

multiple channels in parallel, though this is not guaranteed, and some operations may execute sequentially.
Parameters

* resource_name (str, list, tuple) — Specifies the resource name as seen in
Measurement & Automation Explorer (MAX) or Isni, for example “PXI1Slot3” where
“PXI1Slot3” is an instrument’s resource name. If independent_channels is False, resource
name can also be a logical IVI name.

If independent_channels is True, resource name can be names of the in-
strument(s) and the channel(s) to initialize. Specify the instrument(s) and
channel(s) using the form “PX11Sl1ot3/0,PX11Slot3/2-3,PX11Slot4/2-3 or
PXI1Sl10t3/0,PXI1Slot3/2:3,PX11Slot4/2:3”, where “PXI1Slot3” and “PXI1Slot4” are
instrument resource names followed by channels. If you exclude a channels string after an
instrument resource name, all channels of the instrument(s) are included in the session.

* channels (str, list, range, tuple) — For new applications, use the default
value of None and specify the channels in resource name.

Specifies which output channel(s) to include in a new session. Specify multiple channels by
using a channel list or a channel range. A channel list is a comma (,) separated sequence
of channel names (for example, 0,2 specifies channels 0 and 2). A channel range is a lower
bound channel followed by a hyphen (-) or colon (:) followed by an upper bound channel
(for example, 0-2 specifies channels O, 1, and 2).

If independent_channels is False, this argument specifies which channels to include in a
legacy synchronized channels session. If you do not specify any channels, by default all
channels on the device are included in the session.

If independent_channels is True, this argument combines with resource name to specify
which channels to include in an independent channels session. Initializing an independent
channels session with a channels argument is deprecated.

* reset (bool)— Specifies whether to reset channel(s) during the initialization procedure.

* options (dict) — Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status | False
cache True
simulate False
record_value_coersions False
driver_setup {}

* independent_channels (bool) — Specifies whether to initialize the session with in-
dependent channels. Set this argument to False on legacy applications or if you are unable
to upgrade your NI-DCPower driver runtime to 20.6 or higher.

7.1. nidcpower module 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.4.2

Methods

abort

nidcpower.Session.abort ()
Transitions the specified channel(s) from the Running state to the Uncommitted state. If a sequence
is running, it is stopped. Any configuration methods called after this method are not applied until the
nidcpower.Session.initiate () method is called. If power output is enabled when you
call the nidcpower. Session.abort () method, the output channels remain in their current
state and continue providing power.

Use the nidcpower.Session.ConfigureOutputEnabled () method to disable power
output on a per channel basis. Use the nidcpower.Session.reset () method to disable
output on all channels.

Refer to the Programming States topic in the NI DC Power Supplies and SMUs Help for information
about the specific NI-DCPower software states.

Related Topics:

Programming States

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].abort()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.abort ()

clear_latched_output_cutoff_state

nidcpower.Session.clear_latched_output_cutoff_state (output_cutoff_reason)
Clears the state of an output cutoff that was engaged. To clear the state for all output cutoff reasons,
use ALL.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].clear_latched_output_cutoff_state()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.clear_latched_output_cutoff_state ()

Parameters output_cutoff_reason (nidcpower.OutputCutoffReason) —
Specifies the reasons for which to clear the output cutoff state.

16 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

close

commit

ALL Clears all output cutoff conditions
VOLTAGE_OUTP[Cleéarssénitoffs caused when the output exceeded the high cutoff
limit for voltage output

VOLTAGE_oUTPUCleapsicutoffs caused when the output fell below the low cutoff
limit for voltage output

CURRENT_MEAS UKRedtd clifoffs caused when the measured current exceeded the
high cutoff limit for current output

CURRENT MEAS U RAearoeutoffs caused when the measured current fell below the
low cutoff limit for current output
VOLTAGE_CHANGKleatsseutoffs caused when the voltage slew rate increased be-
yond the positive change cutoff for voltage output

VOLTAGE_ CHANGKlgapsicutoffs caused when the voltage slew rate decreased be-
yond the negative change cutoff for voltage output

CURRENT CHANGKleéarsséntoffs caused when the current slew rate increased be-
yond the positive change cutoff for current output
CURRENT_CHANGKl€apsicutoffs caused when the voltage slew rate decreased be-
yond the negative change cutoff for current output

nidcpower.Session.close ()

Closes the session specified in vi and deallocates the resources that NI-DCPower reserves. If power
output is enabled when you call this method, the output channels remain in their existing state and
continue providing power. Use the nidcpower.Session.ConfigureOutputEnabled ()
method to disable power output on a per channel basis. Use the nidcpower.Session.
reset () method to disable power output on all channel(s).

Related Topics:

Programming States

Note: One or more of the referenced methods are not in the Python API for this driver.

Note: This method is not needed when using the session context manager

nidcpower.Session.commit ()

Applies previously configured settings to the specified channel(s). Calling this method moves the
NI-DCPower session from the Uncommitted state into the Committed state. After calling this
method, modifying any property reverts the NI-DCPower session to the Uncommitted state. Use
the nidcpower.Session.initiate () method to transition to the Running state. Refer to
the Programming States topic in the NI DC Power Supplies and SMUs Help for details about the
specific NI-DCPower software states.

Related Topics:

Programming States

7.1. nidcpower module

17

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].commit ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.commit ()

configure_aperture_time

nidcpower.Session.configure_aperture_time (aperture_time,

units=nidcpower.ApertureTimeUnits. SECONDS)
Configures the aperture time on the specified channel(s).

The supported values depend on the units. Refer to the Aperture Time topic for your device in the
NI DC Power Supplies and SMUs Help for more information. In general, devices support discrete
apertureTime values, and if you configure apertureTime to some unsupported value, NI-DCPower
coerces it up to the next supported value.

Refer to the Measurement Configuration and Timing or DC Noise Rejection topic for your device
in the NI DC Power Supplies and SMUs Help for more information about how to configure your
measurements.

Related Topics:

Aperture Time

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_aperture_time ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.configure_aperture_time ()

Parameters

* aperture_time (float) — Specifies the aperture time. Refer to the Aperture
Time topic for your device in the NI DC Power Supplies and SMUs Help for more
information.

* units (nidcpower.ApertureTimeUnits) — Specifies the units for aper-
tureTime. Defined Values:

SECONDS Specifies seconds.
POWER_LINE_CYCLES | Specifies Power Line Cycles.

18 Chapter 7. License

https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

configure_lcr_custom_cable_compensation

nidcpower.Session.configure lcr_ custom_cable_ compensation (custom_cable_compensation_data)
Applies previously generated open and short custom cable compensation data to LCR measure-
ments.

This method applies custom cable compensation data when you have set nidcpower. Session.
cable_ length property to CUSTOM _AS _CONFIGURED.

Call this method after you have obtained custom cable compensation data.

If nidcpower.Session.lcr_short_custom _cable compensation_enabled
property is set to True, you must generate data with both nidcpower.Session.
perform lcr._open _custom cable_compensation() and nidcpower.Session.
perform_lcr_short_custom_cable_ compensation (); if False, you must only use
nidcpower.Session.perform lcr._open custom cable_compensation (), and
NI-DCPower uses default short data.

Call nidcpower.Session.get_lcr _custom cable_compensation_data () and
pass the custom cable compensation data to this method.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_lcr_custom_cable_compensation ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.configure_lcr_custom_cable_compensation ()

Parameters custom_cable_compensation_data (bytes)— The open and short
custom cable compensation data to apply.

create_advanced_sequence

nidcpower.Session.create_advanced_sequence (sequence_name, property_names,
set_as_active_sequence=True)

Creates an empty advanced sequence. Call the nidcpower.Session.
create_advanced_sequence_step () method to add steps to the active advanced
sequence.

You can create multiple advanced sequences in a session.
Support for this method
You must set the source mode to Sequence to use this method.

Using the nidcpower. Session. set_sequence () method with Advanced Sequence meth-
ods is unsupported.

7.1. nidcpower module 19

https://docs.python.org/3/library/stdtypes.html#bytes

NI Modular Instruments Python APl Documentation, Release 1.4.2

Use this method in the Uncommitted or Committed programming states. Refer to the Programming
States topic in the NI DC Power Supplies and SMUs Help for more information about NI-DCPower
programming states.

Related Topics:
Advanced Sequence Mode
Programming States

nidcpower.Session.create_advanced_sequence_step ()

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.
Example: my_session.channels|] .create_advanced_sequence ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.create_advanced_sequence ()

Parameters
* sequence_name (st r)— Specifies the name of the sequence to create.

* property_names (list of str)-— Specifies the names of the properties you
reconfigure per step in the advanced sequence. The following table lists which prop-
erties can be configured in an advanced sequence for each NI-DCPower device that
supports advanced sequencing. A Yes indicates that the property can be configured
in advanced sequencing. An No indicates that the property cannot be configured in

advanced sequencing.

Property PXle-4135 | PXle-4136 | PXle-4137 | PXle-4138
nidcpower.Session.aperture_time Yes Yes Yes Yes
nidcpower.Session.dc _noise_rejection Yes No Yes No
nidcpower.Session.instrument_mode No No No No
nidcpower.Session.lcr_actual_load reactance No No No No
nidcpower.Session.lcr_actual_load_resistance No No No No
nidcpower.Session.lcr._current_amplitude No No No No
nidcpower.Session.lcr._current_range No No No No
nidcpower.Session.lcr._custom measurement_time No No No No
nidcpower.Session.lcr._dc_bias_current_level No No No No
nidcpower.Session.lcr._dc _bias_current_range No No No No
nidcpower.Session.lcr._dc_bias_source No No No No
nidcpower.Session.lcr_dc bias _voltage_ level No No No No
nidcpower.Session.lcr_dc_bias_voltage_range No No No No
nidcpower.Session.lcr._frequency No No No No
nidcpower.Session.lcr_impedance_auto_range No No No No
nidcpower.Session.lcr._impedance_range No No No No
nidcpower.Session.lcr._load compensation_enabled No No No No
20 Chapter 7. License

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

Table 1 — continued from

Property PXle-4135 | PXle-4136 | PXle-4137 | PXle-4138
nidcpower.Session.lcr_measured_load_reactance No No No No
nidcpower.Session.lcr._measured_load _resistance No No No No
nidcpower.Session.lcr_measurement_time No No No No
nidcpower.Session.lcr._open_compensation_enabled No No No No
nidcpower.Session.lcr._open_conductance No No No No
nidcpower.Session.lcr._open_susceptance No No No No
nidcpower.Session.lcr._short_compensation _enabled | No No No No
nidcpower.Session.lcr_short_reactance No No No No
nidcpower.Session.lcr._short_resistance No No No No
nidcpower.Session.lcr_source_delay_mode No No No No
nidcpower.Session.lcr_stimulus_function No No No No
nidcpower.Session.lcr_voltage_amplitude No No No No
nidcpower.Session.lcr_voltage_range No No No No
nidcpower.Session.measure_record_length Yes Yes Yes Yes
nidcpower.Session.sense Yes Yes Yes Yes
nidcpower.Session.ovp_enabled Yes Yes Yes No
nidcpower.Session.ovp_limit Yes Yes Yes No
nidcpower.Session.pulse_bias_delay Yes Yes Yes Yes
nidcpower.Session.pulse_off_time Yes Yes Yes Yes
nidcpower.Session.pulse _on _time Yes Yes Yes Yes
nidcpower.Session.source_delay Yes Yes Yes Yes
nidcpower.Session.current_compensation_frequency | Yes No Yes No
nidcpower.Session.current_gain _bandwidth Yes No Yes No
nidcpower.Session.current_pole zero_ratio Yes No Yes No
nidcpower.Session.voltage compensation_frequency | Yes No Yes No
nidcpower.Session.voltage gain_bandwidth Yes No Yes No
nidcpower.Session.voltage pole zero ratio Yes No Yes No
nidcpower.Session.current_level Yes Yes Yes Yes
nidcpower.Session.current_level range Yes Yes Yes Yes
nidcpower.Session.voltage limit Yes Yes Yes Yes
nidcpower.Session.voltage_limit_high Yes Yes Yes Yes
nidcpower.Session.voltage limit_low Yes Yes Yes Yes
nidcpower.Session.voltage limit_range Yes Yes Yes Yes
nidcpower.Session.current_limit Yes Yes Yes Yes
nidcpower.Session.current_limit_high Yes Yes Yes Yes
nidcpower.Session.current_limit_Jlow Yes Yes Yes Yes
nidcpower.Session.current_limit_range Yes Yes Yes Yes
nidcpower.Session.voltage level Yes Yes Yes Yes
nidcpower.Session.voltage level_range Yes Yes Yes Yes
nidcpower.Session.output_enabled Yes Yes Yes Yes
nidcpower.Session.output_function Yes Yes Yes Yes
nidcpower.Session.output_resistance Yes No Yes No
nidcpower.Session.pulse _bias_current_level Yes Yes Yes Yes
nidcpower.Session.pulse_bias_voltage_limit Yes Yes Yes Yes
nidcpower.Session.pulse bias voltage_limit_high Yes Yes Yes Yes
nidcpower.Session.pulse_bias_voltage limit_low Yes Yes Yes Yes
nidcpower.Session.pulse current_level Yes Yes Yes Yes
nidcpower.Session.pulse_current_level_ range Yes Yes Yes Yes
nidcpower.Session.pulse _voltage limit Yes Yes Yes Yes

7.1. nidcpower module 21

NI Modular Instruments Python APl Documentation, Release 1.4.2

Table 1 — continued from

Property PXle-4135 | PXle-4136 | PXle-4137 | PXle-4138
nidcpower.Session.pulse voltage_ limit_high Yes Yes Yes Yes
nidcpower.Session.pulse_voltage limit_low Yes Yes Yes Yes
nidcpower.Session.pulse voltage limit_range Yes Yes Yes Yes
nidcpower.Session.pulse_bias_current_limit Yes Yes Yes Yes
nidcpower.Session.pulse bias current_limit_high Yes Yes Yes Yes
nidcpower.Session.pulse_bias_current_limit_low Yes Yes Yes Yes
nidcpower.Session.pulse _bias_voltage_level Yes Yes Yes Yes
nidcpower.Session.pulse_current_limit Yes Yes Yes Yes
nidcpower.Session.pulse current_limit_high Yes Yes Yes Yes
nidcpower.Session.pulse_current_limit_low Yes Yes Yes Yes
nidcpower.Session.pulse current_limit_range Yes Yes Yes Yes
nidcpower.Session.pulse_voltage level Yes Yes Yes Yes
nidcpower.Session.pulse _voltage_ level_range Yes Yes Yes Yes
nidcpower.Session.transient_response Yes Yes Yes Yes

* set_as_active_sequence (bool) — Specifies that this current sequence is
active.

create_advanced_sequence_commit_step

nidcpower.Session.create_advanced_sequence_commit_step (set_as_active_step=True)
Creates a Commit step in the Active advanced sequence. A Commit step configures channels to a
user-defined known state before starting the advanced sequence. When a Commit step exists in the
Active advanced sequence, you cannot set the output method to Pulse Voltage or Pulse Current in
either the Commit step (-1) or step 0. When you create an advanced sequence step, each property
you passed to the nidcpower. Session.create_advanced_sequence () method is reset
to its default value for that step unless otherwise specified.

Support for this Method
You must set the source mode to Sequence to use this method.

Using the nidcpower. Session.set_sequence () method with Advanced Sequence meth-
ods is unsupported.

Related Topics:
Advanced Sequence Mode
Programming States

nidcpower.Session.create_advanced_ sequence ()

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].create_advanced_sequence_commit_step ()

To call the method on all channels, you can call it directly on the nidcpower. Session.

22 Chapter 7. License

https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.create_advanced_sequence_commit_step ()

Parameters set_as_active_step (bool)— Specifies whether the step created with
this method is active in the Active advanced sequence.

create_advanced_sequence_step

nidcpower.Session.create_advanced_sequence_step (set_as_active_step=True)
Creates a new advanced sequence step in the advanced sequence specified by the Active advanced se-
quence. When you create an advanced sequence step, each property you passed to the nidcpower.
Session.create_advanced_sequence () method is reset to its default value for that step
unless otherwise specified.

Support for this Method
You must set the source mode to Sequence to use this method.

Using the nidcpower. Session.set_sequence () method with Advanced Sequence meth-
ods is unsupported.

Related Topics:
Advanced Sequence Mode
Programming States

nidcpower.Session.create_advanced_ sequence ()

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].create_advanced_sequence_step()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.create_advanced_sequence_step ()

Parameters set_as_active_step (bool)— Specifies whether the step created with
this method is active in the Active advanced sequence.

delete_advanced_sequence

nidcpower.Session.delete_advanced_sequence (sequence_name)
Deletes a previously created advanced sequence and all the advanced sequence steps in the advanced
sequence.

Support for this Method

You must set the source mode to Sequence to use this method.

7.1. nidcpower module 23

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.4.2

Using the nidcpower. Session. set_sequence () method with Advanced Sequence meth-
ods is unsupported.

Related Topics:
Advanced Sequence Mode

Programming States

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].delete_advanced_sequence ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.delete_advanced_sequence ()

Parameters sequence_name (st r) — specifies the name of the sequence to delete.

disable

nidcpower.Session.disable ()
This method performs the same actions as the nidcpower. Session.reset () method, except
that this method also immediately sets the nidcpower. Session.output_enabled property
to False.

This method opens the output relay on devices that have an output relay.

export_attribute_configuration_buffer

nidcpower.Session.export_attribute_configuration_buffer ()
Exports the property configuration of the session to the specified configuration buffer.

You can export and import session property configurations only between devices with identical
model numbers and the same number of configured channels.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-DCPower returns an error.

Support for this Method
Calling this method in Sequence Source Mode is unsupported.
Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped to
the importing channels in the order you specify in the channelName input to the nidcpower.
Session.___init__ () method.

24 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the import-
ing session:

* The configuration exported from channel O is imported into channel 1.
* The configuration exported from channel 1 is imported into channel 2.
Related Topics:
Using Properties and Properties

Setting Properties and Properties Before Reading Them

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

Return type bytes

Returns Specifies the byte array buffer to be populated with the exported property config-
uration.

export_attribute_configuration_file

nidcpower.Session.export_attribute_configuration_file (file_path)
Exports the property configuration of the session to the specified file.

You can export and import session property configurations only between devices with identical
model numbers and the same number of configured channels.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-DCPower returns an error.

Support for this Method
Calling this method in Sequence Source Mode is unsupported.
Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped to
the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__ () method.

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the import-
ing session:

* The configuration exported from channel O is imported into channel 1.
* The configuration exported from channel 1 is imported into channel 2.
Related Topics:
Using Properties and Properties

Setting Properties and Properties Before Reading Them

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

7.1. nidcpower module 25

https://docs.python.org/3/library/stdtypes.html#bytes

NI Modular Instruments Python APl Documentation, Release 1.4.2

Parameters file_path (str) — Specifies the absolute path to the file to contain the
exported property configuration. If you specify an empty or relative path, this method
returns an error. Default file extension: .nidcpowerconfig

fetch_multiple

nidcpower.Session.fetch_multiple (count, timeout=hightime.timedelta(seconds=1.0))
Returns a list of named tuples (Measurement) that were previously taken and are stored in
the NI-DCPower buffer. This method should not be used when the nidcpower.Session.
measure_when property is set to ON_DEMAND. You must first call nidcpower. Session.
initiate () before calling this method.

Fields in Measurement:
* voltage (float)
¢ current (float)
* in_compliance (bool)

¢ channel (str)

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].fetch multiple()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.fetch_multiple ()

Parameters
e count (int)— Specifies the number of measurements to fetch.

* timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) — Specifies the maximum time allowed for this method to
complete. If the method does not complete within this time interval, NI-DCPower
returns an error. Default value: 1.0 second

Note: When setting the timeout interval, ensure you take into account any triggers
so that the timeout interval is long enough for your application.

Return type list of Measurement
Returns
List of named tuples with fields:
* voltage (float)

¢ current (float)

26 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

* in_compliance (bool)

¢ channel (str)

fetch_multiple_lcr

nidcpower.Session.fetch_multiple_lcr (count, time-

out=hightime.timedelta(seconds=1.0))
Returns a list of previously measured LCRMeasurement instances on the specified channel that have

been taken and stored in a buffer.
To use this method:

e Set nidcpower.Session.measure_when property to
AUTOMATICALLY AFTER SOURCE_COMPLETE or ON_MEASURE_TRIGGER

* Put the channel in the Running state (call nidcpower. Session.initiate())

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].fetch_multiple_lcr ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.fetch_multiple_lcr ()

Parameters
e count (int)— Specifies the number of measurements to fetch.

* timeout (hightime.timedelta, datetime.timedelta, or
float in seconds)— Specifies the maximum time allowed for this method to
complete, in seconds. If the method does not complete within this time interval,
NI-DCPower returns an error. Default value: 1.0 second

Note: When setting the timeout interval, ensure you take into account any triggers
so that the timeout interval is long enough for your application.

Return type list of LCRMeasurement
Returns

A list of LCRMeasurement instances.

7.1. nidcpower module

27

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

channel The channel name associated with this LCR measurement.
vdc float The measured DC voltage, in volts.
idc float The measured DC current, in amps.
stimu- float The frequency of the LCR test signal, in Hz.
lus_frequency
ac_voltage com- The measured AC voltage, in volts RMS.
plex
ac_currernt com- The measured AC current, in amps RMS.
plex
zZ com- The complex impedance.
plex
z_magnitpdapimdf phd¥e magnitude, in ohms, and phase angle, in degrees, of the
float complex impedance.
y com- The complex admittance.
plex
y_magnitudeplndf phddee magnitude, in siemens, and phase angle, in degrees, of
float the complex admittance.
se- LCR The inductance, in henrys, the capacitance, in farads, and the
ries_lcr resistance, in ohms, as measured using a series circuit model.
paral- LCR The inductance, in henrys, the capacitance, in farads, and
lel lcr the resistance, in ohms, as measured using a parallel circuit
model.
d float The dissipation factor of the circuit. The dimensionless dis-

sipation factor is directly proportional to how quickly an os-
cillating system loses energy. D is the reciprocal of Q, the
quality factor.

q float The quality factor of the circuit. The dimensionless quality
factor is inversely proportional to the degree of damping in a
system. Q is the reciprocal of D, the dissipation factor.

mea- enums.InstfihmentMuodement mode: SMU - The channel(s) are operating
sure- as a power supply/SMU. LCR - The channel(s) are operating
ment_mode as an LCR meter.

dc_in_comptiahce | Indicates whether the output was in DC compliance at the
time the measurement was taken.

ac_in_compbahce | Indicates whether the output was in AC compliance at the
time the measurement was taken.

unbal- bool Indicates whether the output was unbalanced at the time the
anced measurement was taken.

get_channel_name

nidcpower.Session.get_channel_name (index)
Retrieves the output channelName that corresponds to the requested index. Use the nidcpower.
Session.channel count property to determine the upper bound of valid values for index.

Parameters index (int) — Specifies which output channel name to return. The index
values begin at 1.

Return type str

Returns Returns the output channel name that corresponds to index.

28 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

get_channel_names

nidcpower.Session.get_channel_names (indices)
Returns a list of channel names for the given channel indices.

Parameters indices (basic sequence types or str or int)- Index list
for the channels in the session. Valid values are from zero to the total number of chan-
nels in the session minus one. The index string can be one of the following formats:

* A comma-separated list—for example, “0,2,3,1”
* A range using a hyphen—for example, “0-3”
* A range using a colon—for example, “0:3 “

You can combine comma-separated lists and ranges that use a hyphen or colon. Both
out-of-order and repeated indices are supported (“2,3,0,” “1,2,2,3”). White space char-
acters, including spaces, tabs, feeds, and carriage returns, are allowed between charac-
ters. Ranges can be incrementing or decrementing.

Return type list of str

Returns The channel name(s) at the specified indices.

get_ext_cal_last_date_and_time

nidcpower.Session.get_ext_cal_last_date_and time ()
Returns the date and time of the last successful calibration.

Return type hightime.datetime

Returns Indicates date and time of the last calibration.

get_ext_cal_last_temp

nidcpower.Session.get_ext_cal_last_ temp ()
Returns the onboard temperature of the device, in degrees Celsius, during the last successful exter-

nal calibration.
Return type float

Returns Returns the onboard temperature of the device, in degrees Celsius, during the
last successful external calibration.

get_ext_cal_recommended_interval

nidcpower.Session.get_ext_cal_recommended_interval ()
Returns the recommended maximum interval, in months, between external calibrations.
Return type hightime.timedelta
Returns Specifies the recommended maximum interval, in months, between external cal-

ibrations.

7.1. nidcpower module 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

get_lcr_compensation_last_date_and_time

nidcpower.Session.get_lcr_ compensation_last_date_and_time (compensation_type)
Returns the date and time the specified type of compensation data for LCR measurements was most
recently generated.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].get_lcr_compensation_last_date_and_time ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.get_lcr_compensation_last_date_and_time ()

Parameters compensation_type (nidcpower.LCRCompensationType) -—
Specifies the type of compensation for LCR measurements.

Return type hightime.datetime

Returns Returns the date and time the specified type of compensation data for LCR mea-
surements was most recently generated.

get_lcr_custom_cable_compensation_data

nidcpower.Session.get_lcr_custom_cable_compensation_data ()
Collects previously generated open and short custom cable compensation data
so you can then apply it to LCR measurements with nidcpower.Session.
configure Ilcr._custom cable compensation ().

Call this method after you have obtained open and short custom cable compensa-
tion data. Pass the custom cable compensation data to nidcpower.Session.
configure_lcr._custom_cable_compensation ()

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].get_lcr_custom_cable_compensation_data ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.get_lcr_custom_cable_compensation_data ()

30 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Return type bytes

Returns The open and short custom cable compensation data to retrieve.

get_self _cal_last date_and_time

nidcpower.Session.get_self cal_last_date_and time()
Returns the date and time of the oldest successful self-calibration from among the channels in the
session.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Return type hightime.datetime

Returns Returns the date and time the device was last calibrated.

get_self _cal_last_temp

nidcpower.Session.get_self cal_last_temp ()
Returns the onboard temperature of the device, in degrees Celsius, during the oldest successful self-
calibration from among the channels in the session.

For example, if you have a session using channels 1 and 2, and you perform a self-calibration
on channel 1 with a device temperature of 25 degrees Celsius at 2:00, and a self-calibration was
performed on channel 2 at 27 degrees Celsius at 3:00 on the same day, this method returns 25 for
the temperature parameter.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Return type float

Returns Returns the onboard temperature of the device, in degrees Celsius, during the
oldest successful calibration.

import_attribute_configuration_buffer

nidcpower.Session.import_attribute_configuration_buffer (configuration)
Imports a property configuration to the session from the specified configuration buffer.

You can export and import session property configurations only between devices with identical
model numbers and the same number of configured channels.

Support for this Method
Calling this method in Sequence Source Mode is unsupported.
Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped to

7.1. nidcpower module 31

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__ () method.

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the import-
ing session:

* The configuration exported from channel O is imported into channel 1.
* The configuration exported from channel 1 is imported into channel 2.
Related Topics:
Programming States
Using Properties and Properties

Setting Properties and Properties Before Reading Them

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

Parameters configuration (bytes) — Specifies the byte array buffer that contains
the property configuration to import.

import_attribute_configuration_file

nidcpower.Session.import_attribute_configuration_file (file_path)

Imports a property configuration to the session from the specified file.

You can export and import session property configurations only between devices with identical
model numbers and the same number of configured channels.

Support for this Method
Calling this method in Sequence Source Mode is unsupported.
Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped to
the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__ () method.

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the import-
ing session:

* The configuration exported from channel O is imported into channel 1.
* The configuration exported from channel 1 is imported into channel 2.
Related Topics:
Programming States
Using Properties and Properties

Setting Properties and Properties Before Reading Them

32

Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#bytes

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

Parameters file_path (str) — Specifies the absolute path to the file containing the
property configuration to import. If you specify an empty or relative path, this method
returns an error. Default File Extension: .nidcpowerconfig

initiate

nidcpower.Session.initiate ()
Starts generation or acquisition, causing the specified channel(s) to leave the Uncommitted state
or Committed state and enter the Running state. To return to the Uncommitted state call the
nidcpower.Session.abort () method. Refer to the Programming States topic in the NI DC
Power Supplies and SMUs Help for information about the specific NI-DCPower software states.

Related Topics:

Programming States

Note: This method will return a Python context manager that will initiate on entering and abort on
exit.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].initiate()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.initiate ()

lock

nidcpower.Session.lock ()
Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:
» The application called the nidcpower. Session. lock () method.
* A call to NI-DCPower locked the session.

» After a call to the nidcpower.Session.lock () method returns successfully, no other threads can
access the device session until you call the nidcpower. Session.unlock () method or exit out of
the with block when using lock context manager.

e Use the nidcpower.Session.lock () method and the nidcpower.Session.unlock ()
method around a sequence of calls to instrument driver methods if you require that the device retain its
settings through the end of the sequence.

7.1. nidcpower module 33

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

You can safely make nested calls to the nidcpower. Session. lock () method within the same thread. To
completely unlock the session, you must balance each call to the nidcpower. Session. lock () method
with a call to the nidcpower. Session.unlock () method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

with nidcpower.Session('devl') as session:
with session.lock () :
Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type context manager

Returns When used in a with statement, nidcpower.Session. lock () acts as a context man-
ager and unlock will be called when the with block is exited

measure

nidcpower.Session.measure (measurement_type)
Returns the measured value of either the voltage or current on the specified output channel. Each call
to this method blocks other method calls until the hardware returns the measurement. To measure
multiple output channels, use the nidcpower. Session.measure _multiple () method.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].measure ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.measure ()

Parameters measurement_type (nidcpower.Measurement Types)— Specifies
whether a voltage or current value is measured. Defined Values:

VOLTAGE | The device measures voltage.
CURRENT | The device measures current.

Return type float

Returns Returns the value of the measurement, either in volts for voltage or amps for
current.

measure_multiple

nidcpower.Session.measure_multiple ()
Returns a list of named tuples (Measurement) containing the measured voltage and current values
on the specified output channel(s). Each call to this method blocks other method calls until the

34 Chapter 7. License

https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

measurements are returned from the device. The order of the measurements returned in the array
corresponds to the order on the specified output channel(s).

Fields in Measurement:
* voltage (float)
¢ current (float)
¢ in_compliance (bool) - Always None

* channel (str)

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].measure_multiple ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.measure_multiple ()

Return type list of Measurement
Returns
List of named tuples with fields:
* voltage (float)
¢ current (float)
* in_compliance (bool) - Always None

¢ channel (str)

measure_multiple_lcr

nidcpower.Session.measure_multiple_ lcr ()
Measures and returns a list of LCRMeasurement instances on the specified output channel(s).

To use this method:
e Set nidcpower. Session.instrument_mode property to LCR
* Set nidcpower.Session.measure_when property to ON_DEMAND

* Put the channel(s) in the Running state (call nidcpower.Session.initiate ())

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

7.1. nidcpower module 35

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].measure_multiple_lcr ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.measure_multiple_lcr ()

Return type list of LCRMeasurement
Returns

A list of LCRMeasurement instances.

channel The channel name associated with this LCR measurement.
vdc float The measured DC voltage, in volts.
idc float The measured DC current, in amps.
stimu- float The frequency of the LCR test signal, in Hz.
lus_frequency
ac_voltage com- The measured AC voltage, in volts RMS.
plex
ac_current com- The measured AC current, in amps RMS.
plex
zZ com- The complex impedance.
plex
z_magnitpdapimdf phd%e magnitude, in ohms, and phase angle, in degrees, of the
float complex impedance.
y com- The complex admittance.
plex
y_magnitudeplmdf phddee magnitude, in siemens, and phase angle, in degrees, of
float the complex admittance.
se- LCR The inductance, in henrys, the capacitance, in farads, and the
ries_lcr resistance, in ohms, as measured using a series circuit model.
paral- LCR The inductance, in henrys, the capacitance, in farads, and
lel_lcr the resistance, in ohms, as measured using a parallel circuit
model.
d float The dissipation factor of the circuit. The dimensionless dis-

sipation factor is directly proportional to how quickly an os-
cillating system loses energy. D is the reciprocal of Q, the
quality factor.

q float The quality factor of the circuit. The dimensionless quality
factor is inversely proportional to the degree of damping in a
system. Q is the reciprocal of D, the dissipation factor.

mea- enums.InstfimentMuodement mode: SMU - The channel(s) are operating
sure- as a power supply/SMU. LCR - The channel(s) are operating
ment_mogde as an LCR meter.

dc_in_comptiahce | Indicates whether the output was in DC compliance at the
time the measurement was taken.

ac_in_compbahce | Indicates whether the output was in AC compliance at the
time the measurement was taken.

unbal- bool Indicates whether the output was unbalanced at the time the
anced measurement was taken.

36 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

perform_lcr_load_compensation

nidcpower.Session.perform_lcr_load_compensation (compensation_spots)
Generates load compensation data for LCR measurements for the test spots you specify.

You must physically configure your LCR circuit with an appropriate reference load to use this
method to generate valid load compensation data.

When you call this method:

* The load compensation data is written to the onboard storage of the instrument. Onboard storage
can contain only the most recent set of data.

* Most NI-DCPower properties in the session are reset to their default values. Rewrite the values
of any properties you want to maintain.

To apply the load compensation data you generate with this method to your LCR measurements, set
the nidcpower. Session. lcr_load_compensation_enabled property to True.

Load compensation data are generated only for those specific frequencies you define with this
method; load compensation is not interpolated from the specific frequencies you define and applied
to other frequencies.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].perform lcr_load_compensation ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.perform_lcr_load_compensation ()

Parameters compensation_spots (list of LCRLoadCompensationSpot)
— Defines the frequencies and DUT specifications to use for LCR load compensation.

You can specify <=1000 spot frequencies.

frequency | The spot frequency, in Hz.

refer- A known specification value of your DUT to use as the basis for load
ence_value_typempensation.
refer- A value that describes the reference_value_type specification. Use

ence_value | as indicated by the reference_value_type option you choose.

perform_lcr_open_compensation

nidcpower.Session.perform_lcr_open_compensation (additional_frequencies=None)
Generates open compensation data for LCR measurements based on a default set of test frequencies
and, optionally, additional frequencies you can specify.

7.1. nidcpower module 37

NI Modular Instruments Python APl Documentation, Release 1.4.2

You must physically configure an open LCR circuit to use this method to generate valid open com-
pensation data.

When you call this method:

e The open compensation data is written to the onboard storage of the instrument. Onboard
storage can contain only the most recent set of data.

* Most NI-DCPower properties in the session are reset to their default values. Rewrite the values
of any properties you want to maintain.

To apply the open compensation data you generate with this method to your LCR measurements, set
the nidcpower.Session.lcr._open_compensation_enabled property to True.

Corrections for frequencies other than the default frequencies or any additional frequencies you
specify are interpolated.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Note: Default Open Compensation Frequencies: By default, NI-DCPower uses the following fre-
quencies for LCR open compensation:

* 10 logarithmic steps at 1 kHz frequency decade

* 10 logarithmic steps at 10 kHz frequency decade

* 100 logarithmic steps at 100 kHz frequency decade
* 100 logarithmic steps at 1 MHz frequency decade

The actual frequencies used depend on the bandwidth of your instrument.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].perform lcr_open_compensation ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.perform_lcr_open_compensation ()

Parameters additional_ frequencies (list of float) — Defines a further
set of frequencies, in addition to the default frequencies, to perform the compensa-
tion for. You can specify <=200 additional frequencies.

perform_lcr_open_custom_cable_compensation

nidcpower.Session.perform_lcr_open_custom_cable_ compensation ()
Generates open custom cable compensation data for LCR measurements.

To use this method, you must physically configure an open LCR circuit to generate valid open
custom cable compensation data.

When you call this method:

38 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

* The open compensation data is written to the onboard storage of the instrument. Onboard
storage can contain only the most recent set of data.

* Most NI-DCPower properties in the session are reset to their default values. Rewrite the values
of any properties you want to maintain.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].perform_lcr_open_custom_cable_compensation/()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.perform_lcr_open_custom_cable_compensation ()

perform_Ilcr_short_compensation

nidcpower.Session.perform_lcr_short_compensation (additional_frequencies=None)
Generates short compensation data for LCR measurements based on a default set of test frequencies
and, optionally, additional frequencies you can specify.

You must physically configure your LCR circuit with a short to use this method to generate valid
short compensation data.

When you call this method:

e The short compensation data is written to the onboard storage of the instrument. Onboard
storage can contain only the most recent set of data.

* Most NI-DCPower properties in the session are reset to their default values. Rewrite the values
of any properties you want to maintain.

To apply the short compensation data you generate with this method to your LCR measurements,
setthe nidcpower.Session.lcr._short_compensation_enabled property to True.

Corrections for frequencies other than the default frequencies or any additional frequencies you
specify are interpolated.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Note: Default Short Compensation Frequencies: By default, NI-DCPower uses the following fre-
quencies for LCR short compensation:

* 10 logarithmic steps at 1 kHz frequency decade

* 10 logarithmic steps at 10 kHz frequency decade

* 100 logarithmic steps at 100 kHz frequency decade
* 100 logarithmic steps at 1 MHz frequency decade

7.1. nidcpower module 39

NI Modular Instruments Python APl Documentation, Release 1.4.2

The actual frequencies used depend on the bandwidth of your instrument.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].perform_lcr_short_compensation ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.perform_lcr_short_compensation ()

Parameters additional_frequencies (list of float) — Defines a further
set of frequencies, in addition to the default frequencies, to perform the compensa-
tion for. You can specify <=200 additional frequencies.

perform_Ilcr_short_custom_cable_compensation

nidcpower.Session.perform_lcr_short_custom_cable_compensation ()
Generates short custom cable compensation data for LCR measurements.

To use this method:

* You must physically configure your LCR circuit with a short to generate valid short custom
cable compensation data.

e Setnidcpower.Session.lcr_short_custom cable_compensation_enabled
property to True

When you call this method:

e The short compensation data is written to the onboard storage of the instrument. Onboard
storage can contain only the most recent set of data.

* Most NI-DCPower properties in the session are reset to their default values. Rewrite the values
of any properties you want to maintain.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].perform_lcr_short_custom_cable_compensation ()

To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.perform_lcr_short_custom_cable_compensation ()

40 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

query_in_compliance

nidcpower.Session.query_in_compliance ()
Queries the specified output device to determine if it is operating at the compliance limit.

The compliance limit is the current limit when the output method is set to DC_VOLTAGE. If the
output is operating at the compliance limit, the output reaches the current limit before the desired
voltage level. Refer to the nidcpower.Session.ConfigureOutputFunction () method
and the nidcpower.Session.ConfigureCurrentLimit () method for more information
about output method and current limit, respectively.

The compliance limit is the voltage limit when the output method is set to DC_CURRENT. If the
output is operating at the compliance limit, the output reaches the voltage limit before the desired
current level. Refer to the nidcpower.Session.ConfigureOutputFunction () method
and the nidcpower.Session.ConfigureVoltageLimit () method for more information
about output method and voltage limit, respectively.

Related Topics:

Compliance

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].query_in_compliance ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.query_in_compliance ()

Return type bool

Returns Returns whether the device output channel is in compliance.

query_latched_output_cutoff_state

nidcpower.Session.query_ latched_output_cutoff_state (output_cutoff reason)
Discovers if an output cutoff limit was exceeded for the specified reason. = When an
output cutoff is engaged, the output of the channel(s) is disconnected. If a limit
was exceeded, the state is latched until you clear it with the nidcpower.Session.
clear_latched output_cutoff state() method or the nidcpower.Session.
reset () method.

outputCutoffReason specifies the conditions for which an output is disconnected.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_latched_output_cutoff_state ()

To call the method on all channels, you can call it directly on the nidcpower. Session.

7.1. nidcpower module a1

https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.query_latched_output_cutoff_state ()

Parameters output_cutoff_ reason (nidcpower.OutputCutoffReason) —
Specifies which output cutoff conditions to query.

ALL Any output cutoff condition was met
VOLTAGE_OUTPUT_|HTheloutput exceeded the high cutoff limit for voltage output
VOLTAGE_OUTPUT_|L Dhe output fell below the low cutoff limit for voltage output
CURRENT_MEASURE THhe&sineasured current exceeded the high cutoff limit for
current output

CURRENT_MEASURE| Thevmeasured current fell below the low cutoff limit for
current output

VOLTAGE_CHANGE_|HTh&voltage slew rate increased beyond the positive change
cutoff for voltage output

VOLTAGE_CHANGE_|LDhe voltage slew rate decreased beyond the negative
change cutoff for voltage output

CURRENT _CHANGE_|HThglcurrent slew rate increased beyond the positive change
cutoff for current output

CURRENT_CHANGE_|LDhe current slew rate decreased beyond the negative
change cutoff for current output

Return type bool
Returns

Specifies whether an output cutoff has engaged.

True | An output cutoff has engaged for the conditions in output cutoff reason.
False | No output cutoff has engaged.

query_max_current_limit

nidcpower.Session.query_max_current_limit (voltage_level)
Queries the maximum current limit on an output channel if the output channel is set to the specified
voltageLevel.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].query_max_current_limit ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.query_max_current_limit ()

Parameters voltage_level (float)— Specifies the voltage level to use when calcu-
lating the maxCurrentLimit.

Return type float

Returns Returns the maximum current limit that can be set with the specified volt-
ageLevel.

42 Chapter 7. License

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

query_max_voltage level

nidcpower.Session.query_max voltage_ level (current_limit)
Queries the maximum voltage level on an output channel if the output channel is set to the specified
currentLimit.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].query_max_voltage_level ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.query_max_voltage_level ()

Parameters current_1limit (float)— Specifies the current limit to use when calcu-
lating the maxVoltageLevel.

Return type float

Returns Returns the maximum voltage level that can be set on an output channel with the
specified currentLimit.

query_min_current_limit

nidcpower.Session.query_min_current_limit (voltage_level)
Queries the minimum current limit on an output channel if the output channel is set to the specified
voltageLevel.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_min_current_limit ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.query_min_current_limit ()

Parameters voltage_level (float)— Specifies the voltage level to use when calcu-
lating the minCurrentLimit.

Return type float

Returns Returns the minimum current limit that can be set on an output channel with the
specified voltageLevel.

query_output_state

nidcpower.Session.query_output_state (outpur_state)
Queries the specified output channel to determine if the output channel is currently in the state
specified by outputState.

7.1. nidcpower module 43

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

Related Topics:

Compliance

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].query_output_state ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.query_output_state ()

Parameters output_state (nidcpower.OutputStates) — Specifies the output
state of the output channel that is being queried. Defined Values:

VOLTAGE | The device maintains a constant voltage by adjusting the current.
CURRENT | The device maintains a constant current by adjusting the voltage.

Return type bool

Returns Returns whether the device output channel is in the specified output state.

read_current_temperature

nidcpower.Session.read current_temperature ()
Returns the current onboard temperature, in degrees Celsius, of the device.

Return type float

Returns Returns the onboard temperature, in degrees Celsius, of the device.

reset

nidcpower.Session.reset ()
Resets the specified channel(s) to a known state. This method disables power generation, resets
session properties to their default values, commits the session properties, and leaves the session
in the Uncommitted state. Refer to the Programming States topic for more information about NI-
DCPower software states.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].reset()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.reset ()

44 Chapter 7. License

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

reset_device

nidcpower.Session.reset_device ()
Resets the device to a known state. The method disables power generation, resets session properties
to their default values, clears errors such as overtemperature and unexpected loss of auxiliary power,
commits the session properties, and leaves the session in the Uncommitted state. This method also
performs a hard reset on the device and driver software. This method has the same functionality
as using reset in Measurement & Automation Explorer. Refer to the Programming States topic for
more information about NI-DCPower software states.

This will also open the output relay on devices that have an output relay.

reset_with_defaults

nidcpower.Session.reset_with_defaults ()
Resets the device to a known state. This method disables power generation, resets session properties
to their default values, commits the session properties, and leaves the session in the Running state. In
addition to exhibiting the behavior of the nidcpower. Session. reset () method, this method
can assign user-defined default values for configurable properties from the IVI configuration.

self _cal

nidcpower.Session.self cal ()
Performs a self-calibration upon the specified channel(s).

This method disables the output, performs several internal calculations, and updates calibration
values. The updated calibration values are written to the device hardware if the nidcpower.
Session.self _calibration_persistence property issetto WRITE_TO_EEPROM. Re-
fer to the nidcpower. Session.self calibration persistence property topic for
more information about the settings for this property.

When calling nidcpower. Session.self cal () with the PXIe-4162/4163, specify all chan-
nels of your PXIe-4162/4163 with the channelName input. You cannot self-calibrate a subset of
PXIe-4162/4163 channels.

Refer to the Self-Calibration topic for more information about this method.
Related Topics:
Self-Calibration

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].self_cal()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.self_cal ()

7.1. nidcpower module 45

javascript:LaunchHelp('NI_DC_Power_Supplies_Help.chm::/programmingStates.html#running')

NI Modular Instruments Python APl Documentation, Release 1.4.2

self test

nidcpower.Session.self_test ()
Performs the device self-test routine and returns the test result(s). Calling this method implicitly
calls the nidcpower. Session.reset () method.

When calling nidcpower.Session.self test () with the PXle-4162/4163, specify
all channels of your PXIe-4162/4163 with the channels input of nidcpower.Session.
__init__ (). You cannot self test a subset of PXIe-4162/4163 channels.

Raises SelfTestError on self test failure. Properties on exception object:
* code - failure code from driver

* message - status message from driver

Self-Test Code | Description
0 Self test passed.
1 Self test failed.

send_software_edge_trigger

nidcpower.Session.send_software_edge_trigger (trigger)
Asserts the specified trigger. This method can override an external edge trigger.

Related Topics:
Triggers

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].send_software_edge_trigger ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.send_software_edge_trigger ()

Parameters trigger (nidcpower.SendSoftwareEdgeTriggerType)— Spec-
ifies which trigger to assert. Defined Values:

NIDCPOWER_VAL_START TRIGGER Asserts the Start trigger.
NIDCPOWER_VAL_SOURCE_TRIGGER Asserts the Source trigger.
NIDCPOWER_VAL_MEASURE_TRIGGER Asserts the Measure trigger.
NIDCPOWER_VAL_SEQUENCE_ADVANCE_TRIAGERs the Sequence Advance
trigger.
NIDCPOWER_VAL_PULSE_TRIGGER Asserts the Pulse trigger.
NIDCPOWER_VAL_SHUTDOWN_TRIGGER Asserts the Shutdown trigger.

46 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

set_sequence

nidcpower.Session.set_sequence (values, source_delays)
Configures a series of voltage or current outputs and corresponding source delays. The source mode
must be set to Sequence for this method to take effect.

Refer to the Configuring the Source Unit topic in the NI DC Power Supplies and SMUs Help for
more information about how to configure your device.

Use this method in the Uncommitted or Committed programming states. Refer to the Programming
States topic in the NI DC Power Supplies and SMUs Help for more information about NI-DCPower
programming states.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].set_sequence ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.set_sequence ()

Parameters

* values (1ist of float) — Specifies the series of voltage levels or current
levels, depending on the configured output method. Valid values: The valid values
for this parameter are defined by the voltage level range or current level range.

* source_delays (list of float) — Specifies the source delay that follows
the configuration of each value in the sequence. Valid Values: The valid values are
between 0 and 167 seconds.

unlock

nidcpower.Session.unlock ()
Releases a lock that you acquired on an device session using nidcpower.Session.lock (). Refer to
nidcpower.Session.unlock () for additional information on session locks.

wait_for_event

nidcpower.Session.wait_for_event (event_id, timeout=hightime.timedelta(seconds=10.0))
Waits until the specified channel(s) have generated the specified event.

7.1. nidcpower module a7

NI Modular Instruments Python APl Documentation, Release 1.4.2

The session monitors whether each type of event has occurred at least once since the last time this
method or the nidcpower. Session.initiate () method were called. If an event has only
been generated once and you call this method successively, the method times out. Individual events
must be generated between separate calls of this method.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].wait_for_event ()
To call the method on all channels, you can call it directly on the nidcpower. Session.

Example: my_session.wait_for_event ()

Parameters

* event_id (nidcpower.Event) — Specifies which event to wait for. Defined
Values:

NIDCPOWER_VAL_SOURCE_COMPLETE_EVBMaits for the Source Complete
event.
NIDCPOWER_VAL_MEASURE_COMPLETE_EWRA® for the Measure Com-
plete event.
NIDCPOWER_VAIL_SEQUENCE_ITERATION WaMHbafTE SeEgieNte [teration
Complete event.
NIDCPOWER_VAI_SEQUENCE_ENGINE_DONWaiBVieNthe Sequence Engine
Done event.
NIDCPOWER_VAL_PULSE_COMPLETE_EVEWaits for the Pulse Complete
event.
NIDCPOWER_VAIL_READY_FOR_PULSE_TRWdiBRfoEWE&NReady for Pulse
Trigger event.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

* timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) — Specifies the maximum time allowed for this method to
complete, in seconds. If the method does not complete within this time interval,
NI-DCPower returns an error.

Note: When setting the timeout interval, ensure you take into account any triggers
so that the timeout interval is long enough for your application.

Properties

48 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

active_advanced_sequence

nidcpower.Session.active_advanced_sequence
Specifies the advanced sequence to configure or generate.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].active_advanced_sequence
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.active_advanced_sequence

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Active Advanced Sequence
» C Attribute: NIDCPOWER_ATTR_ACTIVE_ADVANCED_SEQUENCE

active_advanced_sequence_step

nidcpower.Session.active_advanced_sequence_step
Specifies the advanced sequence step to configure.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].active_advanced_sequence_step
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.active_advanced_sequence_step

7.1. nidcpower module 49

NI Modular Instruments Python APl Documentation, Release 1.4.2

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Advanced:Active Advanced Sequence Step
* C Attribute: NIDCPOWER_ATTR_ACTIVE_ADVANCED_SEQUENCE_STEP

actual_power_allocation

nidcpower.Session.actual_ power_allocation
Returns the power, in watts, the device is sourcing on each active channel if the nidcpower.
Session.power_allocation_mode property is setto AUTOMATIC or MANUAL.

Valid Values: [0, device per-channel maximum power]

Default Value: Refer to the Supported Properties by Device topic for the default value by
device.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

This property returns -1 when the nidcpower. Session.power_allocation_mode prop-
erty is set to DISABLED.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].actual_power_allocation
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.actual_power_allocation

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Actual Power Allocation

50 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

* C Attribute: NIDCPOWER_ATTR_ACTUAL_POWER_ALLOCATION

aperture_time

nidcpower.Session.aperture_time
Specifies the measurement aperture time for the channel configuration. Aperture time is specified
in the units set by the nidcpower. Session.aperture time_units property. Refer to the
Aperture Time topic in the NI DC Power Supplies and SMUs Help for more information about how
to configure your measurements and for information about valid values. Default Value: 0.01666666
seconds

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].aperture_time
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.aperture_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Aperture Time
» C Attribute: NIDCPOWER_ATTR_APERTURE_TIME

aperture_time_auto_mode

nidcpower.Session.aperture_time_auto_mode
Automatically optimizes the measurement aperture time according to the actual current range when
measurement autorange is enabled. Optimization accounts for power line frequency when the
nidcpower.Session.aperture_time_units property issetto POWER_LINE_CYCLES.

This property is applicable only if the nidcpower. Session.output_function property is
setto DC_VOLTAGE and the nidcpower. Session.autorange property is enabled.

7.1. nidcpower module 51

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].aperture_time_auto_mode
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.aperture_time_auto_mode

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.ApertureTimeAutoMode
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Aperture Time Auto Mode
* C Attribute: NIDCPOWER_ATTR_APERTURE_TIME_AUTO_MODE

aperture_time_units

nidcpower.Session.aperture_time_units
Specifies the units of the nidcpower. Session.aperture_time property for the channel
configuration. Refer to the Aperture Time topic in the NI DC Power Supplies and SMUs Help for
more information about how to configure your measurements and for information about valid values.
Default Value: SECONDS

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].aperture_time_units
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.aperture_time_units

The following table lists the characteristics of this property.

52 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value

Datatype enums.ApertureTimeUnits
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Aperture Time Units
* C Attribute: NIDCPOWER_ATTR_APERTURE_TIME_UNITS

autorange

nidcpower.Session.autorange
Specifies whether the hardware automatically selects the best range to measure the signal.
Note the highest range the algorithm uses is dependent on the corresponding limit range prop-
erty. The algorithm the hardware uses can be controlled using the nidcpower.Session.
autorange_aperture_time_ mode property.

Note: Autoranging begins at module startup and remains active until the module is reconfigured or
reset. This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Autorange
» C Attribute: NIDCPOWER_ATTR_AUTORANGE

7.1. nidcpower module 53

NI Modular Instruments Python APl Documentation, Release 1.4.2

autorange_aperture_time_mode

nidcpower.Session.autorange_aperture_time_mode
Specifies whether the aperture time used for the measurement autorange algo-
rithm is determined automatically or customized using the nidcpower.Session.
autorange_minimum aperture_time property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].autorange_aperture_time_mode
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_aperture_time_mode

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.Autorange ApertureTimeMode
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Measurement:Advanced:Autorange Aperture Time Mode
* C Attribute: NIDCPOWER_ATTR_AUTORANGE_APERTURE_TIME_MODE

autorange_behavior

nidcpower.Session.autorange_behavior
Specifies the algorithm the hardware uses for measurement autoranging.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].autorange_behavior

To set/get on all channels, you can call the property directly on the nidcpower. Session.

54 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.autorange_behavior

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.AutorangeBehavior
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Autorange Behavior
e C Attribute: NIDCPOWER_ATTR_AUTORANGE_BEHAVIOR

autorange_maximum_delay_after_range_change

nidcpower.Session.autorange_maximum delay_ after_range_change
Balances between settling time and maximum measurement time by specifying the maximum time
delay between when a range change occurs and when measurements resume. Valid Values: The
minimum and maximum values of this property are hardware-dependent. PXIe-4135/4136/4137: 0
to 9 seconds PXIe-4138/4139: 0 to 9 seconds PXIe-4163: 0 to 0.1 seconds.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange_maximum_delay_after_range_change
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_maximum_delay_after_range_change

The following table lists the characteristics of this property.

Characteristic Value

Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Measurement:Advanced:Autorange Maximum Delay After Range
Change

e C Attribute: NIDCPOWER_ATTR_AUTORANGE_MAXIMUM_DELAY_AFTER_RANGE_CHANGE

7.1. nidcpower module 55

NI Modular Instruments Python APl Documentation, Release 1.4.2

autorange_minimum_aperture_time

nidcpower.Session.autorange_minimum_aperture_time
Specifies the measurement autorange aperture time used for the measurement autorange al-
gorithm. The aperture time is specified in the units set by the nidcpower.Session.
autorange_minimum_ aperture_time_units property. This value will typically be
smaller than the aperture time used for measurements.

Note: For smaller ranges, the value is scaled up to account for noise. The factor used to scale the
value is derived from the module capabilities. This property is not supported on all devices. For
more information about supported devices, search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].autorange_minimum_aperture_time
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_minimum_aperture_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Measurement:Advanced:Autorange Minimum Aperture Time
* C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_APERTURE_TIME

autorange_minimum_aperture_time_units

nidcpower.Session.autorange_minimum aperture_time_units
Specifies the units of the nidcpower. Session.autorange_minimum aperture_time

property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].autorange_minimum_aperture_time_units

56 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_minimum_aperture_time_units

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.ApertureTimeUnits
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Autorange Minimum Aperture Time Units
* C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_APERTURE_TIME_UNITS

autorange_minimum_current_range

nidcpower.Session.autorange_minimum current_range
Specifies the lowest range used during measurement autoranging. Limiting the lowest range used
during autoranging can improve the speed of the autoranging algorithm and minimize frequent and
unpredictable range changes for noisy signals.

Note: The maximum range used is the range that includes the value specified in the compliance
limit property, nidcpower.Session.voltage_limit_range property or nidcpower.
Session.current_limit_range property, depending on the selected nidcpower.
Session.output_function. This property is not supported on all devices. For more in-
formation about supported devices, search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].autorange_minimum_current_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_minimum_current_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 57

NI Modular Instruments Python APl Documentation, Release 1.4.2

e LabVIEW Property: Measurement:Advanced:Autorange Minimum Current Range
* C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_CURRENT_RANGE

autorange_minimum_voltage range

nidcpower.Session.autorange_minimum voltage_range
Specifies the lowest range used during measurement autoranging. The maximum range used is range
that includes the value specified in the compliance limit property. Limiting the lowest range used
during autoranging can improve the speed of the autoranging algorithm and/or minimize thrashing
between ranges for noisy signals.

Note: The maximum range used is the range that includes the value specified in the compliance
limit property, nidcpower.Session.voltage limit_range property or nidcpower.
Session.current_limit_range property, depending on the selected nidcpower.
Session.output_function. This property is not supported on all devices. For more in-
formation about supported devices, search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].autorange_minimum_voltage_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_minimum_voltage_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Autorange Minimum Voltage Range
* C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_VOLTAGE_RANGE

autorange_threshold_mode

nidcpower.Session.autorange_threshold mode
Specifies thresholds used during autoranging to determine when range changing occurs.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

58 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].autorange_threshold_mode
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.autorange_threshold_mode

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.AutorangeThresholdMode
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Autorange Threshold Mode
* C Attribute: NIDCPOWER_ATTR_AUTORANGE_THRESHOLD_MODE

auto_zero

nidcpower.Session.auto_zero
Specifies the auto-zero method to use on the device. Refer to the NI PXI-4132 Measurement Con-
figuration and Timing and Auto Zero topics for more information about how to configure your
measurements. Default Value: The default value for the NI PXI-4132 is ON. The default value for
all other devices is OFF, which is the only supported value for these devices.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].auto_zero
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.auto_zero

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.AutoZero
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Measurement:Auto Zero

7.1. nidcpower module 59

NI Modular Instruments Python APl Documentation, Release 1.4.2

» C Attribute: NIDCPOWER_ATTR_AUTO_ZERO

auxiliary_power_source_available

nidcpower.Session.auxiliary power_source_available
Indicates whether an auxiliary power source is connected to the device. A value of False may indi-
cate that the auxiliary input fuse has blown. Refer to the Detecting Internal/Auxiliary Power topic in
the NI DC Power Supplies and SMUs Help for more information about internal and auxiliary power.
power source to generate power. Use the nidcpower.Session.power_source_in_use
property to retrieve this information.

Note: This property does not necessarily indicate if the device is using the auxiliary

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Advanced:Auxiliary Power Source Available
* C Attribute: NIDCPOWER_ATTR_AUXILIARY_POWER_SOURCE_AVAILABLE

cable_length

nidcpower.Session.cable_length
Specifies how to apply cable compensation data for instruments that support LCR functionality.
Supported instruments use cable compensation for the following operations:

SMU mode: to stabilize DC current sourcing in the two smallest current ranges. LCR mode: to
compensate for the effects of cabling on LCR measurements.

For NI standard options, select the length of your NI cable to apply compensation data for a typical
cable of that type. For custom options, choose the source of the custom cable compensation data.
You must then generate the custom cable compensation data.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].cable_length

60 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.cable_length

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.CableLength
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Device Specific:LCR:Cable Length
* C Attribute: NIDCPOWER_ATTR_CABLE_LENGTH

channel_count

nidcpower.Session.channel_count
Indicates the number of channels that NI-DCPower supports for the instrument that was chosen
when the current session was opened. For channel-based properties, the IVI engine maintains a
separate cache value for each channel.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Channel Count
* C Attribute: NIDCPOWER_ATTR_CHANNEL_COUNT

compliance_limit_symmetry

nidcpower.Session.compliance_limit_symmetry

Specifies whether compliance limits for current generation and voltage generation for the device are
applied symmetrically about O V and 0 A or asymmetrically with respect to 0 V and 0 A. When set to
SYMMETRIC, voltage limits and current limits are set using a single property with a positive value.
The resulting range is bounded by this positive value and its opposite. When set to ASYMMETRIC,
you must separately set a limit high and a limit low using distinct properties. For asymmetric limits,
the range bounded by the limit high and limit low must include zero. Default Value: Symmetric
Related Topics: Compliance; Ranges; Changing Ranges; Overranging

7.1. nidcpower module

61

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].compliance_limit_symmetry
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.compliance_limit_symmetry

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.ComplianceLimitSymmetry
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Compliance Limit Symmetry
* C Attribute: NIDCPOWER_ATTR_COMPLIANCE_LIMIT_SYMMETRY

current_compensation_frequency

nidcpower.Session.current_compensation_ frequency
The frequency at which a pole-zero pair is added to the system when the channel is in Constant
Current mode. Default Value: Determined by the value of the NORMAL setting of the nidcpower.
Session.transient_response property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_compensation_frequency
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_compensation_frequency

The following table lists the characteristics of this property.

62 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Source:Custom Transient Response:Current:Compensation Fre-
quency

» C Attribute: NIDCPOWER_ATTR_CURRENT_COMPENSATION_FREQUENCY

current_gain_bandwidth

nidcpower.Session.current_gain_bandwidth
The frequency at which the unloaded loop gain extrapolates to O dB in the absence of additional
poles and zeroes. This property takes effect when the channel is in Constant Current mode. De-
fault Value: Determined by the value of the NORMAL setting of the nidcpower.Session.
transient_response property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_gain_bandwidth
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_gain_bandwidth

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Custom Transient Response:Current:Gain Bandwidth
» C Attribute: NIDCPOWER_ATTR_CURRENT_GAIN_BANDWIDTH

7.1. nidcpower module 63

NI Modular Instruments Python APl Documentation, Release 1.4.2

current_level

nidcpower.Session.current_level
Specifies the current level, in amps, that the device attempts to generate on the specified channel(s).
This property is applicable only if the nidcpower. Session.output_function property is
set to DC_CURRENT. nidcpower.Session.output_enabled property for more informa-
tion about enabling the output channel. Valid Values: The valid values for this property are defined
by the values to which the nidcpower. Session.current_level_ range property is set.

Note: The channel must be enabled for the specified current level to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the
output channel.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_level
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Current:Current Level
* C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL

current_level_autorange

nidcpower.Session.current_level autorange

Specifies whether NI-DCPower automatically selects the current level range based on the desired
current level for the specified channels. If you set this property to ON, NI-DCPower ignores
any changes you make to the nidcpower. Session.current_level_range property. If
you change the nidcpower. Session.current_level_ autorange property from ON to
OFF, NI-DCPower retains the last value the nidcpower. Session.current_level range
property was set to (or the default value if the property was never set) and uses that value as
the current level range. Query the nidcpower.Session.current_level_range prop-
erty by using the nidcpower.Session._get_attribute_vi_int32 () method for in-
formation about which range NI-DCPower automatically selects. The nidcpower.Session.
current_level autorange property is applicable only if the nidcpower.Session.
output_ function property is set to DC_CURRENT. Default Value: OFF

64 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].current_level_autorange
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_level_ autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Current:Current Level Autorange
* C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_AUTORANGE

current_level_range

nidcpower.Session.current_level range

Specifies the current level range, in amps, for the specified channel(s). The range defines
the valid values to which you can set the current level. Use the nidcpower.Session.
current_level_autorange property to enable automatic selection of the current level
range. The nidcpower. Session.current_level_ range property is applicable only if the
nidcpower.Session.output_function property is set to DC_CURRENT. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the specifications for your instrument.

Note: The channel must be enabled for the specified current level range to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the
output channel.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_level_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_level_ range

The following table lists the characteristics of this property.

7.1. nidcpower module 65

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Current:Current Level Range
e C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_RANGE

current_limit

nidcpower.Session.current_limit

Specifies the current limit, in amps, that the output cannot exceed when generating the desired
voltage level on the specified channel(s). This property is applicable only if the nidcpower.
Session.output_function property is set to DC_VOLTAGE and the nidcpower.
Session.compliance_limit_symmetry property is set to SYMMETRIC. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
Valid Values: The valid values for this property are defined by the values to which nidcpower.
Session.current_limit_range property is set.

Note: The channel must be enabled for the specified current limit to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the
output channel.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].current_limit
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Voltage:Current Limit
* C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT

66 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

current_limit_autorange

nidcpower.Session.current_limit_autorange

Specifies whether NI-DCPower automatically selects the current limit range based on the de-
sired current limit for the specified channel(s). If you set this property to ON, NI-DCPower ig-
nores any changes you make to the nidcpower.Session.current_limit_range prop-
erty. If you change this property from ON to OFF, NI-DCPower retains the last value
the nidcpower.Session.current_limit_range property was set to (or the default
value if the property was never set) and uses that value as the current limit range. Query
the nidcpower.Session.current_limit_range property by using the nidcpower.
Session._get_attribute_vi_int32 () method for information about which range NI-
DCPower automatically selects. The nidcpower.Session.current_limit_autorange
property is applicable only if the nidcpower. Session.output_function property is set to
DC_VOLTAGE. Default Value: OFF

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_limit_autorange
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_limit_autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Voltage: Current Limit Autorange
* C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_AUTORANGE

current_limit_behavior

nidcpower.Session.current_limit behavior

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].current_limit_behavior
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_limit_behavior

7.1. nidcpower module 67

NI Modular Instruments Python APl Documentation, Release 1.4.2

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_BEHAVIOR

current_limit_high

nidcpower.Session.current_limit_high

Specifies the maximum current, in amps, that the output can produce when generating
the desired voltage on the specified channel(s). This property is applicable only if the
nidcpower.Session.compliance limit_symmetry property is set to ASYMMETRIC
and the nidcpower.Session.output_function property is set to DC_VOLTAGE. You
must also specify a nidcpower.Session.current_limit_low to complete the asym-
metric range. Valid Values: [1% of nidcpower.Session.current_limit_range,
nidcpower.Session.current_limit_range] The range bounded by the limit high and
limit low must include zero. Default Value: Search ni.com for Supported Properties by Device for
the default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower. Session.
overranging_enabled property is set to True.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].current_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Voltage: Current Limit High
* C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_HIGH

68 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

current_limit_low

nidcpower.Session.current_limit_low

Specifies the minimum current, in amps, that the output can produce when generating
the desired voltage on the specified channel(s). This property is applicable only if the
nidcpower.Session.compliance limit_symmetry property is set to ASYMMETRIC
and the nidcpower.Session.output_function property is set to DC_VOLTAGE. You
must also specify a nidcpower.Session.current_limit_high to complete the asym-
metric range. Valid Values: [-nidcpower.Session.current_limit_range, -1% of
nidcpower.Session.current_1limit_range] The range bounded by the limit high and
limit low must include zero. Default Value: Search ni.com for Supported Properties by Device for
the default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower. Session.
overranging_enabled property is set to True.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].current_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Voltage:Current Limit Low
* C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_LOW

current_limit_range

nidcpower.Session.current_limit_range

Specifies the current limit range, in amps, for the specified channel(s). The range defines
the valid values to which you can set the current limit. Use the nidcpower.Session.
current_limit_autorange property to enable automatic selection of the current limit
range. The nidcpower. Session.current_1limit_range property is applicable only if the
nidcpower.Session.output_function property is setto DC_VOLTAGE. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the specifications for your instrument.

7.1. nidcpower module 69

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: The channel must be enabled for the specified current limit to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the
output channel.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].current_limit_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_limit_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Voltage:Current Limit Range
e C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_RANGE

current_pole_zero_ratio

nidcpower.Session.current_pole_zero_ratio
The ratio of the pole frequency to the zero frequency when the channel is in Constant Current mode.
Default Value: Determined by the value of the NORMAL setting of the nidcpower. Session.
transient_response property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].current_pole_zero_ratio
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.current_pole_zero_ratio

The following table lists the characteristics of this property.

70 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Custom Transient Response:Current:Pole-Zero Ratio
* C Attribute: NIDCPOWER_ATTR_CURRENT_POLE_ZERO_RATIO

dc_noise_rejection

nidcpower.Session.dc_noise_rejection
Determines the relative weighting of samples in a measurement. Refer to the NI PXIe-4140/4141
DC Noise Rejection, NI PXIe-4142/4143 DC Noise Rejection, or NI PXIe-4144/4145 DC Noise
Rejection topic in the NI DC Power Supplies and SMUs Help for more information about noise

rejection. Default Value: NORMAL

Note: This property is not supported on all devices. For more information about supported devices,

search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

set.

Example: my_session.channels|

To set/get on all channels, you can call the property directly on the nidcpower. Session.

] .dc_noise_rejection

Example: my_session.dc_noise_rejection

The following table lists the characteristics of this property.

Characteristic

Value

Datatype

enums.DCNoiseRejection

Permissions

read-write

Repeated Capabilities

channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

* LabVIEW Property: Measurement:Advanced:DC Noise Rejection
* C Attribute: NIDCPOWER_ATTR _DC_NOISE_REJECTION

7.1. nidcpower module

71

NI Modular Instruments Python APl Documentation, Release 1.4.2

digital_edge measure_trigger_input_terminal

nidcpower.Session.digital_edge_measure_trigger_ input_terminal

Specifies the input terminal for the Measure trigger. This property is used only when the
nidcpower.Session.measure_trigger._type property is set to DIGITAIL_EDGE. for
this property. You can specify any valid input terminal for this property. Valid terminals are listed in
Measurement & Automation Explorer under the Device Routes tab. Input terminals can be specified
in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify
the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal
name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you
can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_measure_trigger_input_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.digital_edge_measure_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Triggers:Measure Trigger:Digital Edge:Input Terminal
* C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_MEASURE_TRIGGER_INPUT_TERMINAL

digital_edge pulse_trigger_input_terminal

nidcpower.Session.digital_edge_pulse_trigger_ input_terminal

Specifies the input terminal for the Pulse trigger. This property is used only when the nidcpower.
Session.pulse_trigger_type property is set to digital edge. You can specify any valid
input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer
under the Device Routes tab. Input terminals can be specified in one of two ways. If the device is
named Devl and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified
terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input ter-
minal can also be a terminal from another device. For example, you can set the input terminal on
Dev1 to be /Dev2/SourceCompleteEvent.

72

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_pulse_trigger_input_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.digital_edge_pulse_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Pulse Trigger:Digital Edge:Input Terminal
* C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_PULSE_TRIGGER_INPUT_TERMINAL

digital_edge_sequence_advance_trigger_input_terminal

nidcpower.Session.digital_edge_sequence_advance_trigger_input_terminal
Specifies the input terminal for the Sequence Advance trigger. Use this property only
when the nidcpower.Session.sequence_advance_trigger_type property is set to
DIGITAL EDGE. the NI DC Power Supplies and SMUs Help for information about supported
devices. You can specify any valid input terminal for this property. Valid terminals are listed in
Measurement & Automation Explorer under the Device Routes tab. Input terminals can be specified
in one of two ways. If the device is named Dev1l and your terminal is PXI_Trig0, you can specify
the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal
name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you
can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_sequence_advance_trigger_input_termi

To set/get on all channels, you can call the property directly on the nidcpower. Session.

7.1. nidcpower module 73

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.digital_edge_sequence_advance_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Sequence Advance Trigger:Digital Edge:Input Terminal
* C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SEQUENCE_ADVANCE_TRIGGER_INPUT_TERMIN/

digital_edge_shutdown_trigger_input_terminal

nidcpower.Session.digital_edge_shutdown_trigger_input_terminal

Specifies the input terminal for the Shutdown trigger. This property is used only when the
nidcpower.Session.shutdown trigger type property is set to digital edge. You can
specify any valid input terminal for this property. Valid terminals are listed in Measurement & Au-
tomation Explorer under the Device Routes tab. Input terminals can be specified in one of two ways.
If the device is named Devl and your terminal is PXI_Trig0, you can specify the terminal with the
fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.
The input terminal can also be a terminal from another device. For example, you can set the input
terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_shutdown_trigger_input_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.digital_edge_shutdown_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

74 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

* LabVIEW Property: Triggers:Shutdown Trigger:Digital Edge:Input Terminal
¢ C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SHUTDOWN_TRIGGER_INPUT_TERMINAL

digital_edge_source_trigger_input_terminal

nidcpower.Session.digital_edge_source_trigger_ input_terminal

Specifies the input terminal for the Source trigger. Use this property only when the nidcpower.
Session.source_trigger_type property is set to DIGITAL EDGE. You can specify any
valid input terminal for this property. Valid terminals are listed in Measurement & Automation
Explorer under the Device Routes tab. Input terminals can be specified in one of two ways. If
the device is named Dev1l and your terminal is PXI_Trig0, you can specify the terminal with the
fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.
The input terminal can also be a terminal from another device. For example, you can set the input
terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_source_trigger_input_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.digital_edge_source_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Source Trigger:Digital Edge:Input Terminal
* C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SOURCE_TRIGGER_INPUT_TERMINAL

digital_edge_start_trigger_input_terminal

nidcpower.Session.digital_edge_start_trigger_ input_terminal
Specifies the input terminal for the Start trigger. Use this property only when the nidcpower.
Session.start_trigger_type property is set to DIGITAI EDGE. You can specify any
valid input terminal for this property. Valid terminals are listed in Measurement & Automation
Explorer under the Device Routes tab. Input terminals can be specified in one of two ways. If

7.1. nidcpower module 75

NI Modular Instruments Python APl Documentation, Release 1.4.2

the device is named Devl and your terminal is PXI_Trig0, you can specify the terminal with the
fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.
The input terminal can also be a terminal from another device. For example, you can set the input
terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].digital_edge_start_trigger_input_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.digital_edge_start_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Start Trigger:Digital Edge:Input Terminal
* C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_START_TRIGGER_INPUT_TERMINAL

driver_setup

nidcpower.Session.driver_setup

Indicates the Driver Setup string that you specified when initializing the driver. Some cases exist
where you must specify the instrument driver options at initialization time. An example of this
case is specifying a particular device model from among a family of devices that the driver sup-
ports. This property is useful when simulating a device. You can specify the driver-specific options
through the DriverSetup keyword in the optionsString parameter in the nidcpower.Session.
__init__ () method or through the IVI Configuration Utility. You can specify driver-specific
options through the DriverSetup keyword in the optionsString parameter in the nidcpower.
Session.__init__ () method. If you do not specify a Driver Setup string, this property returns
an empty string.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

76 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Driver Setup
* C Attribute: NIDCPOWER_ATTR_DRIVER_SETUP

exported_measure_trigger_output_terminal

nidcpower.Session.exported measure_trigger_ output_terminal
Specifies the output terminal for exporting the Measure trigger. Refer to the Device Routes tab in
Measurement & Automation Explorer for a list of the terminals available on your device. Output
terminals can be specified in one of two ways. If the device is named Devl and your terminal is
PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].exported_measure_trigger_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.exported_measure_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Measure Trigger:Export Output Terminal
e C Attribute: NIDCPOWER_ATTR_EXPORTED_MEASURE_TRIGGER_OUTPUT_TERMINAL

exported_pulse_trigger_output_terminal

nidcpower.Session.exported pulse trigger_ output_terminal
Specifies the output terminal for exporting the Pulse trigger. Refer to the Device Routes tab in
Measurement & Automation Explorer for a list of the terminals available on your device. Output
terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is

7.1. nidcpower module 77

NI Modular Instruments Python APl Documentation, Release 1.4.2

PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].exported_pulse_trigger_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.exported_pulse_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Pulse Trigger:Export Output Terminal
* C Attribute: NIDCPOWER_ATTR_EXPORTED_PULSE_TRIGGER_OUTPUT_TERMINAL

exported_sequence_advance_trigger_output_terminal

nidcpower.Session.exported_sequence_advance_trigger_ output_terminal
Specifies the output terminal for exporting the Sequence Advance trigger. Refer to the Device Routes
tab in Measurement & Automation Explorer for a list of the terminals available on your device.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal
is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].exported_sequence_advance_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower. Session.

78 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.exported_sequence_advance_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Sequence Advance Trigger:Export Output Terminal
* C Attribute: NIDCPOWER_ATTR_EXPORTED_SEQUENCE_ADVANCE_TRIGGER_OUTPUT_TERMINAL

exported_source_trigger_output_terminal

nidcpower.Session.exported source_trigger_ output_terminal
Specifies the output terminal for exporting the Source trigger. Refer to the Device Routes tab in
MAX for a list of the terminals available on your device. Output terminals can be specified in one
of two ways. If the device is named Devl and your terminal is PXI_Trig0, you can specify the
terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal
name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].exported_source_trigger_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.exported_source_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Source Trigger:Export Output Terminal
e C Attribute: NIDCPOWER_ATTR_EXPORTED_SOURCE_TRIGGER_OUTPUT_TERMINAL

7.1. nidcpower module 79

NI Modular Instruments Python APl Documentation, Release 1.4.2

exported_start_trigger_output_terminal

nidcpower.Session.exported_start_trigger_output_terminal
Specifies the output terminal for exporting the Start trigger. Refer to the Device Routes tab in
Measurement & Automation Explorer (MAX) for a list of the terminals available on your device.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal
is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].exported_start_trigger_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.exported_start_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Start Trigger:Export Output Terminal
* C Attribute: NIDCPOWER_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

fetch_backlog

nidcpower.Session. fetch_backlog
Returns the number of measurements acquired that have not been fetched yet.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].fetch backlog
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.fetch_backlog

The following table lists the characteristics of this property.

80 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Fetch Backlog
* C Attribute: NIDCPOWER_ATTR_FETCH_BACKLOG

instrument_firmware_revision

nidcpower.Session.instrument_ firmware_ revision
Contains the firmware revision information for the device you are currently using.

Tip: This property can be set/get on specific instruments within your nidcpower. Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].instrument_firmware_revision
To set/get on all instruments, you can call the property directly on the nidcpower. Session.

Example: my_session.instrument_firmware_revision

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Firmware Revision
* C Attribute: NIDCPOWER_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

nidcpower.Session.instrument_manufacturer
Contains the name of the manufacturer for the device you are currently using.

Tip: This property can be set/get on specific instruments within your nidcpower. Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments|[...].instrument_manufacturer

7.1. nidcpower module

81

NI Modular Instruments Python APl Documentation, Release 1.4.2

To set/get on all instruments, you can call the property directly on the nidcpower. Session.

Example: my_session.instrument_manufacturer

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Manufacturer
* C Attribute: NIDCPOWER_ATTR_INSTRUMENT_MANUFACTURER

instrument_mode

nidcpower.Session.instrument_mode
Specifies the mode of operation for an instrument channel for instruments that support multiple
modes.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].instrument_mode
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.instrument_mode

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.InstrumentMode
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:Instrument Mode
e C Attribute: NIDCPOWER_ATTR_INSTRUMENT _MODE

82 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

instrument_model

nidcpower.Session.instrument_model
Contains the model number or name of the device that you are currently using.

Tip: This property can be set/get on specific instruments within your nidcpower.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments|[...].instrument_model
To set/get on all instruments, you can call the property directly on the nidcpower. Session.

Example: my_session.instrument_model

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Model
* C Attribute: NIDCPOWER_ATTR_INSTRUMENT MODEL

interlock_input_open

nidcpower.Session.interlock_input_open
Indicates whether the safety interlock circuit is open. Refer to the Safety Interlock topic in the NI
DC Power Supplies and SMUs Help for more information about the safety interlock circuit. about
supported devices.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific instruments within your nidcpower. Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments|[...].interlock_input_open
To set/get on all instruments, you can call the property directly on the nidcpower. Session.

Example: my_session.interlock_input_open

The following table lists the characteristics of this property.

7.1. nidcpower module 83

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities | instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Advanced:Interlock Input Open
* C Attribute: NIDCPOWER_ATTR_INTERLOCK_INPUT_OPEN

io_resource_descriptor

nidcpower.Session.io_resource_descriptor
Indicates the resource descriptor NI-DCPower uses to identify the physical device. If you initialize
NI-DCPower with a logical name, this property contains the resource descriptor that corresponds to
the entry in the IVI Configuration utility. If you initialize NI-DCPower with the resource descriptor,
this property contains that value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Resource De-
scriptor

* C Attribute: NIDCPOWER_ATTR_IO_RESOURCE_DESCRIPTOR

isolation_state

nidcpower.Session.isolation_state
Defines whether the channel is isolated.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].isolation_state

To set/get on all channels, you can call the property directly on the nidcpower. Session.

84 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.isolation_state

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Advanced:Isolation State
* C Attribute: NIDCPOWER_ATTR_ISOLATION_STATE

lcr_actual_load_reactance

nidcpower.Session.ler_actual_load_reactance
Specifies the actual reactance, in ohms, of the load wused for load LCR
compensation. This property applies when nidcpower.Session.
lcr_open_short_load compensation_data_sourceissetto AS DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_actual_load_reactance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_actual_load_reactance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:Compensation:LCR Actual Load Reactance
* C Attribute: NIDCPOWER_ATTR_LCR_ACTUAL_LOAD_REACTANCE

7.1. nidcpower module 85

NI Modular Instruments Python APl Documentation, Release 1.4.2

lcr_actual _load_resistance

nidcpower.Session.lcr_actual_load_resistance
Specifies the actual resistance, in ohms, of the load wused for load LCR
compensation. This property applies when nidcpower.Session.
lcr_open_short_load compensation _data_ sourceissetto AS _DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_actual_load_resistance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_actual_load_resistance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: LCR:Compensation:LCR Actual Load Resistance
» C Attribute: NIDCPOWER_ATTR_LCR_ACTUAL_LOAD_RESISTANCE

lcr_automatic_level _control

nidcpower.Session.lcr_automatic_level_control
Specifies whether the channel actively attempts to maintain a constant test voltage or current across
the DUT for LCR measurements. The use of voltage or current depends on the test signal you
configure with the nidcpower. Session.lcr_stimulus_function property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_automatic_level control

86 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_automatic_level_control

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:AC Stimulus:Automatic Level Control
* C Attribute: NIDCPOWER_ATTR_LCR_AUTOMATIC_LEVEL_CONTROL

lcr_current_amplitude

nidcpower.Session.lecr_current_amplitude
Specifies the amplitude, in amps RMS, of the AC current test signal applied to the
DUT for LCR measurements. This property applies when the nidcpower.Session.
lcr_stimulus_function property is setto CURRENT.

Valid Values: 7.08e-9 A RMS to 0.707 A RMS

Instrument specifications affect the valid values you can program. Refer to the specifications for
your instrument for more information.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_current_amplitude
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_current_amplitude

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 87

NI Modular Instruments Python APl Documentation, Release 1.4.2

e LabVIEW Property: LCR:AC Stimulus: Current Amplitude
* C Attribute: NIDCPOWER_ATTR_LCR_CURRENT_AMPLITUDE

Icr_current_range

nidcpower.Session.lcr_current_range
Specifies the current range, in amps RMS, for the specified channel(s). The range defines the
valid values to which you can set the nidcpower.Session.lcr_current_amplitude.
For valid ranges, refer to the specifications for your instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_current_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_current_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: LCR:AC Stimulus:Advanced:Current Range
e C Attribute: NIDCPOWER_ATTR_LCR_CURRENT_RANGE

lcr_custom_measurement_time

nidcpower.Session.lcr_custom measurement_time
Specifies the LCR measurement aperture time for a channel, in seconds, when the nidcpower.
Session.lcr_measurement_time property is setto CUSTOM.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

88 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_custom_measurement_time
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_custom_measurement_time

The following table lists the characteristics of this property.

Characteristic Value

Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:Custom Measurement Time
* C Attribute: NIDCPOWER_ATTR_LCR_CUSTOM_MEASUREMENT_TIME

Icr_dc_bias_automatic_level_control

nidcpower.Session.lcr_dc_bias_automatic_ level_ control
Specifies whether the channel actively maintains a constant DC bias voltage or current across the
DUT for LCR measurements. To use this property, you must configure a DC bias by 1) selecting
an nidcpower.Session.lcr_dc _bias_source and 2) depending on the DC bias source
you choose, setting either the nidcpower.Session.lcr._dc _bias_voltage_level or
nidcpower.Session.lcr._dc _bias_current_level.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_dc_bias_automatic_level_ control
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_dc_bias_automatic_level_control

The following table lists the characteristics of this property.

7.1. nidcpower module 89

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:DC Bias:Automatic Level Control
* C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_AUTOMATIC_LEVEL_CONTROL

Ilcr_dc_bias_current_level

nidcpower.Session.lecr_dc_bias_current_level
Specifies the DC bias current level, in amps, when the nidcpower.Session.
lcr._dc_bias_source property is set to CURRENT.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_dc_bias_current_level
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_dc_bias_current_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:DC Bias:Current Level
* C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_CURRENT_LEVEL

Icr_dc_bias_current_range

nidcpower.Session.lcr_dc_bias_current_range
Specifies the DC Bias current range, in amps, for the specified channel(s). The range defines the valid

90 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

values to which you can set the nidcpower.Session.lcr_dc _bias_current_level.
For valid ranges, refer to the specifications for your instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_dc_bias_current_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_dc_bias_current_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:DC Bias:Advanced:Current Range
* C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_CURRENT_RANGE

lcr_dc_bias_source

nidcpower.Session.lcr_dc_bias_source
Specifies how to apply DC bias for LCR measurements.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_dc_bias_source
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_dc_bias_source

The following table lists the characteristics of this property.

7.1. nidcpower module 91

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value

Datatype enums.LCRDCBiasSource
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:DC Bias:Source
* C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_SOURCE

Icr_dc_bias_voltage_level

nidcpower.Session.lcr_dc_bias_voltage_level
Specifies the DC bias voltage level, in volts, when the nidcpower.Session.
lcr._dc_bias_source property is set to VOLTAGE.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_dc_bias_voltage_level
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_dc_bias_voltage_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:DC Bias:Voltage Level
* C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_VOLTAGE_LEVEL

Icr_dc_bias_voltage_range

nidcpower.Session.lcr_dc_bias_voltage_range
Specifies the DC Bias voltage range, in volts, for the specified channel(s). The range defines the valid

92 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

values to which you can set the nidcpower.Session.lcr_dc bias_voltage_ level.
For valid ranges, refer to the specifications for your instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_dc_bias_voltage_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_dc_bias_voltage_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:DC Bias:Advanced: Voltage Range
» C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_VOLTAGE_RANGE

lcr_frequency

nidcpower.Session.lcr_frequency
Specifies the frequency of the AC test signal applied to the DUT for LCR measurements.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_frequency
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_frequency

The following table lists the characteristics of this property.

7.1. nidcpower module 93

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:AC Stimulus:Frequency
* C Attribute: NIDCPOWER_ATTR_LCR_FREQUENCY

lcr_impedance_auto_range

nidcpower.Session.lcr_impedance_auto_range
Defines whether an instrument in LCR mode automatically selects the best impedance range for
each given LCR measurement.

Impedance autoranging may be enabled only when both:
e The nidcpower.Session.source_mode property is setto SINGLE_POINT

* nidcpower.Session.measure_when 1S set to a value other than
ON_MFEASURE_TRIGGER

You can read nidcpower.Session. lcr impedance range back after a measurement to
determine the actual range used.

When enabled, impedance autoranging overrides impedance range settings you configure manually
with any other properties.

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_impedance_auto_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_impedance_auto_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

94 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:Impedance Range:Impedance Autorange
» C Attribute: NIDCPOWER_ATTR_LCR_IMPEDANCE_AUTO_RANGE

lcr_impedance_range

nidcpower.Session.lcr_impedance_range
Specifies the impedance range the channel uses for LCR measurements.

Valid Values: 0 ohms to +inf ohms

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_impedance_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_impedance_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:Impedance Range:Impedance Range
* C Attribute: NIDCPOWER_ATTR_LCR_IMPEDANCE_RANGE

Icr_impedance_range_source

nidcpower.Session.lcr_impedance_range_source
Specifies how the impedance range for LCR measurements is determined.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

7.1. nidcpower module 95

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_impedance_range_source
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_impedance_range_source

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.LCRImpedanceRangeSource
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:Impedance Range:Advanced:Impedance Range Source
* C Attribute: NIDCPOWER_ATTR_LCR_IMPEDANCE_RANGE_SOURCE

Icr_load_capacitance

nidcpower.Session.lecr_load_capacitance
Specifies the load capacitance, in farads and assuming a series model, of the
DUT in order to compute the impedance range when the nidcpower.Session.
lcr_impedance_range_source property is set to LOAD_CONFTIGURATION.

Valid values: (0 farads, +inf farads) 0 is a special value that signifies +inf farads.

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_load_capacitance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_load_capacitance

The following table lists the characteristics of this property.

96 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:Impedance Range:Advanced:Load Capacitance
* C Attribute: NIDCPOWER_ATTR_LCR_LOAD_CAPACITANCE

Icr_load_compensation_enabled

nidcpower.Session.lcr_load_compensation_enabled
Specifies whether to apply load LCR compensation data to LCR measurements. Both the
nidcpower.Session.lcr._open_compensation_enabled and nidcpower.
Session.lcr_short_compensation_enabled properties must be set to True in
order to set this property to True.

Usethe nidcpower.Session.lcr _open _short_load compensation_data_ source
property to define where the load compensation data that is applied to LCR measurements comes
from.

Note: Load compensation data are applied only for those specific frequencies you define with
nidcpower.Session.perform lcr_load _compensation ();load compensation is not
interpolated from the specific frequencies you define and applied to other frequencies.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_load_compensation_enabled
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_load_compensation_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: LCR:Compensation:Load:Enabled

7.1. nidcpower module 97

NI Modular Instruments Python APl Documentation, Release 1.4.2

» C Attribute: NIDCPOWER_ATTR_LCR_LOAD_COMPENSATION_ENABLED

lcr_load_inductance

nidcpower.Session.lecr_load_inductance

Specifies the load inductance, in henrys and assuming a series model, of the DUT in order to compute
the impedance range when the nidcpower.Session.lcr._impedance_range_source
property is set to LOAD_CONFIGURATION.

Valid values: [0 henrys, +inf henrys)

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_load_inductance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_load_inductance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: LCR:Impedance Range:Advanced:Load Inductance
* C Attribute: NIDCPOWER_ATTR_LCR_LOAD_INDUCTANCE

Icr_load_resistance

nidcpower.Session.lcr_load_resistance

Specifies the load resistance, in ohms and assuming a series model, of the DUT in order to compute
the impedance range when the nidcpower.Session.lcr_impedance_range_source
property is set to LOAD_ CONFIGURATION.

Valid values: [0 ohms, +inf ohms)

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument

98

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_load_resistance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_load_resistance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:Impedance Range:Advanced:Load Resistance
e C Attribute: NIDCPOWER_ATTR_LCR_LOAD_RESISTANCE

lcr_measured_load_reactance

nidcpower.Session.lcr_measured_load reactance
Specifies the reactance, in ohms, of the load used for load LCR compensation as
measured by the instrument. This property applies when nidcpower.Session.
lcr_open _short_load compensation _data_sourceissetto AS DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_measured_load_reactance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_measured_load_reactance

The following table lists the characteristics of this property.

7.1. nidcpower module 99

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:Compensation:Load:Measured Reactance
* C Attribute: NIDCPOWER_ATTR_LCR_MEASURED_LOAD_REACTANCE

lcr_measured_load_resistance

nidcpower.Session.lcr_measured_load resistance
Specifies the resistance, in ohms, of the load used for load LCR compensation as
measured by the instrument. This property applies when nidcpower.Session.
lcr_open _short_load compensation _data_sourceissetto AS DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_measured_load_resistance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_measured_load_resistance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: LCR:Compensation:Load:Measured Resistance
e C Attribute: NIDCPOWER_ATTR_LCR_MEASURED_LOAD_RESISTANCE

100 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

lcr_measurement_time

nidcpower.Session.lcr_measurement_time
Selects a general aperture time profile for LCR measurements. The actual duration of each profile
depends on the frequency of the LCR test signal.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_measurement_time
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_measurement_time

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.LCRMeasurementTime
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:Measurement Time
e C Attribute: NIDCPOWER_ATTR_LCR_MEASUREMENT_ TIME

Ilcr_open_compensation_enabled

nidcpower.Session.lcr_open_compensation_enabled
Specifies whether to apply open LCR compensation data to LCR measurements. Use the
nidcpower.Session.lcr_open_short_load compensation_data_source prop-
erty to define where the open compensation data that is applied to LCR measurements comes from.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_open_compensation_enabled

To set/get on all channels, you can call the property directly on the nidcpower. Session.

7.1. nidcpower module 101

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.lcr_open_compensation_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: LCR:Compensation:Open:Enabled
* C Attribute: NIDCPOWER_ATTR_LCR_OPEN_COMPENSATION_ENABLED

Icr_open_conductance

nidcpower.Session.lcr_open_conductance
Specifies the conductance, in siemens, of the circuit used for open LCR
compensation. This property applies when nidcpower.Session.
lcr_open_short_load compensation_data_sourceissetto AS DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_open_conductance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_open_conductance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:Compensation:Open:Conductance
* C Attribute: NIDCPOWER_ATTR_LCR_OPEN_CONDUCTANCE

102 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

lcr_open_short_load_compensation_data_source

nidcpower.Session.lcr_open_short_load compensation_data_source
Specifies the source of the LCR compensation data NI-DCPower applies to LCR measurements.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_open_short_load_compensation_data_source
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_open_short_load_compensation_data_source

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.LCROpenShortLoadCompensationDataSource
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: LCR:Compensation:LCR Open/Short/Load Compensation Data
Source

» C Attribute: NIDCPOWER_ATTR_LCR_OPEN_SHORT _LOAD_COMPENSATION_DATA_SOURCE

Icr_open_susceptance

nidcpower.Session.lcr_open_susceptance
Specifies the susceptance, in siemens, of the circuit wused for open LCR
compensation. This property applies when nidcpower.Session.
lcr_open_short_load compensation _data_ sourceissetto AS DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_open_susceptance

To set/get on all channels, you can call the property directly on the nidcpower. Session.

7.1. nidcpower module 103

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.lcr_open_susceptance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: LCR:Compensation:Open:Susceptance
* C Attribute: NIDCPOWER_ATTR_LCR_OPEN_SUSCEPTANCE

lcr_short_compensation_enabled

nidcpower.Session.lcr_short_compensation_enabled
Specifies whether to apply short LCR compensation data to LCR measurements. Use the
nidcpower.Session.lcr._open_ short_load _compensation_data_source prop-
erty to define where the short compensation data that is applied to LCR measurements comes from.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_short_compensation_enabled
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_short_compensation_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:Compensation:Short:Enabled
* C Attribute: NIDCPOWER_ATTR_LCR_SHORT_COMPENSATION_ENABLED

104 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

lcr_short_custom_cable_compensation_enabled

nidcpower.Session.lcr_short_custom_cable_compensation_enabled
Defines how to apply short custom cable compensation in LCR mode when nidcpower.
Session.cable_length property is set to CUSTOM_ONBOARD _STORAGE or
CUSTOM_AS_CONFIGURED.

LCR custom cable compensation uses compensation data for both an open and short configuration.
For open custom cable compensation, you must supply your own data from a call to nidcpower.
Session.perform lcr open_custom cable compensation (). For short custom
cable compensation, you can supply your own data from a call to nidcpower.Session.
perform_lcr_short_custom_cable compensation () or NI-DCPower can apply a de-
fault set of short compensation data.

Falsel Uses default short compensation data.
True| Uses short custom cable compensation data generated by nidcpower.Session.
perform lcr._short_custom cable_ compensation ().

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_short_custom_cable_compensation_enabled
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_short_custom_cable_compensation_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: LCR:Compensation:LCR Short Custom Cable Compensation En-
abled

* C Attribute: NIDCPOWER_ATTR_LCR_SHORT_CUSTOM_CABLE_COMPENSATION_ENABLED

lcr_short_reactance

nidcpower.Session.lcr_short_reactance
Specifies the reactance, in ohms, of the circuit wused for short LCR

7.1. nidcpower module 105

NI Modular Instruments Python APl Documentation, Release 1.4.2

compensation. This property applies when nidcpower.Session.
lcr_open short_load compensation data_ sourceissetto AS DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_short_reactance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_short_reactance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:Compensation:Short:Reactance
* C Attribute: NIDCPOWER_ATTR_LCR_SHORT REACTANCE

lcr_short_resistance

nidcpower.Session.lcr_short_resistance
Specifies the resistance, in ohms, of the vcircuit wused for short LCR
compensation. This property applies when nidcpower.Session.
lcr_open_short_load compensation _data_sourceissetto AS _DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_short_resistance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_short_resistance

106 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: LCR:Compensation:Short:Resistance
* C Attribute: NIDCPOWER_ATTR_LCR_SHORT_RESISTANCE

lcr_source_delay_mode

nidcpower.Session.lecr_source_delay mode
For instruments in LCR mode, determines whether NI-DCPower automatically calculates and ap-
plies the source delay or applies a source delay you set manually.

You can return the source delay duration for either option by reading nidcpower. Session.
source_delay.

When you use this property to manually set the source delay, it is possible to set source delays
short enough to unbalance the bridge and affect measurement accuracy. LCR measurement methods
report whether the bridge is unbalanced.

Default Value: AUTOMATIC

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_source_delay_mode
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_source_delay_mode

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.LCRSourceDelayMode
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: LCR:Source Delay Mode

7.1. nidcpower module 107

NI Modular Instruments Python APl Documentation, Release 1.4.2

» C Attribute: NIDCPOWER_ATTR_LCR_SOURCE_DELAY_MODE

lcr_stimulus_function

nidcpower.Session.lecr_stimulus_function
Specifies the type of test signal to apply to the DUT for LCR measurements.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].lcr_stimulus_function
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_stimulus_function

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.LCRStimulusFunction
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:AC Stimulus:Function
» C Attribute: NIDCPOWER_ATTR_LCR_STIMULUS_FUNCTION

lcr_voltage_amplitude

nidcpower.Session.lecr_voltage_amplitude
Specifies the amplitude, in volts RMS, of the AC voltage test signal applied to the
DUT for LCR measurements. This property applies when the nidcpower.Session.
lcr_stimulus_function property is setto VOLTAGE.

Valid Values: 7.08e-4 V RMS to 7.07 V RMS

Instrument specifications affect the valid values you can program. Refer to the specifications for
your instrument for more information.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

108 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_voltage_amplitude
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_voltage_amplitude

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:AC Stimulus:Voltage Amplitude
* C Attribute: NIDCPOWER_ATTR_LCR_VOLTAGE_AMPLITUDE

Icr_voltage_range

nidcpower.Session.lecr_voltage_range
Specifies the voltage range, in volts RMS, for the specified channel(s). The range defines the
valid values to which you can set the nidcpower.Session.lcr_voltage_amplitude.
For valid ranges, refer to the specifications for your instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].lcr_voltage_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.lcr_voltage_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

7.1. nidcpower module 109

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: LCR:AC Stimulus:Advanced: Voltage Range
* C Attribute: NIDCPOWER_ATTR_LCR_VOLTAGE_RANGE

logical_name

nidcpower.Session.logical_name
Contains the logical name you specified when opening the current IVI session. You can pass a logical
name to the nidcpower.Session.__init__ () method. The IVI Configuration utility must
contain an entry for the logical name. The logical name entry refers to a method section in the IVI
Configuration file. The method section specifies a physical device and initial user options.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name
* C Attribute: NIDCPOWER_ATTR_LOGICAL_NAME

measure_buffer_size

nidcpower.Session.measure_buffer size
Specifies the number of samples that the active channel measurement buffer can hold. The default
value is the maximum number of samples that a device is capable of recording in one second. Valid
Values: 1000 to 2147483647 Default Value: Varies by device. Refer to Supported Properties by
Device topic in the NI DC Power Supplies and SMUs Help for more information about default
values.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_buffer_size
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_buffer_size

110 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Advanced:Measure Buffer Size
* C Attribute: NIDCPOWER_ATTR_MEASURE_BUFFER_SIZE

measure_complete_event_delay

nidcpower.Session.measure_complete_event_delay
Specifies the amount of time to delay the generation of the Measure Complete event, in sec-
onds. Valid Values: 0 to 167 seconds Default Value: The NI PXI-4132 and NI PXle-
4140/4141/4142/4143/4144/4145/4154 supports values from O seconds to 167 seconds.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].measure_complete_event_delay
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_complete_event_delay

The following table lists the characteristics of this property.

Characteristic Value

Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Events:Measure Complete Event:Event Delay
» C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_DELAY

7.1. nidcpower module 111

NI Modular Instruments Python APl Documentation, Release 1.4.2

measure_complete_event_output_terminal

nidcpower.Session.measure_complete_event_output_terminal
Specifies the output terminal for exporting the Measure Complete event. Output terminals can be
specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev 1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_complete_event_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_complete_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Measure Complete Event:Output Terminal
» C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_OUTPUT_TERMINAL

measure_complete_event_pulse_polarity

nidcpower.Session.measure_complete_event_pulse_polarity
Specifies the behavior of the Measure Complete event. Default Value: H1GH

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_complete_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower. Session.

112 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.measure_complete_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Measure Complete Event:Pulse:Polarity

e C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_PULSE_POLARITY

measure_complete_event_pulse_width

nidcpower.Session.measure_complete_event_pulse_width
Specifies the width of the Measure Complete event, in seconds. The minimum event pulse width
value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices
is 250 ns. The maximum event pulse width value for all devices is 1.6 microseconds. Valid Values:
1.5e-7 to 1.6e-6 Default Value: The default value for PXI devices is 150 ns. The default value for
PXI Express devices is 250 ns.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_complete_event_pulse_width
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_complete_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Measure Complete Event:Pulse: Width
e C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_PULSE_WIDTH

7.1. nidcpower module

113

NI Modular Instruments Python APl Documentation, Release 1.4.2

measure_record_delta time

nidcpower.Session.measure_record_delta_ time
Queries the amount of time, in seconds, between between the start of two consecutive measurements
in a measure record. Only query this property after the desired measurement settings are committed.
two measurements and the rest would differ.

Note: This property is not available when Auto Zero is configured to Once because the amount of
time between the first

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_record_delta_time
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_record_delta_time

The following table lists the characteristics of this property.

Characteristic Value

Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read only

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Measure Record Delta Time
» C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_DELTA_TIME

measure_record_length

nidcpower.Session.measure_record_length
Specifies how many measurements compose a measure record. When this property is set to
a value greater than 1, the nidcpower. Session.measure_when property must be set to
AUTOMATICALLY AFTER SOURCE_COMPLETE or ON_MEASURE_TRIGGER. Valid Values: 1
to 16,777,216 Default Value: 1

Note: This property is not available in a session involving multiple channels.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].measure_record_length

114 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_record_length

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Measurement:Measure Record Length
* C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH

measure_record_length_is_finite

nidcpower.Session.measure_record_length is_ finite

Specifies whether to take continuous measurements. Call the nidcpower. Session.abort ()
method to stop continuous measurements. When this property is set to False and the nidcpower.
Session.source_mode property is set to SINGLE_POINT, the nidcpower.Session.
measure_when property must be set to AUTOMATICALLY AFTER_SOURCE_COMPLETE or
ON_MEASURE_TRIGGER. When this property is set to False and the nidcpower.Session.
source_mode property is set to SEQUENCE, the nidcpower.Session.measure_when
property must be set to ON_MEASURE_ TRIGGER. Default Value: True

Note: This property is not supported on all devices. For more information about supported de-
vices, search ni.com for Supported Properties by Device. This property is not available in a session
involving multiple channels.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].measure_record_length_is_finite
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_record_length_is_finite

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

7.1. nidcpower module 115

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Measure Record Length Is Finite
* C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH_IS_FINITE

measure_trigger_type

nidcpower.Session.measure_trigger_type
Specifies the behavior of the Measure trigger. Default Value: DIGTTAL EDGE

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].measure_trigger_type
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_trigger_type

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Triggers:Measure Trigger:Trigger Type
» C Attribute: NIDCPOWER_ATTR_MEASURE_TRIGGER_TYPE

measure_when

nidcpower.Session.measure_when
Specifies when the measure unit should acquire measurements. Unless this property is con-
figured to ON_MEASURE_TRIGGER, the nidcpower.Session.measure_trigger._type
property is ignored. Refer to the Acquiring Measurements topic in the NI DC Power Sup-
plies and SMUs Help for more information about how to configure your measurements. De-
fault Value: If the nidcpower. Session. source_mode property is set to SINGLE_POINT,
the default value is ON_DEMAND. This value supports only the nidcpower.Session.
measure () method and nidcpower. Session.measure_multiple () method. If the
nidcpower.Session.source_mode property is set to SEQUENCE, the default value is

116 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

AUTOMATICALLY AFTER _SOURCE_COMPLETE. This value supports only the nidcpower.
Session.fetch multiple () method.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].measure_when
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.measure_when

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.MeasureWhen
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Measurement:Advanced:Measure When
» C Attribute: NIDCPOWER_ATTR_MEASURE_WHEN

merged_channels

nidcpower.Session.merged_channels
Specifies the channel(s) to merge with a designated primary channel of an SMU in order to increase
the maximum current you can source from the SMU. This property designates the merge channels
to combine with a primary channel. To designate the primary channel, initialize the session to the
primary channel only. Note: You cannot change the merge configuration with this property when
the session is in the Running state. For complete information on using merged channels with this
property, refer to Merged Channels in the NI DC Power Supplies and SMUs Help.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device. Devices that do not support this property behave
as if no channels were merged. Default Value: Refer to the Supported Properties by Device topic
for the default value by device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].merged_channels
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.merged_channels

7.1. nidcpower module 117

NI Modular Instruments Python APl Documentation, Release 1.4.2

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Merged Channels
e C Attribute: NIDCPOWER_ATTR_MERGED_CHANNELS

output_capacitance

nidcpower.Session.output_capacitance
Specifies whether to use a low or high capacitance on the output for the specified channel(s). Refer
to the NI PXI-4130 Output Capacitance Selection topic in the NI DC Power Supplies and SMUs
Help for more information about capacitance.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].output_capacitance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_capacitance

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.OutputCapacitance
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Advanced:Output Capacitance
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CAPACITANCE

118 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

output_connected

nidcpower.Session.output_connected
Specifies whether the output relay is connected (closed) or disconnected (open). The nidcpower.
Session.output_enabled property does not change based on this property; they are inde-
pendent of each other. about supported devices. Set this property to False to disconnect the output
terminal from the output. to the output terminal might discharge unless the relay is disconnected.
Excessive connecting and disconnecting of the output can cause premature wear on the relay. De-
fault Value: True

Note: Only disconnect the output when disconnecting is necessary for your application. For exam-
ple, a battery connected

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].output_connected
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_connected

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Connected
e C Attribute: NIDCPOWER_ATTR_OUTPUT_CONNECTED

output_cutoff_current_change_limit_high

nidcpower.Session.output_cutoff current_change_limit high
Specifies a limit for positive current slew rate, in amps per microsecond, for output cutoff. If the
current increases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched output_cutoff state () method with CURRENT CHANGE_HIGH as
the output cutoff reason.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

7.1. nidcpower module 119

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_change_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_current_change_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff:Current Change Limit High
e C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_CHANGE_LIMIT_HIGH

output_cutoff_current_change_limit_low

nidcpower.Session.output_cutoff current_change limit_ low
Specifies a limit for negative current slew rate, in amps per microsecond, for output cutoff. If the
current decreases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched output_cutoff state () method with CURRENT CHANGE_ LOW as the
output cutoff reason.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_change_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_current_change_limit_low

The following table lists the characteristics of this property.

120 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff:Current Change Limit Low
e C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_CHANGE_LIMIT_LOW

output_cutoff_current_measure_limit_high

nidcpower.Session.output_cutoff current_measure_limit high
Specifies a high limit current value, in amps, for output cutoff. If the measured current exceeds this
limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched output_cutoff state () method with CURRENT _MEASURE_HIGH as
the output cutoff reason.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_measure_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_current_measure_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Output Cutoff:Current Measure Limit High
 C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_MEASURE_LIMIT_HIGH

7.1. nidcpower module 121

NI Modular Instruments Python APl Documentation, Release 1.4.2

output_cutoff_current_measure_limit_low

nidcpower.Session.output_cutoff current_measure_ limit_low
Specifies a low limit current value, in amps, for output cutoff. If the measured current falls below
this limit, the output is disconnected.

To find out whether an output has fallen below this limit, call the nidcpower. Session.
query_latched output_cutoff state () method with CURRENT MEASURE_LOW as
the output cutoff reason.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_current_measure_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_ current_measure_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff: Current Measure Limit Low
e C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_MEASURE_LIMIT_LOW

output_cutoff_current_overrange_enabled

nidcpower.Session.output_cutoff current_overrange_enabled
Enables or disables current overrange functionality for output cutoff. If enabled, the output is dis-
connected when the measured current saturates the current range.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched output_cutoff state () method with VOLTAGE OUTPUT_HIGH as
the output cutoff reason.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

122 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].output_cutoff current_overrange_enabled
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_current_overrange_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff:Current Overrange Enabled
e C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_OVERRANGE_ENABLED

output_cutoff_delay

nidcpower.Session.output_cutoff delay
Delays disconnecting the output by the time you specify, in seconds, when a limit is exceeded.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].output_cutoff_delay
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_delay

The following table lists the characteristics of this property.

Characteristic Value

Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.1. nidcpower module 123

NI Modular Instruments Python APl Documentation, Release 1.4.2

e LabVIEW Property: Source:Output Cutoff:Delay
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_DELAY

output_cutoff_enabled

nidcpower.Session.output_cutoff enabled
Enables or disables output cutoff functionality. If enabled, you can define output cutoffs that, if
exceeded, cause the output of the specified channel(s) to be disconnected. When this property is
disabled, all other output cutoff properties are ignored.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device. Instruments that do not support this property
behave as if this property were set to False.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].output_cutoff_enabled
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Output Cutoff:Enabled
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_ENABLED

output_cutoff _voltage change_limit_high

nidcpower.Session.output_cutoff voltage_change_limit_high
Specifies a limit for positive voltage slew rate, in volts per microsecond, for output cutoff. If the
voltage increases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched output_cutoff state () with VOLTAGE_CHANGE_HIGH as the out-
put cutoff reason.

124 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_voltage_change_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_voltage_change_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff: Voltage Change Limit High
e C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_CHANGE_LIMIT_HIGH

output_cutoff_voltage_change_limit_low

nidcpower.Session.output_cutoff voltage_change_limit_ low
Specifies a limit for negative voltage slew rate, in volts per microsecond, for output cutoff. If the
voltage decreases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched output_cutoff _state () with VOLTAGE_CHANGE_TLOW as the output
cutoff reason.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_voltage_change_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_voltage_change_limit_low

7.1. nidcpower module 125

NI Modular Instruments Python APl Documentation, Release 1.4.2

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff:Voltage Change Limit Low
e C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_CHANGE_LIMIT_LOW

output_cutoff_voltage_output_limit_high

nidcpower.Session.output_cutoff voltage_output_limit_high
Specifies a high limit voltage value, in volts, for output cutoff. If the voltage output exceeds this
limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched output_cutoff state () method with VOLTAGE OUTPUT_HIGH as
the output cutoff reason.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_voltage_output_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_voltage_output_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff: Voltage Output Limit High
* C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_OUTPUT_LIMIT_HIGH

126 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

output_cutoff_voltage output_limit_low

nidcpower.Session.output_cutoff voltage_output_limit_low
Specifies a low limit voltage value, in volts, for output cutoff. If the voltage output falls below this
limit, the output is disconnected.

To find out whether an output has fallen below this limit, call the nidcpower. Session.
query_latched output_cutoff state () method with VOLTAGE OUTPUT_LOW as the
output cutoff reason.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_cutoff_voltage_output_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_cutoff_voltage_output_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Cutoff: Voltage Output Limit Low
e C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_OUTPUT_LIMIT_LOW

output_enabled

nidcpower.Session.output_enabled
Specifies whether the output is enabled (True) or disabled (False). Depending on the value you spec-
ify for the nidcpower. Session.output_function property, you also must set the voltage
level or current level in addition to enabling the output the nidcpower. Session.initiate ()
method. Refer to the Programming States topic in the NI DC Power Supplies and SMUs Help for
more information about NI-DCPower programming states. Default Value: The default value is True

if you use the nidcpower.Session.__init__ () method to open the session. Otherwise the
default value is False, including when you use a calibration session or the deprecated programming
model.

7.1. nidcpower module 127

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: If the session is in the Committed or Uncommitted states, enabling the output does not take
effect until you call

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_enabled
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Output Enabled
* C Attribute: NIDCPOWER_ATTR_OUTPUT_ENABLED

output_function

nidcpower.Session.output_function

Configures the method to generate on the specified channel(s). When DC_VOLTAGE
is selected, the device generates the desired voltage level on the output as long as
the output current is below the current limit. You can use the following properties
to configure the channel when DC_VOLTAGE 1is selected: nidcpower.Session.
voltage level nidcpower.Session.current_limit nidcpower.Session.
current_limit_high nidcpower.Session.current_limit low nidcpower.
Session.voltage level_ range nidcpower.Session.current_limit_range
nidcpower.Session.compliance_limit_symmetry When DC_CURRENT
is selected, the device generates the desired current level on the output as long as
the output voltage is below the voltage limit. You can use the following properties
to configure the channel when DC_CURRENT 1is selected: nidcpower.Session.
current_level nidcpower.Session.voltage limit nidcpower.Session.
voltage_limit_high nidcpower.Session.voltage_limit_low nidcpower.
Session.current_level range nidcpower.Session.voltage_limit_range
nidcpower.Session.compliance_limit_symmetry

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].output_function

128 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_function

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.OutputFunction
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Output Function
* C Attribute: NIDCPOWER_ATTR_OUTPUT_FUNCTION

output_resistance

nidcpower.Session.output_resistance
Specifies the output resistance that the device attempts to generate for the specified channel(s). This
property is available only when you set the nidcpower. Session.output_function prop-
erty on a support device. Refer to a supported device’s topic about output resistance for more infor-
mation about selecting an output resistance. about supported devices. Default Value: 0.0

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].output_resistance
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.output_resistance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Output Resistance
* C Attribute: NIDCPOWER_ATTR_OUTPUT_RESISTANCE

7.1. nidcpower module

129

NI Modular Instruments Python APl Documentation, Release 1.4.2

overranging_enabled

nidcpower.Session.overranging_ enabled
Specifies whether NI-DCPower allows setting the voltage level, current level, voltage limit and
current limit outside the device specification limits. True means that overranging is enabled. Refer
to the Ranges topic in the NI DC Power Supplies and SMUs Help for more information about
overranging. Default Value: False

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].overranging_enabled
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.overranging_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Overranging Enabled
e C Attribute: NIDCPOWER_ATTR_OVERRANGING_ENABLED

ovp_enabled

nidcpower.Session.ovp_enabled
Enables (True) or disables (False) overvoltage protection (OVP). Refer to the Output Overvoltage
Protection topic in the NI DC Power Supplies and SMUs Help for more information about overvolt-
age protection. Default Value: False

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].ovp_enabled

To set/get on all channels, you can call the property directly on the nidcpower. Session.

130 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.ovp_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:OVP Enabled
* C Attribute: NIDCPOWER_ATTR_OVP_ENABLED

ovp_limit

nidcpower.Session.ovp_limit
Determines the voltage limit, in volts, beyond which overvoltage protection (OVP) engages. Valid
Values: 2 V to 210 V Default Value: 210 V

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].ovp_limit
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.ovp_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:OVP Limit
» C Attribute: NIDCPOWER_ATTR_OVP_LIMIT

7.1. nidcpower module 131

NI Modular Instruments Python APl Documentation, Release 1.4.2

power_allocation_mode

nidcpower.Session.power_allocation_mode
Determines whether the device sources the power its source configuration requires or a specific
wattage you request; determines whether NI-DCPower proactively checks that this sourcing power
is within the maximum per-channel and overall sourcing power of the device.

When this property configures NI-DCPower to perform a sourcing power check, a device
is not permitted to source power in excess of its maximum per-channel or overall sourcing
power. If the check determines a source configuration or power request would require the
device to do so, NI-DCPower returns an error.

When this property does not configure NI-DCPower to perform a sourcing power check,
a device can attempt to fulfill source configurations that would require it to source power
in excess of its maximum per-channel or overall sourcing power and may shut down to
prevent damage.

Default Value: Refer to the Supported Properties by Device topic for the default value by
device.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device. Devices that do not support this property behave
as if this property were set to DI SABLED.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].power_allocation_mode
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.power_allocation_mode

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.PowerAllocationMode
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Power Allocation Mode
* C Attribute: NIDCPOWER_ATTR_POWER_ALLOCATION_MODE

power_line_frequency

nidcpower.Session.power_line_frequency
Specifies the power line frequency for specified channel(s). NI-DCPower uses this value to select a

132 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

timebase for setting the nidcpower. Session.aperture_time property in power line cycles
(PLCs). in the NI DC Power Supplies and SMUs Help for information about supported devices.
Default Value: NIDCPOWER_VAL_60_HERTZ

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].power_line_frequency
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.power_line_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Measurement:Power Line Frequency
» C Attribute: NIDCPOWER_ATTR_POWER_LINE_FREQUENCY

power_source

nidcpower.Session.power_source
Specifies the power source to use. NI-DCPower switches the power source used by the device to
the specified value. Default Value: AUTOMATIC is set to AUTOMATIC. However, if the session is
in the Committed or Uncommitted state when you set this property, the power source selection only
occurs after you call the nidcpower. Session.initiate () method.

Note: Automatic selection is not persistent and occurs only at the time this property

The following table lists the characteristics of this property.

7.1. nidcpower module 133

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value

Datatype enums.PowerSource
Permissions read-write

Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Advanced:Power Source
* C Attribute: NIDCPOWER_ATTR_POWER_SOURCE

power_source_in_use

nidcpower.Session.power_source_in_ use
Indicates whether the device is using the internal or auxiliary power source to generate power.

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.PowerSourcelnUse
Permissions read only

Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Advanced:Power Source In Use
* C Attribute: NIDCPOWER_ATTR_POWER_SOURCE_IN_USE

pulse_bias_current_level

nidcpower.Session.pulse_bias_current_level
Specifies the pulse bias current level, in amps, that the device attempts to generate on the specified
channel(s) during the off phase of a pulse. This property is applicable only if the nidcpower.
Session.output_function property is set to PULSE_CURRENT. Valid Values: The valid
values for this property are defined by the values you specify for the nidcpower. Session.
pulse_current_level range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_bias_current_level

To set/get on all channels, you can call the property directly on the nidcpower. Session.

134 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.pulse_bias_current_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Current:Pulse Bias Current Level
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LEVEL

pulse_bias_current_limit

nidcpower.Session.pulse_bias_current_limit
Specifies the pulse bias current limit, in amps, that the output cannot exceed when generating the
desired pulse bias voltage on the specified channel(s) during the off phase of a pulse. This prop-
erty is applicable only if the nidcpower. Session.output_function property is set to
PULSE_VOLTAGE. Valid Values: The valid values for this property are defined by the values you
specify for the nidcpower. Session.pulse_current_limit_range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_bias_current_limit
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_bias_current_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit
e C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT

7.1. nidcpower module 135

NI Modular Instruments Python APl Documentation, Release 1.4.2

pulse_bias_current_limit_high

nidcpower.Session.pulse_bias_current_limit_high

Specifies the maximum current, in amps, that the output can produce when generating the
desired pulse voltage on the specified channel(s) during the off phase of a pulse. This
property is applicable only if the nidcpower. Session.compliance_limit_symmetry
property is set to ASYMMETRIC and the nidcpower.Session.output_function
property is set to PULSE_VOLTAGE. You must also specify a nidcpower.Session.
pulse_bias current_limit_low to complete the asymmetric range. Valid Val-
ues: [1% of nidcpower.Session.pulse_current_limit_range, nidcpower.
Session.pulse current_limit_range] The range bounded by the limit high and limit
low must include zero. Default Value: Search ni.com for Supported Properties by Device for the
default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.
Session.overranging_enabled property is set to True or if the nidcpower. Session.
output_ function property is set to a pulsing method.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_bias_current_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_bias_current_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit High
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT_HIGH

pulse_bias_current_limit_low

nidcpower.Session.pulse_bias_current_ limit_low
Specifies the minimum current, in amps, that the output can produce when generating the
desired pulse voltage on the specified channel(s) during the off phase of a pulse. This
property is applicable only if the nidcpower. Session.compliance limit_symmetry
property is set to ASYMMETRIC and the nidcpower.Session.output_function

136 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

property is set to PULSE_VOLTAGE. You must also specify a nidcpower.Session.
pulse_bias current_limit_high to complete the asymmetric range. Valid Val-
ues: [-nidcpower.Session.pulse_current_limit_range, -1% of nidcpower.
Session.pulse current_limit_range] The range bounded by the limit high and limit
low must include zero. Default Value: Search ni.com for Supported Properties by Device for the
default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.
Session.overranging enabled property is set to True or if the nidcpower. Session.
output_ function property is set to a pulsing method.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].pulse_bias_current_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_bias_current_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit Low
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT_LOW

pulse_bias_delay

nidcpower.Session.pulse_bias_delay
Determines when, in seconds, the device generates the Pulse Complete event after generating the off
level of a pulse. Valid Values: 0 to 167 seconds Default Value: 16.67 milliseconds

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].pulse_bias_delay

7.1. nidcpower module 137

NI Modular Instruments Python APl Documentation, Release 1.4.2

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_bias_delay

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:Pulse Bias Delay
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_DELAY

pulse_bias_voltage_level

nidcpower.Session.pulse_bias_voltage_ level
Specifies the pulse bias voltage level, in volts, that the device attempts to generate on the specified
channel(s) during the off phase of a pulse. This property is applicable only if the nidcpower.
Session.output_function property is set to PULSE_VOLTAGE. Valid Values: The valid
values for this property are defined by the values you specify for the nidcpower. Session.
pulse_voltage level range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].pulse_bias_voltage_level
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_bias_voltage_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Voltage:Pulse Bias Voltage Level

138 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LEVEL

pulse_bias_voltage_limit

nidcpower.Session.pulse_bias_voltage_limit
Specifies the pulse voltage limit, in volts, that the output cannot exceed when generating the de-
sired current on the specified channel(s) during the off phase of a pulse. This property is applicable
only if the nidcpower. Session.output_function property is set to PULSE_CURRENT.
Valid Values: The valid values for this property are defined by the values you specify for the
nidcpower.Session.pulse_voltage_ limit_range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_bias_voltage_limit
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_bias_voltage_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT

pulse_bias_voltage_limit_high

nidcpower.Session.pulse_bias_voltage_limit_high
Specifies the maximum voltage, in volts, that the output can produce when generating the
desired pulse current on the specified channel(s) during the off phase of a pulse. This
property is applicable only if the nidcpower. Session.compliance_limit_symmetry
property is set to ASYMMETRIC and the nidcpower.Session.output_function
property is set to PULSE_CURRENT. You must also specify a nidcpower.Session.
pulse_bias voltage_ limit_low to complete the asymmetric range. Valid Val-
ues: [1% of nidcpower.Session.pulse_voltage_limit_range, nidcpower.
Session.pulse_voltage_ limit_range] The range bounded by the limit high and limit

7.1. nidcpower module 139

NI Modular Instruments Python APl Documentation, Release 1.4.2

low must include zero. Default Value: Search ni.com for Supported Properties by Device for the
default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.
Session.overranging_enabled property is set to True or if the nidcpower. Session.
output_ function property is set to a pulsing method.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].pulse_bias_voltage_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_bias_voltage_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit High
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT HIGH

pulse_bias_voltage_limit_low

nidcpower.Session.pulse_bias_voltage_ limit_low

Specifies the minimum voltage, in volts, that the output can produce when generating the
desired pulse current on the specified channel(s) during the off phase of a pulse. This
property is applicable only if the nidcpower.Session.compliance_limit_symmetry
property is set to ASYMMETRIC and the nidcpower.Session.output_function
property is set to PULSE_CURRENT. You must also specify a nidcpower.Session.
pulse_bias_voltage_limit_high to complete the asymmetric range. Valid Val-
ues: [-nidcpower.Session.pulse voltage limit_range, -1% of nidcpower.
Session.pulse _voltage_limit_range] The range bounded by the limit high and limit
low must include zero. Default Value: Search ni.com for Supported Properties by Device for the
default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.
Session.overranging enabled property is set to True or if the nidcpower. Session.
output_ function property is set to a pulsing method.

140 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].pulse_bias_voltage_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_bias_voltage_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit Low
* C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT_LOW

pulse_complete_event_output_terminal

nidcpower.Session.pulse_complete_event_ output_terminal
Specifies the output terminal for exporting the Pulse Complete event. Output terminals can be spec-
ified in one of two ways. If the device is named Devl and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0. Default Value:The default value for PXI Express devices is 250 ns.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_complete_event_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_complete_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

7.1. nidcpower module 141

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Pulse Complete Event:Output Terminal
* C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT OUTPUT_TERMINAL

pulse_complete_event_pulse_polarity

nidcpower.Session.pulse_complete_event_pulse_polarity
Specifies the behavior of the Pulse Complete event. Default Value: HTGH

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_complete_event_pulse_polarity
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_complete_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Pulse Complete Event:Pulse:Polarity
e C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT PULSE_POLARITY

pulse_complete_event_pulse_width

nidcpower.Session.pulse_complete_event_pulse_width
Specifies the width of the Pulse Complete event, in seconds. The minimum event pulse width value
for PXI Express devices is 250 ns. The maximum event pulse width value for PXI Express devices
is 1.6 microseconds. Default Value: The default value for PXI Express devices is 250 ns.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

142 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_complete_event_pulse_width
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_complete_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Pulse Complete Event:Pulse: Width
* C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_PULSE_WIDTH

pulse_current_level

nidcpower.Session.pulse_current_ level
Specifies the pulse current level, in amps, that the device attempts to generate on the specified
channel(s) during the on phase of a pulse. This property is applicable only if the nidcpower.
Session.output_function property is set to PULSE_CURRENT. Valid Values: The valid
values for this property are defined by the values you specify for the nidcpower. Session.
pulse_current_level range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_current_level
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_current_level

The following table lists the characteristics of this property.

7.1. nidcpower module 143

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Current:Pulse Current Level
* C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LEVEL

pulse_current_level_range

nidcpower.Session.pulse_current_level_ range
Specifies the pulse current level range, in amps, for the specified channel(s). The range defines
the valid values to which you can set the pulse current level and pulse bias current level. This
property is applicable only if the nidcpower. Session.output_function property is set to
PULSE_CURRENT. For valid ranges, refer to the specifications for your instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].pulse_current_level_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_current_level_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Current:Pulse Current Level Range
* C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LEVEL_RANGE

144 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

pulse_current_limit

nidcpower.Session.pulse_current_limit
Specifies the pulse current limit, in amps, that the output cannot exceed when generating the
desired pulse voltage on the specified channel(s) during the on phase of a pulse. This prop-
erty is applicable only if the nidcpower. Session.output_function property is set to
PULSE_VOLTAGE and the nidcpower.Session.compliance_limit_symmetry prop-
erty is set to SYMMETRIC. Valid Values: The valid values for this property are defined by the values
you specify for the nidcpower. Session.pulse_current_limit_range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].pulse_current_limit
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_current_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit
* C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT

pulse_current_limit_high

nidcpower.Session.pulse_current_limit_high

Specifies the maximum current, in amps, that the output can produce when generating the
desired pulse voltage on the specified channel(s) during the on phase of a pulse. This prop-
erty is applicable only if the nidcpower.Session.compliance_limit_symmetry
property is set to ASYMMETRIC and the nidcpower.Session.output_function
property is set to PULSE_VOLTAGE. You must also specify a nidcpower.Session.
pulse_current_limit_Jlow to complete the asymmetric range. Valid Values: [1%
of nidcpower.Session.pulse current_limit_range, nidcpower.Session.
pulse_current_limit_range] The range bounded by the limit high and limit low must
include zero. Default Value: Search ni.com for Supported Properties by Device for the default
value by device. Related Topics: Ranges; Changing Ranges; Overranging

7.1. nidcpower module 145

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: The limit may be extended beyond the selected limit range if the nidcpower.
Session.overranging_enabled property is set to True or if the nidcpower. Session.
output_ function property is set to a pulsing method.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].pulse_current_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_current_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit High
e C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_HIGH

pulse_current_limit_low

nidcpower.Session.pulse_current_ limit_ low

Specifies the minimum current, in amps, that the output can produce when generating the
desired pulse voltage on the specified channel(s) during the on phase of a pulse. This prop-
erty is applicable only if the nidcpower.Session.compliance_limit_symmetry
property is set to ASYMMETRIC and the nidcpower.Session.output_function
property is set to PULSE_VOLTAGE. You must also specify a nidcpower.Session.
pulse_current_limit_high to complete the asymmetric range. Valid Values:
[-nidcpower.Session.pulse_current_limit_range, -1% of nidcpower.
Session.pulse_current_limit_range] The range bounded by the limit high and
limit low must include zero. Default Value: Search ni.com for Supported Properties by Device for
the default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.
Session.overranging_enabled property is set to True or if the nidcpower. Session.
output_ function property is set to a pulsing method.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

146 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.channels[...].pulse_current_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_current_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit Low
* C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT _LOW

pulse_current_limit_range

nidcpower.Session.pulse_current_limit_range
Specifies the pulse current limit range, in amps, for the specified channel(s). The range defines
the valid values to which you can set the pulse current limit and pulse bias current limit. This
property is applicable only if the nidcpower. Session.output_function property is setto
PULSE_VOLTAGE. For valid ranges, refer to the specifications for your instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].pulse_current_limit_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_current_limit_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit Range

7.1. nidcpower module 147

NI Modular Instruments Python APl Documentation, Release 1.4.2

* C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_RANGE

pulse_off_time

nidcpower.Session.pulse_off time
Determines the length, in seconds, of the off phase of a pulse. Valid Values: 10 microseconds to 167
seconds Default Value: 34 milliseconds

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_off_ time
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_off_time

The following table lists the characteristics of this property.

Characteristic Value

Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:Pulse Off Time
» C Attribute: NIDCPOWER_ATTR_PULSE_OFF_TIME

pulse_on_time

nidcpower.Session.pulse_on_time
Determines the length, in seconds, of the on phase of a pulse. Valid Values: 10 microseconds to 167
seconds Default Value: 34 milliseconds

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

148 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.channels[...].pulse_on_time
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_on_time

The following table lists the characteristics of this property.

Characteristic Value

Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Advanced:Pulse On Time
* C Attribute: NIDCPOWER_ATTR_PULSE_ON_TIME

pulse_trigger_type

nidcpower.Session.pulse_trigger_type
Specifies the behavior of the Pulse trigger. Default Value: NONE

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].pulse_trigger_type
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_trigger_type

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Pulse Trigger:Trigger Type
* C Attribute: NIDCPOWER_ATTR_PULSE_TRIGGER_TYPE

7.1. nidcpower module 149

NI Modular Instruments Python APl Documentation, Release 1.4.2

pulse_voltage level

nidcpower.Session.pulse_voltage_level
Specifies the pulse current limit, in amps, that the output cannot exceed when generating the desired
pulse voltage on the specified channel(s) during the on phase of a pulse. This property is applicable
only if the nidcpower. Session.output_function property is set to PULSE_VOLTAGE.
Valid Values: The valid values for this property are defined by the values you specify for the
nidcpower.Session.pulse_current_limit_range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].pulse_voltage_level
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_voltage_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Voltage:Pulse Voltage Level
e C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LEVEL

pulse_voltage level_range

nidcpower.Session.pulse_voltage_level_range
Specifies the pulse voltage level range, in volts, for the specified channel(s). The range defines
the valid values at which you can set the pulse voltage level and pulse bias voltage level. This
property is applicable only if the nidcpower. Session.output_function property is set to
PULSE_VOLTAGE. For valid ranges, refer to the specifications for your instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

150 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

set.
Example: my_session.channels|[...].pulse_voltage_level_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_voltage_level_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Pulse Voltage:Pulse Voltage Level Range
* C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LEVEL_RANGE

pulse_voltage_limit

nidcpower.Session.pulse_voltage_limit
Specifies the pulse voltage limit, in volts, that the output cannot exceed when generating the
desired pulse current on the specified channel(s) during the on phase of a pulse. This prop-
erty is applicable only if the nidcpower.Session.output_function property is set to
PULSE_CURRENT and the nidcpower.Session.compliance_limit_symmetry prop-
erty is set to SYMMETRIC. Valid Values: The valid values for this property are defined by the values
you specify for the nidcpower. Session.pulse_voltage_limit_range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_voltage_limit
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_voltage_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

7.1. nidcpower module 151

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit
* C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT

pulse_voltage limit_high

nidcpower.Session.pulse_voltage_limit_high

Specifies the maximum voltage, in volts, that the output can produce when generating the
desired pulse current on the specified channel(s) during the on phase of a pulse. This prop-
erty is applicable only if the nidcpower.Session.compliance limit symmetry
property is set to ASYMMETRIC and the nidcpower.Session.output_function
property is set to PULSE_CURRENT. You must also specify a nidcpower.Session.
pulse_voltage limit_Jlow to complete the asymmetric range. Valid Values: [1%
of nidcpower.Session.pulse voltage_ limit_range, nidcpower.Session.
pulse _voltage limit_range] The range bounded by the limit high and limit low must
include zero. Default Value: Search ni.com for Supported Properties by Device for the default
value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.
Session.overranging_ enabled property is set to True or if the nidcpower. Session.
output_ function property is set to a pulsing method.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].pulse_voltage_limit_high
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_voltage_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit High
* C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_HIGH

152 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

pulse_voltage_limit_low

nidcpower.Session.pulse_voltage_limit_low

Specifies the minimum voltage, in volts, that the output can produce when generating the
desired pulse current on the specified channel(s) during the on phase of a pulse. This prop-
erty is applicable only if the nidcpower.Session.compliance_limit_symmetry
property is set to ASYMMETRIC and the nidcpower.Session.output_function
property is set to PULSE_CURRENT. You must also specify a nidcpower.Session.
pulse_voltage_limit_high to complete the asymmetric range. Valid Values:
[-nidcpower.Session.pulse_voltage limit_range, -1% of nidcpower.
Session.pulse voltage limit_range] The range bounded by the limit high and
limit low must include zero. Default Value: Search ni.com for Supported Properties by Device for
the default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.
Session.overranging_enabled property is set to True or if the nidcpower. Session.
output_ function property is set to a pulsing method.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_voltage_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_voltage_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit Low
e C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_LOW

pulse_voltage_limit_range

nidcpower.Session.pulse_voltage_ limit_range
Specifies the pulse voltage limit range, in volts, for the specified channel(s). The range defines
the valid values to which you can set the pulse voltage limit and pulse bias voltage limit. This
property is applicable only if the nidcpower. Session. output_function property is set to
PULSE_CURRENT. For valid ranges, refer to the specifications for your instrument.

7.1. nidcpower module 153

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: The channel must be enabled for the specified current limit to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the
output channel.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].pulse_voltage_limit_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.pulse_voltage_limit_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit Range
e C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_RANGE

query_instrument_status

nidcpower.Session.query_ instrument_status

Specifies whether NI-DCPower queries the device status after each operation. Querying the device
status is useful for debugging. After you validate your program, you can set this property to False
to disable status checking and maximize performance. NI-DCPower ignores status checking for
particular properties regardless of the setting of this property. Use the nidcpower.Session.
__init__ () method to override this value. Default Value: True

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:User Options:Query Instrument Status
* C Attribute: NIDCPOWER_ATTR_QUERY_INSTRUMENT_STATUS

154

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

ready_for_pulse_trigger_event_output_terminal

nidcpower.Session.ready_for pulse_trigger_event_output_terminal
Specifies the output terminal for exporting the Ready For Pulse Trigger event. Output terminals
can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_TrigO0,
you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the
shortened terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].ready_for_pulse_trigger_event_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.ready_for_pulse_trigger_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Ready For Pulse Trigger Event:Output Terminal
* C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_OUTPUT_TERMINAL

ready_for_pulse_trigger_event_pulse_polarity

nidcpower.Session.ready for pulse_trigger_event_pulse_polarity
Specifies the behavior of the Ready For Pulse Trigger event. Default Value: HIGH

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].ready_for_pulse_trigger_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower. Session.

7.1. nidcpower module 155

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.ready_for_pulse_trigger_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Events:Ready For Pulse Trigger Event:Pulse:Polarity
» C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_PULSE_POLARITY

ready_for_pulse_trigger_event_pulse_width

nidcpower.Session.ready_ for_pulse_ trigger_event_pulse_width
Specifies the width of the Ready For Pulse Trigger event, in seconds. The minimum event pulse
width value for PXI Express devices is 250 ns. The maximum event pulse width value for all
devices is 1.6 microseconds. Default Value: The default value for PXI Express devices is 250 ns

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].ready_for_pulse_trigger_event_pulse_width
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.ready_for_pulse_trigger_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Ready For Pulse Trigger Event:Pulse:Width
e C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_PULSE_WIDTH

156 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

requested_power_allocation

nidcpower.Session.requested power_allocation

Specifies the power, in watts, to request the device to source from each active channel. This
property defines the power to source from the device only if the nidcpower. Session.
power_allocation mode property is set to MANUAL.

The power you request with this property may be incompatible with the power a given source
configuration requires or the power the device can provide: If the requested power is less than
the power required for the source configuration, the device does not exceed the requested power,
and NI-DCPower returns an error. If the requested power is greater than the maximum per-
channel or overall sourcing power, the device does not exceed the allowed power, and NI-
DCPower returns an error.

Valid Values: [0, device per-channel maximum power] Default Value: Refer to the Supported
Properties by Device topic for the default value by device.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].requested_power_allocation
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.requested_power_allocation

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:Requested Power Allocation
* C Attribute: NIDCPOWER_ATTR_REQUESTED_POWER_ALLOCATION

reset_average_before_measurement

nidcpower.Session.reset_average before measurement
Specifies whether the measurement returned from any measurement call starts with a new measure-
ment call (True) or returns a measurement that has already begun or completed(False). When you set
the nidcpower. Session.samples_to_average property in the Running state, the output
channel measurements might move out of synchronization. While NI-DCPower automatically syn-
chronizes measurements upon the initialization of a session, you can force a synchronization in the

7.1. nidcpower module 157

NI Modular Instruments Python APl Documentation, Release 1.4.2

running state before you run the nidcpower. Session.measure_multiple () method. To
force a synchronization in the running state, set this property to True, and then run the nidcpower.
Session.measure_multiple () method, specifying all channels in the channel name pa-
rameter. You can set the nidcpower. Session.reset_average before measurement
property to False after the nidcpower. Session.measure_multiple () method completes.
Default Value: True

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].reset_average_before_measurement
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.reset_average_before_measurement

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Measurement:Advanced:Reset Average Before Measurement
* C Attribute: NIDCPOWER_ATTR_RESET_AVERAGE_BEFORE_MEASUREMENT

samples_to_average

nidcpower.Session.samples_to_average

Specifies the number of samples to average when you take a measurement. Increasing the num-
ber of samples to average decreases measurement noise but increases the time required to take a
measurement. Refer to the NI PXI-4110, NI PXI-4130, NI PXI-4132, or NI PXIe-4154 Averag-
ing topic for optional property settings to improve immunity to certain noise types, or refer to the
NI PXIe-4140/4141 DC Noise Rejection, NI PXIe-4142/4143 DC Noise Rejection, or NI PXIe-
4144/4145 DC Noise Rejection topic for information about improving noise immunity for those
devices. Default Value: NI PXI-4110 or NI PXI-4130—10 NI PXI-4132—1 NI PXlIe-4112—1 NI
PXIe-4113—1 NI PXIe-4140/4141—1 NI PXIe-4142/4143—1 NI PXlIe-4144/4145—1 NI PXlIe-
4154—500

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

158 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.channels[...].samples_to_average
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.samples_to_average

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Measurement:Samples To Average
* C Attribute: NIDCPOWER_ATTR_SAMPLES_TO_AVERAGE

self_calibration_persistence

nidcpower.Session.self calibration_ persistence

Specifies whether the values calculated during self-calibration should be written to hardware
to be used until the next self-calibration or only used until the nidcpower.Session.
reset_device () method is called or the machine is powered down. This property affects the be-
havior of the nidcpower. Session.self cal () method. When set to KEEP_TN_MEMORY,
the values calculated by the nidcpower.Session.self_cal() method are used in
the existing session, as well as in all further sessions until you call the nidcpower.
Session.reset_device () method or restart the machine. When you set this property
to WRITE_TO_EEPROM, the values calculated by the nidcpower.Session.self_cal ()
method are written to hardware and used in the existing session and in all subsequent sessions
until another call to the nidcpower. Session.self cal () method is made. about supported
devices. Default Value: KEEP_ IN MEMORY

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific instruments within your nidcpower. Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments|[...].self_calibration_persistence
To set/get on all instruments, you can call the property directly on the nidcpower. Session.

Example: my_session.self_calibration_persistence

The following table lists the characteristics of this property.

7.1. nidcpower module 159

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value

Datatype enums.SelfCalibrationPersistence
Permissions read-write

Repeated Capabilities | instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Advanced:Self-Calibration Persistence
* C Attribute: NIDCPOWER_ATTR_SELF_CALIBRATION_PERSISTENCE

sense

nidcpower.Session.sense

Selects either local or remote sensing of the output voltage for the specified channel(s). Refer to the
Local and Remote Sense topic in the NI DC Power Supplies and SMUs Help for more information
about sensing voltage on supported channels and about devices that support local and/or remote
sensing. Default Value: The default value is LOCAL if the device supports local sense. Otherwise,

the default and only supported value is REMOTE.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-

set.

Example: my_session.channels[...].sense

To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.sense

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Sense
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Measurement:Sense
* C Attribute: NIDCPOWER_ATTR_SENSE

sequence_advance_trigger_type

nidcpower.Session.sequence_advance_trigger_ type

Specifies the behavior of the Sequence Advance trigger. Default Value: NONE

160

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].sequence_advance_trigger_type
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.sequence_advance_trigger_type

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Sequence Advance Trigger:Trigger Type
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_ADVANCE_TRIGGER_TYPE

sequence_engine_done_event_output_terminal

nidcpower.Session.sequence_engine_done_event_ output_terminal
Specifies the output terminal for exporting the Sequence Engine Done Complete event. Output
terminals can be specified in one of two ways. If the device is named Devl and your terminal is
PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_engine_done_event_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.sequence_engine_done_event_output_terminal

The following table lists the characteristics of this property.

7.1. nidcpower module 161

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Sequence Engine Done Event:Output Terminal
e C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_OUTPUT_TERMINAL

sequence_engine_done_event_pulse_polarity

nidcpower.Session.sequence_engine_done_event_pulse_polarity
Specifies the behavior of the Sequence Engine Done event. Default Value: HIGH

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_engine_done_event_pulse_polarity
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.sequence_engine_done_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Events:Sequence Engine Done Event:Pulse:Polarity
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_PULSE_POLARITY

sequence_engine_done_event_pulse_width

nidcpower.Session.sequence_engine_done_event_pulse_width
Specifies the width of the Sequence Engine Done event, in seconds. The minimum event pulse width
value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices

162 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

is 250 ns. The maximum event pulse width value for all devices is 1.6 microseconds. Valid Values:
1.5e-7 to 1.6e-6 seconds Default Value: The default value for PXI devices is 150 ns. The default
value for PXI Express devices is 250 ns.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_engine_done_event_pulse_width
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.sequence_engine_done_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Sequence Engine Done Event:Pulse:Width
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_PULSE_WIDTH

sequence_iteration_complete_event_output_terminal

nidcpower.Session.sequence_iteration_complete_event_output_terminal
Specifies the output terminal for exporting the Sequence Iteration Complete event. Output terminals
can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_TrigO0,
you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the
shortened terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_iteration_complete_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower. Session.

7.1. nidcpower module 163

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.sequence_iteration_complete_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Sequence Iteration Complete Event:Output Terminal
 C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_OUTPUT_TERMINAL

sequence_iteration_complete_event_pulse_polarity

nidcpower.Session.sequence_iteration_complete_event_pulse_polarity
Specifies the behavior of the Sequence Iteration Complete event. Default Value: HIGH

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_iteration_complete_event_pulse_polarity
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.sequence_iteration_complete_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Sequence Iteration Complete Event:Pulse:Polarity
 C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_PULSE_POLARITY

164 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

sequence_iteration_complete_event_pulse_width

nidcpower.Session.sequence_iteration_ complete_event_pulse_width
Specifies the width of the Sequence Iteration Complete event, in seconds. The minimum event pulse
width value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express
devices is 250 ns. The maximum event pulse width value for all devices is 1.6 microseconds. the NI
DC Power Supplies and SMUs Help for information about supported devices. Valid Values: 1.5e-7
to 1.6e-6 seconds Default Value: The default value for PXI devices is 150 ns. The default value for
PXI Express devices is 250 ns.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_iteration_complete_event_pulse_width
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.sequence_iteration_complete_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Events:Sequence Iteration Complete Event:Pulse: Width
e C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_PULSE_WIDTH

sequence_loop_count

nidcpower.Session.sequence_loop_count
Specifies the number of times a sequence is run after initiation. Refer to the Sequence Source Mode
topic in the NI DC Power Supplies and SMUs Help for more information about the sequence loop
count. When the nidcpower. Session.sequence_loop_count_is_finite property is
set to False, the nidcpower. Session. sequence_loop_count property is ignored. Valid
Range: 1 to 134217727 Default Value: 1

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

7.1. nidcpower module 165

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].sequence_loop_count
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.sequence_loop_count

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Advanced:Sequence Loop Count
e C Attribute: NIDCPOWER_ATTR_SEQUENCE_LOOP_COUNT

sequence_loop_count_is_finite

nidcpower.Session.sequence_loop_count_is_finite
Specifies whether a sequence should repeat indefinitely. Refer to the Sequence Source Mode topic in
the NI DC Power Supplies and SMUs Help for more information about infinite sequencing. When
the nidcpower. Session.sequence_loop_count_1is_finite property is set to False,
the nidcpower. Session.sequence_loop_count property isignored. Default Value: True

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].sequence_loop_count_is_finite
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.sequence_loop_count_is_finite

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

166 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Source:Advanced:Sequence Loop Count Is Finite
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_LOOP_COUNT_IS_FINITE

sequence_step_delta_time

nidcpower.Session.sequence_step_delta_ time

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].sequence_step_delta_time
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.sequence_step_delta_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_STEP_DELTA_TIME

sequence_step_delta_time_enabled

nidcpower.Session.sequence_step_delta_ time_enabled

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].sequence_step_delta_time_enabled
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.sequence_step_delta_time_enabled

The following table lists the characteristics of this property.

7.1. nidcpower module 167

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDCPOWER_ATTR_SEQUENCE_STEP_DELTA_TIME_ENABLED

serial_number

nidcpower.Session.serial_ number
Contains the serial number for the device you are currently using.

Tip: This property can be set/get on specific instruments within your nidcpower. Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].serial_ number
To set/get on all instruments, you can call the property directly on the nidcpower. Session.

Example: my_session.serial_number

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Serial Number
* C Attribute: NIDCPOWER_ATTR_SERIAL_NUMBER

shutdown_trigger_type

nidcpower.Session.shutdown_trigger_type
Specifies the behavior of the Shutdown trigger. Default Value: NONE

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

168 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].shutdown_trigger_type
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.shutdown_trigger_type

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Triggers:Shutdown Trigger:Trigger Type
* C Attribute: NIDCPOWER_ATTR_SHUTDOWN_TRIGGER_TYPE

simulate

nidcpower.Session.simulate
Specifies whether to simulate NI-DCPower I/O operations. True specifies that operation is simu-
lated. Default Value: False

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:User Options:Simulate
* C Attribute: NIDCPOWER_ATTR_SIMULATE

source_complete_event_output_terminal

nidcpower.Session.source_complete_event_output_terminal
Specifies the output terminal for exporting the Source Complete event. Output terminals can be
specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev 1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0.

7.1. nidcpower module 169

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].source_complete_event_output_terminal
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.source_complete_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Source Complete Event:Output Terminal
* C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_OUTPUT_TERMINAL

source_complete_event_pulse_polarity

nidcpower.Session.source_complete_event_ pulse_polarity
Specifies the behavior of the Source Complete event. Default Value: HIGH

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].source_complete_event_pulse_polarity
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.source_complete_event_pulse_polarity

The following table lists the characteristics of this property.

170 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Source Complete Event:Pulse:Polarity
e C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_PULSE_POLARITY

source_complete_event_pulse_width

nidcpower.Session.source_complete_event_ pulse_width
Specifies the width of the Source Complete event, in seconds. The minimum event pulse width value
for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is 250
ns. The maximum event pulse width value for all devices is 1.6 microseconds Valid Values: 1.5e-7
to 1.6e-6 seconds Default Value: The default value for PXI devices is 150 ns. The default value for
PXI Express devices is 250 ns.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].source_complete_event_pulse_width
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.source_complete_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Events:Source Complete Event:Pulse: Width
» C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_PULSE_WIDTH

7.1. nidcpower module 171

NI Modular Instruments Python APl Documentation, Release 1.4.2

source_delay

nidcpower.Session.source_delay
Determines when, in seconds, the device generates the Source Complete event, potentially
starting a measurement if the nidcpower.Session.measure_when property is set to
AUTOMATICALLY AFTER _SOURCE_COMPLETE. Refer to the Single Point Source Mode and
Sequence Source Mode topics for more information. Valid Values: 0 to 167 seconds Default Value:
0.01667 seconds

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].source_delay
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.source_delay

The following table lists the characteristics of this property.

Characteristic Value

Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Advanced:Source Delay
e C Attribute: NIDCPOWER_ATTR_SOURCE_DELAY

source_mode

nidcpower.Session.source_mode
Specifies whether to run a single output point or a sequence. Refer to the Single Point Source
Mode and Sequence Source Mode topics in the NI DC Power Supplies and SMUs Help for more
information about source modes. Default value: STNGLE POINT

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].source_mode

To set/get on all channels, you can call the property directly on the nidcpower. Session.

172 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.source_mode

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.SourceMode
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Source Mode
* C Attribute: NIDCPOWER_ATTR_SOURCE_MODE

source_trigger_type

nidcpower.Session.source_trigger_type
Specifies the behavior of the Source trigger. Default Value: NONE

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].source_trigger_type
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.source_trigger_type

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Triggers:Source Trigger:Trigger Type
* C Attribute: NIDCPOWER_ATTR_SOURCE_TRIGGER_TYPE

7.1. nidcpower module 173

NI Modular Instruments Python APl Documentation, Release 1.4.2

specific_driver_description

nidcpower.Session.specific_driver_description
Contains a brief description of the specific driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Driver Identification:Description
* C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_prefix

nidcpower.Session.specific_driver_ prefix
Contains the prefix for NI-DCPower. The name of each user-callable method in NI-DCPower begins

with this prefix.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Prefix
* C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_PREFIX

specific_driver_revision

nidcpower.Session.specific_driver_ revision
Contains additional version information about NI-DCPower.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

174 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Inherent IVI Attributes:Driver Identification:Revision
* C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

nidcpower.Session.specific_driver_vendor
Contains the name of the vendor that supplies NI-DCPower.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Vendor
* C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_VENDOR

start_trigger_type

nidcpower.Session.start_trigger_type
Specifies the behavior of the Start trigger. Default Value: NONE

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].start_trigger_type
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.start_trigger_type

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities | channels

7.1. nidcpower module 175

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Triggers:Start Trigger:Trigger Type
» C Attribute: NIDCPOWER_ATTR_START_TRIGGER_TYPE

supported_instrument_models

nidcpower.Session.supported_instrument_models
Contains a comma-separated (,) list of supported NI-DCPower device models.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Supported Instrument
Models

e C Attribute: NIDCPOWER_ATTR_SUPPORTED_INSTRUMENT_MODELS

transient_response

nidcpower.Session.transient_response
Specifies the transient response. Refer to the Transient Response topic in the NI DC Power Supplies
and SMUs Help for more information about transient response. Default Value: NORMAL

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].transient_response
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.transient_response

The following table lists the characteristics of this property.

176 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value

Datatype enums.TransientResponse
Permissions read-write

Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Transient Response
e C Attribute: NIDCPOWER_ATTR_TRANSIENT_RESPONSE

voltage_compensation_frequency

nidcpower.Session.voltage_compensation_ frequency
The frequency at which a pole-zero pair is added to the system when the channel is in Constant
Voltage mode. Default value: Determined by the value of the NORMAL setting of the nidcpower.
Session.transient_response property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].voltage_compensation_frequency
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.voltage_compensation_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Source:Custom Transient Response:Voltage:Compensation Fre-
quency

» C Attribute: NIDCPOWER_ATTR_VOLTAGE_COMPENSATION_FREQUENCY

7.1. nidcpower module 177

NI Modular Instruments Python APl Documentation, Release 1.4.2

voltage_gain_bandwidth

nidcpower.Session.voltage_gain_bandwidth
The frequency at which the unloaded loop gain extrapolates to O dB in the absence of additional
poles and zeroes. This property takes effect when the channel is in Constant Voltage mode. De-
fault Value: Determined by the value of the NORMAL setting of the nidcpower. Session.
transient_response property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].voltage_gain_bandwidth
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.voltage_gain_bandwidth

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:Custom Transient Response: Voltage:Gain Bandwidth
» C Attribute: NIDCPOWER_ATTR_VOLTAGE_GAIN_BANDWIDTH

voltage_level

nidcpower.Session.voltage_level
Specifies the voltage level, in volts, that the device attempts to generate on the specified channel(s).
This property is applicable only if the nidcpower. Session.output_function property is
set to DC_VOLTAGE. nidcpower.Session.output_enabled property for more informa-
tion about enabling the output channel. Valid Values: The valid values for this property are defined
by the values you specify for the nidcpower. Session.voltage_level_range property.

Note: The channel must be enabled for the specified voltage level to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the
output channel.

178 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].voltage_level
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.voltage_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Voltage: Voltage Level
e C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL

voltage_level autorange

nidcpower.Session.voltage_level autorange

Specifies whether NI-DCPower automatically selects the voltage level range based on the desired
voltage level for the specified channel(s). If you set this property to ON, NI-DCPower ignores
any changes you make to the nidcpower.Session.voltage level range property. If
you change the nidcpower. Session.voltage level autorange property from ON to
OFF, NI-DCPower retains the last value the nidcpower. Session.voltage level_ range
property was set to (or the default value if the property was never set) and uses that value as
the voltage level range. Query the nidcpower.Session.voltage_level_ range prop-
erty by using the nidcpower.Session._get_attribute_vi_int32 () method for in-
formation about which range NI-DCPower automatically selects. The nidcpower.Session.
voltage level autorange property is applicable only if the nidcpower.Session.
output_ function property is set to DC_VOLTAGE. Default Value: OFF

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].voltage_level_autorange
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.voltage_level_autorange

The following table lists the characteristics of this property.

7.1. nidcpower module 179

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Voltage: Voltage Level Autorange
* C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL_AUTORANGE

voltage_level_range

nidcpower.Session.voltage_level_ range

Specifies the voltage level range, in volts, for the specified channel(s). The range defines
the valid values to which the voltage level can be set. Use the nidcpower.Session.
voltage level autorange property to enable automatic selection of the voltage level
range. The nidcpower. Session.voltage level range property is applicable only if the
nidcpower.Session.output_function property is set to DC_VOLTAGE. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the specifications for your instrument.

Note: The channel must be enabled for the specified voltage level range to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the
output channel.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].voltage_level_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.voltage_level_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Voltage:Voltage Level Range
e C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL_RANGE

180 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

voltage_limit

nidcpower.Session.voltage_limit

Specifies the voltage limit, in volts, that the output cannot exceed when generating the desired
current level on the specified channels. This property is applicable only if the nidcpower.
Session.output_function property is set to DC_CURRENT and the nidcpower.
Session.compliance_limit_symmetry property is set to SYMMETRIC. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
Valid Values: The valid values for this property are defined by the values to which the nidcpower.
Session.voltage_limit_range property is set.

Note: The channel must be enabled for the specified current level to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the
output channel.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].voltage_limit
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.voltage_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Current: Voltage Limit
» C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT

voltage_limit_autorange

nidcpower.Session.voltage_limit_autorange
Specifies whether NI-DCPower automatically selects the voltage limit range based on the desired
voltage limit for the specified channel(s). If this property is set to ON, NI-DCPower ignores
any changes you make to the nidcpower.Session.voltage limit_range property. If
you change the nidcpower. Session.voltage_limit_autorange property from ON to
OFF, NI-DCPower retains the last value the nidcpower. Session.voltage limit_range
property was set to (or the default value if the property was never set) and uses that value
as the voltage limit range. Query the nidcpower.Session.voltage limit_range
property by using the nidcpower.Session._get_attribute_vi_int32 () method

7.1. nidcpower module 181

NI Modular Instruments Python APl Documentation, Release 1.4.2

to find out which range NI-DCPower automatically selects. The nidcpower.Session.
voltage limit_autorange property is applicable only if the nidcpower.Session.
output_ function property is set to DC_CURRENT. Default Value: OFF

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].voltage_limit_autorange
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.voltage_limit_autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Current:Voltage Limit Autorange
» C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_AUTORANGE

voltage_limit_high

nidcpower.Session.voltage_limit_high

Specifies the maximum voltage, in volts, that the output can produce when generating the desired
current on the specified channel(s). This property is applicable only if the nidcpower. Session.
compliance_limit_symmetry property is set to ASYMMETRIC and the nidcpower.
Session.output_function property is set to DC_CURRENT. You must also specify a
nidcpower.Session.voltage limit_1low to complete the asymmetric range. Valid Val-
ues: [1% of nidcpower.Session.voltage_limit_range, nidcpower.Session.
voltage limit_range] The range bounded by the limit high and limit low must include zero.
Default Value: Search ni.com for Supported Properties by Device for the default value by device.
Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower. Session.
overranging_enabled property is set to True.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].voltage_limit_high

To set/get on all channels, you can call the property directly on the nidcpower. Session.

182 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.voltage_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Current:Voltage Limit High
* C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_HIGH

voltage_limit_low

nidcpower.Session.voltage_limit_low

Specifies the minimum voltage, in volts, that the output can produce when generating the desired
current on the specified channel(s). This property is applicable only if the nidcpower. Session.
compliance_limit_symmetry property is set to ASYMMETRIC and the nidcpower.
Session.output_function property is set to DC_CURRENT. You must also spec-
ify a nidcpower.Session.voltage limit_high to complete the asymmetric range.
Valid Values: [-nidcpower.Session.voltage_ limit_range, -1% of nidcpower.
Session.voltage_limit_range] The range bounded by the limit high and limit low must
include zero. Default Value: Search ni.com for Supported Properties by Device for the default value
by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower. Session.
overranging_enabled property is set to True.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels[...].voltage_limit_low
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.voltage_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

7.1. nidcpower module 183

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Source:DC Current:Voltage Limit Low
* C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_LOW

voltage_limit_range

nidcpower.Session.voltage_limit_range

Specifies the voltage limit range, in volts, for the specified channel(s). The range defines
the valid values to which the voltage limit can be set. Use the nidcpower.Session.
voltage limit_autorange property to enable automatic selection of the voltage limit
range. The nidcpower. Session.voltage_1limit_range property is applicable only if the
nidcpower.Session.output_function property is set to DC_CURRENT. nidcpower.
Session.output_enabled property for more information about enabling the output channel.
For valid ranges, refer to the specifications for your instrument.

Note: The channel must be enabled for the specified voltage limit range to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the
output channel.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].voltage_limit_range
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.voltage_limit_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:DC Current:Voltage Limit Range
* C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT RANGE

voltage_pole_zero_ratio

nidcpower.Session.voltage_pole_zero_ratio
The ratio of the pole frequency to the zero frequency when the channel is in Constant Voltage mode.

184 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Default value: Determined by the value of the NORMAL setting of the nidcpower.Session.
transient_response property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower. Session in-
stance. Use Python index notation on the repeated capabilities container channels to specify a sub-
set.

Example: my_session.channels|[...].voltage_pole_zero_ratio
To set/get on all channels, you can call the property directly on the nidcpower. Session.

Example: my_session.voltage_pole_zero_ratio

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Source:Custom Transient Response: Voltage:Pole-Zero Ratio
* C Attribute: NIDCPOWER_ATTR_VOLTAGE _POLE_ZERO_RATIO

Session

e Session
* Methods
— abort
— clear_latched_output_cutoff _state
— close
— commit
— configure_aperture_time
— configure_lcr_custom_cable_compensation
— create_advanced_sequence
— create_advanced_sequence_commit_step
— create_advanced_sequence_step

— delete_advanced_sequence

— disable

7.1. nidcpower module

185

NI Modular Instruments Python APl Documentation, Release 1.4.2

— export_attribute_configuration_buffer

— export_attribute_configuration_file

— fetch_multiple

— fetch_multiple_Ilcr

— get_channel_name

— get_channel_names

— get_ext_cal_last_date_and_time

— get_ext_cal_last_temp

— get_ext_cal_recommended_interval

— get_lcr_compensation_last_date_and_time
— get_lcr_custom_cable_compensation_data
— get_self cal_last_date_and_time

— get_self cal_last_temp

— import_attribute_configuration_buffer

— import_attribute_configuration_file

— initiate

- lock

— measure

— measure_multiple

— measure_multiple_lcr

— perform_lcr_load_compensation

— perform_Ilcr_open_compensation

— perform_lcr_open_custom_cable_compensation
— perform_lcr_short_compensation

— perform_Ilcr_short_custom_cable_compensation
— query_in_compliance

— query_latched_output_cutoff_state

— query_max_current_limit

— query_max_voltage_level

— query_min_current_limit

— query_output_state

— read_current_temperature

— reset

— reset_device

— reset_with_defaults

186 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

— self cal
— self test
— send_software_edge_trigger
— set_sequence
— unlock
— wait_for_event
* Properties
— active_advanced_sequence
— active_advanced_sequence_step
— actual_power_allocation
— aperture_time
— aperture_time_auto_mode
— aperture_time_units
— autorange
- aLttorange_aperture_time_mode
— autorange_behavior
— autorange_maximum_delay_after_range_change
— autorange_minimum_aperture_time
— autorange_minimum_aperture_time_units
— autorange_minimum_current_range
— autorange_minimum_voltage_range
— autorange_threshold_mode
— auto_zero
— auxiliary_power_source_available
— cable_length
— channel_count
— compliance_limit_symmetry
— current_compensation_frequency
— current_gain_bandwidth
— current_level
— current_level_autorange
— current_level_range
— current_limit

— current_limit_autorange

— current_limit_behavior

7.1. nidcpower module

187

NI Modular Instruments Python APl Documentation, Release 1.4.2

— current_limit_high

— current_limit_low

— current_limit_range

— current_pole_zero_ratio

— dc_noise_rejection

— digital_edge_measure_trigger_input_terminal
— digital_edge_pulse_trigger_input_terminal

— digital_edge_sequence_advance_trigger_input_terminal
— digital_edge_shutdown_trigger_input_terminal
— digital_edge_source_trigger_input_terminal
— digital_edge_start_trigger_input_terminal

— driver_setup

— exported_measure_trigger_output_terminal
— exported_pulse_trigger_output_terminal

— exported_sequence_advance_trigger_output_terminal
— exported_source_trigger_output_terminal

— exported_start_trigger_output_terminal

— fetch_backlog

— instrument_firmware_revision

— instrument_manufacturer

— instrument_mode

— instrument_model

— interlock_input_open

— io_resource_descriptor

— isolation_state

— lcr_actual _load_reactance

— lcr_actual_load_resistance

— lcr_automatic_level control

— ler_current_amplitude

— lcr_current_range

— lcr_custom_measurement_time

— lcr_dc_bias_automatic_level_control

— ler_dc_bias_current_level

— lcr_dc_bias_current_range

— lcr_dc_bias_source

188 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

— lcr_dc_bias_voltage_level

— lcr_dc_bias_voltage_range

— lcr_frequency

— lcr_impedance_auto_range

— ler_impedance_range

— lcr_impedance_range_source

— lcr_load_capacitance

— lcr_load_compensation_enabled

— lcr_load inductance

— ler_load_resistance

— lcr_measured_load_reactance

— lcr_measured_load_resistance

— lcr_measurement_time

— lcr_open_compensation_enabled

— lcr_open_conductance

— lcr_open_short_load_compensation_data_source
— lcr_open_susceptance

— lcr_short_compensation_enabled

— lcr_short_custom_cable_compensation_enabled
— lcr_short_reactance

— lcr_short_resistance

— ler_source_delay_mode

— lcr_stimulus_function

— lcr_voltage_amplitude

— lcr_voltage_range

— logical_name

— measure_buffer_size

— measure_complete_event_delay

— measure_complete_event_output_terminal
— measure_complete_event_pulse_polarity
— measure_complete_event_pulse_width
— measure_record_delta_time

— measure_record_length

— measure_record_length_is_finite

— measure_trigger_type

7.1. nidcpower module 189

NI Modular Instruments Python APl Documentation, Release 1.4.2

— measure_when

— merged_channels

— output_capacitance

— output_connected

— output_cutoff _current_change_limit_high
— output_cutoff_current_change_limit_low
— output_cutoff_current_measure_limit_high
— output_cutoff _current_measure_limit_low
— output_cutoff _current_overrange_enabled
— output_cutoff_delay

— output_cutoff_enabled

— output_cutoff_voltage_change_limit_high
— output_cutoff _voltage_change_limit_low
— output_cutoff_voltage_output_limit_high
— output_cutoff_voltage_output_limit_low
— output_enabled

— output_function

— output_resistance

— overranging_enabled

— ovp_enabled

— ovp_limit

power_allocation_mode

— power_line_frequency

— power_source

— power_source_in_use

— pulse_bias_current_level

— pulse_bias_current_limit

— pulse_bias_current_limit_high
— pulse_bias_current_limit_low
— pulse_bias_delay

— pulse_bias_voltage_level

— pulse_bias_voltage_limit

— pulse_bias_voltage_limit_high

— pulse_bias_voltage_limit_low

— pulse_complete_event_output_terminal

190 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

— pulse_complete_event_pulse_polarity

— pulse_complete_event_pulse_width

— pulse_current_level

— pulse_current_level_range

— pulse_current_limit

— pulse_current_limit_high

— pulse_current_limit_low

— pulse_current_limit_range

— pulse_off _time

— pulse_on_time

— pulse_trigger_type

— pulse_voltage_level

— pulse_voltage_level_range

— pulse_voltage_limit

— pulse_voltage_limit_high

— pulse_voltage_limit_low

— pulse_voltage_limit_range

— query_instrument_status

— ready_for_pulse_trigger_event_output_terminal
— ready_for_pulse_trigger_event_pulse_polarity
— ready_for_pulse_trigger_event_pulse_width

— requested_power_allocation

— reset_average_before_measurement

— samples_to_average

— self _calibration_persistence

— sense

— sequence_advance_trigger_type

— sequence_engine_done_event_output_terminal
— sequence_engine_done_event_pulse_polarity

— sequence_engine_done_event_pulse_width

- sequence_itemtion_camplele_event_aulpul_terminal
— sequence_iteration_complete_event_pulse_polarity
— sequence_iteration_complete_event_pulse_width

— sequence_loop_count

— sequence_loop_count_is_finite

7.1. nidcpower module 191

NI Modular Instruments Python APl Documentation, Release 1.4.2

— sequence_step_delta_time

— sequence_step_delta_time_enabled
— serial_number

— shutdown_trigger_type

— simulate

— source_complete_event_output_terminal
— source_complete_event_pulse_polarity
— source_complete_event_pulse_width
— source_delay

— source_mode

— source_trigger_type

— specific_driver_description

— specific_driver_prefix

— specific_driver_revision

— specific_driver_vendor

— Sstart_trigger_type

— supported_instrument_models

— transient_response

— voltage_compensation_frequency

— voltage_gain_bandwidth

— voltage_level

— voltage_level_autorange

— voltage_level_range

— voltage_limit

— voltage_limit_autorange

— voltage_limit_high

— voltage_limit_low

— voltage_limit_range

— voltage_pole_zero_ratio

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the underlying driver
function call. This can be the actual function based on the Session method being called, or it can be
the appropriate Get/Set Attribute function, such as niDCPower_SetAttributevViInt32 ().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities. The
parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or an integer.
If it is a string, you can indicate a range using the same format as the driver: *0-2’ or *0:2’

192

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Some repeated capabilities use a prefix before the number and this is optional

channels

nidcpower.Session.channels]|]

session.channels['0-2'].channel_enabled = True

passes a string of *0, 1, 2’ to the set attribute function.

instruments

nidcpower.Session.instruments]|]

session.instruments['0-2"'].channel_enabled = True

passes a string of *0, 1, 2’ to the set attribute function.

Enums

Enums used in NI-DCPower

ApertureTimeAutoMode

class nidcpower.ApertureTimeAutoMode

OFF
Disables automatic aperture time scaling. The nidcpower.Session.aperture_time property
specifies the aperture time for all ranges.

SHORT
Prioritizes measurement speed over measurement accuracy by quickly scaling down aperture time in larger
current ranges. The nidcpower. Session.aperture_time property specifies the aperture time for
the minimum range.

NORMAL
Balances measurement accuracy and speed by scaling down aperture time in larger current ranges. The
nidcpower.Session.aperture_time property specifies the aperture time for the minimum range.

LONG
Prioritizes accuracy while still decreasing measurement time by slowly scaling down aperture time in
larger current ranges. The nidcpower.Session.aperture_time property specifies the aperture
time for the minimum range.

ApertureTimeUnits

class nidcpower.ApertureTimeUnits

7.1. nidcpower module 193

NI Modular Instruments Python APl Documentation, Release 1.4.2

SECONDS
Specifies aperture time in seconds.

POWER_LINE_CYCLES
Specifies aperture time in power line cycles (PLCs).

AutoZero

class nidcpower.AutoZero

OFF
Disables auto zero.

ON
Makes zero conversions for every measurement.

ONCE
Makes zero conversions following the first measurement after initiating the device. The device uses these
zero conversions for the preceding measurement and future measurements until the device is reinitiated.

AutorangeApertureTimeMode

class nidcpower.AutorangeApertureTimeMode

AUTO
NI-DCPower optimizes the aperture time for the autorange algorithm based on the module range.

CUSTOM
The user specifies a minimum aperture time for the algorithm using the nidcpower.Session.
autorange_minimum_aperture_time property and the corresponding nidcpower. Session.
autorange_minimum_aperture_time_units property.

AutorangeBehavior

class nidcpower.AutorangeBehavior

UP_TO_LIMIT THEN_ DOWN
Go to limit range then range down as needed until measured value is within thresholds.

Up
go up one range when the upper threshold is reached.

UP_AND_DOWN
go up or down one range when the upper/lower threshold is reached.

AutorangeThresholdMode

class nidcpower.AutorangeThresholdMode

NORMAL
Thresholds are selected based on a balance between accuracy and hysteresis.

194 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

FAST_STEP
Optimized for faster changes in the measured signal. Thresholds are configured to be a smaller percentage
of the range.

HIGH_HYSTERESIS
Optimized for noisy signals to minimize frequent and unpredictable range changes. Thresholds are con-
figured to be a larger percentage of the range.

MEDIUM_ HYSTERESIS
Optimized for noisy signals to minimize frequent and unpredictable range changes. Thresholds are con-
figured to be a medium percentage of the range.

HOLD
Attempt to maintain the active range. Thresholds will favor the active range.

CableLength

class nidcpower.CableLength

ZERO_M
Uses predefined cable compensation data for a Om cable (direct connection).

NI_STANDARD_1M
Uses predefined cable compensation data for an NI standard 1m coaxial cable.

NI_STANDARD_2M
Uses predefined cable compensation data for an NI standard 2m coaxial cable.

NI_STANDARD_4M
Uses predefined cable compensation data for an NI standard 4m coaxial cable.

CUSTOM_ONBOARD__STORAGE
Uses previously generated custom cable compensation data from onboard storage. Only the most recently
performed compensation data for each custom cable compensation type (open, short) is stored.

CUSTOM_AS_CONFIGURED
Uses the custom cable compensation data supplied to nidcpower.Session.
configure lcr custom _cable compensation(). Use this option to manage multiple
sets of custom cable compensation data.

NI_STANDARD_TRIAXIAL_1M
Uses predefined cable compensation data for an NI standard 1m triaxial cable.

NI_STANDARD_ TRIAXIAL_ 2M
Uses predefined cable compensation data for an NI standard 2m triaxial cable.

NI_STANDARD_TRIAXIAL_ 4M
Uses predefined cable compensation data for an NI standard 4m triaxial cable.

ComplianceLimitSymmetry

class nidcpower.ComplianceLimitSymmetry

SYMMETRIC
Compliance limits are specified symmetrically about 0.

7.1. nidcpower module 195

NI Modular Instruments Python APl Documentation, Release 1.4.2

ASYMMETRIC

Compliance limits can be specified asymmetrically with respect to 0.

DCNoiseRejection

class nidcpower.DCNoiseRejection

SECOND_ORDER
Second-order rejection of DC noise.

NORMAL
Normal rejection of DC noise.

Event

class nidcpower.Event

SOURCE_COMPLETE
MEASURE_COMPLETE
SEQUENCE_ITERATION COMPLETE
SEQUENCE_ENGINE_DONE
PULSE_COMPLETE

READY FOR_PULSE_TRIGGER

InstrumentMode

class nidcpower.InstrumentMode

SMU_PS

The channel operates as an SMU/power supply.

LCR
The channel operates as an LCR meter.

LCRCompensationType

class nidcpower.LCRCompensationType

OPEN
Open LCR compensation.

SHORT
Short LCR compensation.

LOAD
Load LCR compensation.

196

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

OPEN_CUSTOM_CABLE
Open custom cable compensation.

SHORT_CUSTOM CABLE
Short custom cable compensation.

LCRDCBiasSource

class nidcpower.LCRDCBiasSource

OFF
Disables DC bias in LCR mode.
VOLTAGE

Applies a constant voltage bias,
lcr _dc_bias_voltage_ level property.
CURRENT

as defined by the

nidcpower.Session.

Applies a constant current bias, as defined by

the nidcpower.Session.
lcr _dc_bias_current_level property.

LCRImpedanceRangeSource

class nidcpower.LCRImpedanceRangeSource

IMPEDANCE_RANGE

Uses the impedance range you specify with the nidcpower. Session. lcr_impedance_range
property.

LOAD_CONFIGURATION

Computes the impedance range to select based on the values you supply to the nidcpower. Session.
lcr_load resistance, nidcpower.Session.lcr_load inductance,and nidcpower.

Session.lcr_load_capacitance properties. NI-DCPower uses a series model of load resistance,
load inductance, and load capacitance to compute the impedance range.

LCRMeasurementTime

class nidcpower.LCRMeasurementTime

SHORT

Uses a short aperture time for LCR measurements.
MEDIUM

Uses a medium aperture time for LCR measurements.
LONG

Uses a long aperture time for LCR measurements.
CUSTOM

Uses a custom aperture time for LCR measurements as specified by the nidcpower.Session.
lcr custom _measurement_ time property.

7.1. nidcpower module 197

NI Modular Instruments Python APl Documentation, Release 1.4.2

LCROpenShortLoadCompensationDataSource
class nidcpower.LCROpenShortLoadCompensationDataSource

ONBOARD_ STORAGE
Uses previously generated LCR compensation data. Only the most recently performed compensation data
for each LCR compensation type (open, short, and load) is stored.

AS_DEFINED

Uses the LCR compensation data represented by the relevant LCR compensation properties as gen-
erated by nidcpower.Session.perform_lcr._open_compensation(), nidcpower.
Session.perform lcr._short_compensation(), and nidcpower.Session.
perform_lcr_load _compensation (). Use this option to manage multiple sets of LCR
compensation data. This option applies compensation data from the following properties: nidcpower.
Session.lcr_open_conductance, nidcpower.Session.lcr_open_susceptance,
nidcpower.Session.lcr_short_resistance, nidcpower.Session.
lcr._short_reactance, nidcpower.Session.lcr_measured_load_resistance,
nidcpower.Session.lcr_measured_load_ reactance, nidcpower.Session.
lcr_actual_load resistance, nidcpower.Session.lcr_actual_load reactance.

LCRReferenceValueType
class nidcpower.LCRReferenceValueType

IMPEDANCE

The actual impedance, comprising real resistance and imaginary reactance, of your DUT. Supply resis-
tance, in ohms, to reference value A; supply reactance, in ohms, to reference value B.

IDEAL_CAPACITANCE
The ideal capacitance of your DUT. Supply capacitance, in farads, to reference value A.
IDEAIL_INDUCTANCE

The ideal inductance of your DUT. Supply inductance, in henrys, to reference value A.

IDEAL_ RESISTANCE
The ideal resistance of your DUT. Supply resistance, in ohms, to reference value A.

LCRSourceDelayMode
class nidcpower.LCRSourceDelayMode

AUTOMATIC
NI-DCPower automatically applies source delay of sufficient duration to account for settling time.

MANUAL

NI-DCPower applies the source delay that you set manually with nidcpower.Session.

source_delay. You can use this option to set a shorter delay to reduce measurement time at the
possible expense of measurement accuracy.

198 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

LCRStimulusFunction

class nidcpower.LCRStimulusFunction

VOLTAGE
Applies an AC voltage for LCR stimulus.

CURRENT
Applies an AC current for LCR stimulus.

MeasureWhen

class nidcpower.MeasureWhen

AUTOMATICALLY AFTER SOURCE_COMPLETE
Acquires a measurement after each Source Complete event completes.

ON_DEMAND
Acquires a measurement when the nidcpower.Session.measure () method or nidcpower.
Session.measure_multiple () method is called.

ON_MEASURE_TRIGGER
Acquires a measurement when a Measure trigger is received.

MeasurementTypes

class nidcpower.MeasurementTypes

CURRENT
The device measures current.

VOLTAGE
The device measures voltage.

OutputCapacitance

class nidcpower.OutputCapacitance

LOW
Output Capacitance is low.

HIGH
Output Capacitance is high.

OutputCutoffReason

class nidcpower.OutputCutoffReason

ALL
Queries any output cutoff condition; clears all output cutoff conditions.

7.1. nidcpower module 199

NI Modular Instruments Python APl Documentation, Release 1.4.2

VOLTAGE_OUTPUT_HIGH
Queries or clears cutoff conditions when the output exceeded the high cutoff limit for voltage output.

VOLTAGE_OUTPUT_LOW
Queries or clears cutoff conditions when the output fell below the low cutoff limit for voltage output.

CURRENT_MEASURE_HIGH
Queries or clears cutoff conditions when the measured current exceeded the high cutoff limit for current
output.

CURRENT_MEASURE_LOW
Queries or clears cutoff conditions when the measured current fell below the low cutoff limit for current
output.

VOLTAGE_CHANGE_HIGH
Queries or clears cutoff conditions when the voltage slew rate increased beyond the positive change cutoff
for voltage output.

VOLTAGE_CHANGE_LOW
Queries or clears cutoff conditions when the voltage slew rate decreased beyond the negative change cutoff
for voltage output.

CURRENT_CHANGE_HIGH
Queries or clears cutoff conditions when the current slew rate increased beyond the positive change cutoff
for current output.

CURRENT_CHANGE_LOW
Queries or clears cutoff conditions when the current slew rate decreased beyond the negative change cutoff
for current output.

OutputFunction

class nidcpower.OutputFunction

DC_VOLTAGE
Sets the output method to DC voltage.

DC_CURRENT
Sets the output method to DC current.

PULSE_VOLTAGE
Sets the output method to pulse voltage.

PULSE_CURRENT
Sets the output method to pulse current.

OutputStates

class nidcpower.OutputStates

VOLTAGE
The device maintains a constant voltage by adjusting the current

CURRENT
The device maintains a constant current by adjusting the voltage.

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Polarity

class nidcpower.Polarity

HIGH
A high pulse occurs when the event is generated. The exported signal is low level both before and after the

event is generated.

LOW
A low pulse occurs when the event is generated. The exported signal is high level both before and after the

event is generated.

PowerAllocationMode

class nidcpower.PowerAllocationMode

DISABLED
The device attempts to source, on each active channel, the power that the present source configuration
requires; NI-DCPower does not perform a sourcing power check. If the required power is greater than
the maximum sourcing power, the device attempts to source the required amount and may shut down to
prevent damage.

AUTOMATIC
The device attempts to source, on each active channel, the power that the present source configuration re-
quires; NI-DCPower performs a sourcing power check. If the required power is greater than the maximum
sourcing power, the device does not exceed the maximum power, and NI-DCPower returns an error.

MANUAL
The device attempts to source, on each active channel, the power you request with the nidcpower.
Session.requested_power_allocation property; NI-DCPower performs a sourcing power
check. If the requested power is either less than the required power for the present source configura-
tion or greater than the maximum sourcing power, the device does not exceed the requested or allowed
power, respectively, and NI-DCPower returns an error.

PowerSource

class nidcpower.PowerSource

INTERNAL
Uses the PXI chassis power source.

AUXILIARY
Uses the auxiliary power source connected to the device.

AUTOMATIC
Uses the auxiliary power source if it is available; otherwise uses the PXI chassis power source.

PowerSourcelnUse

class nidcpower.PowerSourceInUse

7.1. nidcpower module 201

NI Modular Instruments Python APl Documentation, Release 1.4.2

INTERNAL
Uses the PXI chassis power source.

AUXILIARY
Uses the auxiliary power source connected to the device. Only the NI PXI-4110, NI PXIe-4112, NI PXIe-
4113, and NI PXI-4130 support this value. This is the only supported value for the NI PXIe-4112 and NI
PXlIe-4113.

SelfCalibrationPersistence

class nidcpower.SelfCalibrationPersistence

KEEP_IN_MEMORY
Keep new self calibration values in memory only.

WRITE TO EEPROM
Write new self calibration values to hardware.

SendSoftwareEdgeTriggerType

class nidcpower.SendSoftwareEdgeTriggerType

START

SOURCE

MEASURE
SEQUENCE_ADVANCE
PULSE

SHUTDOWN

Sense

class nidcpower.Sense

LOCAL
Local sensing is selected.

REMOTE
Remote sensing is selected.

SourceMode

class nidcpower.SourceMode

SINGLE_POINT
The source unit applies a single source configuration.

SEQUENCE
The source unit applies a list of voltage or current configurations sequentially.

202 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

TransientResponse

class nidcpower.TransientResponse

NORMAL
The output responds to changes in load at a normal speed.

FAST
The output responds to changes in load quickly.

SLOW
The output responds to changes in load slowly.

CUSTOM
The output responds to changes in load based on specified values.

TriggerType

class nidcpower.TriggerType

NONE
No trigger is configured.

DIGITAL_EDGE
The data operation starts when a digital edge is detected.

SOFTWARE_EDGE
The data operation starts when a software trigger occurs.

Exceptions and Warnings
Error

exception nidcpower.errors.Error
Base exception type that all NI-DCPower exceptions derive from

DriverError

exception nidcpower.errors.DriverError
An error originating from the NI-DCPower driver

UnsupportedConfigurationError

exception nidcpower.errors.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

DriverNotInstalledError

exception nidcpower.errors.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

7.1. nidcpower module

203

NI Modular Instruments Python APl Documentation, Release 1.4.2

DriverTooOIdError

exception nidcpower.errors.DriverTooOldError
An error due to using this module with an older version of the NI-DCPower driver runtime.

DriverTooNewError

exception nidcpower.errors.DriverTooNewError
An error due to the NI-DCPower driver runtime being too new for this module.

InvalidRepeatedCapabilityError

exception nidcpower.errors.InvalidRepeatedCapabilityError
An error due to an invalid character in a repeated capability

SelfTestError

exception nidcpower.errors.SelfTestError
An error due to a failed self-test

DriverWarning

exception nidcpower.errors.DriverWarning
A warning originating from the NI-DCPower driver

Examples

You can download all nidcpower examples here

nidcpower_advanced_sequence.py

Listing 1: (nidcpower_advanced_sequence.py)

#!/usr/bin/python

import argparse
import hightime
import nidcpower
import sys

def example (resource_name, options, voltage_max, current_max, points_per_output_
—~function, delay_in_seconds) :
timeout = hightime.timedelta (seconds=(delay_in_seconds + 1.0))

with nidcpower.Session (resource_name=resource_name, options=options) as session:

Configure the session.

(continues on next page)

204 Chapter 7. License

https://github.com/ni/nimi-python/releases/download/1.4.2/nidcpower_examples.zip
https://github.com/ni/nimi-python/blob/1.4.2/src/nidcpower/examples/nidcpower_advanced_sequence.py

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

52

53

54

56

57

59

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

session.source_mode = nidcpower.SourceMode.SEQUENCE
session.voltage_level_autorange = True

session.current_limit_autorange = True
session.source_delay = hightime.timedelta (seconds=delay_in_seconds)
properties_used = ['output_function', 'voltage_level', 'current_level']

session.create_advanced_sequence (sequence_name='my_sequence', property_
—names=properties_used, set_as_active_sequence=True)

voltage_per_step = voltage_max / points_per_output_function

for i in range (points_per_output_function):
session.create_advanced_sequence_step (set_as_active_step=False)
session.output_function = nidcpower.OutputFunction.DC_VOLTAGE
session.voltage_level = voltage_per_step * i

current_per_step = current_max / points_per_output_function

for i in range (points_per_output_function) :
session.create_advanced_sequence_step (set_as_active_step=False)
session.output_function = nidcpower.OutputFunction.DC_CURRENT
session.current_level = current_per_step * i

with session.initiate () :
session.wait_for_event (nidcpower.Event .SEQUENCE_ENGINE_DONE)

channel_indices = '0-/0}'.format (session.channel_count - 1)
channels = session.get_channel_names (channel_indices)
measurement_group = [session.channels[name].fetch_multiple (points_per_

—output_function * 2, timeout=timeout) for name in channels]

session.delete_advanced_sequence (sequence_name='my_sequence')
1 1 7] f 1 g

line_format = "/{:<15} {:<4) {:<10} {:<10} [:<06)
print (line_format.format ('Channel', 'Num', 'Voltage', 'Current', 'In,

—Compliance'))
for i, measurements in enumerate (measurement_group) :
num = 0
channel_name = channels[i].strip/()

for measurement in measurements:
print (line_format.format (channel_ name, num, measurement.voltage,
—measurement.current, str (measurement.in_compliance)))
num += 1

def _main(argsv):

parser = argparse.ArgumentParser (description='Output ramping voltage to voltage,,
—max, then ramping current to current max.', formatter_class=argparse.
—ArgumentDefaultsHelpFormatter)

parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2/0, PXI1Slot3/0-1",
— help='Resource names of NI SMUs.')

parser.add_argument ('-s', '—-—number-steps', default=256, help='Number of steps,
—per output function')

parser.add_argument ('-v', '—--voltage-max', default=1.0, type=float, help='Maximum
—voltage (V) ")

parser.add_argument ('-i', '—-—-current-max', default=0.001, type=float, help=
— 'Maximum Current (I)"')

parser.add_argument ('-d', '--delay', default=0.05, type=float, help='Source delay,,
—(s)")

parser.add_argument ('-op', '—-—-option-string', default='"', type=str, help='Option_
—string')

args = parser.parse_args (argsv)

(continues on next page)

7.1. nidcpower module 205

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

20

21

22

23

24

25

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

example (args.resource_name, args.option_string, args.voltage_max, args.current_
—max, args.number_steps, args.delay)

def main() :
_main(sys.argv([l:])

def test_main() :

cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe
o',

4

_main (cmd_line)

def test_example():
options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe
“"l }/ }

example ('PXI1Slot2/0, PXI1Slot3/1', options, 1.0, 0.001, 256, 0.05)

if name == '__main '

main ()

nidcpower_lcr_source_ac_voltage.py

Listing 2: (nidcpower_lcr_source_ac_voltage.py)

#!/usr/bin/python

import argparse
import nidcpower
import sys

def example (
resource_namne,
options,
lcr_frequency,
lcr_impedance_range,
cable_length,
lcr_voltage_rms,
lcr_dc_bias_source,
lcr_dc_bias_voltage_level,
lcr_measurement_time,
lcr_custom_measurement_time,
lcr_source_delay_mode,
source_delay,

with nidcpower.Session (resource_name=resource_name, options=options) as session:
Configure the session.
session.instrument_mode = nidcpower.InstrumentMode.LCR
session.lcr_stimulus_function = nidcpower.LCRStimulusFunction.VOLTAGE

(continues on next page)

206 Chapter 7. License

https://github.com/ni/nimi-python/blob/1.4.2/src/nidcpower/examples/nidcpower_lcr_source_ac_voltage.py

26

27

28

29

31

32

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

61

62

63

64

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

session.lcr_frequency = lcr_frequency

session.lcr_impedance_range = lcr_impedance_range
session.cable_length = cable_length

session.lcr_voltage_amplitude = lcr_voltage_rms
session.lcr_dc_bias_source = lcr_dc_bias_source
session.lcr_dc_bias_voltage_level = lcr_dc_bias_voltage_level
session.lcr_measurement_time = lcr_measurement_time
session.lcr_custom_measurement_time = lcr_custom _measurement_time
session.lcr_source_delay_mode = lcr_source_delay_mode
session.source_delay = source_delay

with session.initiate():

Low frequencies require longer settling times than the default timeout
—for

wait_for _event (), hence 5.0s 1is set here as a reasonable timeout value

session.wait_for_event (event_id=nidcpower.Event.SOURCE_COMPLETE,
—timeout=5.0)

measurements = session.measure_multiple_lcr ()

for measurement in measurements:

print (measurement)

session.reset ()

def _main(argsv):
parser = argparse.ArgumentParser (
description='Output the specified AC voltage and DC bias voltage, then takes,
—LCR measurements',
formatter_class=argparse.ArgumentDefaultsHelpFormatter

)

parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2/0', help=
—'Resource names of NI SMUs')

parser.add_argument ('-f', '-—-lcr-frequency', default=10.0e3, type=float, help=
—"'LCR frequency (Hz)"')

parser.add_argument ('-i', '—-—-lcr-impedance-range', default=100.0, type=float,
—help="'LCR impedance range (£2)"')

parser.add_argument ('-c', '—--cable-length', default='NI_STANDARD_ 2M', type=str,
—choices=tuple (nidcpower.CablelLength.__members__.keys()), help='Cable length')

parser.add_argument ('-v', '—-—-lcr-voltage-rms', default=700.0e-3, type=float, help=
—'LCR voltage RMS (V RMS)"'")

parser.add_argument ('-d', '-—-lcr-dc-bias-source', default='OFF', type=str,

—choices=tuple (nidcpower.LCRDCBiasSource.__members__.keys()), help='LCR DC bias,,
—source')

parser.add_argument ('-dv', '--lcr-dc-bias-voltage_level', default=0.0, type=float,
— help='LCR DC bias voltage (V)"')

parser.add_argument ('-t', '-—-lcr-measurement-time', default='MEDIUM', type=str,
—choices=tuple (nidcpower.LCRMeasurementTime.__members__.keys()), help='LCR
—measurement time')

parser.add_argument ('-ct', '—-—lcr-custom-measurement-time', default=10.0e-3,
—type=float, help='LCR custom measurement time (s)"')

parser.add_argument ('-sm', '—-—-lcr-source-delay-mode', default='AUTOMATIC', |,

—type=str, choices=tuple (nidcpower.LCRSourceDelayMode.__members__.keys()), help='LCR_
—source delay mode')

parser.add_argument ('-s', '—--source-delay', default=16.66e-3, type=float, help=
—'Source delay (s)"'")

parser.add_argument ('-op', '—--option-string', default='', type=str, help='Option_
—string')

(continues on next page)

7.1. nidcpower module 207

65

66

67

68

69

70

71

72

3

74

75

76

77

78

90

91

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

args = parser.parse_args (argsv)
example (
resource_name=args.resource_name,
options=args.option_string,
lcr_frequency=args.lcr_frequency,
lcr_impedance_range=args.lcr_impedance_range,
cable_length=getattr (nidcpower.CablelLength, args.cable_length),
lcr_voltage_rms=args.lcr_voltage_rms,
lcr_dc_bias_source=getattr (nidcpower.LCRDCBiasSource, args.lcr_dc_bias_
—source),
lcr_dc_bias_voltage_level=args.lcr_dc_bias_voltage_level,
lcr_measurement_time=getattr (nidcpower.LCRMeasurementTime, args.lcr_
—measurement_time),
lcr_custom_measurement_time=args.lcr_custom_measurement_time,
lcr_source_delay_mode=getattr (nidcpower.LCRSourceDelayMode, args.lcr_source_
—delay_mode),
source_delay=args.source_delay,

def main() :
_main(sys.argv([l:])

def test_example():
example (

resource_name='PXI1Slot2/0",
options={'simulate': True, 'driver_setup': {'Model': '4190', 'BoardType':

< 'PXIe', }, },
lcr_frequency=10.0e3,
lcr_impedance_range=100.0,
cable_length=nidcpower.CableLength.NI_STANDARD_2M,
lcr_voltage_rms=700.0e-3,
lcr_dc_bias_source=nidcpower.LCRDCBiasSource.OFF,
lcr_dc_bias_voltage_level=0.0,
lcr_measurement_time=nidcpower.LCRMeasurementTime.MEDIUM,
lcr_custom_measurement_time=10.0e-3,
lcr_source_delay_mode=nidcpower.LCRSourceDelayMode.AUTOMATIC,
source_delay=16.66e-3,

def test_main():
cmd_line = ['--option-string', 'Simulate=1l, DriverSetup=Model:4190; BoardType:PXIe
|l
I 4]

_main(cmd_line)

if name == '__main_ ':

main ()

nidcpower_measure_record.py

208 Chapter 7. License

20

21

22

23

24

25

26

27

28

29

36

37

38

39

40

41

42

43

44

45

NI Modular Instruments Python APl Documentation, Release 1.4.2

Listing 3: (nidcpower_measure_record.py)

#!/usr/bin/python

import argparse
import nidcpower
import sys

def example (resource_name, options, voltage, length):
with nidcpower.Session (resource_name=resource_name, options=options) as session:

Configure the session.

session.measure_record_length = length

session.measure_record_length_is_finite = True

session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_ AFTER_SOURCE_
—COMPLETE

session.voltage_level = voltage

session.commit ()
print ('Effective measurement rate: [0} S/s'.format (session.measure_record_
—delta_time / 1))

print ('Channel Num Voltage Current In Compliance')
row_format = '{0:15}) {1:3d)} {2:8.61} {3:8.6r} {4}
with session.initiate():
channel_indices = '0-/0}'.format (session.channel_count - 1)
channels = session.get_channel_names (channel_indices)

for i, channel_name in enumerate (channels) :
samples_acquired = 0
while samples_acquired < length:
measurements = session.channels[channel name].fetch_
—multiple (count=session.fetch_backlog)
samples_acquired += len (measurements)
for i in range(len (measurements)) :
print (row_format.format (channel_name, i, measurements[i].
—voltage, measurements[i].current, measurements[i].in_compliance))

def _main(argsv):

parser = argparse.ArgumentParser (description='Outputs the specified voltage, then_
—takes the specified number of voltage and current readings.', formatter_
—class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2/0, PXI1Slot3/0-1",
— help='Resource names of NI SMUs.')

parser.add_argument ('-1', '—-—-length', default='20", type=int, help='Measure
—record length per channel')

parser.add_argument ('-v', '—--voltage', default=5.0, type=float, help='Voltage_
—level (V)")

parser.add_argument ('-op', '—--option-string', default='"', type=str, help='Option_
—string')

args = parser.parse_args (argsv)

example (args.resource_name, args.option_string, args.voltage, args.length)

def main() :
_main(sys.argv[1l:])

(continues on next page)

7.1. nidcpower module 209

https://github.com/ni/nimi-python/blob/1.4.2/src/nidcpower/examples/nidcpower_measure_record.py

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

20

21

22

23

24

25

26

27

28

29

30

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

def test_example():
options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe

‘—"l }/ }

example ('PXI1Slot2/0, PXI1Slot3/1', options, 5.0, 20)

def test_main() :
cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe

“"l]

_main (cmd_line)

if name == '__main '

main ()

nidcpower_source_delay _measure.py

Listing 4: (nidcpower_source_delay_measure.py)

#!/usr/bin/python

import argparse
import hightime
import nidcpower
import sys

def print_fetched_measurements (measurements) :

print (' Voltage £} V'.format (measurements|[0] .voltage))
print (' Current: {:7}) A'.format (measurements[0].current))
print (' In compliance: {0}'.format (measurements[0].in_compliance))

def example (resource_name, options, voltagel, voltage2, delay):
timeout = hightime.timedelta (seconds=(delay + 1.0))

with nidcpower.Session (resource_name=resource_name, options=options) as session:
Configure the session.

session.source_mode = nidcpower.SourceMode.SINGLE_POINT
session.output_function = nidcpower.OutputFunction.DC_VOLTAGE

session.current_limit = .06

session.voltage_level_range = 5.0
session.current_limit_range = .06

session.source_delay = hightime.timedelta (seconds=delay)

session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_
—COMPLETE
session.voltage_level = voltagel

with session.initiate():

(continues on next page)

210 Chapter 7. License

https://github.com/ni/nimi-python/blob/1.4.2/src/nidcpower/examples/nidcpower_source_delay_measure.py

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

2

73

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

channel _indices = '0-{0}'.format (session.channel_count - 1)
channels = session.get_channel_names (channel_indices)
for channel_name in channels:
print ('Channel: {0}'.format (channel_name))
print('-———-—— ")
print ('Voltage 1:")
print_fetched_measurements (session.channels[channel_name].fetch_
—multiple (count=1, timeout=timeout))
session.voltage_level = voltage2 # on-the-fly set
print ('Voltage 2:'")
print_fetched_measurements (session.channels[channel_name] .fetch_
—multiple (count=1, timeout=timeout))
session.output_enabled = False
print ('")

def _main(argsv):

parser = argparse.ArgumentParser (description='Outputs voltage 1, waits for source
—delay, and then takes a measurement. Then orepeat with voltage 2.', formatter_
—class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2/0, PXI1Slot3/0-1",
— help='Resource names of an NI SMUs.')

parser.add_argument ('-v1', '—--voltagel', default=1.0, type=float, help='Voltage_
—level 1 (V) 1")

parser.add_argument ('-v2', '—--voltage2', default=2.0, type=float, help='Voltage_
—level 2 (V) ")

parser.add_argument ('-d', '--delay', default=0.05, type=float, help='Source delay,,
—(s)")

parser.add_argument ('-op', '—-option-string', default='"', type=str, help='Option,
—string')

args = parser.parse_args (argsv)
example (args.resource_name, args.option_string, args.voltagel, args.voltagez,
—args.delay)

def main() :
_main(sys.argv([1l:])

def test_main():
cmd_line = ['--option-string', 'Simulate=1l, DriverSetup=Model:4162; BoardType:PXIe
|l
—]

_main(cmd_line)

def test_example():
options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe

;"I }r }

example ('PXI1Slot2/0, PXI1Slot3/1', options, 1.0, 2.0, 0.05)

if name == '__main__ ':

main ()

7.1. nidcpower module 211

NI Modular Instruments Python APl Documentation, Release 1.4.2

7.2 nidigital module

7.2.1 Installation

As a prerequisite to using the nidigital module, you must install the NI-Digital Pattern Driver runtime on your system.
Visit ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-Digital Pattern Driver) can be installed with pip:

’$ python -m pip install nidigital~=1.4.2

Or easy_install from setuptools:

’$ python -m easy_install nidigital

7.2.2 Usage

The following is a basic example of using the nidigital module to open a session to a digital pattern instrument, source
current, and measure both voltage and current using the PPMU on selected channels.

import nidigital
import time

with nidigital.Session (resource_name='PXI1Slot2') as session:
channels = '"PXI1Slot2/0,PXI1Slot2/1"

Configure PPMU measurements

session.channels[channels] .ppmu_aperture_time = 0.000004

session.channels[channels] .ppmu_aperture_time_units = nidigital.
—PPMUApertureTimeUnits.SECONDS

session.channels[channels] .ppmu_output_function = nidigital.PPMUOutputFunction.
—CURRENT

session.channels[channels] .ppmu_current_level_range = 0.000002
session.channels[channels] .ppmu_current_level = 0.000002
session.channels[channels] .ppmu_voltage_limit_high = 3.3
session.channels[channels] .ppmu_voltage_limit_low = 0

Sourcing
session.channels[channels] .ppmu_source ()

Settling time between sourcing and measuring
time.sleep (0.01)

Measuring

current_measurements = session.channels[channels].ppmu_measure (nidigital.
—PPMUMeasurementType .CURRENT)
voltage_measurements = session.channels|[channels] .ppmu_measure (nidigital.

—PPMUMeasurementType.VOLTAGE)

print (' '.format ('Channel Name', 'Current', 'Voltage'))
for channel, current, voltage in zip(channels.split(','), current_measurements,
—voltage_measurements) :

(continues on next page)

212 Chapter 7. License

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

print (' '.format (channel, current, voltage))

Disconnect all channels using programmable onboard switching
session.channels[channels].selected_function = nidigital.SelectedFunction.
—~DISCONNECT

Other usage examples can be found on GitHub.

7.2.3 API Reference

Session

class nidigital.Session (self, resource_name, id_query=False, reset_device=False, options={})
Creates and returns a new session to the specified digital pattern instrument to use in all subsequent method calls.
To place the instrument in a known startup state when creating a new session, set the reset parameter to True,
which is equivalent to calling the nidigital.Session.reset () method immediately after initializing
the session.

Parameters

* resource_name (str) — The specified resource name shown in Measurement & Au-
tomation Explorer (MAX) for a digital pattern instrument, for example, PXI1Slot3, where
PXI1Slot3 is an instrument resource name. resourceName can also be a logical IVI name.
This parameter accepts a comma-delimited list of strings in the form PXI1Slot2,PXI1Slot3,
where PXI1S1ot2 is one instrument resource name and PXI1S1lot 3 is another. When
including more than one digital pattern instrument in the comma-delimited list of strings,
list the instruments in the same order they appear in the pin map.

Note You only can specify multiple instruments of the same model. For example,
you can list two PXIe-6570s but not a PXIe-6570 and PXIe-6571. The instruments
must be in the same chassis.

* id_query (bool)— A Boolean that verifies that the digital pattern instrument you initial-
ize is supported by NI-Digital. NI-Digital automatically performs this query, so setting this
parameter is not necessary.

* reset_device (bool) — A Boolean that specifies whether to reset a digital pattern in-
strument to a known state when the session is initialized. Setting the resetDevice value to
True is equivalent to calling the nidigital.Session.reset () method immediately
after initializing the session.

* options (dict) — Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>" } }

7.2. nidigital module 213

https://github.com/ni/nimi-python/tree/master/src/nidigital/examples
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

NI Modular Instruments Python APl Documentation, Release 1.4.2

Property Default
range_check True
query_instrument_status | False
cache True
simulate False
record_value_coersions False
driver_setup {}

Methods

abort

nidigital.Session.abort ()
Stops bursting the pattern.

abort_keep_alive

nidigital.Session.abort_keep_alive ()
Stops the keep alive pattern if it is currently running. If a pattern burst is in progress, the method
aborts the pattern burst. If you start a new pattern burst while a keep alive pattern is running, the
keep alive pattern runs to the last keep alive vector, and the new pattern burst starts on the next cycle.

apply_levels_and_timing

nidigital.Session.apply_levels_and_timing (levels_sheet, timing_sheet, ini-
tial_state_high_pins=None,
initial_state_low_pins=None,
initial_state_tristate_pins=None)
Applies digital levels and timing values defined in previously loaded levels and timing sheets. When
applying a levels sheet, only the levels specified in the sheet are affected. Any levels not specified in
the sheet remain unchanged. When applying a timing sheet, all existing time sets are deleted before
the new time sets are loaded.

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites|[...].apply_levels_and_timing/()
To call the method on all sites, you can call it directly on the nidigital.Session.

Example: my_session.apply_levels_and_timing()

Parameters

* levels_sheet (str) — Name of the levels sheet to apply. Use the name of
the sheet or pass the absolute file path you use in the nidigital.Session.
load_specifications_levels_and_timing () method. The name of
the levels sheet is the file name without the directory and file extension.

214 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

* timing_sheet (str)— Name of the timing sheet to apply. Use the name of the
sheet or pass the absolute file path that you use in the nidigital.Session.
load_specifications_levels_and_timing () method. The name of
the timing sheet is the file name without the directory and file extension.

* initial_state_high_pins (basic sequence types or str) -
Comma-delimited list of pins, pin groups, or channels to initialize to a high state.

e initial_ state_low_pins (basic sequence types or str) -—
Comma-delimited list of pins, pin groups, or channels to initialize to a low state.

e initial_state_tristate_pins(basic sequence types or str)
— Comma-delimited list of pins, pin groups, or channels to initialize to a non-drive
state (X)

apply_tdr_offsets

nidigital.Session.apply_tdr_offsets (offsets)
Applies the correction for propagation delay offsets to a digital pattern instrument. Use this method
to apply TDR offsets that are stored from a past measurement or are measured by means other than
the nidigital.Session.tdr () method. Also use this method to apply correction for offsets
if the applyOffsets input of the nidigital.Session.tdr () method was set to False at the
time of measurement.

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].apply_tdr_offsets()
To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.apply_tdr_offsets()

Parameters offsets (basic sequence of hightime.timedelta,
datetime.timedelta, or float in seconds) — TDR offsets to ap-
ply, in seconds. Specify an offset for each pin or channel in the repeated capabilities.
If the repeated capabilities contain pin names, you must specify offsets for each site in
the channel map per pin.

burst_pattern

nidigital.Session.burst_pattern (start_label, select_digital_function=True,
wait_until_done=True, time-

out=hightime.timedelta(seconds=10.0))
Uses the start_label you specify to burst the pattern on the sites you specify. If you specify

wait_until_done as True, waits for the burst to complete, and returns comparison results for each
site.

Digital pins retain their state at the end of a pattern burst until the first vector of the pattern burst,
acall to nidigital.Session.write static(), or acall to nidigital.Session.
apply_levels_and _timing().

7.2. nidigital module 215

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This method can be called on specific sites within your nidigital. Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].burst_pattern()
To call the method on all sites, you can call it directly on the nidigital. Session.

Example: my_session.burst_pattern ()

Parameters

e start_label (str)— Pattern name or exported pattern label from which to start
bursting the pattern.

* select_digital_function (bool) — A Boolean that specifies whether to
select the digital method for the pins in the pattern prior to bursting.

e wait_until_done (bool)— A Boolean that indicates whether to wait until the
bursting is complete.

* timeout (hightime.timedelta, datetime.timedelta, or
float in seconds)— Maximum time (in seconds) allowed for this method to
complete. If this method does not complete within this time interval, this method
returns an error.

Return type { int: bool, int: bool, .. }

Returns Dictionary where each key is a site number and value is pass/fail, if
wait_until_done is specified as True. Else, None.

clock_generator_abort

nidigital.Session.clock_generator_abort ()
Stops clock generation on the specified channel(s) or pin(s) and pin group(s).

Tip: This method can be called on specific channels within your nidigital. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].clock_generator_abort ()
To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.clock_generator_abort ()

clock_generator_generate_clock

nidigital.Session.clock_generator_generate_clock (frequency, se-
lect_digital_function=True)
Configures clock generator frequency and initiates clock generation on the specified channel(s) or
pin(s) and pin group(s).

216 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This method can be called on specific channels within your nidigital. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].clock_generator_generate_clock ()
To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.clock_generator_generate_clock ()

Parameters
* frequency (f1oat) - The frequency of the clock generation, in Hz.

* select_digital_function (bool) — A Boolean that specifies whether to
select the digital method for the pins specified prior to starting clock generation.

close

nidigital.Session.close ()
Closes the specified instrument session to a digital pattern instrument, aborts pattern execution, and
unloads pattern memory. The channels on a digital pattern instrument remain in their current state.

Note: This method is not needed when using the session context manager

commit

nidigital.Session.commit ()
Applies all previously configured pin levels, termination modes, clocks, triggers, and pattern timing
to a digital pattern instrument. If you donotcall the nidigital. Session.commit () method,
then the initiate method or the nidigital.Session.burst_pattern () method will im-
plicitly call this method for you. Calling this method moves the session from the Uncommitted state
to the Committed state.

configure_active_load_levels

nidigital.Session.configure_active_load_levels (iol, ioh, vcom)
Configures lor, lon, and Vcowm levels for the active load on the pins you specify. The DUT sources
or sinks current based on the level values. To enable active load, set the termination mode to
ACTIVE_LOAD. To disable active load, set the termination mode of the instrument to HIGH Z
or VIERM.

Tip: This method can be called on specific channels within your nidigital. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_active_load_levels ()

To call the method on all channels, you can call it directly on the nidigital.Session.

7.2. nidigital module 217

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.configure_active_load_levels ()

Parameters

e iol (float) — Maximum current that the DUT sinks while outputting a voltage
below VCOM~

e ioh (float)— Maximum current that the DUT sources while outputting a voltage
above Vcom.

e veom (float) — Commutating voltage level at which the active load circuit
switches between sourcing current and sinking current.

configure_pattern_burst_sites

nidigital.Session.configure_pattern_ burst_sites()
Configures which sites burst the pattern on the next call to the initiate method. The pattern burst
sites can also be modified through the repeated capabilities for the nidigital.Session.
burst_pattern () method. If a site has been disabled through the nidigital. Session.
disable_sites () method, the site does not burst a pattern even if included in the pattern burst
sites.

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].configure_pattern_burst_sites ()
To call the method on all sites, you can call it directly on the nidigital. Session.

Example: my_session.configure_pattern_burst_sites()

configure_time_set_compare_edges_strobe

nidigital.Session.configure_time_ set_compare_edges_strobe (time_set_name,

strobe_edge)
Configures the strobe edge time for the specified pins. Use this method to mod-

ify time set values after applying a timing sheet with the nidigital.Session.
apply _levels_and_timing () method, or to create time sets programmatically without the
use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents
that will be used in future callsto nidigital.Session.apply levels_and timing();
it only affects the values of the current timing context.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins|[...].configure_time_set_compare_edges_strobe ()
To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.configure_time_set_compare_edges_strobe ()

218 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

Parameters
* time_set_name (str)— The specified time set name.

* strobe_edge (hightime.timedelta, datetime.timedelta, or
float in seconds) — Time when the comparison happens within a vector
period.

configure_time_set_compare_edges_strobe2x

nidigital.Session.configure_time_set_compare_edges_strobe2x (time_set_name,
strobe_edge,

strobe2_edge)
Configures the compare strobes for the specified pins in the time set, including the 2x strobe. Use this

method to modify time set values after applying a timing sheet with the nidigital. Session.
apply_levels_and_timing () method, or to create time sets programmatically without the
use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents
that will be used in future calls to nidigital.Session.apply_ levels_and_timing();
it only affects the values of the current timing context.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins|[...].configure_time_set_compare_edges_strobe2x ()
To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.configure_time_set_compare_edges_strobe2x ()

Parameters
* time_set_name (st r)— The specified time set name.

* strobe_edge (hightime.timedelta, datetime.timedelta, or
float in seconds) — Time when the comparison happens within a vector
period.

* strobe2_edge (hightime.timedelta, datetime.timedelta, or
float in seconds)— Time when the comparison happens for the second DUT
cycle within a vector period.

configure_time_set_drive_edges

nidigital.Session.configure_time_set_drive_edges (tfime_set_name, for-
mat, drive_on_edge,
drive_data_edge,
drive_return_edge,

drive_off _edge)
Configures the drive format and drive edge placement for the specified pins. Use this method

to modify time set values after applying a timing sheet with the nidigital.Session.
apply _levels_and_timing () method, or to create time sets programmatically without the
use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents
that will be used in future callsto nidigital.Session.apply_levels_and_timing();
it only affects the values of the current timing context.

7.2. nidigital module 219

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].configure_time_set_drive_edges ()
To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.configure_time_set_drive_edges ()

Parameters
* time_set_name (str)— The specified time set name.
e format (nidigital.DriveFormat) - Drive format of the time set.
— NR: Non-return.
— RIL: Return to low.
— RH: Return to high.
— SBC: Surround by complement.

* drive_on_edge (hightime.timedelta, datetime.timedelta,
or float in seconds) - Delay, in seconds, from the beginning of the vector
period for turning on the pin driver.This option applies only when the prior vector
left the pin in a non-drive pin state (L, H, X, V, M, E). For the SBC format, this
option specifies the delay from the beginning of the vector period at which the
complement of the pattern value is driven.

* drive_data_edge (hightime.timedelta, datetime.timedelta,
or float in seconds) — Delay, in seconds, from the beginning of the vec-
tor period until the pattern data is driven to the pattern value.The ending state from
the previous vector persists until this point.

* drive_return_edge (hightime.timedelta, datetime.
timedelta, or float in seconds) — Delay, in seconds, from the
beginning of the vector period until the pin changes from the pattern data to the
return value, as specified in the format.

* drive_off edge (hightime.timedelta, datetime.timedelta,
or float in seconds)— Delay, in seconds, from the beginning of the vector
period to turn off the pin driver when the next vector period uses a non-drive symbol
(L,H, X, V, M, E).

configure_time_set_drive_edges2x

nidigital.Session.configure_time_set_drive_edges2x (time_set_name, for-
mat, drive_on_edge,
drive_data_edge,
drive_return_edge,
drive_off _edge,
drive_data2_edge,

drive_return2_edge)
Configures the drive edges of the pins in the time set, including 2x edges. Use this method

to modify time set values after applying a timing sheet with the nidigital.Session.
apply_levels_and_timing () method, or to create time sets programmatically without the

220

Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents
that will be used in future calls to nidigital.Session.apply_levels_and_timing();

it only affects the values of the current timing context.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then

call this method on the result.

Example: my_session.pins|

To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.configure_time_set_drive_edges2x ()

] .configure_time_set_drive_edges2x ()

Parameters

time_set_name (str)— The specified time set name.
format (nidigital.DriveFormat)— Drive format of the time set.
— NR: Non-return.

RIL: Return to low.

— RH: Return to high.
— SBC: Surround by complement.

drive_on_edge (hightime.timedelta, datetime.timedelta,
or float in seconds) - Delay, in seconds, from the beginning of the vector
period for turning on the pin driver.This option applies only when the prior vector
left the pin in a non-drive pin state (L, H, X, V, M, E). For the SBC format, this
option specifies the delay from the beginning of the vector period at which the
complement of the pattern value is driven.

drive_data_edge (hightime.timedelta, datetime.timedelta,
or float in seconds) — Delay, in seconds, from the beginning of the vec-
tor period until the pattern data is driven to the pattern value.The ending state from
the previous vector persists until this point.

drive_return_edge (hightime.timedelta, datetime.
timedelta, or float in seconds) — Delay, in seconds, from the
beginning of the vector period until the pin changes from the pattern data to the
return value, as specified in the format.

drive_off edge (hightime.timedelta, datetime.timedelta,
or float in seconds)— Delay, in seconds, from the beginning of the vector
period to turn off the pin driver when the next vector period uses a non-drive symbol
(L,H, X, V.M, E).

drive_data2_edge (hightime.timedelta, datetime.
timedelta, or float in seconds) — Delay, in seconds, from the
beginning of the vector period until the pattern data in the second DUT cycle is
driven to the pattern value.

drive_return2_edge (hightime.timedelta, datetime.
timedelta, or float in seconds) — Delay, in seconds, from the
beginning of the vector period until the pin changes from the pattern data in the
second DUT cycle to the return value, as specified in the format.

7.2. nidigital module

221

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

configure_time_set_drive_format

nidigital.Session.configure_time_set_drive_format (fime_set_name,

drive_format)
Configures the drive format for the pins specified in the pinList. Use this method to

modify time set values after applying a timing sheet with the nidigital.Session.
apply_levels_and_timing () method, or to create time sets programmatically without the
use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents
that will be used in future calls to nidigital.Session.apply levels_and _timing();
it only affects the values of the current timing context.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].configure_time_set_drive_format ()
To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.configure_time_set_drive_format ()

Parameters
* time_set_name (str)— The specified time set name.
e drive_format (nidigital.DriveFormat)— Drive format of the time set.
— NR: Non-return.
— RL: Return to low.

— RH: Return to high.

SBC: Surround by complement.

configure_time_set_edge

nidigital.Session.configure_time_set_edge (time_set_name, edge, time)
Configures the edge placement for the pins specified in the pin list. Use this method
to modify time set values after applying a timing sheet with the nidigital.Session.
apply_levels_and_timing () method, or to create time sets programmatically without the
use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents
that will be used in future callsto nidigital.Session.apply levels_and _timing();
it only affects the values of the current timing context.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].configure_time_set_edge ()
To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.configure_time_set_edge ()

Parameters

222 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

* time_set_name (st r)— The specified time set name.

* edge (nidigital.TimeSetEdgeType)— Name of the edge.

DRIVE_ON
DRIVE_DATA
DRIVE_RETURN
DRIVE_OFF
COMPARE_STROBE
DRIVE_DATAZ
DRIVE_RETURNZ

COMPARE_STROBEZ

e time (hightime.timedelta, datetime.timedelta, or float
in seconds) — The time from the beginning of the vector period in which to
place the edge.

configure_time_set_edge_multiplier

nidigital.Session.configure_time_set_edge_multiplier (fime_set_name,

Configures the edge multiplier of the pins in the time set.
ify time set values after applying a timing sheet with the nidigital.Session.
apply_levels_and_timing () method, or to create time sets programmatically without the
use of timing sheets. This method does not modify the timing sheet file or the timing sheet contents
that will be used in future calls to nidigital.Session.apply levels_and_timing();

edge_multiplier)

it only affects the values of the current timing context.

Use this method to mod-

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then

call this method on the result.

Example: my_session.pins|

To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.configure_time_set_edge_multiplier ()

] .configure_time_set_edge_multiplier()

Parameters

* time_set_name (st r)— The specified time set name.

* edge_multiplier (int)— The specified edge multiplier for the pins in the pin

list.

configure_time_set_period

nidigital.Session.configure_time_set_period (time_set_name, period)

Configures the period of a time set. Use this method to modify time set values after applying a
timing sheet with the nidigital.Session.apply levels_and_timing () method, or
to create time sets programmatically without the use of timing sheets. This method does not modify

7.2. nidigital module

223

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.4.2

the timing sheet file or the timing sheet contents that will be used in future calls to nidigital.
Session.apply_levels_and_timing(); it only affects the values of the current timing
context.

Parameters
* time_set_name (st r)— The specified time set name.

e period (hightime.timedelta, datetime.timedelta, or float
in seconds) — Period for this time set, in seconds.

configure_voltage_levels

nidigital.Session.configure_voltage_levels (vil, vih, vol, voh, vterm)
Configures voltage levels for the pins you specify.

Tip: This method can be called on specific channels within your nidigital. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].configure_voltage_levels/()
To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.configure_voltage_levels ()

Parameters

* vil (float)— Voltage that the instrument will apply to the input of the DUT when
the pin driver drives a logic low (0).

* vih (float)— Voltage that the instrument will apply to the input of the DUT when
the test instrument drives a logic high (1).

* vol (float)— Output voltage below which the comparator on the pin driver inter-
prets a logic low (L).

* voh (float)— Output voltage above which the comparator on the pin driver inter-
prets a logic high (H).

* vterm (float) — Termination voltage the instrument applies during non-drive
cycles when the termination mode is set to Viem. The instrument applies the termi-
nation voltage through a 50 ohm parallel termination resistance.

create_capture_waveform_from_file_digicapture

nidigital.Session.create_capture_waveform from_file_digicapture (waveform_name,
wave-

form_file_path)
Creates a capture waveform with the configuration information from a Digicapture file generated by

the Digital Pattern Editor.
Parameters

* waveform name (str) — Waveform name you want to use. You must specify
waveform_name if the file contains multiple waveforms. Use the waveform_name
with the capture_start opcode in your pattern.

224 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

» waveform_ file_path (str)— Absolute file path to the capture waveform file
(.digicapture) you want to load.

create_capture_waveform_parallel

nidigital.Session.create_capture_waveform parallel (waveform_name)
Sets the capture waveform settings for parallel acquisition. Settings apply across all sites if multiple
sites are configured in the pin map. You cannot reconfigure settings after waveforms are created.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].create_capture_waveform_parallel ()
To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.create_capture_waveform_parallel ()

Parameters waveform name (st r)— Waveform name you want to use. Use the wave-
form_name with the capture_start opcode in your pattern.

create_capture_waveform_serial

nidigital.Session.create_capture_waveform serial (waveform_name, sam-
ple_width, bit_order)
Sets the capture waveform settings for serial acquisition. Settings apply across all sites if multiple
sites are configured in the pin map. You cannot reconfigure settings after waveforms are created.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].create_capture_waveform_serial ()
To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.create_capture_waveform_serial ()

Parameters

* waveform name (str) — Waveform name you want to use. Use the wave-
form_name with the capture_start opcode in your pattern.

* sample_width (int) — Width in bits of each serial sample. Valid values are
between 1 and 32.

e bit_order (nidigital.BitOrder)— Order in which to shift the bits.
— MSB: Specifies the bit order by most significant bit first.

— LSB: Specifies the bit order by least significant bit first.

7.2. nidigital module

225

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.4.2

create_source_waveform_from_file_tdms

nidigital.Session.create_source_waveform_ from_file_tdms (waveform_name,
wave-

form_file_path,

write_waveform_data=True)
Creates a source waveform with configuration information from a TDMS file generated by the Dig-

ital Pattern Editor. It also optionally writes waveform data from the file.
Parameters

* waveform_name (str) — The waveform name you want to use from the file.
You must specify waveform_name if the file contains multiple waveforms. Use the
waveform_name with the source_start opcode in your pattern.

» waveform_ file_path (str)— Absolute file path to the load source waveform
file (.tdms).

* write_waveform data (bool) — A Boolean that writes waveform data to
source memory if True and the waveform data is in the file.

create_source_waveform_parallel

nidigital.Session.create_source_waveform_parallel (waveform_name,

data_mapping)
Sets the source waveform settings required for parallel sourcing. Settings apply across all sites if

multiple sites are configured in the pin map. You cannot reconfigure settings after waveforms are
created.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].create_source_waveform parallel ()
To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.create_source_waveform_parallel ()

Parameters

* waveform name (str)— The name to assign to the waveform. Use the wave-
form_name with source_start opcode in your pattern.

* data_mapping(nidigital.SourceDataMapping)— Parameter that spec-
ifies how to map data on multiple sites.

— BROADCAST: Broadcasts the waveform you specify to all sites.

— SITE_UNIQUE: Sources unique waveform data to each site.

226 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

create_source_waveform_serial

nidigital.Session.create_source_waveform_serial (waveform_name,

data_mapping, sam-
ple_width, bit_order)
Sets the source waveform settings required for serial sourcing. Settings apply across all sites if
multiple sites are configured in the pin map. You cannot reconfigure settings after waveforms are
created.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then

call this method on the result.
Example: my_session.pins[...].create_source_waveform_serial ()
To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.create_source_waveform_serial ()

Parameters

* waveform_name (str) — The name to assign to the waveform. Use the wave-
form_name with source_start opcode in your pattern.

* data_mapping(nidigital.SourceDataMapping)—Parameter that spec-
ifies how to map data on multiple sites.

— BROADCAST: Broadcasts the waveform you specify to all sites.
— SITE_UNIQUE: Sources unique waveform data to each site.

* sample_width (int) — Width in bits of each serial sample. Valid values are
between 1 and 32.

e bit_order (nidigital.BitOrder)— Order in which to shift the bits.
— MSB: Specifies the bit order by most significant bit first.

— LSB: Specifies the bit order by least significant bit first.

create_time_set

nidigital.Session.create_time_set (name)

Creates a time set with the name that you specify. Use this method when you want to create time

sets programmatically rather than with a timing sheet.

Parameters name (st r)— The specified name of the new time set.

delete_all_time_sets

nidigital.Session.delete_all_time_ sets ()
Deletes all time sets from instrument memory.

7.2. nidigital module

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

disable_sites

nidigital.Session.disable_sites()

Disables specified sites. Disabled sites are not included in pattern bursts initiated
by the initiate method or the nidigital.Session.burst_pattern () method, even
if the site is specified in the list of pattern burst sites in nidigital.Session.
configure_pattern_burst_sites () method or in the repeated capabilities for the
nidigital.Session.burst_pattern () method. Additionally, if you specify a list of pin
or pin group names in repeated capabilities in any NI-Digital method, digital pattern instrument
channels mapped to disabled sites are not affected by the method. The methods that return per-
pin data, such as the nidigital.Session.ppmu_measure () method, do not return data for
channels mapped to disabled sites. The digital pattern instrument channels mapped to the sites spec-
ified are left in their current state. NI TestStand Semiconductor Module requires all sites to always
be enabled, and manages the set of active sites without disabling the sites in the digital instrument
session. Do not use this method with the Semiconductor Module.

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites|[...].disable_sites()
To call the method on all sites, you can call it directly on the nidigital. Session.

Example: my_session.disable_sites()

enable_sites

nidigital.Session.enable_sites ()
Enables the sites you specify. All sites are enabled by default.

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].enable_sites()
To call the method on all sites, you can call it directly on the nidigital. Session.

Example: my_session.enable_sites|()

fetch_capture_waveform

nidigital.Session.fetch_capture_waveform (waveform_name, sam-
ples_to_read, time-

out=hightime.timedelta(seconds=10.0))
Returns dictionary where each key is a site number and value is a collection of digital states repre-

senting capture waveform data

Tip: This method can be called on specific sites within your nidigital. Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then

228 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

call this method on the result.
Example: my_session.sites|[...].fetch_capture_waveform/()
To call the method on all sites, you can call it directly on the nidigital.Session.

Example: my_session.fetch_capture_waveform()

Parameters

* waveform name (str) — Waveform name you create with the create capture
waveform method. Use the waveform_name parameter with capture_start opcode
in your pattern.

* samples_to_read (int)— Number of samples to fetch.

* timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) - Maximum time (in seconds) allowed for this method to
complete. If this method does not complete within this time interval, this method
returns an error.

Return type { int: memoryview of array.array of unsigned int, int: memoryview of ar-
ray.array of unsigned int, .. }

Returns Dictionary where each key is a site number and value is a collection of digital
states representing capture waveform data

fetch_history_ram_cycle_information

nidigital.Session.fetch_history_ram_cycle_information (position, sam-

ples_to_read)
Returns the pattern information acquired for the specified cycles.

If the pattern is using the edge multiplier feature, cycle numbers represent tester cycles, each of
which may consist of multiple DUT cycles. When using pins with mixed edge multipliers, pins may
return PTN_STATE_NOT_ACQUIRED for DUT cycles where those pins do not have edges defined.

Site number on which to retrieve pattern information must be specified via sites repeated capability.
The method returns an error if more than one site is specified.

Pins for which to retrieve pattern information must be specified via pins repeated capability. If
pins are not specified, pin list from the pattern containing the start label is used. Call nidigital.
Session.get_pattern_pin_names () withthe start label to retrieve the pins associated with
the pattern burst:

session.sites[0] .pins['PinA', 'PinB'].fetch_history_ram_cycle_
—information (0, -1)

Note: Before bursting a pattern, you must configure the History RAM trigger and specify which
cycles to acquire.

nidigital.Session.history ram trigger_type should be used to specify the trigger
condition on which History RAM starts acquiring pattern information.

If History RAM trigger is configured as CYCLE_NUMBER, nidigital.Session.
cycle_number_history_ram_trigger._cycle_number should be used to specify the
cycle number on which History RAM starts acquiring pattern information.

7.2. nidigital module 229

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

If History RAM trigger is configured as PATTERN LABEL, nidigital.Session.
pattern_label history_ram trigger_label should be wused to specify
the pattern label from which to start acquiring pattern information. nidigital.
Session.pattern label_history_ram trigger_vector_offset should
be used to specify the number of vectors following the specified pattern la-
bel from which to start acquiring pattern information. nidigital.Session.
pattern_label_history_ram trigger_cycle_offset should be used to specify
the number of cycles following the specified pattern label and vector offset from which to start
acquiring pattern information.

For all History RAM trigger conditions, nidigital.Session.
history_ram pretrigger._samples should be used to specify the number of samples to
acquire before the trigger conditions are met. If you configure History RAM to only acquire failed
cycles, youmust set nidigital.Session.history_ram pretrigger_samplestoO.

nidigital.Session.history ram cycles_to_acquire should be used to specify
which cycles History RAM acquires after the trigger conditions are met.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].fetch_history_ram_cycle_information ()
To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.fetch_history_ram cycle_information ()

Parameters
* position (int) - Sample index from which to start fetching pattern information.

* samples_to_read (int) - Number of samples to fetch. A value of -1 specifies
to fetch all available samples.

Return type list of HistoryRAMCyclelnformation
Returns

Returns a list of class instances with the following information about each pattern
cycle:

 pattern_name (str) Name of the pattern for the acquired cycle.
* time_set_name (str) Time set for the acquired cycle.

* vector_number (int) Vector number within the pattern for the acquired cycle. Vec-
tor numbers start at O from the beginning of the pattern.

e cycle_number (int) Cycle number acquired by this History RAM sample. Cycle
numbers start at 0 from the beginning of the pattern burst.

* scan_cycle_number (int) Scan cycle number acquired by this History RAM sam-
ple. Scan cycle numbers start at O from the first cycle of the scan vector. Scan cycle
numbers are -1 for cycles that do not have a scan opcode.

« expected_pin_states (list of list of enums.PinState) Pin states as expected by the
loaded pattern in the order specified in the pin list. Pins without defined edges in the
specified DUT cycle will have a value of PTN_STATE NOT_ACQUIRED. Length

230 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.4.2

of the outer list will be equal to the value of edge multiplier for the given vector.
Length of the inner list will be equal to the number of pins requested.

« actual_pin_states (list of list of enums.PinState) Pin states acquired by History
RAM in the order specified in the pin list. Pins without defined edges in the specified
DUT cycle will have a value of PTN_STATE_NOT_ACQUIRED. Length of the
outer list will be equal to the value of edge multiplier for the given vector. Length
of the inner list will be equal to the number of pins requested.

 per_pin_pass_fail (list of list of bool) Pass fail information for pins in the order
specified in the pin list. Pins without defined edges in the specified DUT cycle will
have a value of pass (True). Length of the outer list will be equal to the value of edge
multiplier for the given vector. Length of the inner list will be equal to the number
of pins requested.

frequency_counter_measure_frequency

nidigital.Session.frequency_counter_ measure_frequency ()
Measures the frequency on the specified channel(s) over the specified measurement time. All chan-
nels in the repeated capabilities should have the same measurement time.

Tip: This method can be called on specific channels within your nidigital. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].frequency_counter_measure_frequency ()
To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.frequency_counter_measure_frequency ()

Return type list of float

Returns The returned frequency counter measurement, in Hz.This method returns -1 if
the measurement is invalid for the channel.

get_channel_names

nidigital.Session.get_channel_names (indices)
Returns a list of channel names for given channel indices.

Parameters indices (basic sequence types or str or int)— Index list
for the channels in the session. Valid values are from zero to the total number of chan-
nels in the session minus one. The index string can be one of the following formats:

* A comma-separated list—for example, “0,2,3,1”
* A range using a hyphen—for example, “0-3”
* A range using a colon—for example, “0:3 “

You can combine comma-separated lists and ranges that use a hyphen or colon. Both
out-of-order and repeated indices are supported (“2,3,0,” “1,2,2,3”"). White space char-
acters, including spaces, tabs, feeds, and carriage returns, are allowed between charac-
ters. Ranges can be incrementing or decrementing.

7.2. nidigital module 231

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.4.2

Return type list of str

Returns The channel name(s) at the specified indices.

get_fail_count

nidigital.Session.get_fail_ count ()
Returns the comparison fail count for pins in the repeated capabilities.

Tip: This method can be called on specific channels within your nidigital. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].get_fail_count ()
To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.get_fail_count ()

Return type list of int

Returns Number of failures in an array. If a site is disabled or not enabled for
burst, the method does not return data for that site. You can also use the
nidigital.Session.get_pin _results_pin_information () method
to obtain a sorted list of returned sites and channels.

get_history_ram_sample_count

nidigital.Session.get_history ram sample_ count ()
Returns the number of samples History RAM acquired on the last pattern burst.

Note: Before bursting a pattern, you must configure the History RAM trigger and specify which
cycles to acquire.

nidigital.Session.history_ram trigger._type should be used to specify the trigger
condition on which History RAM starts acquiring pattern information.

If History RAM trigger is configured as CYCLE NUMBER, nidigital.Session.
cycle _number_history_ram trigger._cycle_number should be used to specify the
cycle number on which History RAM starts acquiring pattern information.

If History RAM trigger is configured as PATTERN_LABEL, nidigital.Session.
pattern_label_history_ram trigger_label should be wused to specify
the pattern label from which to start acquiring pattern information. nidigital.
Session.pattern_label_history ram trigger_vector offset should
be wused to specify the number of vectors following the specified pattern la-
bel from which to start acquiring pattern information. nidigital.Session.
pattern_label_history_ram trigger_cycle_offset should be used to specify
the number of cycles following the specified pattern label and vector offset from which to start
acquiring pattern information.

For all History RAM trigger conditions, nidigital.Session.
history_ram pretrigger._samples should be used to specify the number of samples to

232 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

acquire before the trigger conditions are met. If you configure History RAM to only acquire failed
cycles, youmust set nidigital.Session.history_ram pretrigger_samplesto0.

nidigital.Session.history ram cycles_to_acquire should be used to specify
which cycles History RAM acquires after the trigger conditions are met.

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].get_history_ram_sample_count ()
To call the method on all sites, you can call it directly on the nidigital. Session.

Example: my_session.get_history_ram_sample_count ()

Return type int

Returns The returned number of samples that History RAM acquired.

get_pattern_pin_names

nidigital.Session.get_pattern_pin_names (start_label)
Returns the pattern pin list.

Parameters start_label (st r)— Pattern name or exported pattern label from which
to get the pin names that the pattern references.

Return type list of str

Returns List of pins referenced by the pattern with the startLabel.

get_pin_results_pin_information

nidigital.Session.get_pin_results_pin_ information ()
Returns the pin names, site numbers, and channel names that correspond to per-pin data read from
the digital pattern instrument. The method returns pin information in the same order as values
read using the nidigital.Session.read_static() method, nidigital.Session.
ppmu_measure () method, and nidigital.Session.get_fail_count () method. Use
this method to match values the previously listed methods return with pins, sites, and instrument
channels.

Tip: This method can be called on specific channels within your nidigital. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].get_pin_results_pin_information ()
To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.get_pin_results_pin_information ()

Return type list of PinInfo

7.2. nidigital module 233

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

Returns
List of named tuples with fields:
¢ pin_name (str)
¢ site_number (int)

¢ channel_name (str)

get_site_pass_fail

nidigital.Session.get_site_pass_fail ()
Returns dictionary where each key is a site number and value is pass/fail

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites[...].get_site_pass_fail()
To call the method on all sites, you can call it directly on the nidigital. Session.

Example: my_session.get_site_pass_fail ()

Return type { int: bool, int: bool, .. }

Returns Dictionary where each key is a site number and value is pass/fail
get_time_set_drive_format

nidigital.Session.get_time_set_drive_format (fime_set_name)
Returns the drive format of a pin in the specified time set.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then
call this method on the result.

Example: my_session.pins[...].get_time_set_drive_format ()
To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.get_time_set_drive_format ()

Parameters time_set_name (st r)— The specified time set name.
Return type nidigital.DriveFormat

Returns Returned drive format of the time set for the specified pin.
get_time_set_edge

nidigital.Session.get_time_set_edge (time_set_name, edge)
Returns the edge time of a pin in the specified time set.

234 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then

call this method on the result.

Example: my_session.pins[...].get_time_set_edge ()

To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.get_time_set_edge ()

Parameters

* time_set_name (str)— The specified time set name.

* edge (nidigital.TimeSetEdgeType)— Name of the edge.

DRIVE_ON
DRIVE_DATA
DRIVE_RETURN
DRIVE_OFF
COMPARE_STROBE
DRIVE_DATAZ
DRIVE_RETURNZ

COMPARE_STROBEZ2

Return type hightime.timedelta

Returns Time from the beginning of the vector period in which to place the edge.

get_time_set_edge_multiplier

nidigital.Session.get_time_set_edge_multiplier (time_set_name)
Returns the edge multiplier of the specified time set.

Tip: This method can be called on specific pins within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container pins to specify a subset, and then

call this method on the result.

Example: my_session.pins|

To call the method on all pins, you can call it directly on the nidigital. Session.

Example: my_session.get_time_set_edge_multiplier ()

].get_time_set_edge_multiplier ()

Parameters time_set_name (st r)— The specified time set name.

Return type int

Returns Returned edge multiplier of the time set for the specified pin.

7.2. nidigital module

235

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.4.2

get_time_set_period

nidigital.Session.get_time_set_period (time_set_name)
Returns the period of the specified time set.

Parameters time_set_name (st r)— The specified time set name.
Return type hightime.timedelta

Returns Returned period, in seconds, that the edge is configured to.

initiate

nidigital.Session.initiate(()
Starts bursting the pattern configured by nidigital.Session.start_label, causing the
NI-Digital session to be committed. To stop the pattern burst, call nidigital.Session.
abort (). If keep alive pattern is bursting when nidigital.Session.abort () is called
or upon exiting the context manager, keep alive pattern will not be stopped. To stop the keep alive
pattern, call nidigital.Session.abort_keep_alive ().

Note: This method will return a Python context manager that will initiate on entering and abort on
exit.

is_done

nidigital.Session.is_done ()
Checks the hardware to determine if the pattern burst has completed or if any errors have occurred.

Return type bool

Returns A Boolean that indicates whether the pattern burst completed.

is_site_enabled

nidigital.Session.is_site_enabled()
Checks if a specified site is enabled.

Note: The method returns an error if more than one site is specified.

Tip: This method can be called on specific sites within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container sites to specify a subset, and then
call this method on the result.

Example: my_session.sites|[...].is_site_enabled()
To call the method on all sites, you can call it directly on the nidigital.Session.

Example: my_session.is_site_enabled()

Return type bool

236 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.4.2

Returns Boolean value that returns whether the site is enabled or disabled.

load_pattern

nidigital.Session.load_pattern (file_path)
Loads the specified pattern file.

Parameters file path (str) — Absolute file path of the binary .digipat pattern file
to load. Specify the pattern to burst using nidigital.Session.start_label
or the start_label parameter of the nidigital.Session.burst_pattern()
method.

load_pin_map

nidigital.Session.load_pin_map (file_path)
Loads a pin map file. You can load only a single pin and channel map file during an NI-Digital Pat-
tern Driver session. To switch pin maps, create a new session or call the nidigital.Session.
reset () method.

Parameters file_path (str) — Absolute file path to a pin map file created with the
Digital Pattern Editor or the NI TestStand Semiconductor Module.

load_specifications_levels_and_timing

nidigital.Session.load_specifications_levels_and_timing (specifications_file_paths=None,
lev-
els_file_paths=None,
tim-
ing_file_paths=None)
Loads settings in specifications, levels, and timing sheets. These settings are not applied to the digital
pattern instrument until nidigital.Session.apply_levels_and_timing () is called.

If the levels and timing sheets contains formulas, they are evaluated at load time. If the formulas
refer to variables, the specifications sheets that define those variables must be loaded either first, or
at the same time as the levels and timing sheets.

Parameters

* specifications_file_paths (str or basic sequence of str)
— Absolute file path of one or more specifications files.

e levels_file_paths (str or basic sequence of str) — Absolute
file path of one or more levels sheet files.

* timing file paths (str or basic sequence of str) — Absolute
file path of one or more timing sheet files.

lock

nidigital.Session.lock ()
Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:

7.2. nidigital module 237

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

* The application called the nidigital.Session.lock () method.
* A call to NI-Digital Pattern Driver locked the session.

o After acall to the nidigital.Session.lock () method returns successfully, no other threads can
access the device session until you call the nidigital.Session.unlock () method or exit out of
the with block when using lock context manager.

e Use the nidigital.Session.lock () method and the nidigital.Session.unlock ()
method around a sequence of calls to instrument driver methods if you require that the device retain its
settings through the end of the sequence.

You can safely make nested calls to the nidigital.Session.lock () method within the same thread. To
completely unlock the session, you must balance each call to the nidigital.Session.lock () method
withacalltothe nidigital.Session.unlock () method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

with nidigital.Session('devl') as session:
with session.lock () :
Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type context manager

Returns When used in a with statement, nidigital.Session.lock () acts as a context man-
ager and unlock will be called when the with block is exited

ppmu_measure

nidigital.Session.ppmu_measure (measurement_type)
Instructs the PPMU to measure voltage or current. This method can be called to take a voltage
measurement even if the pin method is not set to PPMU.

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].ppmu_measure ()
To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.ppmu_measure ()

Parameters measurement_type (nidigital.PPMUMeasurement Type) — Pa-
rameter that specifies whether the PPMU measures voltage or current from the DUT.

e CURRENT: The PPMU measures current from the DUT.
* VOLTAGE: The PPMU measures voltage from the DUT.

Return type list of float

238

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Returns The returned array of measurements in the order you specify in the repeated capa-
bilities. If a site is disabled, the method does not return data for that site. You can also
use the nidigital.Session.get_pin_results pin_information ()
method to obtain a sorted list of returned sites and channels.

ppmu_source

nidigital.Session.ppmu_source ()
Starts sourcing voltage or current from the PPMU. This method automatically selects the PPMU
method. Changes to PPMU source settings do not take effect until you call this method. If you
modify source settings after you call this method, you must call this method again for changes in the
configuration to take effect.

Tip: This method can be called on specific channels within your nidigital. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].ppmu_source ()
To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.ppmu_source ()

read_sequencer_flag

nidigital.Session.read_sequencer_flag (flag)
Reads the state of a pattern sequencer flag. Use pattern sequencer flags to coordinate execution
between the pattern sequencer and a runtime test program.

Parameters flag (nidigital.SequencerFlag)— The pattern sequencer flag you
want to read.

* FLAGO (“seqflag0”): Reads pattern sequencer flag 0.

* FLAGI (“seqflagl”): Reads pattern sequencer flag 1.

* FLAGZ (“seqflag2”): Reads pattern sequencer flag 2.

* FLAG3 (“seqflag3”): Reads pattern sequencer flag 3.
Return type bool

Returns A Boolean that indicates the state of the pattern sequencer flag you specify.

read_sequencer_register

nidigital.Session.read_sequencer_register (reg)
Reads the value of a pattern sequencer register. Use pattern sequencer registers to pass numeric
values between the pattern sequencer and a runtime test program. For example, you can use this
method to read a register modified by the write_reg opcode during a pattern burst.

Parameters reg (nidigital.SequencerRegister) — The sequencer register to
read from.

* REGISTERO (“reg0”): Reads sequencer register 0.

7.2. nidigital module 239

https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.4.2

* REGISTERI (“regl”): Reads sequencer register 1.

* REGISTERZ (“reg2”): Reads sequencer register 2.
* REGISTERS3 (“reg3”): Reads sequencer register 3.
* REGISTER4 (“reg4”): Reads sequencer register 4.
* REGISTERS (“reg5”): Reads sequencer register 5.
* REGISTERG (“reg6”): Reads sequencer register 6.
* REGISTER7 (“reg7”): Reads sequencer register 7.
* REGISTERS (“reg8”): Reads sequencer register 8.

* REGISTERY (“reg9”): Reads sequencer register 9.

REGISTERI1O (“regl0”):
REGISTERII (“regll”):
REGISTERIZ (“regl2”):
REGISTERI3 (“regl3”):
REGISTERI14 (“regld”):

REGISTERI5 (“regl5”):

Reads sequencer register 10.
Reads sequencer register 11.
Reads sequencer register 12.
Reads sequencer register 13.
Reads sequencer register 14.

Reads sequencer register 15.

Return type int

Returns Value read from the sequencer register.

read_static

nidigital.Session.read_static()
Reads the current state of comparators for pins you specify in the repeated capabilities. If there are
uncommitted changes to levels or the termination mode, this method commits the changes to the
pins.

Tip: This method can be called on specific channels within your nidigital.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.
Example: my_session.channels|] .read_static()

To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.read_static()

Return type listof nidigital.PinState
Returns

The returned array of pin states read from the channels in the repeated capabil-
ities. Data is returned in the order you specify in the repeated capabilities. If
a site is disabled, the method does not return data for that site. You can also
use the nidigital.Session.get_pin_results pin_information ()
method to obtain a sorted list of returned sites and channels.

* I: The comparators read a logic low pin state.

240 Chapter 7. License

https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.4.2

* H: The comparators read a logic high pin state.
* M: The comparators read a midband pin state.

e V: The comparators read a value that is above VOH and below VOL, which can
occur when you set VOL higher than VOH.

reset

nidigital.Session.reset ()
Returns a digital pattern instrument to a known state. This method performs the following actions:

* Aborts pattern execution.
* Clears pin maps, time sets, source and capture waveforms, and patterns.

e Resets all properties to default values, including the nidigital.Session.
selected_function property that is set to DISCONNECT, causing the I/O switches
to open.

 Stops exporting all external signals and events.

reset_device

nidigital.Session.reset_device ()
Returns a digital pattern instrument to a known state. This method performs the following actions:

* Aborts pattern execution.
 Clears pin maps, time sets, source and capture waveforms, and patterns.

* Resets all properties to default values, including the nidigital.Session.
selected_function property that is set to DISCONNECT, causing the I/O switches
to open.

* Stops export of all external signals and events.

 Clears over-temperature and over-power conditions.

self_calibrate

nidigital.Session.self_calibrate ()
Performs self-calibration on a digital pattern instrument.

self_test

nidigital.Session.self test ()
Returns self test results from a digital pattern instrument. This test requires several minutes to
execute.

Raises SelfTestError on self test failure. Properties on exception object:
* code - failure code from driver

* message - status message from driver

7.2. nidigital module 241

NI Modular Instruments Python APl Documentation, Release 1.4.2

Self-Test Code | Description
0 Self test passed.
1 Self test failed.

send_software_edge_trigger

tdr

nidigital.Session.send _software_ edge_trigger (trigger, trigger_identifier)
Forces a particular edge-based trigger to occur regardless of how the specified trigger is configured.
You can use this method as a software override.

Parameters

* trigger (nidigital.SoftwareTrigger) — Trigger specifies the trigger
you want to override.

Defined
Values
START Overrides the Start trigger. You must specify an empty string in
the trigger_identifier parameter.

CONDITIONAISpécifies to route a conditional jump trigger. You must specify a
conditional jump trigger in the trigger_identifier parameter.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

* trigger_identifier (str) - Trigger Identifier specifies the in-
stance of the trigger you want to override. If trigger is specified as
NIDIGITAL_VAL_START_TRIGGER, this parameter must be an empty string.
If trigger is specified as NIDIGITAL_VAL_CONDITIONAL_JUMP_TRIGGER,
allowed values are conditionalJumpTrigger(O, conditionalJumpTriggerl, condition-
alJumpTrigger2, and conditionalJumpTrigger3.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

nidigital.Session.tdr (apply_offsets=True)
Measures propagation delays through cables, connectors, and load boards using Time-Domain Re-
flectometry (TDR). Ensure that the channels and pins you select are connected to an open circuit.

Tip: This method can be called on specific channels within your nidigital. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].tdr()

To call the method on all channels, you can call it directly on the nidigital.Session.

242

Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.tdr ()

Parameters apply offsets (bool)— A Boolean that specifies whether to apply the
measured TDR offsets. If you need to adjust the measured offsets prior to applying, set
this input to False, and callthe nidigital.Session.apply tdr_offsets()
method to specify the adjusted TDR offsets values.

Return type list of hightime.timedelta

Returns Measured TDR offsets specified in seconds.

unload_all_patterns

nidigital.Session.unload_all_patterns (unload_keep_alive_pattern=False)
Unloads all patterns, source waveforms, and capture waveforms from a digital pattern instrument.

Parameters unload_keep_alive_pattern (bool) — A Boolean that specifies
whether to keep or unload the keep alive pattern.

unload_specifications

nidigital.Session.unload_specifications (file_paths)
Unloads the given specifications sheets present in the previously loaded specifications files that you
select.

Youmustcall nidigital.Session.load specifications levels_and timing()
to reload the files with updated specifications values. You must then call nidigital.Session.
apply_levels_and_timing () in order to apply the levels and timing values that reference
the updated specifications values.

Parameters file paths (str or basic sequence of str) — Absolute file
path of one or more loaded specifications files.

unlock

nidigital.Session.unlock ()
Releases a lock that you acquired on an device session using nidigital.Session.lock (). Refer to
nidigital.Session.unlock () for additional information on session locks.

wait_until_done

nidigital.Session.wait_until_done (timeout=hightime.timedelta(seconds=10.0))
Waits until the pattern burst has completed or the timeout has expired.

Parameters timeout (hightime.timedelta, datetime.timedelta, or
float in seconds) — Maximum time (in seconds) allowed for this method to
complete. If this method does not complete within this time interval, this method re-
turns an error.

7.2. nidigital module 243

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

write_sequencer_flag

nidigital.Session.write_sequencer_ flag (flag, value)
Writes the state of a pattern sequencer flag. Use pattern sequencer flags to coordinate execution
between the pattern sequencer and a runtime test program.

Parameters

e flag (nidigital.SequencerFlag)— The pattern sequencer flag to write.

FLAGO (“seqflag0”): Writes pattern sequencer flag 0.

FLAGI (“seqflagl”): Writes pattern sequencer flag 1.

FLAGZ (“seqflag2”): Writes pattern sequencer flag 2.

FLAG3 (“seqflag3”): Writes pattern sequencer flag 3.

e value (bool) — A Boolean that assigns a state to the pattern sequencer flag you
specify.

write_sequencer_register

nidigital.Session.write_sequencer_register (reg, value)
Writes a value to a pattern sequencer register. Use pattern sequencer registers to pass numeric values
between the pattern sequencer and a runtime test program.

Parameters

e reg (nidigital.SequencerRegister) — The sequencer register you want

to write to.

REGISTERO (“reg0”): Writes sequencer register 0.
REGISTERI (“regl”): Writes sequencer register 1.
REGISTERZ (“reg2”): Writes sequencer register 2.
REGISTERS3 (“reg3”): Writes sequencer register 3.
REGISTER4 (“regd”): Writes sequencer register 4.
REGISTERS (“reg5”): Writes sequencer register 5.
REGISTERG6 (“regb”): Writes sequencer register 6.
REGISTER7 (“reg7”): Writes sequencer register 7.
REGISTERS (“reg8”): Writes sequencer register 8.

REGISTERO (“reg9”): Writes sequencer register 9.

REGISTERI1O0 (“regl0”):
REGISTERII (“regll”):
REGISTERIZ (“regl2”):
REGISTERI3 (“regl3”):
REGISTERI14 (“regl4”):

REGISTERIS5 (“regl5”):

Writes sequencer register 10.
Writes sequencer register 11.
Writes sequencer register 12.
Writes sequencer register 13.
Writes sequencer register 14.

Writes sequencer register 15.

* value (int)— The value you want to write to the register.

244

Chapter 7. License

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.4.2

write_source_waveform_broadcast

nidigital.Session.write_source_waveform_broadcast (waveform_name, wave-

form_data)
Writes the same waveform data to all sites. Use this write method if you set the data_mapping

parameter of the create source waveform method to BROADCAST.
Parameters

* waveform name (str) — The name to assign to the waveform. Use the wave-
form_name with source_start opcode in your pattern.

* waveform_data (1ist of int)— 1D array of samples to use as source data
to apply to all sites.

write_source_waveform_data_from_file_tdms

nidigital.Session.write_source_waveform_data_ from file_tdms (waveform_name,

wave-
form_file_path)
Writes a source waveform based on the waveform data and configuration information the file con-
tains.
Parameters

* waveform name (str)— The name to assign to the waveform. Use the wave-
form_name with source_start opcode in your pattern.

» waveform file_path (str)— Absolute file path to the load source waveform
file (.tdms).

write_source_waveform_site_unique

nidigital.Session.write_source_waveform_site_unique (waveform_name,

waveform_data)
Writes one waveform per site. Use this write method if you set the parameter of the create source

waveform method to Site Unique.
Parameters

* waveform name (str)— The name to assign to the waveform. Use the wave-
form_name with source_start opcode in your pattern.

* waveform data ({ int: basic sequence of unsigned int,

int: basic sequence of unsigned int, .. }) — Dictionary
where each key is a site number and value is a collection of samples to use as source
data

write_static

nidigital.Session.write_static (stare)
Writes a static state to the specified pins. The selected pins remain in the specified state until the next
pattern burst or call to this method. If there are uncommitted changes to levels or the termination
mode, this method commits the changes to the pins. This method does not change the selected pin
method. If you write a static state to a pin that does not have the Digital method selected, the new

7.2. nidigital module 245

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

static state is stored by the instrument, and affects the state of the pin the next time you change the
selected method to Digital.

Tip: This method can be called on specific channels within your nidigital. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].write_static()
To call the method on all channels, you can call it directly on the nidigital.Session.

Example: my_session.write_static ()

Parameters state (nidigital.WriteStaticPinState)— Parameter that spec-
ifies one of the following digital states to assign to the pin.

* ZERO: Specifies to drive low.
* ONE: Specifies to drive high.

* X: Specifies to not drive.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

Properties

active_load_ioh

nidigital.Session.active_load_ioh
Specifies the current that the DUT sources to the active load while outputting a voltage above
VCOM.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].active_load_ioh
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.active_load_ioh

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

246 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

» C Attribute: NIDIGITAL_ATTR_ACTIVE_LOAD_IOH

active_load_iol

nidigital.Session.active_load_iol
Specifies the current that the DUT sinks from the active load while outputting a voltage below
VCOM.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].active_load_iol
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.active_load_iol

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_ACTIVE_LOAD_IOL

active_load_vcom

nidigital.Session.active_load_vcom
Specifies the voltage level at which the active load circuit switches between sourcing current and
sinking current.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].active_load_vcom
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.active_load_vcom

The following table lists the characteristics of this property.

7.2. nidigital module 247

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_ACTIVE_LOAD_VCOM

cache

nidigital.Session.cache
Specifies whether to cache the value of properties. When caching is enabled, the instrument driver
keeps track of the current instrument settings and avoids sending redundant commands to the in-
strument. This significantly increases execution speed. Caching is always enabled in the driver,
regardless of the value of this property.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_CACHE

channel_count

nidigital.Session.channel_ count
Returns the number of channels that the specific digital pattern instrument driver supports.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_CHANNEL_COUNT

248 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

clock_generator_frequency

nidigital.Session.clock_generator_frequency
Specifies the frequency for the clock generator.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels|[...].clock_generator_frequency
To set/get on all channels or pins, you can call the property directly onthe nidigital. Session.

Example: my_session.clock_generator_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_CLOCK_GENERATOR_FREQUENCY

clock_generator_is_running

nidigital.Session.clock_generator_ is_running
Indicates whether the clock generator is running.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].clock_generator_is_running
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.clock_generator_is_running

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.2. nidigital module 249

NI Modular Instruments Python APl Documentation, Release 1.4.2

» C Attribute: NIDIGITAL_ATTR_CLOCK_GENERATOR_IS_RUNNING

conditional_jump_trigger_terminal_name

nidigital.Session.conditional_jump_trigger_terminal_ name
Specifies the terminal name from which the exported conditional jump trigger signal may be routed
to other instruments through the PXI trigger bus. You can use this signal to trigger other instruments
when the conditional jump trigger instance asserts on the digital pattern instrument.

Tip: This property can be set/get on specific conditional_jump_triggers within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container condi-
tional_jump_triggers to specify a subset.

Example: my_session.conditional_jump_triggers|[...].
conditional_jump_trigger_terminal_name

To set/get on all conditional_jump_triggers, you can call the property directly on the nidigital.
Session.

Example: my_session.conditional_jump_trigger_terminal_name

The following table lists the characteristics of this property.

Characteristic Value

Datatype str

Permissions read only

Repeated Capabilities | conditional_jump_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_CONDITIONAL_JUMP_TRIGGER_TERMINAL_NAME

conditional_jump_trigger_type

nidigital.Session.conditional_ jump_trigger_type
Disables the conditional jump trigger or configures it for either hardware triggering or software
triggering. The default value is NONE.

Valid Values:

NONE Disables the conditional jump trigger.

DIGITAL EDGE | Configures the conditional jump trigger for hardware triggering.
SOFTWARE Configures the conditional jump trigger for software triggering.

Tip: This property can be set/get on specific conditional _jump_triggers within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container condi-
tional_jump_triggers to specify a subset.

250 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.conditional_jump_triggers|[...].
conditional_jump_trigger_type

To set/get on all conditional_jump_triggers, you can call the property directly onthe nidigital.
Session.

Example: my_session.conditional_jump_trigger_type

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.TriggerType
Permissions read-write

Repeated Capabilities | conditional_jump_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_CONDITIONAL_JUMP_TRIGGER_TYPE

cycle_number_history_ram_trigger_cycle_number

nidigital.Session.cycle_number_history ram trigger_cycle_number
Specifies the cycle number on which History RAM starts acquiring pattern information when con-
figured for a cycle number trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_CYCLE_NUMBER_HISTORY_RAM_TRIGGER_CYCLE_NUMBER

digital_edge_conditional_jump_trigger_edge

nidigital.Session.digital_edge_conditional_jump_trigger_edge
Configures the active edge of the incoming trigger signal for the conditional jump trigger instance.
The default value is RISTNG.

Valid Values:
RISING Specifies the signal transition from low level to high level.
FALLING Specifies the signal transition from high level to low level.

7.2. nidigital module 251

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific conditional_jump_triggers within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container condi-
tional_jump_triggers to specify a subset.

Example: my_session.conditional_jump_triggers|[...].
digital_edge_conditional_jump_trigger_edge

To set/get on all conditional_jump_triggers, you can call the property directly on the nidigital.
Session.

Example: my_session.digital_edge_conditional_jump_trigger_edge

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.DigitalEdge
Permissions read-write

Repeated Capabilities | conditional_jump_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_CONDITIONAL_JUMP_TRIGGER_EDGE

digital_edge_conditional_jump_trigger_source

nidigital.Session.digital_edge_conditional_jump_trigger_source
Configures the digital trigger source terminal for a conditional jump trigger instance. The PXIe-
6570/6571 supports triggering through the PXI trigger bus. You can specify source terminals in one
of two ways. If the digital pattern instrument is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0. The source terminal can also be a terminal from another device, in which
case the NI-Digital Pattern Driver automatically finds a route (if one is available) from that terminal
to the input terminal (going through a physical PXI backplane trigger line). For example, you can set
the source terminal on Dev1 to be /Dev2/ConditionalJumpTriggerO. The default value is VI_NULL.

Valid Values:
String identifier to any valid terminal name

Tip: This property can be set/get on specific conditional_jump_triggers within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container condi-
tional_jump_triggers to specify a subset.

Example: my_session.conditional_jump_triggers[...].
digital_edge_conditional_jump_trigger_source

To set/get on all conditional_jump_triggers, you can call the property directly onthe nidigital.
Session.

Example: my_session.digital_edge_conditional_jump_trigger_source

The following table lists the characteristics of this property.

252 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value

Datatype str

Permissions read-write

Repeated Capabilities | conditional_jump_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
 C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_CONDITIONAL_JUMP_TRIGGER_SOURCE

digital_edge_rio_trigger_edge

nidigital.Session.digital_edge_rio_trigger_edge
Configures the active edge of the incoming trigger signal for the RIO trigger instance. The default
value is RTSING.

Valid Values:
RISING Specifies the signal transition from low level to high level.
FALLING Specifies the signal transition from high level to low level.

Tip: This property can be set/get on specific rio_triggers within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container rio_triggers to specify a
subset.

Example: my_session.rio_triggers|[...].digital_edge_rio_trigger_edge
To set/get on all rio_triggers, you can call the property directly on the nidigital.Session.

Example: my_session.digital_edge_rio_trigger_edge

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.DigitalEdge
Permissions read-write
Repeated Capabilities | rio_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_RIO_TRIGGER_EDGE

digital_edge rio_trigger_source

nidigital.Session.digital_edge_rio_trigger_source
Configures the digital trigger source terminal for a RIO trigger instance. The PXIe-6570/6571 sup-
ports triggering through the PXI trigger bus. You can specify source terminals in one of two ways.
If the digital pattern instrument is named Dev1 and your terminal is PXI_Trig0, you can specify the
terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal

7.2. nidigital module 253

NI Modular Instruments Python APl Documentation, Release 1.4.2

name, PXI_Trig0. The source terminal can also be a terminal from another device, in which case
the NI-Digital Pattern Driver automatically finds a route (if one is available) from that terminal to
the input terminal (going through a physical PXI backplane trigger line). For example, you can set
the source terminal on Dev1 to be /Dev2/RIOTrigger0. The default value is VI_NULL.

Valid Values:

String identifier to any valid terminal name

Tip: This property can be set/get on specific rio_triggers within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container rio_triggers to specify a

subset.

Example: my_session.rio_triggers[...].digital_edge_rio_trigger_source

To set/get on all rio_triggers, you can call the property directly on the nidigital.Session.

Example: my_session.digital_edge_rio_trigger_source

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | rio_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_RIO_TRIGGER_SOURCE

digital_edge_start_trigger_edge

nidigital.Session.digital_edge_start_trigger_edge
Specifies the active edge for the Start trigger. This property is used when the nidigital.
Session.start_trigger_type property is set to Digital Edge.

Defined Values:

RISING

Asserts the trigger when the signal transitions from low level to high level.

FALLING

Asserts the trigger when the signal transitions from high level to low level.

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.DigitalEdge
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_START_TRIGGER_EDGE

254

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

digital_edge_start_trigger_source

nidigital.Session.digital_edge_start_trigger_ source

Specifies the source terminal for the Start trigger. This property is used when the nidigital.
Session.start_trigger._type property is set to Digital Edge. You can specify source ter-
minals in one of two ways. If the digital pattern instrument is named Devl and your terminal is
PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0. The source terminal can also be a terminal from
another device, in which case the NI-Digital Pattern Driver automatically finds a route (if one is
available) from that terminal to the input terminal (going through a physical PXI backplane trigger
line). For example, you can set the source terminal on Devl to be /Dev2/StartTrigger.

Defined Values:

PXI_Trig0 PXT trigger line 0
PXI_Trigl PXI trigger line 1
PXI_Trig2 PXT trigger line 2
PXI_Trig3 PXI trigger line 3
PXI_Trigd PXI trigger line 4
PXI_Trig5 PXI trigger line 5
PXI_Trigb PXI trigger line 6
PXI_Trig7 PXI trigger line 7

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_DIGITAL_EDGE_START_TRIGGER_SOURCE

driver_setup

nidigital.Session.driver_setup
This property returns initial values for NI-Digital Pattern Driver properties as a string.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.2. nidigital module 255

NI Modular Instruments Python APl Documentation, Release 1.4.2

» C Attribute: NIDIGITAL_ATTR_DRIVER_SETUP

exported_conditional_jump_trigger_output_terminal

nidigital.Session.exported _conditional_jump_trigger_output_terminal
Specifies the terminal to output the exported signal of the specified instance of the conditional jump
trigger. The default value is VI_ NULL.

Valid Values:

VI_NULL (*“”) | Returns an empty string
PXI_Trig0 PXI trigger line 0
PXI_Trigl PXT trigger line 1
PXI_Trig2 PXI trigger line 2
PXI_Trig3 PXI trigger line 3
PXI_Trigd PXI trigger line 4
PXI_Trig5 PXI trigger line 5
PXI_Trigb PXT trigger line 6
PXI_Trig7 PXI trigger line 7

Tip: This property can be set/get on specific conditional_jump_triggers within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container condi-
tional_jump_triggers to specify a subset.

Example: my_session.conditional_ jump_triggers[...].
exported_conditional_ jump_trigger_output_terminal

To set/get on all conditional_jump_triggers, you can call the property directly onthe nidigital.
Session.

Example: my_session.exported_conditional_jump_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value

Datatype str

Permissions read-write

Repeated Capabilities | conditional_jump_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
 C Attribute: NIDIGITAL_ATTR_EXPORTED_CONDITIONAL_JUMP_TRIGGER_OUTPUT_TERMINAL

exported_pattern_opcode_event_output_terminal

nidigital.Session.exported_pattern_opcode_event_output_terminal
Specifies the destination terminal for exporting the Pattern Opcode Event. Terminals can be specified
in one of two ways. If the digital pattern instrument is named Dev1 and your terminal is PXI_Trig0,

256 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the
shortened terminal name, PXI_Trig0.

Defined Values:

PXI_Trig0 PXT trigger line O
PXI_Trigl PXI trigger line 1
PXI_Trig2 PXI trigger line 2
PXI_Trig3 PXI trigger line 3
PXI_Trigd PXI trigger line 4
PXI_Trig5 PXI trigger line 5
PXI_Trigb PXT trigger line 6
PXI_Trig7 PXI trigger line 7

Tip: This property can be set/get on specific pattern_opcode_events within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container pat-
tern_opcode_events to specify a subset.

Example: my_session.pattern_opcode_events|[... 1.
exported_pattern_opcode_event_output_terminal

To set/get on all pattern_opcode_events, you can call the property directly on the nidigital.
Session.

Example: my_session.exported_pattern_opcode_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value

Datatype str

Permissions read-write

Repeated Capabilities | pattern_opcode_events

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
 C Attribute: NIDIGITAL_ATTR_EXPORTED_PATTERN_OPCODE_EVENT_OUTPUT_TERMINAL

exported_rio_event_output_terminal

nidigital.Session.exported_rio_event_output_terminal
Specifies the destination terminal for exporting the RIO Event. Terminals can be specified in one of
two ways. If the digital pattern instrument is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0.

7.2. nidigital module 257

NI Modular Instruments Python APl Documentation, Release 1.4.2

Defined Values:

PXI_Trig0 PXI trigger line 0
PXI_Trigl PXI trigger line 1
PXI_Trig2 PXI trigger line 2
PXI_Trig3 PXT trigger line 3
PXI_Trigd PXI trigger line 4
PXI_Trig5 PXT trigger line 5
PXI_Trigb PXI trigger line 6
PXI_Trig7 PXT trigger line 7

Tip: This property can be set/get on specific rio_events within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container rio_events to specify a
subset.

Example: my_session.rio_events[...].exported_rio_event_output_terminal
To set/get on all rio_events, you can call the property directly on the nidigital.Session.

Example: my_session.exported_rio_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | rio_events

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_EXPORTED_RIO_EVENT_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

nidigital.Session.exported_start_trigger_ output_terminal
Specifies the destination terminal for exporting the Start trigger. Terminals can be specified in one of
two ways. If the digital pattern instrument is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0.

Defined Values:

Do not export signal | The signal is not exported.
PXI_Trig0 PXI trigger line 0
PXI_Trigl PXI trigger line 1
PXI_Trig2 PXI trigger line 2
PXI_Trig3 PXT trigger line 3
PXI_Trigd PXI trigger line 4
PXI_Trig5 PXT trigger line 5
PXI_Trigb PXI trigger line 6
PXI_Trig7 PXT trigger line 7

258 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

frequency_counter_hysteresis_enabled

nidigital.Session.frequency_ counter_ hysteresis_enabled
Specifies whether hysteresis is enabled for the frequency counters of the digital pattern instrument.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_FREQUENCY_COUNTER_HYSTERESIS_ENABLED

frequency_counter_measurement_mode

nidigital.Session.frequency_ counter_measurement_mode
Determines how the frequency counters of the digital pattern instrument make measurements.

Valid
Val-
ues:
BANIKHach discrete frequency counter is mapped to specific channels and makes frequency mea-
surements from only those channels. Use banked mode when you need access to the full
measure frequency range of the instrument. Note: If you request frequency measurements
from multiple channels within the same bank, the measurements are made in series for the
channels in that bank.

PARAIAIEIdiscrete frequency counters make frequency measurements from all channels
in parallel with one another. Use parallel mode to increase the speed of fre-
quency measurements if you do not need access to the full measure frequency range
of the instrument; in parallel mode, you can also add nidigital.Session.
frequency_counter_hysteresis_enabled toreduce measurement noise.

The following table lists the characteristics of this property.

7.2. nidigital module 259

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value

Datatype enums.FrequencyMeasurementMode
Permissions read-write

Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_FREQUENCY_COUNTER_MEASUREMENT_MODE

frequency_counter_measurement_time

nidigital.Session.frequency_ counter_measurement_time
Specifies the measurement time for the frequency counter.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].frequency_counter_measurement_time
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.frequency_counter_measurement_time

The following table lists the characteristics of this property.

Characteristic Value

Datatype float in seconds or datetime.timedelta
Permissions read-write

Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_FREQUENCY_COUNTER_MEASUREMENT_TIME

group_capabilities

nidigital.Session.group_capabilities
Returns a string that contains a comma-separated list of class-extension groups that the driver im-
plements.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

260 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_GROUP_CAPABILITIES

halt_on_keep_alive_opcode

nidigital.Session.halt_on_keep_alive_opcode
Specifies whether keep_alive opcodes should behave like halt opcodes.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_HALT_ON_KEEP_ALIVE_OPCODE

history_ram_buffer_size per_site

nidigital.Session.history ram buffer size per_ site
Specifies the size, in samples, of the host memory buffer. The default value is 32000.

Valid Values:
0-INT64 MAX

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_BUFFER_SIZE_PER_SITE

history_ram_cycles_to_acquire

nidigital.Session.history_ram cycles_to_acquire
Configures which cycles History RAM acquires after the trigger conditions are met. If you configure
History RAM to only acquire failed cycles, you must set the pretrigger samples for History RAM to
0.

7.2. nidigital module 261

NI Modular Instruments Python APl Documentation, Release 1.4.2

Defined Val-

ues:

FAILED Only acquires cycles that fail a compare after the triggering conditions are
met.

ALL Acquires all cycles after the triggering conditions are met.

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.HistoryRAMCyclesToAcquire
Permissions read-write

Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_CYCLES_TO_ACQUIRE

history_ram_max_samples_to_acquire_per_site

nidigital.Session.history_ram max_samples_to_acquire_per_ site
Specifies the maximum number of History RAM samples to acquire per site. If the property is set to
-1, it will acquire until the History RAM buffer is full.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_MAX_SAMPLES_TO_ACQUIRE_PER_SITE

history_ram_number_of_samples_is_finite

nidigital.Session.history_ ram number of_ samples_is_finite
Specifies whether the instrument acquires a finite number of History Ram samples or acquires con-
tinuously. The maximum number of samples that will be acquired when this property is set to True is
determined by the instrument History RAM depth specification and the History RAM Max Samples
to Acquire Per Site property. The default value is True.

262 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Valid

Values:

True Specifies that History RAM results will not stream into the host buffer until a History
RAM fetch API is called.

False Specifies that History RAM results will automatically start streaming into a host
buffer after a pattern is burst and the History RAM has triggered.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_NUMBER_OF_SAMPLES_IS_FINITE

history_ram_pretrigger_samples

nidigital.Session.history_ ram pretrigger_samples
Specifies the number of samples to acquire before the trigger conditions are met. If you configure
History RAM to only acquire failed cycles, you must set the pretrigger samples for History RAM to
0.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_PRETRIGGER_SAMPLES

history_ram_trigger_type

nidigital.Session.history_ ram trigger_ type
Specifies the type of trigger condition on which History RAM starts acquiring pattern information.

7.2. nidigital module 263

NI Modular Instruments Python APl Documentation, Release 1.4.2

Defined
Values:
FIRST_ FAT[LSfafts acquiring pattern information in History RAM on the first failed cycle in a
pattern burst.

CYCLE_NUMBSfarts acquiring pattern information in History RAM starting from a specified
cycle number.

PATTERN_LASfafts acquiring pattern information in History RAM starting from a specified
pattern label, augmented by vector and cycle offsets.

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.HistoryRAMTriggerType
Permissions read-write

Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_HISTORY_RAM_TRIGGER_TYPE

instrument_firmware_revision

nidigital.Session.instrument_ firmware revision
Returns a string that contains the firmware revision information for the digital pattern instrument.

Tip: This property can be set/get on specific instruments within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].instrument_firmware_revision
To set/get on all instruments, you can call the property directly onthe nidigital.Session.

Example: my_session.instrument_firmware_revision

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_INSTRUMENT_FIRMWARE_REVISION

264 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

instrument_manufacturer

nidigital.Session.instrument_manufacturer
Returns a string (“National Instruments”) that contains the name of the manufacturer of the digital

pattern instrument.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

nidigital.Session.instrument_model
Returns a string that contains the model number or name of the digital pattern instrument.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_INSTRUMENT_MODEL

interchange_check

nidigital.Session.interchange_check
This property is not supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_INTERCHANGE_CHECK

7.2. nidigital module 265

NI Modular Instruments Python APl Documentation, Release 1.4.2

io_resource_descriptor

nidigital.Session.io_resource_descriptor
Returns a string that contains the resource descriptor that the NI-Digital Pattern Driver uses to iden-

tify the digital pattern instrument.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_IO_RESOURCE_DESCRIPTOR

is_keep_alive_active

nidigital.Session.is_keep_alive_active
Returns True if the digital pattern instrument is driving the keep alive pattern.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_IS_KEEP_ALIVE_ACTIVE

logical_name

nidigital.Session.logical_name
Returns a string containing the logical name that you specified when opening the current IVI session.
This property is not supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

266 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_LOGICAL_NAME

mask_compare

nidigital.Session.mask_compare
Specifies whether the pattern comparisons are masked or not. When set to True for a specified pin,
failures on that pin will be masked.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels|[...].mask_compare
To set/get on all channels or pins, you can call the property directly onthe nidigital. Session.

Example: my_session.mask_compare

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_MASK_COMPARE

pattern_label_history_ram_trigger_cycle_offset

nidigital.Session.pattern_label history ram trigger_cycle_ offset
Specifies the number of cycles that follow the specified pattern label and vector offset, after which
History RAM will start acquiring pattern information when configured for a pattern label trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ C Attribute: NIDIGITAL_ATTR_PATTERN_LABEL_HISTORY_RAM_TRIGGER_CYCLE_OFFSET

7.2. nidigital module 267

NI Modular Instruments Python APl Documentation, Release 1.4.2

pattern_label_history_ram_trigger_label

nidigital.Session.pattern_label_history_ ram trigger_ label
Specifies the pattern label, augmented by the vector and cycle offset, to determine the point where
History RAM will start acquiring pattern information when configured for a pattern label trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_PATTERN_LABEL_HISTORY_RAM_TRIGGER_LABEL

pattern_label_history ram_trigger_vector_offset

nidigital.Session.pattern_label_history_ ram trigger_ vector_offset
Specifies the number of vectors that follow the specified pattern label, after which History RAM will
start acquiring pattern information when configured for a pattern label trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_PATTERN_LABEL_HISTORY_RAM_TRIGGER_VECTOR_OFFSET

pattern_opcode_event_terminal_name

nidigital.Session.pattern_opcode_event_terminal_ name
Specifies the terminal name for the output trigger signal of the specified instance of a Pattern Opcode
Event. You can use this terminal name as an input signal source for another trigger.

Tip: This property can be set/get on specific pattern_opcode_events within your nidigital.
Session instance. Use Python index notation on the repeated capabilities container pat-
tern_opcode_events to specify a subset.

Example: my_session.pattern_opcode_events|[... 1.
pattern_opcode_event_terminal_name

To set/get on all pattern_opcode_events, you can call the property directly on the nidigital.
Session.

268 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.pattern_opcode_event_terminal_name

The following table lists the characteristics of this property.

Characteristic Value

Datatype str

Permissions read only

Repeated Capabilities | pattern_opcode_events

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_PATTERN_OPCODE_EVENT _TERMINAL_NAME

ppmu_allow_extended_voltage range

nidigital.Session.ppmu_allow_extended voltage_range

Enables the instrument to operate in additional voltage ranges where instrument specifications may
differ from standard ranges. When set to True, this property enables extended voltage range op-
eration. Review specification deviations for application suitability before using this property. NI
recommends setting this property to False when not using the extended voltage range to avoid un-
intentional use of this range. The extended voltage range is supported only for PPMU, with the
output method set to DC Voltage. A voltage glitch may occur when you change the PPMU output
voltage from a standard range to the extended voltage range, or vice-versa, while the PPMU is sourc-
ing. NI recommends temporarily changing the nidigital.Session.selected function
property to Off before sourcing a voltage level that requires a range change.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_allow_extended_voltage_range
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.ppmu_allow_extended_voltage_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_PPMU_ALLOW_EXTENDED_VOLTAGE_RANGE

7.2. nidigital module

269

NI Modular Instruments Python APl Documentation, Release 1.4.2

ppmu_aperture_time

nidigital.Session.ppmu_aperture_time

Specifies the measurement aperture time for the PPMU. The nidigital.Session.
ppmu_aperture_time_units property sets the units of the PPMU aperture time.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels|[...].ppmu_aperture_time
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.ppmu_aperture_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_PPMU_APERTURE_TIME

ppmu_aperture_time_units

nidigital.Session.ppmu_aperture_time_units

Specifies the units of the measurement aperture time for the PPMU.

Defined Values:
SECONDS Specifies the aperture time in seconds.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels|[...].ppmu_aperture_time_units
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.ppmu_aperture_time_units

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.PPMUApertureTimeUnits
Permissions read-write

Repeated Capabilities | channels, pins

270

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_PPMU_APERTURE_TIME_UNITS

ppmu_current_level

nidigital.Session.ppmu_current_level
Specifies the current level, in amps, that the PPMU forces to the DUT. This property is ap-
plicable only when you set the nidigital.Session.ppmu_output_function property
to DC Current. Specify valid values for the current level using the nidigital.Session.
PPMU_ConfigureCurrentLevelRange () method.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels|[...].ppmu_current_level
To set/get on all channels or pins, you can call the property directly onthe nidigital. Session.

Example: my_session.ppmu_current_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LEVEL

ppmu_current_level_range

nidigital.Session.ppmu_current_level_range
Specifies the range of valid values for the current level, in amps, that the PPMU forces
to the DUT. This property is applicable only when you set the nidigital.Session.
ppmu_output_function property to DC Current.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels|[...].ppmu_current_level_range

7.2. nidigital module 271

NI Modular Instruments Python APl Documentation, Release 1.4.2

To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.ppmu_current_level_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LEVEL_RANGE

ppmu_current_limit

nidigital.Session.ppmu_current_limit
Specifies the current limit, in amps, that the output cannot exceed while the PPMU forces volt-
age to the DUT. This property is applicable only when you set the nidigital.Session.
ppmu_output_function property to DC Voltage. The PXIe-6570/6571 does not support the
nidigital.Session.ppmu_current_1limit property and only allows configuration of the
nidigital.Session.ppmu_current_limit_range property.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_current_limit
To set/get on all channels or pins, you can call the property directly onthe nidigital. Session.

Example: my_session.ppmu_current_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LIMIT

ppmu_current_limit_behavior

nidigital.Session.ppmu_current_limit_behavior
Specifies how the output should behave when the current limit is reached.

272 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Defined
Values:
REGULATE| Controls output current so that it does not exceed the current limit. Power continues
to generate even if the current limit is reached.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels|[...].ppmu_current_limit_behavior
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.ppmu_current_limit_behavior

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.PPMUCurrentLimitBehavior
Permissions read-write

Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LIMIT_BEHAVIOR

ppmu_current_limit_range

nidigital.Session.ppmu_current_limit_range
Specifies the valid range, in amps, to which the current limit can be set while the PPMU forces
voltage to the DUT. This property is applicable only when you set the nidigital.Session.
ppmu_output_function property to DC Voltage.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels|[...].ppmu_current_limit_range
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.ppmu_current_limit_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

7.2. nidigital module 273

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LIMIT_RANGE

ppmu_current_limit_supported

nidigital.Session.ppmu_current limit_ supported
Returns whether the device supports configuration of a current limit when you setthe nidigital.
Session.ppmu_output_function property to DC Voltage.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels|[...].ppmu_current_limit_supported
To set/get on all channels or pins, you can call the property directly onthe nidigital. Session.

Example: my_session.ppmu_current_limit_supported

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_PPMU_CURRENT_LIMIT_SUPPORTED

ppmu_output_function

nidigital.Session.ppmu_output_function
Specifies whether the PPMU forces voltage or current to the DUT.

Defined Values:
VOLTAGE Specifies the output method to DC Voltage.
CURRENT Specifies the output method to DC Current.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels|[...].ppmu_output_function

To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

274 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Example: my_session.ppmu_output_function

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.PPMUOutputFunction
Permissions read-write

Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_PPMU_OUTPUT_FUNCTION

ppmu_voltage level

nidigital.Session.ppmu_voltage_level
Specifies the voltage level, in volts, that the PPMU forces to the DUT. This property is applica-
ble only when you set the nidigital.Session.ppmu_output_function property to DC
Voltage.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels|[...].ppmu_voltage_level
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.ppmu_voltage_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_PPMU_VOLTAGE_LEVEL

ppmu_voltage_limit_high

nidigital.Session.ppmu_voltage_limit_high
Specifies the maximum voltage limit, or high clamp voltage (V ¢y), in volts, at the pin when the
PPMU forces current to the DUT. This property is applicable only when you set the nidigital.
Session.ppmu_output_function property to DC Current.

7.2. nidigital module 275

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_voltage_limit_high
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.ppmu_voltage_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_PPMU_VOLTAGE_LIMIT_HIGH

ppmu_voltage_limit_low

nidigital.Session.ppmu_voltage_limit_low
Specifies the minimum voltage limit, or low clamp voltage (V ¢), in volts, at the pin when the
PPMU forces current to the DUT. This property is applicable only when you set the nidigital.
Session.ppmu_output_function property to DC Current.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].ppmu_voltage_limit_low
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.ppmu_voltage_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_PPMU_VOLTAGE_LIMIT_LOW

276 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

query_instrument_status

nidigital.Session.query_instrument_status
Specifies whether the NI-Digital Pattern Driver queries the digital pattern instrument status after
each operation. The instrument status is always queried, regardless of the property setting.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_QUERY_INSTRUMENT_STATUS

range_check

nidigital.Session.range_check
Checks the range and validates parameter and property values you pass to NI-Digital Pattern Driver
methods. Ranges are always checked, regardless of the property setting.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_RANGE_CHECK

record_coercions

nidigital.Session.record_coercions
Specifies whether the IVI engine keeps a list of the value coercions it makes for integer and real type
properties. Enabling record value coercions is not supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.2. nidigital module

277

NI Modular Instruments Python APl Documentation, Release 1.4.2

» C Attribute: NIDIGITAL_ATTR_RECORD_COERCIONS

rio_event_terminal_name

nidigital.Session.rio_event_terminal_ name
Specifies the terminal name for the output signal of the specified instance of a RIO Event. You can
use this terminal name as an input signal source for another trigger.

Tip: This property can be set/get on specific rio_events within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container rio_events to specify a
subset.

Example: my_session.rio_events|[...].rio_event_terminal_name
To set/get on all rio_events, you can call the property directly on the nidigital.Session.

Example: my_session.rio_event_terminal_name

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | rio_events

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_RIO_EVENT TERMINAL_NAME

rio_trigger_terminal_name

nidigital.Session.rio_trigger_terminal_name
Specifies the terminal name from which the exported RIO trigger signal may be routed to other
instruments through the PXI trigger bus. You can use this signal to trigger other instruments when
the RIO trigger instance asserts on the digital pattern instrument.

Tip: This property can be set/get on specific rio_triggers within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container rio_triggers to specify a
subset.

Example: my_session.rio_triggers|[...].rio_trigger_terminal_name
To set/get on all rio_triggers, you can call the property directly on the nidigital.Session.

Example: my_session.rio_trigger_terminal_name

The following table lists the characteristics of this property.

278 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | rio_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_RIO_TRIGGER_TERMINAL_NAME

rio_trigger_type

nidigital.Session.rio_trigger_type
Disables the rio trigger or configures it for hardware triggering. The default value is NONE.

Valid Values:
NONE Disables the conditional jump trigger.
DIGITAL EDGE | Configures the conditional jump trigger for hardware triggering.

Tip: This property can be set/get on specific rio_triggers within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container rio_triggers to specify a
subset.

Example: my_session.rio_triggers[...].rio_trigger_type
To set/get on all rio_triggers, you can call the property directly on the nidigital.Session.

Example: my_session.rio_trigger_type

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities | rio_triggers

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_RIO_TRIGGER_TYPE

selected_function

nidigital.Session.selected_function

Caution: In the Disconnect state, some 1/O protection and sensing circuitry remains exposed.
Do not subject the instrument to voltage beyond its operating range.

7.2. nidigital module

279

NI Modular Instruments Python APl Documentation, Release 1.4.2

Specifies whether digital pattern instrument channels are controlled by the pattern sequencer or
PPMU, disconnected, or off.

De-
fined
Val-
ues:
DIGJ TPhe pin is connected to the driver, comparator, and active load methods. The PPMU is not
sourcing, but can make voltage measurements. The state of the digital pin driver when you
change the nidigital.Session.selected function to Digital is determined
by the most recent call to the nidigital.Session.write_static () method or
the last vector of the most recently executed pattern burst, whichever happened last. Use
the nidigital.Session.write_static () method to control the state of the dig-
ital pin driver through software. Use the nidigital.Session.burst_pattern()
method to control the state of the digital pin driver through a pattern. Set the selectDig-
italFunction parameter of the nidigital.Session.burst_pattern () method
to True to automatically switch the nidigital.Session.selected function
of the pins in the pattern burst to DIGITAL.

PPMU The pin is connected to the PPMU. The driver, comparator, and active load are off while
this method is selected. Call the nidigital.Session.ppmu_source () method to
source a voltage or current. The nidigital.Session.ppmu_source () method
automatically switches the nidigital.Session.selected _function to the
PPMU state and starts sourcing from the PPMU. Changing the nidigital. Session.
selected_functionto DISCONNECT, OFF,or DIGITAL causes the PPMU to stop
sourcing. If you set the nidigital.Session.selected function property to
PPMU, the PPMU is initially not sourcing.

OFF'| The pin is electrically connected, and the PPMU and digital pin driver are off while this
method is selected.

DIS¢CIeEpif is electrically disconnected from instrument methods. Selecting this method
causes the PPMU to stop sourcing prior to disconnecting the pin.

Note: You can make PPMU voltage measurements using the nidigital.Session.
ppmu_measure () method from within any nidigital.Session.selected_function.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].selected_function
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.selected_function

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.SelectedFunction
Permissions read-write

Repeated Capabilities | channels, pins

280 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_SELECTED_FUNCTION

sequencer_flag_terminal_name

nidigital.Session.sequencer_ flag terminal_ name
Specifies the terminal name for the output trigger signal of the Sequencer Flags trigger. You can use
this terminal name as an input signal source for another trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_SEQUENCER_FLAG_TERMINAL_NAME

serial_number

nidigital.Session.serial_number
Returns the serial number of the device.

Tip: This property can be set/get on specific instruments within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].serial_number
To set/get on all instruments, you can call the property directly on the nidigital.Session.

Example: my_session.serial_number

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_SERIAL_NUMBER

7.2. nidigital module 281

NI Modular Instruments Python APl Documentation, Release 1.4.2

simulate

nidigital.Session.simulate
Simulates I/O operations. After you open a session, you cannot change the simulation state. Use the
nidigital.Session.__init__ () method to enable simulation.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_SIMULATE

specific_driver_class_spec_major_version

nidigital.Session.specific_driver class_spec_major_version
Returns the major version number of the class specification with which NI-Digital is compliant. This
property is not supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
 C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MAJOR_VERSION

specific_driver_class_spec_minor_version

nidigital.Session.specific_driver_ class_spec_minor_version
Returns the minor version number of the class specification with which NI-Digital is compliant.
This property is not supported.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

282 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

» C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MINOR_VERSION

specific_driver_description

nidigital.Session.specific_driver_description
Returns a string that contains a brief description of the NI-Digital Pattern driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_prefix

nidigital.Session.specific_driver_ prefix
Returns a string that contains the prefix for the NI-Digital Pattern driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_PREFIX

specific_driver_revision

nidigital.Session.specific_driver_revision
Returns a string that contains additional version information about the NI-Digital Pattern Driver. For
example, the driver can return Driver: NI-Digital 16.0 as the value of this property.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

7.2. nidigital module 283

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

nidigital.Session.specific_driver vendor
Returns a string (“National Instruments”) that contains the name of the vendor that supplies the

NI-Digital Pattern Driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_SPECIFIC_DRIVER_VENDOR

start_label

nidigital.Session.start_label
Specifies the pattern name or exported pattern label from which to start bursting the pattern.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_START_LABEL

start_trigger_terminal_name

nidigital.Session.start_trigger_ terminal_ name
Specifies the terminal name for the output trigger signal of the Start trigger. You can use this terminal
name as an input signal source for another trigger.

The following table lists the characteristics of this property.

284 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_START_TRIGGER_TERMINAL_NAME

start_trigger_type

nidigital.Session.start_trigger_type
Specifies the Start trigger type. The digital pattern instrument waits for this trigger af-
ter you call the nidigital.Session.init () method or the nidigital.Session.
burst_pattern () method, and does not burst a pattern until this trigger is received.

De-
fined
Val-
ues:
NONE| Disables the Start trigger. Pattern bursting starts immediately after you call
the nidigital.Session.init () method or the nidigital.Session.
burst_pattern () method.

DIGI[Pattérndiarsting does not start until the digital pattern instrument detects a digital edge.
SOF TiRatfern bursting does not start until the digital pattern instrument receives a software
Start trigger. Create a software Start trigger by calling the nidigital. Session.
send_software_edge_trigger () method and selecting start trigger in the trig-
ger parameter.Related information: SendSoftwareEdgeTrigger method.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_START_TRIGGER_TYPE

supported_instrument_models

nidigital.Session.supported_instrument_models
Returns a comma delimited string that contains the supported digital pattern instrument models for

7.2. nidigital module 285

NI Modular Instruments Python APl Documentation, Release 1.4.2

the specific driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_SUPPORTED_INSTRUMENT_MODELS

tdr_endpoint_termination

nidigital.Session.tdr_endpoint_termination
Specifies whether TDR Channels are connected to an open circuit or a short to ground.

The following table lists the characteristics of this property.

Characteristic Value

Datatype enums. TDREndpointTermination
Permissions read-write

Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_TDR_ENDPOINT_TERMINATION

tdr_offset

nidigital.Session.tdr_offset
Specifies the TDR Offset.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].tdr_offset
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.tdr_offset

The following table lists the characteristics of this property.

286 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value

Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

- C

Attribute: NIDIGITAL_ATTR_TDR_OFFSET

termination_mode

nidigital.Session.termination_mode

Specifi

es the behavior of the pin during non-drive cycles.

De-
fined
Val-
ues:

ACT]

[8pecifieDthat, for non-drive pin states (L, H, X, V, M, E), the active load is connected
and the instrument sources or sinks a defined amount of current to load the DUT. The
amount of current sourced by the instrument and therefore sunk by the DUT is specified
by IOL. The amount of current sunk by the instrument and therefore sourced by the DUT
is specified by IOH. The voltage at which the instrument changes between sourcing and
sinking is specified by VCOM.

VTE}

Ri8pecifies that, for non-drive pin states (L, H, X, V, M, E), the pin driver terminates the
pin to the configured VTERM voltage through a 50 2 impedance. VTERM is adjustable
to allow for the pin to terminate at a set level. This is useful for instruments that might
operate incorrectly if an instrument pin is unterminated and is allowed to float to any
voltage level within the instrument voltage range. To address this issue, enable VTERM
by configuring the VTERM pin level to the desired voltage and selecting the VTERM
termination mode. Setting VTERM to 0 V and selecting the VTERM termination mode
has the effect of connecting a 50 €2 termination to ground, which provides an effective
50 © impedance for the pin. This can be useful for improving signal integrity of certain
DUTs by reducing reflections while the DUT drives the pin.

HIGH

il Specifies that, for non-drive pin states (L, H, X, V, M, E), the pin driver is put in a high-
impedance state and the active load is disabled.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify

a subset.

Example: my_session.channels[...].termination_mode

To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.termination_mode

The following table lists the characteristics of this property.

7.2. nidigital module

287

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic Value

Datatype enums.TerminationMode
Permissions read-write

Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_TERMINATION_MODE

timing_absolute_delay

nidigital.Session.timing_absolute_delay

Specifies a timing delay, measured in seconds, and applies the delay to the digital pattern in-
strument in addition to TDR and calibration adjustments. If the nidigital.Session.
timing_absolute_delay_enabled property is set to True, this value is the intermod-
ule skew measured by NI-TClk. You can modify this value to override the timing de-
lay and align the I/O timing of this instrument with another instrument that shares the
same reference clock. If the nidigital.Session.timing absolute delay enabled
property is False, this property will return 0.0. Changing the nidigital.Session.
timing _absolute_delay_enabled property from False to True will set the nidigital.
Session.timing_absolute_delay value back to your previously set value.

Tip: This property can be set/get on specific instruments within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].timing_absolute_delay
To set/get on all instruments, you can call the property directly onthe nidigital.Session.

Example: my_session.timing_absolute_delay

The following table lists the characteristics of this property.

Characteristic Value

Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Repeated Capabilities | instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_TIMING_ABSOLUTE_DELAY

timing_absolute_delay_ enabled

nidigital.Session.timing_absolute_delay_ enabled
Specifies whether the nidigital.Session.timing absolute_delay property should be
applied to adjust the digital pattern instrument timing reference relative to other instruments in the

288 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

system. Do not use this feature with digital pattern instruments in a Semiconductor Test System
(STS). Timing absolute delay conflicts with the adjustment performed during STS timing calibration.
When set to True, the digital pattern instrument automatically adjusts the timing absolute delay to
correct the instrument timing reference relative to other instruments in the system for better timing
alignment among synchronized instruments.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities | None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_TIMING_ABSOLUTE_DELAY_ENABLED

vih

nidigital.Session.vih
Specifies the voltage that the digital pattern instrument will apply to the input of the DUT when the
test instrument drives a logic high (1).

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].vih
To set/get on all channels or pins, you can call the property directly onthe nidigital. Session.

Example: my_session.vih

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_VIH

vil

nidigital.Session.vil
Specifies the voltage that the digital pattern instrument will apply to the input of the DUT when the
test instrument drives a logic low (0).

7.2. nidigital module 289

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].vil
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.vil

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e C Attribute: NIDIGITAL_ATTR_VIL

voh

nidigital.Session.voh
Specifies the output voltage from the DUT above which the comparator on the digital pattern test
instrument interprets a logic high (H).

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels|[...].voh
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.voh

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* C Attribute: NIDIGITAL_ATTR_VOH

290 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

vol

nidigital.Session.vol
Specifies the output voltage from the DUT below which the comparator on the digital pattern test
instrument interprets a logic low (L).

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].vol
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.vol

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
» C Attribute: NIDIGITAL_ATTR_VOL

vterm

nidigital.Session.vterm
Specifies the termination voltage the digital pattern instrument applies during non-drive cycles when
the termination mode is set to V . The instrument applies the termination voltage through a 50 Q2
parallel termination resistance.

Tip: This property can be set/get on specific channels or pins within your nidigital.Session
instance. Use Python index notation on the repeated capabilities container channels or pins to specify
a subset.

Example: my_session.channels[...].vterm
To set/get on all channels or pins, you can call the property directly onthe nidigital.Session.

Example: my_session.vterm

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities | channels, pins

7.2. nidigital module 291

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e C Attribute: NIDIGITAL_ATTR_VTERM

NI-TCIk Support
nidigital.Session.telk
This is used to get and set NI-TClk attributes on the session.
See also:

See nitclk.SessionReference for a complete list of attributes.

Session

e Session
e Methods
— abort
— abort_keep_alive
— apply_levels_and_timing
— apply_tdr_offsets
— burst_pattern
— clock_generator_abort
— clock_generator_generate_clock
- close
- commit
— configure_active_load_levels
— configure_pattern_burst_sites
— configure_time_set_compare_edges_strobe
— configure_time_set_compare_edges_strobe2x
— configure_time_set_drive_edges
— configure_time_set_drive_edges2x
— configure_time_set_drive_format
— configure_time_set_edge
— configure_time_set_edge_multiplier
— configure_time_set_period
— configure_voltage_levels

— create_capture_waveform_from_file_digicapture

— create_capture_waveform_parallel

292

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

— create_capture_waveform_serial

— create_source_waveform_from_file_tdms
— create_source_waveform_parallel

— create_source_waveform_serial

— create_time_set

— delete_all time_sets

— disable_sites

— enable_sites

— fetch_capture_waveform

— fetch_history_ram_cycle_information
— frequency_counter_measure_frequency
— get_channel_names

— get_fail_count

— get_history_ram_sample_count

— get_pattern_pin_names

— get_pin_results_pin_information

— get_site_pass_fail

— get_time_set_drive_format

— get_time_set_edge

— get_time_set_edge_multiplier

— get_time_set_period

— initiate

— is_done

— is_site_enabled

— load_pattern

— load_pin_map

— load_specifications_levels_and_timing
— lock

— ppmu_measure

— ppmu_source

— read_sequencer_flag

— read_sequencer_register

— read_static

— reset

— reset_device

7.2. nidigital module 293

NI Modular Instruments Python APl Documentation, Release 1.4.2

— self_calibrate
— self _test
— send_software_edge_trigger
— tdr
— unload_all_patterns
— unload_specifications
— unlock
— wait_until_done
— write_sequencer_flag
— write_sequencer_register
— write_source_waveform_broadcast
— write_source_waveform_data_from_file_tdms
— write_source_waveform_site_unique
— write_static
* Properties
— active_load_ioh
— active_load_iol
— active_load_vcom
— cache
— channel_count
— clock_generator_frequency
— clock_generator_is_running
— conditional_jump_trigger_terminal_name
— conditional_jump_trigger_type
— cycle_number_history_ram_trigger_cycle_number
— digital_edge_conditional_jump_trigger_edge
— digital_edge_conditional_jump_trigger_source
— digital_edge_rio_trigger_edge
— digital_edge_rio_trigger_source
— digital_edge_start_trigger_edge
— digital_edge_start_trigger_source
— driver_setup
— exported_conditional_jump_trigger_output_terminal

— exported_pattern_opcode_event_output_terminal

— exported_rio_event_output_terminal

294 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

— exported_start_trigger_output_terminal

— frequency_counter_hysteresis_enabled

— frequency_counter_measurement_mode

— frequency_counter_measurement_time

— group_capabilities

— halt_on_keep_alive_opcode

— history_ram_buffer_size_per_site

— history_ram_cycles_to_acquire

— history_ram_max_samples_to_acquire_per_site
— history_ram_number_of _samples_is_finite
— history_ram_pretrigger_samples

— history_ram_trigger_type

— instrument_firmware_revision

— instrument_manufacturer

— instrument_model

— interchange_check

— io_resource_descriptor

— is_keep_alive_active

— logical_name

— mask_compare

— pattern_label_history_ram_trigger_cycle_offset
— pattern_label_history_ram_trigger_label
— pattern_label_history_ram_trigger_vector_offset
— pattern_opcode_event_terminal_name

— ppmu_allow_extended_voltage_range

— ppmu_aperture_time

— ppmu_aperture_time_units

— ppmu_current_level

— ppmu_current_level_range

— ppmu_current_limit

— ppmu_current_limit_behavior

— ppmu_current_limit_range

— ppmu_current_limit_supported

— ppmu_output_function

— ppmu_voltage_level

7.2. nidigital module 295

NI Modular Instruments Python APl Documentation, Release 1.4.2

— ppmu_voltage_limit_high

ppmu_voltage_limit_low

— query_instrument_status

— range_check

— record_coercions

— rio_event_terminal_name

— rio_trigger_terminal_name

— rio_trigger_type

— selected_function

— sequencer_flag_terminal_name
— serial_number

— simulate

— specific_driver_class_spec_major_version
— specific_driver_class_spec_minor_version
— specific_driver_description

— specific_driver_prefix

— specific_driver_revision

— specific_driver_vendor

— start_label

— start_trigger_terminal_name

— start_trigger_type

— supported_instrument_models
— tdr_endpoint_termination

— tdr_offset

— termination_mode

— timing_absolute_delay

— timing_absolute_delay_enabled
— vih

- il

— voh

— vol

vterm

* NI-TClk Support

296 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the underlying driver
function call. This can be the actual function based on the Session method being called, or it can be
the appropriate Get/Set Attribute function, suchas niDigital_SetAttributeviInt32 ().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities. The
parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or an integer.
If it is a string, you can indicate a range using the same format as the driver: *0-2’ or *0:2’

Some repeated capabilities use a prefix before the number and this is optional

channels

nidigital.Session.channels|[]

session.channels['0-2"].channel_enabled = True

passes a string of Y0, 1, 2’ to the set attribute function.

pins
nidigital.Session.pins][]
session.pins['0-2"].channel_enabled = True
passes a string of *0, 1, 2’ to the set attribute function.
instruments

nidigital.Session.instruments]|]

session.instruments['0-2"'].channel_enabled = True

passes a string of *0, 1, 2’ to the set attribute function.

pattern_opcode_events

nidigital.Session.pattern_opcode_events|[]
If no prefix is added to the items in the parameter, the correct prefix will be added when the driver
function call is made.

session.pattern_opcode_events['0-2'].channel_enabled = True

passes a string of ‘patternOpcodeEvent(, patternOpcodeEventl,
patternOpcodeEvent2’ to the set attribute function.

If an invalid repeated capability is passed to the driver, the driver will return an error.

7.2. nidigital module 297

NI Modular Instruments Python APl Documentation, Release 1.4.2

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix for
the specific repeated capability.

session.pattern_opcode_events|['patternOpcodeEventO-patternOpcodeEvent2'].
—channel_enabled True

passes a string of ‘patternOpcodeEvent0, patternOpcodeEventl,
patternOpcodeEvent2’ to the set attribute function.

conditional_jump_triggers

nidigital.Session.conditional_jump_triggers]|]
If no prefix is added to the items in the parameter, the correct prefix will be added when the driver
function call is made.

session.conditional_jump_triggers['0-2'].channel_enabled = True

passes a string of ‘conditionalJumpTrigger0, conditionalJumpTriggerl,
conditionalJumpTrigger2’ to the set attribute function.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix for
the specific repeated capability.

session.conditional_jump_triggers|['conditionalJumpTriggerO—
—conditionalJumpTrigger2'].channel_enabled = True

passes a string of ‘conditionalJumpTrigger0O, conditionalJumpTriggerl,
conditionalJumpTrigger?2’ to the set attribute function.

sites

nidigital.Session.sites[]
If no prefix is added to the items in the parameter, the correct prefix will be added when the driver
function call is made.

session.sites['0-2"].channel_enabled = True

passes a string of *siteO, sitel, site2’ to the set attribute function.
If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix for
the specific repeated capability.

True

session.sites['siteO-site2'].channel_enabled

passes a string of ‘site0, sitel, site2’ to the set attribute function.

rio_events

nidigital.Session.rio_events]|]
If no prefix is added to the items in the parameter, the correct prefix will be added when the driver
function call is made.

298 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

session.rio_events['0-2'"].channel _enabled = True

passes a string of ‘RIOEvent(0, RIOEventl, RIOEvent?2’ to the set attribute function.
If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix for
the specific repeated capability.

session.rio_events['RIOEvent0-RIOEvent2'].channel_enabled = True

passes a string of ‘RIOEvent0, RIOEventl, RIOEvent2’ to the set attribute function.

rio_triggers

nidigital.Session.rio_triggers][]
If no prefix is added to the items in the parameter, the correct prefix will be added when the driver
function call is made.

session.rio_triggers['0-2'].channel_enabled = True

passes astring of *‘RIOTrigger0, RIOTriggerl, RIOTrigger2’ tothe setattribute func-
tion.

If an invalid repeated capability is passed to the driver, the driver will return an error.

You can also explicitly use the prefix as part of the parameter, but it must be the correct prefix for
the specific repeated capability.

session.rio_triggers['RIOTrigger0-RIOTrigger2'].channel_enabled = True

passes astring of *‘RIOTrigger0, RIOTriggerl, RIOTrigger2’ tothe setattribute func-
tion.

Enums
Enums used in NI-Digital Pattern Driver
BitOrder

class nidigital.BitOrder

MSB
The most significant bit is first. The first bit is in the 2*n place, where n is the number of bits.

LSB
The least significant bit is first. The first bit is in the 20 place.

DigitalEdge

class nidigital.DigitalEdge

7.2. nidigital module 299

NI Modular Instruments Python APl Documentation, Release 1.4.2

RISING
Asserts the trigger when the signal transitions from low level to high level.

FALLING
Asserts the trigger when the signal transitions from high level to low level.

DriveFormat

class nidigital.DriveFormat

NR

Drive format remains at logic level after each bit.
RL

Drive format returns to a logic level low after each bit.
RH

Drive format returns to a logic level high after each bit.
SBC

Drive format returns to the complement logic level of the bit after each bit.

FrequencyMeasurementMode

class nidigital.FrequencyMeasurementMode

BANKED
Frequency measurements are made serially for groups of channels associated with a single frequency
counter for each group.

Maximum frequency measured: 200 MHz.

PARALLEL
Frequency measurements are made by multiple frequency counters in parallel.

Maximum frequency measured: 100 MHz.

HistoryRAMCyclesToAcquire

class nidigital.HistoryRAMCyclesToAcquire
FAILED

Acquires failed cycles.

ALL
Acquires all cycles.

HistoryRAMTriggerType

class nidigital.HistoryRAMTriggerType

300 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

FIRST FAILURE
First Failure History RAM trigger

CYCLE_NUMBER
Cycle Number History RAM trigger.

PATTERN_LABEL
Pattern Label History RAM trigger

PPMUApertureTimeUnits

class nidigital.PPMUApertureTimeUnits

SECONDS
Unit in seconds.

PPMUCurrentLimitBehavior

class nidigital.PPMUCurrentLimitBehavior

REGULATE
Controls output current so that it does not exceed the current limit. Power continues to generate even if the
current limit is reached.

PPMUMeasurementType

class nidigital.PPMUMeasurementType

CURRENT
The PPMU measures current.

VOLTAGE
The PPMU measures voltage.

PPMUOutputFunction

class nidigital.PPMUOutputFunction

VOLTAGE
The PPMU forces voltage to the DUT.

CURRENT
The PPMU forces current to the DUT.

PinState

class nidigital.PinState

7.2. nidigital module 301

NI Modular Instruments Python APl Documentation, Release 1.4.2

ZERO
A digital state of 0.
ONE
A digital state of 1.
L
A digital state of L (low).
H
A digital state of H (high).
X
A digital state of X (non-drive state).
M
A digital state of M (midband).
v
A digital state of V (compare high or low, not midband; store results from capture functionality if config-
ured).
D
A digital state of D (drive data from source functionality if configured).
E

A digital state of E (compare data from source functionality if configured).

NOT_A PIN_STATE
Not a pin state is used for non-existent DUT cycles.

PIN_STATE_NOT_ACQUIRED
Pin state could not be acquired because none of the pins mapped to the instrument in a multi-instrument
session had any failures.

SelectedFunction

class nidigital.SelectedFunction

DIGITAL
The pattern sequencer controls the specified pin(s). If a pattern is currently bursting, the pin immediately
switches to bursting the pattern. This option disconnects the PPMU.

PPMU
The PPMU controls the specified pin(s) and connects the PPMU. The pin driver is in a non-drive state,
and the active load is disabled. The PPMU does not start sourcing or measuring until Source or Mea-
sure(PpmuMeasurementType) is called.

OFF
Puts the digital driver in a non-drive state, disables the active load, disconnects the PPMU, and closes the
I/O switch connecting the instrument channel.

DISCONNECT
The I/O switch connecting the instrument channel is open to the I/O connector. If the PPMU is sourcing,
it is stopped prior to opening the I/O switch.

RIO
Yields control of the specified pin(s) to LabVIEW FPGA.

302

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

SequencerFlag

class nidigital.SequencerFlag

FLAGO
FLAG1
FLAG2

FLAG3

SequencerRegister

class nidigital.SequencerRegister

REGISTERO
REGISTER1
REGISTER2
REGISTER3
REGISTER4
REGISTERS
REGISTERG6
REGISTER7
REGISTERS
REGISTERY
REGISTERI1O0
REGISTER11
REGISTER12
REGISTER13
REGISTER14

REGISTER15

SoftwareTrigger

class nidigital.SoftwareTrigger

START
Overrides the start trigger.

CONDITIONAL_JUMP
Specifies to route a conditional jump trigger.

7.2. nidigital module 303

NI Modular Instruments Python APl Documentation, Release 1.4.2

SourceDataMapping

class nidigital.SourceDataMapping

BROADCAST
Broadcasts the waveform you specify to all sites.

SITE_UNIQUE
Sources unique waveform data to each site.

TDREndpointTermination

class nidigital.TDREndpointTermination

OPEN
TDR channels are connected to an open circuit.

SHORT_TO_GROUND

TDR channels are connected to a short to ground.

TerminationMode

class nidigital.TerminationMode

ACTIVE_LOAD

The active load provides a constant current to a commutating voltage (Vcom).

VTERM
The pin driver drives Vterm.

HIGH_Z

The pin driver is in a non-drive state (in a high-impedance state) and the active load is disabled.

TimeSetEdgeType

class nidigital.TimeSetEdgeType

DRIVE_ON
Specifies the drive on edge of the time set.

DRIVE_DATA
Specifies the drive data edge of the time set.

DRIVE_RETURN
Specifies the drive return edge of the time set.

DRIVE_OFF
Specifies the drive off edge of the time set.

COMPARE__ STROBE
Specifies the compare strobe of the time set.

304

Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

DRIVE_DATA2
Specifies the drive data 2 edge of the time set.

DRIVE_RETURN2
Specifies the drive return 2 edge of the time set.

COMPARE_ STROBE2
Specifies the compare strobe 2 of the time set.

TriggerType

class nidigital.TriggerType

NONE
Disables the start trigger.

DIGITAL_EDGE
Digital edge trigger.

SOFTWARE
Software start trigger.

WriteStaticPinState

class nidigital.WriteStaticPinState

ZERO
Specifies to drive low.

ONE
Specifies to drive high.

Specifies to not drive.
Exceptions and Warnings
Error

exception nidigital.errors.Error
Base exception type that all NI-Digital Pattern Driver exceptions derive from

DriverError

exception nidigital.errors.DriverError
An error originating from the NI-Digital Pattern Driver driver

UnsupportedConfigurationError

exception nidigital.errors.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

7.2. nidigital module

305

NI Modular Instruments Python APl Documentation, Release 1.4.2

DriverNotInstalledError

exception nidigital.errors.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

DriverTooOIdError

exception nidigital.errors.DriverTooOldError
An error due to using this module with an older version of the NI-Digital Pattern Driver driver
runtime.

DriverTooNewError

exception nidigital.errors.DriverTooNewError
An error due to the NI-Digital Pattern Driver driver runtime being too new for this module.

InvalidRepeatedCapabilityError

exception nidigital.errors.InvalidRepeatedCapabilityError
An error due to an invalid character in a repeated capability

SelfTestError

exception nidigital.errors.SelfTestError
An error due to a failed self-test

DriverWarning

exception nidigital.errors.DriverWarning
A warning originating from the NI-Digital Pattern Driver driver

Examples

You can download all nidigital examples here

nidigital_burst_with_start_trigger.py

Listing 5: (nidigital_burst_with_start_trigger.py)

#!/usr/bin/python

import argparse
import nidigital
import os
import sys

(continues on next page)

306 Chapter 7. License

https://github.com/ni/nimi-python/releases/download/1.4.2/nidigital_examples.zip
https://github.com/ni/nimi-python/blob/1.4.2/src/nidigital/examples/burst_with_start_trigger/nidigital_burst_with_start_trigger.py

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

def example (resource_name, options, trigger_source=None, trigger_edge=None) :
with nidigital.Session (resource_name=resource_name, options=options) as session:
dir = os.path.join(os.path.dirname(__file))

Load the pin map (.pinmap) created using the Digital Pattern Editor
pin_map_filename = os.path.join(dir, 'PinMap.pinmap')
session.load_pin_map (pin_map_filename)

Load the specifications (.specs), levels (.digilevels), and timing (.
—digitiming) sheets created using the Digital Pattern Editor

spec_filename = os.path.join(dir, 'Specifications.specs')

levels_filename = os.path.join(dir, 'PinLevels.digilevels')

timing_filename = os.path.join(dir, 'Timing.digitiming")

session.load_specifications_levels_and_timing(spec_filename, levels_filename,
—timing_filename)

Apply the settings from the levels and timing sheets we just loaded to the_
—session
session.apply_levels_and_timing(levels_filename, timing_filename)

Loading the pattern file (.digipat) created using the Digital Pattern Editor
pattern_filename = os.path.join(dir, 'Pattern.digipat')
session.load_pattern (pattern_filename)

if trigger_source is None:
print ('Start bursting pattern')

else:
Specify a source and edge for the external start trigger
session.start_trigger_type = nidigital.TriggerType.DIGITAL_EDGE
session.digital_edge_start_trigger_source = trigger_source
session.digital_edge_start_trigger_edge = nidigital.DigitalEdge.RISING if

—trigger_edge == 'Rising' else nidigital.DigitalEdge.FALLING

print ('Wait for start trigger and then start bursting pattern')

If start trigger is configured, waiting for the trigger to start bursting,
—and then blocks until the pattern is done bursting

Else just start bursting and block until the pattern is done bursting

session.burst_pattern(start_label="new_pattern')

Disconnect all channels using programmable onboard switching
session.selected_function = nidigital.SelectedFunction.DISCONNECT
print ('Done bursting pattern')

def _main(argsv):

parser = argparse.ArgumentParser (description='Demonstrates how to create and
—configure a session that bursts a pattern on the digital pattern instrument using a,_
—start trigger', formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument ('-n', '—-—resource-name', default='PXI1lSlot2,PXI1Slot3"', help=
— 'Resource name of a NI digital pattern instrument. Ensure the resource name matches_
—the instrument name in the pinmap file.')

parser.add_argument ('-s', '—--simulate', default='True', choices=['True', 'False'],
— help='Whether to run on simulated hardware or real hardware')

subparser = parser.add_subparsers (dest='command', help='Sub-command help")

start_trigger = subparser.add_parser('start-trigger', help='Configure start

—trigger') (continues on next page)

7.2. nidigital module 307

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

81

82

84

85

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

start_trigger.add_argument ('-ts', '—--trigger-source', default='/PXI1Slot2/PXI__
—Trig0', help='Source terminal for the start trigger')
start_trigger.add_argument ('-te', '—-—-trigger-edge', default='Rising', choices=][

—'Rising', 'Falling'], help='Trigger on rising edge or falling edge of start trigger
o)

args = parser.parse_args (argsv)

example (args.resource_name,

'Simulate=1, DriverSetup=Model:6571"' if args.simulate == 'True' else '',
args.trigger_source if args.command == 'start-trigger' else None,
args.trigger_edge if args.command == 'start-trigger' else None)

def main () :
_main(sys.argv([l:])

def test_main():
_main([])
_main(['start-trigger'])

def test_example():
resource_name = 'PXI1Slot2,PXI1Slot3’
options = {'simulate': True, 'driver_setup': {'Model': '6571'}, }
example (resource_name, options)

trigger_source = '/PXI1Slot2/PXI_Trig0"'
trigger_edge = 'Rising'
example (resource_name, options, trigger_source, trigger_edge)

if name == '__main__':

main ()

nidigital_configure_time_set_and_voltage_levels.py

Listing 6: (nidigital_configure_time_set_and_voltage_levels.py)

#!/usr/bin/python

import argparse
import nidigital
import os
import sys

class VoltageLevelsAndTerminationConfig() :
def _ init_ (self, wvil, vih, vol, voh, vterm, termination_mode, iol, ioh, wvcom):
self.vil = vil
self.vih = vih
self.vol = vol
self.voh = voh
self.vterm = vterm

(continues on next page)

308 Chapter 7. License

https://github.com/ni/nimi-python/blob/1.4.2/src/nidigital/examples/configure_time_set_and_voltage_levels/nidigital_configure_time_set_and_voltage_levels.py

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

60

61

62

63

64

65

66

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

self.termination_mode = termination_mode
self.iol = iol

self.ioh = ioh

self.vcom = vcom

class TimeSetConfig() :
def _ _init__ (self, time_set_name, period, drive_format, drive_on, drive_data,

—drive_return, drive_off, strobe_edge):
self.time_set_name = time_set_name
self.period = period
self.drive_format = drive_format
self.drive_on = drive_on
self.drive_data = drive_data
self.drive_return = drive_return
self.drive_off = drive_off
self.strobe_edge = strobe_edge

def convert_drive_format (drive_format) :
converter = {'NR': nidigital.DriveFormat.NR,
'RL': nidigital.DriveFormat.RL,
'RH': nidigital.DriveFormat.RH,
'SBC': nidigital.DriveFormat.SBC}
return converter.get (drive_format, None)

def example (resource_name,
options,
channels,
voltage_config,
time_set_configqg):

with nidigital.Session (resource_name=resource_name, options=options) as session:

)

dir = os.path.dirname(fil

D

Load pin map (.pinmap) created using Digital Pattern Editor
pin_map_filename = os.path.join(dir, 'PinMap.pinmap')
session.load_pin_map (pin_map_filename)

Configure voltage levels and terminal voltage through driver API
session.channels[channels].configure_voltage_levels (voltage_config.vil,
—voltage_config.vih, voltage_config.vol, voltage_config.voh, voltage_config.vterm)

if voltage_config.termination_mode == 'High Z':
session.channels[channels].termination_mode = nidigital.TerminationMode.
HIGH_ 2
elif voltage_config.termination_mode == 'Active_ Load':
session.channels[channels] .termination_mode = nidigital.TerminationMode.

—ACTIVE_LOAD
session.channels[channels] .configure_active_load_levels (voltage_config.
—~iol, voltage_config.ioh, voltage_config.vcom)
else:
session.channels[channels].termination_mode = nidigital.TerminationMode.
—VTERM

Configure time set through driver APT

(continues on next page)

7.2. nidigital module 309

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

session.create_time_set (time_set_config.time_set_name) # Must match time set,
—name 1in pattern file
session.configure_time_set_period(time_set_config.time_set_name, time_set_
—config.period)
session.channels[channels].configure_time_set_drive_edges (time_set_config.
—time_set_name, convert_drive_format (time_set_config.drive_format),
time_set_config.
—drive_on, time_set_config.drive_data,
time_set_config.
—~drive_return, time_set_config.drive_off)
session.channels[channels].configure_time_set_compare_edges_strobe (time_set_
—config.time_set_name, time_set_config.strobe_edge)

Load the pattern file (.digipat) created using Digital Pattern Editor
pattern_filename = os.path.join(dir, 'Pattern.digipat')
session.load_pattern (pattern_filename)

Burst pattern, blocks until the pattern is done bursting
session.burst_pattern(start_label="new_pattern')
print ('Start bursting pattern')

Disconnect all channels using programmable onboard switching
session.selected_function = nidigital.SelectedFunction.DISCONNECT
print ('Done bursting pattern')

def _main(argsv):

parser = argparse.ArgumentParser (description='Demonstrates how to create an_
—instrument session, configure time set and voltage levels, and burst a pattern on,
—~the digital pattern instrument.', formatter_class=argparse.
—ArgumentDefaultsHelpFormatter)

parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2,PXI1Slot3"', help=
—'Resource name of a NI digital pattern instrument, ensure the resource name matches
—the instrument name in the pinmap file.')

parser.add_argument ('-s', '--simulate', default='True', choices=['True', 'False'],
— help='Whether to run on simulated hardware or on real hardware')
parser.add_argument ('-c', '—--channels', default='PinGroupl', help='Channel (s)/

—Pin(s) to configure')

Parameters to configure voltage

parser.add_argument ('--vil', default=0, type=float, help='The voltage that the_
—instrument will apply to the input of the DUT when the pin driver drives a logic,
—low (0)")

parser.add_argument ('--vih', default=3.3, type=float, help='The voltage that the_
—instrument will apply to the input of the DUT when the test instrument drives a_
—~logic high (1)")

parser.add_argument ('--vol', default=1.6, type=float, help='The output voltage,
—below which the comparator on the pin driver interprets a logic low (L)"')

parser.add_argument ('--voh', default=1.7, type=float, help='The output voltage_
—above which the comparator on the pin driver interprets a logic high (H)"')

parser.add_argument ('--vterm', default=2, type=float, help='The termination_
—voltage the instrument applies during non-drive cycles when the termination mode is_,
—~set to Vterm')

parser.add_argument ('-term-mode', '—-termination-mode', default='High 7', |
—choices=['High_Z', 'Active_Load', 'Three_Level_Drive'])
parser.add_argument ('--iol', default=0.002, type=float, help='The maximum current,

—that the DUT sinks while outputting a voltage below VCOM')

(continues on next page)

310 Chapter 7. License

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

parser.add_argument ('-—-ioh', default=-0.002, type=float, help='The maximum_
—current that the DUT sources while outputting a voltage above VCOM')

parser.add_argument ('--vcom', default=0.0, type=float, help='The commutating,
—voltage level at which the active load circuit switches between sourcing current,
—and sinking current')

Parameters to configure timeset

parser.add_argument ('--period', default=0.00000002, type=float, help='Period in_,
—second')

parser.add_argument ('-format', '--drive-format', default='NR', choices=['NR', 'RL
—', 'RH', 'SBC'], help='Non-return | Return to low | Return to high | Surround by,
—complement')

parser.add_argument ('--drive-on', default=0, type=float, help='The delay in_
—seconds from the beginning of the vector period for turning on the pin driver')

parser.add_argument ('-—-drive-data', default=0, type=float, help='The delay in_
—seconds from the beginning of the vector period until the pattern data is driven to_
—the pattern value')

parser.add_argument ('-—-drive-return', default=0.000000015, type=float, help='The_
—delay in seconds from the beginning of the vector period until the pin changes from_
—the pattern data to the return value, as specified in the format.')

parser.add_argument ('-—drive-off', default=0.00000002, type=float, help='The
—delay in seconds from the beginning of the vector period to turn off the pin driver
—when the next vector period uses a non-drive symbol (L, H, X, V, M, E).")

parser.add_argument ('-—strobe-edge', default=0.00000001, type=float, help='The_
—time in second when the comparison happens within a vector period')

args = parser.parse_args (argsv)
voltage_config = VoltagelLevelsAndTerminationConfig(args.vil, args.vih, args.vol,
—args.voh, args.vterm, args.termination_mode, args.iol, args.ioh, args.vcom)
time_set_config = TimeSetConfig("tset0", args.period, args.drive_format, args.
—~drive_on, args.drive_data, args.drive_return, args.drive_off, args.strobe_edge)
example (args.resource_name,
'Simulate=1, DriverSetup=Model:6571' if args.simulate == 'True' else '',
args.channels,
voltage_config,
time_set_confiqg)

def main() :
_main(sys.argv([1l:])

def test_main():
_main([])

def test_example():

resource_name = 'PXI1Slot2,PXI1Slot3"'
options = {'simulate': True, 'driver_setup': {'Model': '6571'}, }
channels = 'PinGroupl'

voltage_config = VoltagelevelsAndTerminationConfig(vil=0, vih=3.3, wvol=1.6, wvoh=1.
7, vterm=2,
termination_mode='Active_ Load',
— 101=0.002, ioh=-0.002, wvcom=0)
time_set_config = TimeSetConfig(time_set_name="tsetO",
period=0.00000002,
drive_format="NR',

(continues on next page)

7.2. nidigital module 311

140

141

142

143

144

145

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

drive_on=0, drive_data=0, drive_return=0.
—~000000015, drive_off=0.00000002, strobe_edge=0.00000001)
example (resource_name, options, channels, voltage_config, time_set_config)

if name == '__main '

main ()

nidigital_ppmu_source_and_measure.py

Listing 7: (nidigital_ppmu_source_and_measure.py)

#!/usr/bin/python

import argparse
import nidigital
import os

import pytest
import sys
import time

def example (resource_name, options, channels, measure, aperture_time,

source=None, settling_time=None, current_level_ range=None, current_
—level=None,

voltage_limit_high=None, voltage_limit_low=None, current_limit_range=None,
— voltage_level=None) :

with nidigital.Session (resource_name=resource_name, options=options) as session:
dir = os.path.join(os.path.dirname(file))

Load pin map (.pinmap) created using Digital Pattern Editor
pin_map_filename = os.path.join(dir, 'PinMap.pinmap')
session.load_pin_map (pin_map_filename)

Configure the PPMU measurement aperture time

session.channels[channels] .ppmu_aperture_time = aperture_time

session.channels[channels] .ppmu_aperture_time_units = nidigital.
—PPMUApertureTimeUnits.SECONDS

Configure and source
if source == 'source-current':
session.channels[channels] .ppmu_output_function = nidigital.
—PPMUOutputFunction.CURRENT

session.channels[channels] .ppmu_current_level_range = current_level_range
session.channels[channels] .ppmu_current_level = current_level

[] .ppmu_voltage_limit_high = voltage_limit_high

[]

.ppmu_voltage_limit_low = voltage_limit_low

session.channels[channels

session.channels[channels
session.channels[channels] .ppmu_source ()

Settling time between sourcing and measuring

(continues on next page)

312 Chapter 7. License

https://github.com/ni/nimi-python/blob/1.4.2/src/nidigital/examples/ppmu_source_and_measure/nidigital_ppmu_source_and_measure.py

40
41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

81

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

time.sleep(settling_time)

elif source == 'source-voltage':
session.channels[channels] .ppmu_output_function = nidigital.
—PPMUOutputFunction.VOLTAGE

session.channels[channels] .ppmu_current_limit_range = current_limit_range
session.channels[channels] .ppmu_voltage_level = voltage_level

session.channels[channels] .ppmu_source ()

Settling time between sourcing and measuring
time.sleep(settling_time)

pin_info = session.channels[channels].get_pin_results_pin_information ()

Measure
if measure == 'current':
current_measurements = session.channels[channels].ppmu_measure (nidigital.
—PPMUMeasurementType .CURRENT)

print ('{:<6} {:<20} {:<10}"'.format ('Site', 'Pin Name', 'Current'))

for pin, current in zip(pin_info, current_measurements) :
print (' {:<6d} (:<20} {:<10f}".format (pin.site_number, pin.pin_name,
—>current))
else:
voltage_measurements = session.channels|[channels].ppmu_measure (nidigital.

—PPMUMeasurementType .VOLTAGE)
print ('{:<6} {:<20} {:<10}"'.format ('Site', 'Pin Name', 'Voltage'))

for pin, voltage in zip(pin_info, voltage_measurements) :

print (' {:<6d} (:<20} {:<10f}".format (pin.site_number, pin.pin_name,
—voltage))

Disconnect all channels using programmable onboard switching
session.channels[channels].selected_function = nidigital.SelectedFunction.
—~DISCONNECT

def _main(argsv):

parser = argparse.ArgumentParser (description='Demonstrates how to source/measure,,
—voltage/current using the PPMU on selected channels/pins of the digital pattern,
—instrument',

formatter_class=argparse.

—ArgumentDefaultsHelpFormatter)

parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2,PXI1Slot3', help=
— 'Resource name of a NI digital pattern instrument, ensure the resource name matches_
—the instrument name in the pinmap file.')

parser.add_argument ('-s', '--simulate', default='True', choices=['True', 'False'],
— help="'Whether to run on simulated hardware or on real hardware')

parser.add_argument ('-c', '—--channels', default='DUTPinl, SystemPinl', help=
—'"Channel (s) /Pin(s) to use')

parser.add_argument ('-m', '—--measure', default='voltage', choices=['voltage',
—'current'], help='Measure voltage or measure current')

parser.add_argument ('-at', '—-—-aperture-time', default=0.000004, type=float, help=
—'"Aperture time in seconds') (continues on next page)

7.2. nidigital module 313

82

83

84

87

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

subparser = parser.add_subparsers (dest='source', help='Sub-command help, by,
—default it measures voltage and does not source')

source_current = subparser.add_parser ('source-current', help='Source current')

source_current.add_argument ('-clr', '—--current-level-range', default=0.000002,
—type=float, help='Current level range in amps')

source_current.add_argument ('-cl', '—--current-level', default=0.000002,
—type=float, help='Current level in amps')

source_current.add_argument ('-vlh', '--voltage-limit-high', default=3.3,
—type=float, help='Voltage limit high in volts"')

source_current.add_argument ('-v1l', '—--voltage-limit-low', default=0, type=float,

—help='Voltage limit low in volts')
source_current.add_argument ('-st', '--settling-time', default=0.01, type=float,
—help='Settling time in seconds')

source_voltage = subparser.add_parser ('source-voltage', help='Source voltage')

source_voltage.add_argument ('-clr', '—-current-limit-range', default=0.000002,
—type=float, help='Current limit range in amps"')

source_voltage.add_argument ('-vl', '--voltage-level', default=3.3, type=float,
—help="'Voltage level in volts')

source_voltage.add_argument ('-st', '—--settling-time', default=0.01, type=float,

—help='Settling time in seconds')
args = parser.parse_args (argsv)

if args.source == 'source-current':
example (

args.resource_name,
'Simulate=1, DriverSetup=Model:6571"' if args.simulate == 'True' else '',
args.channels,
args.measure,
args.aperture_time,
args.source,
args.settling_time,
args.current_level_range,
args.current_level,
args.voltage_limit_high,
args.voltage_limit_low)

elif args.source == 'source-voltage':
example (
args.resource_name,
'Simulate=1, DriverSetup=Model:6571' if args.simulate == 'True' else '',

args.channels,
args.measure,
args.aperture_time,
args.source,
args.settling_time,
current_limit_range=args.current_limit_range,
voltage_level=args.voltage_level)
else:
if args.measure == 'current':
raise ValueError ('Cannot measure current on a channel that is not,
—sourcing voltage or current')

example (
args.resource_name,
'Simulate=1, DriverSetup=Model:6571"' if args.simulate == 'True' else '',

args.channels,

(continues on next page)

314 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

129 args.measure,

130 args.aperture_time)

131

132

133 |def main () :

134 _main(sys.argv[l:])

135

136

137 |def test_main():

138 _main([])

139 _main(['-m', 'voltage'])

140 with pytest.raises (Exception):

141 _main(['-m', 'current'])

142 _main(['-m', 'voltage', 'source-current'])

143 _main(['-m', 'current', 'source-current'])

144 _main(['-m', 'voltage', 'source-voltage'])

145 _main(['-m', 'current', 'source-voltage'])

146

147

us |def test_example():

149 resource_name = 'PXI1Slot2,PXI1Slot3"'

150 options = {'simulate': True, 'driver_setup': {'Model': '6571'}, }
151 channels = 'DUTPinl, SystemPinl'

152 aperture_time = 0.000004

153

154 example (resource_name, options, channels, 'voltage',

155 aperture_time)

156 with pytest.raises (Exception):

157 example (resource_name, options, channels, 'current',
158 aperture_time)

159

160 settling_time = 0.01

161 current_level_range = 0.000002

162 current_level = 0.000002

163 voltage_limit_high = 3.3

164 voltage_limit_low = 0

165 example (resource_name, options, channels, 'voltage',

166 aperture_time, 'source-current', settling_time,
167 current_level_range, current_level,

168 voltage_limit_high, voltage_limit_low)

169 example (resource_name, options, channels, 'current',

170 aperture_time, 'source-current', settling_time,
171 current_level_range, current_level,

172 voltage_limit_high, voltage_limit_low)

173

174 current_limit_range = 0.000002

175 voltage_level = 3.3

176 example (resource_name, options, channels, 'voltage',

177 aperture_time, 'source-voltage', settling_time,
178 current_limit_range=current_limit_range,

179 voltage_level=voltage_level)

180 example (resource_name, options, channels, 'current',

181 aperture_time, 'source-voltage', settling_time,
182 current_limit_range=current_limit_range,

183 voltage_level=voltage_level)

184

185

(continues on next page)

7.2. nidigital module 315

186

187

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

if name ' main :

main ()

7.3 nidmm module

7.3.1 Installation

As a prerequisite to using the nidmm module, you must install the NI-DMM runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-DMM) can be installed with pip:

’$ python -m pip install nidmm~=1.4.2

Or easy_install from setuptools:

’$ python -m easy_install nidmm

7.3.2 Usage

The following is a basic example of using the nidmm module to open a session to a DMM and perform a 5.5 digits of
resolution voltage measurement in the 10 V range.

import nidmm

with nidmm.Session ("Devl") as session:
session.configureMeasurementDigits (nidmm.Function.DC_VOLTS, 10, 5.5)
print ("Measurement: " + str(session.read()))

Other usage examples can be found on GitHub.

7.3.3 API Reference

Session

class nidmm.Session (self, resource_name, id_query=False, reset_device=False, options={})
This method completes the following tasks:

e Creates a new IVI instrument driver session and, optionally, sets the initial state of the
following session properties: nidmm.Session.RANGE_CHECK, nidmm.Session.
QUERY_INSTR_STATUS, nidmm.Session.CACHE, nidmm.Session.simulate, nidmm.
Session.RECORD_COERCIONS.

* Opens a session to the device you specify for the Resource_Name parameter. If the ID_Query parameter
is set to True, this method queries the instrument ID and checks that it is valid for this instrument driver.

« If the Reset_Device parameter is set to True, this method resets the instrument to a known state. Sends
initialization commands to set the instrument to the state necessary for the operation of the instrument
driver.

* Returns a ViSession handle that you use to identify the instrument in all subsequent instrument driver
method calls.

316 Chapter 7. License

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools
https://github.com/ni/nimi-python/tree/master/src/nidmm/examples

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: One or more of the referenced properties are not in the Python API for this driver.

Parameters

* resource_name (str)—

Caution: All IVI names for the Resource_Name, such as logical names or virtual
names, are case-sensitive. If you use logical names, driver session names, or virtual
names in your program, you must make sure that the name you use matches the name
in the IVI Configuration Store file exactly, without any variations in the case of the
characters in the name.

Contains the resource_name of the device to initialize. The resource_name is assigned in
Measurement & Automation Explorer (MAX). Refer to Related Documentation for the NI
Digital Multimeters Getting Started Guide for more information about configuring and
testing the DMM in MAX.

Valid Syntax:

NI-DAQmx name
DAQ::NI-DAQmx name|[::INSTR]
DAQ::Traditional NI-DAQ device number[::INSTR]

IVI logical name

* id_query (bool) — Verifies that the device you initialize is one that the driver supports.
NI-DMM automatically performs this query, so setting this parameter is not necessary. De-
fined Values:

True (default) | 1 | Perform ID Query
False 0 | Skip ID Query

* reset_device (bool) — Specifies whether to reset the instrument during the initializa-
tion procedure. Defined Values:

True (default) | 1 | Reset Device
False 0 | Don’t Reset

* options (dict) — Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

7.3. nidmm module 317

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

NI Modular Instruments Python APl Documentation, Release 1.4.2

Property Default
range_check True
query_instrument_status | False
cache True
simulate False
record_value_coersions False
driver_setup {}

Methods

abort

nidmm. Session.abort ()
Aborts a previously initiated measurement and returns the DMM to the Idle state.

close

nidmm.Session.close ()
Closes the specified session and deallocates resources that it reserved.

Note: This method is not needed when using the session context manager

configure_measurement_absolute

nidmm.Session.configure_measurement_absolute (measurement_function, range,

resolution_absolute)
Configures the common properties of the measurement. These properties include

nidmm.Session.method, nidmm.Session.range, and nidmm.Session.
resolution_absolute.

Parameters

* measurement_function (nidmm.Function) — Specifies the measure-
ment_function used to acquire the measurement. The driver sets nidmm.
Session.method to this value.

* range (float) — Specifies the range for the method specified in the Mea-
surement_Function parameter. When frequency is specified in the Measure-
ment_Function parameter, you must supply the minimum frequency expected in
the range parameter. For example, you must type in 100 Hz if you are measuring
101 Hz or higher. For all other methods, you must supply a range that exceeds the
value that you are measuring. For example, you must type in 10 V if you are measur-
ing 9 V. range values are coerced up to the closest input range. Refer to the Devices
Overview for a list of valid ranges. The driver sets nidmm. Session.range to
this value. The default is 0.02 V.

318 Chapter 7. License

https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

NIDMM_VAL:- AUTONIRBNIM_forms an Auto Range before acquiring the
1.0 | measurement.

NIDMM_VAIL- AUTONIRBNIM sefFhe Range to the current nidmm. Session.
2.0 | auto_range_ value and uses this range for all subse-
quent measurements until the measurement configuration is

changed.
NIDMM_VAI- AUTONIRBNIM_Giécforms an Auto Range before acquir-
3.0 | ing the measurement. The nidmm.Session.

auto_range_value is stored and used for all sub-
sequent measurements until the measurement configuration
is changed.

Note: The NI 4050, NI 4060, and NI 4065 only support Auto Range when the
trigger and sample trigger are set to IMMEDIATE.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

* resolution_absolute (float) — Specifies the absolute resolution for the
measurement. NI-DMM sets nidmm. Session.resolution _absolute to
this value. The PXIe-4080/4081/4082 uses the resolution you specify. The NI 4065
and NI 4070/4071/4072 ignore this parameter when the Range parameter is set to
NIDMM_VAL_AUTO_RANGE_ON (-1.0) or NIDMM_VAL_AUTO_RANGE_ONCE (-
3.0). The default is 0.001 V.

Note: NI-DMM ignores this parameter for capacitance and inductance measure-
ments on the NI 4072. To achieve better resolution for such measurements, use the
nidmm.Session.lc_number_meas_to_average property.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

configure_measurement_digits

nidmm.Session.configure_measurement_digits (measurement_function, range, res-

olution_digits)
Configures the common properties of the measurement. These properties include

nidmm.Session.method, nidmm.Session.range, and nidmm.Session.
resolution_digits.

Parameters

* measurement_function (nidmm.Function) — Specifies the measure-
ment_function used to acquire the measurement. The driver sets nidmm.
Session.method to this value.

* range (float) — Specifies the range for the method specified in the Mea-
surement_Function parameter. When frequency is specified in the Measure-

7.3.

nidmm module 319

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

ment_Function parameter, you must supply the minimum frequency expected in
the range parameter. For example, you must type in 100 Hz if you are measuring
101 Hz or higher. For all other methods, you must supply a range that exceeds the
value that you are measuring. For example, you must type in 10 V if you are measur-
ing 9 V. range values are coerced up to the closest input range. Refer to the Devices
Overview for a list of valid ranges. The driver sets nidmm. Session.range to
this value. The default is 0.02 V.

NIDMM_ VAL- AUTONIRBNIME afforms an Auto Range before acquiring the
1.0 | measurement.

NIDMM_VAL: AUTONIRDNIM se&tF the Range to the current nidmm. Session.
2.0 | auto_range_value and uses this range for all subse-
quent measurements until the measurement configuration is

changed.
NIDMM_VAL- AUTONIRDNIM_Giéefirms an Auto Range before acquir-
3.0 | ing the measurement. The nidmm.Session.

auto_range_value is stored and used for all sub-
sequent measurements until the measurement configuration
is changed.

Note: The NI 4050, NI 4060, and NI 4065 only support Auto Range when the
trigger and sample trigger are set to IMMEDIATE.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

* resolution_digits (float) — Specifies the resolution of the measurement
in digits. The driver sets the Devices Overview for a list of valid ranges. The
driver sets nidmm.Session.resolution_digits property to this value.
The PXIe-4080/4081/4082 uses the resolution you specify. The NI 4065 and
NI 4070/4071/4072 ignore this parameter when the Range parameter is set to
NIDMM_VAIL_AUTO_RANGE_ON (-1.0) or NIDMM_VAL_AUTO_RANGE_ONCE (-
3.0). The default is 5%%.

Note: NI-DMM ignores this parameter for capacitance and inductance measure-
ments on the NI 4072. To achieve better resolution for such measurements, use the
nidmm.Session.lc_number_meas_to_average property.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

320 Chapter 7. License

https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

configure_multi_point

nidmm.Session.configure_multi_point (trigger_count, sample_count, sam-
ple_trigger=nidmm.SampleTrigger.IMMEDIATE,
sample_interval=hightime.timedelta(seconds=-

1))
Configures the properties for multipoint measurements. These properties include nidmm.
Session.trigger._count, nidmm.Session.sample_count, nidmm.Session.

sample_trigger,and nidmm.Session.sample_ interval.

For continuous acquisitions, set nidmm. Session.trigger_count or nidmm.Session.
sample_count to zero. For more information, refer to Multiple Point Acquisitions, Triggering,
and Using Switches.

Parameters

* trigger_ count (int) — Sets the number of triggers you want the DMM to
receive before returning to the Idle state. The driver sets nidmm.Session.
trigger_count to this value. The default value is 1.

e sample_count (int) — Sets the number of measurements the DMM makes
in each measurement sequence initiated by a trigger. The driver sets nidmm.
Session.sample_count to this value. The default value is 1.

* sample_trigger (nidmm.SampleTrigger)— Specifies the sample_trigger
source you want to use. The driver sets nidmm. Session.sample_trigger
to this value. The default is Immediate.

Note: To determine which values are supported by each device, refer to the Lab-
Windows/CVI Trigger Routing section.

* sample_interval (hightime.timedelta, datetime.timedelta,
or float in seconds) — Sets the amount of time in seconds the DMM
waits between measurement cycles. The driver sets nidmm.Session.
sample_interval to this value. Specify a sample interval to add settling time
between measurement cycles or to decrease the measurement rate. sample_interval
only applies when the Sample_Trigger is set to INTERVAL.

On the NI 4060, the sample_interval value is used as the settling time. When sam-
ple interval is set to 0, the DMM does not settle between measurement cycles. The
NI 4065 and NI 4070/4071/4072 use the value specified in sample_interval as addi-
tional delay. The default value (-1) ensures that the DMM settles for a recommended
time. This is the same as using an Immediate trigger.

Note: This property is not used on the NI 4080/4081/4082 and the NI 4050.

configure_rtd_custom

nidmm.Session.configure_rtd custom (rtd_a, rtd_b, rtd_c)
Configures the A, B, and C parameters for a custom RTD.

Parameters

7.3. nidmm module 321

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

e rtd_a (float) — Specifies the Callendar-Van Dusen A coefficient for RTD
scaling when RTD Type parameter is set to Custom in the nidmm.Session.
configure_rtd_type () method. The default is 3.9083e-3 (Pt3851)

e rtd_b (float) — Specifies the Callendar-Van Dusen B coefficient for RTD
scaling when RTD Type parameter is set to Custom in the nidmm. Session.
configure_ rtd_ type () method. The default is -5.775e-7 (Pt3851).

e rtd_c (float) — Specifies the Callendar-Van Dusen C coefficient for RTD
scaling when RTD Type parameter is set to Custom in the nidmm. Session.
configure_rtd_type () method. The default is -4.183e-12 (Pt3851).

configure_rtd_type

nidmm.Session.configure_rtd_type (rtd_type, rtd_resistance)
Configures the RTD Type and RTD Resistance parameters for an RTD.

Parameters

* rtd_type (nidmm.RTDType) — Specifies the type of RTD used to measure the
temperature resistance. NI-DMM uses this value to set the RTD Type property. The
defaultis PT3851.

322 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

Enum Standards Ma- | TCR| Typ- | Notes
te- | (a) | ical
rial Ro
(©2)
Callendar-
Van
Dusen
Coeffi-
cient
PT3851 | IEC-751 Plat-| .003§5100 | A = 3.9083 | Most
DIN 43760 | inum Q x 1032 B = | com-
BS 1904 1000 | —5.775%10:sup:—7 | mon
ASTM-E1137 Q C = | RTDs
EN-60751 —4.183%10:sup:—12
PT3750 | Low-cost ven- | Plat-| .003750000| A = 3.81 | Low-
dor compliant | inum Q x 102 B = | cost
RTD* —6.02x10:sup:=7 | RTD
C =
—6.0x10:sup:—12
PT3916 | JISC 1604 Plat-| .00391600 | A = 3.9739 | Used in
inum Q x 102 B = | primar-
—5.870x10:sup:—7 | ily in
C=-44x10" Japan
PT3920 | US Industrial | Plat-| .00392000 | A = 3.9787 | Low-
Standard D- | inum Q x 10% B = cost
100 American -5.8686x10:sup:—7] RTD
C = 4167
x10712
pPT3911 | US Indus- | Plat-| .00391100 | A = 3.9692 | Low-
trial Standard | inum| Q x 103 B = | cost
American —-5.8495%10:sup:—7] RTD
C = 4233
x10712
pPT3928 | ITS-90 Plat-| .00392800 | A = 3.9888 | The
inum Q x 103 B = | defini-
—5.915%10:sup:—7 | tion of
C=-3.85x10""2 | temper-
ature
*No
stan-
dard.
Check
the
TCR.

* rtd_resistance (float) — Specifies the RTD resistance in ohms at 0 °C. NI-
DMM uses this value to set the RTD Resistance property. The default is 100 (£2).

7.3. nidmm module 323

https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

configure_thermistor_custom

nidmm.Session.configure_thermistor_custom (thermistor_a, thermistor_b, thermis-
th_c)
Configures the A, B, and C parameters for a custom thermistor.
Parameters

* thermistor_a (float) — Specifies the Steinhart-Hart A coefficient for ther-
mistor scaling when Thermistor Type is set to Custom in the nidmm. Session.
ConfigureThermistorType () method. The default is 1.0295¢e-3 (44006).

Note: One or more of the referenced methods are not in the Python API for this
driver.

* thermistor_b (float) — Specifies the Steinhart-Hart B coefficient for ther-
mistor scaling when Thermistor Type is set to Custom in the nidmm. Session.
ConfigureThermistorType () method. The default is 2.391e-4 (44006).

Note: One or more of the referenced methods are not in the Python API for this
driver.

* thermistor_c (float) — Specifies the Steinhart-Hart C coefficient for ther-
mistor scaling when Thermistor Type is set to Custom in the nidmm.Session.
ConfigureThermistorType () method. The default is 1.568e-7 (44006).

Note: One or more of the referenced methods are not in the Python API for this
driver.

configure_thermocouple

nidmm.Session.configure_thermocouple (thermocouple_type, refer-
ence_junction_type=nidmm.ThermocoupleReferenceJunctionType. FIXED
Configures the thermocouple type and reference junction type for a chosen thermocouple.

Parameters

* thermocouple_type (nidmm. ThermocoupleType)— Specifies the type of
thermocouple used to measure the temperature. NI-DMM uses this value to set the
Thermocouple Type property. The default is J.

Thermocouple type B
Thermocouple type E
Thermocouple type J

Thermocouple type K
Thermocouple type N
Thermocouple type R
Thermocouple type S

Thermocouple type T

Hlh ™| =X G| EH D

324 Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

* reference_junction_type (nidmm. ThermocoupleReferencedJunctionType)
— Specifies the type of reference junction to be used in the reference junc-
tion compensation of a thermocouple measurement. NI-DMM uses this value
to set the Reference Junction Type property. The only supported value is
NIDMM_VAL_TEMP_REF_JUNC_FIXED.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

configure_trigger

nidmm.Session.configure_ trigger (trigger_source, trigger_delay=hightime.timedelta(seconds=-
1))
Configures the DMM Trigger_Source and Trigger_Delay. Refer to Triggering and Using Switches
for more information.

Parameters

* trigger_source (nidmm.TriggerSource) - Specifies the trig-
ger_source that initiates the acquisition. The driver sets nidmm.Session.
trigger._source to this value. Software configures the DMM to wait until
nidmm.Session.send_software trigger () is called before triggering
the DMM.

Note: To determine which values are supported by each device, refer to the Lab-
Windows/CVI Trigger Routing section.

* trigger_delay (hightime.timedelta, datetime.timedelta,
or float in seconds) — Specifies the time that the DMM waits after it
has received a trigger before taking a measurement. The driver sets the nidmm.
Session.trigger._delay property to this value. By default, trigger_delay
is NIDMM_VAL_AUTO_DELAY (-1), which means the DMM waits an appropriate
settling time before taking the measurement. On the NI 4060, if you set trig-
ger_delay to 0, the DMM does not settle before taking the measurement. The NI
4065 and NI 4070/4071/4072 use the value specified in trigger_delay as additional
settling time.

Note: When using the NI 4050, Trigger_Delay must be set to
NIDMM_VAL_AUTO_DELAY (-1).

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

configure_waveform_acquisition

nidmm. Session.configure_waveform_acquisition (measurement_function, range,

rate, waveform_points)
Configures the DMM for waveform acquisitions. This feature is supported on the NI

7.3. nidmm module 325

https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

4080/4081/4082 and the NI 4070/4071/4072.
Parameters

* measurement_function (nidmm.Function) — Specifies the measure-
ment_function used in a waveform acquisition. The driver sets nidmm.
Session.method to this value.

WAVEFORM_VOLTAGE (default) | 1003 | Voltage Waveform
WAVEFORM_CURRENT 1004 | Current Waveform

* range (float) — Specifies the expected maximum amplitude of the input sig-
nal and sets the range for the Measurement_Function. NI-DMM sets nidmm.
Session.range to this value. range values are coerced up to the closest input
range. The default is 10.0.

For valid ranges refer to the topics in Devices.
Auto-ranging is not supported during waveform acquisitions.

* rate (float) — Specifies the rate of the acquisition in samples per second. NI-
DMM sets nidmm. Session.waveform_ rate to this value.

The valid Range is 10.0-1,800,000 S/s. rate values are coerced to the closest integer
divisor of 1,800,000. The default value is 1,800,000.

* waveform points (int) — Specifies the number of points to acquire be-
fore the waveform acquisition completes. NI-DMM sets nidmm.Session.
waveform points to this value.

To calculate the maximum and minimum number of waveform points that you can
acquire in one acquisition, refer to the Waveform Acquisition Measurement Cycle.

The default value is 500.

disable

nidmm.Session.disable ()
Places the instrument in a quiescent state where it has minimal or no impact on the system to which
it is connected. If a measurement is in progress when this method is called, the measurement is
aborted.

export_attribute_configuration_buffer

nidmm.Session.export_attribute_configuration_buffer ()
Exports the property configuration of the session to the specified configuration buffer.

You can export and import session property configurations only between devices with identical
model numbers.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-DMM returns an error.

Coercion Behavior for Certain Devices

Imported and exported property configurations contain coerced values for the following NI-DMM
devices:

326

Chapter 7. License

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.4.2

PXI/PCI/PCIe/USB-4065
PXI/PCI-4070
* PXI-4071

* PXI-4072

NI-DMM coerces property values when the value you set is within the allowed range for the property
but is not one of the discrete valid values the property supports. For example, for a property that
coerces values up, if you choose a value of 4 when the adjacent valid values are 1 and 10, the
property coerces the value to 10.

Related Topics:
Using Properties and Properties with NI-DMM

Setting Properties Before Reading Properties

Note: Not supported on the PCMCIA-4050 or the PXI/PCI-4060.

Return type bytes

Returns Specifies the byte array buffer to be populated with the exported property config-
uration.

export_attribute_configuration_file

nidmm.Session.export_attribute_configuration_file (file_path)
Exports the property configuration of the session to the specified file.

You can export and import session property configurations only between devices with identical
model numbers.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-DMM returns an error.

Coercion Behavior for Certain Devices

Imported and exported property configurations contain coerced values for the following NI-DMM
devices:

* PXI/PCI/PCIe/USB-4065
* PXI/PCI-4070

* PXI-4071

* PXI-4072

NI-DMM coerces property values when the value you set is within the allowed range for the property
but is not one of the discrete valid values the property supports. For example, for a property that
coerces values up, if you choose a value of 4 when the adjacent valid values are 1 and 10, the
property coerces the value to 10.

Related Topics:
Using Properties and Properties with NI-DMM

Setting Properties Before Reading Properties

7.3. nidmm module 327

https://docs.python.org/3/library/stdtypes.html#bytes

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: Not supported on the PCMCIA-4050 or the PXI/PCI-4060.

Parameters file_ path (str) — Specifies the absolute path to the file to contain the
exported property configuration. If you specify an empty or relative path, this method
returns an error. Default file extension: .nidmmconfig

fetch

nidmm. Session. fetch (maximum_time=hightime.timedelta(milliseconds=-1))
Returns the value from a previously initiated measurement. You must call nidmm.Session.
_initiate () before calling this method.

Parameters maximum_ time (hightime.timedelta, datetime.
timedelta, or int in milliseconds) — Specifies the maxi-
mum_time allowed for this method to complete in milliseconds. If the

method does not complete within this time interval, the method returns the
NIDMM_ERROR_MAX_TIME_EXCEEDED error code. This may happen if an
external trigger has not been received, or if the specified timeout is not long enough
for the acquisition to complete.

The valid range is 0-86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

Return type float

Returns The measured value returned from the DMM.

fetch_multi_point

nidmm.Session.fetch_multi_point (array_size, maximum_time=hightime.timedelta(milliseconds=-

1))

Returns an array of values from a previously initiated multipoint measurement. The number of
measurements the DMM makes is determined by the values you specify for the Trigger_Count and
Sample_Count parameters of nidmm.Session.configure multi_point (). You must
firstcall nidmm. Session._initiate () to initiate a measurement before calling this method.

Parameters

* array_size (int)- Specifies the number of measurements to acquire. The max-
imum number of measurements for a finite acquisition is the (Trigger Count x Sam-
ple Count) parameters in nidmm. Session.configure multi_point ().

For continuous acquisitions, up to 100,000 points can be returned at once. The
number of measurements can be a subset. The valid range is any positive Vilnt32.
The default value is 1.

* maximum_time (hightime.timedelta, datetime.timedelta, or
int in milliseconds) — Specifies the maximum_time allowed for this
method to complete in milliseconds. If the method does not complete within this

328 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

time interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been received, or if the
specified timeout is not long enough for the acquisition to complete.

The wvalid range is 0-86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type

fetch_waveform

nidmm. Session. fetch_waveform (array_size, maximum_time=hightime.timedelta(milliseconds=-

For the NI 4080/4081/4082 and the NI 4070/4071/4072, returns an array of values from a previously
initiated waveform acquisition. You must call nidmm.Session._initiate () before calling

tuple (reading_array, actual_number_of_points)
WHERE

reading_array (array.array(“d”)):

An array of measurement values.

Note: The size of the Reading_Array must be at least the size that you specify
for the Array_Size parameter.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

1))

this method.

Parameters

* array_size (int) — Specifies the number of waveform points to return. You
specify the total number of points that the DMM acquires in the Waveform Points
parameter of nidmm. Session.configure _waveform acquisition().
The default value is 1.

* maximum_time (hightime.timedelta, datetime.timedelta, or
int in milliseconds) — Specifies the maximum_time allowed for this
method to complete in milliseconds. If the method does not complete within this
time interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been received, or if the
specified timeout is not long enough for the acquisition to complete.

The valid range is 0-86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

7.3. nidmm module

329

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type
tuple (waveform_array, actual_number_of_points)
WHERE
waveform_array (array.array(“d”)):

Waveform Array is an array of measurement values stored in waveform data
type.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

fetch_waveform_into

nidmm. Session. fetch_waveform_into (array_size, maximum_time=hightime.timedelta(milliseconds=-
1))
For the NI 4080/4081/4082 and the NI 4070/4071/4072, returns an array of values from a previously

initiated waveform acquisition. You must call nidmm.Session._initiate () before calling
this method.

Parameters

* waveform_array (numpy.array (dtype=numpy.floaté64)) — Wave-
form Array is an array of measurement values stored in waveform data type.

* maximum time (hightime.timedelta, datetime.timedelta, or
int in milliseconds) — Specifies the maximum_time allowed for this
method to complete in milliseconds. If the method does not complete within this
time interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been received, or if the
specified timeout is not long enough for the acquisition to complete.

The wvalid range is 0-86400000. The default wvalue is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type
tuple (waveform_array, actual_number_of_points)
WHERE
waveform_array (numpy.array(dtype=numpy.float64)):

Waveform Array is an array of measurement values stored in waveform data
type.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

330 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

get_cal_date_and_time

nidmm.Session.get_cal_date_and_ time (cal_type)
Returns the date and time of the last calibration performed.

Note: The NI 4050 and NI 4060 are not supported.

Parameters cal_type (int)— Specifies the type of calibration performed (external or
self-calibration).

NIDMM_VAL_INTERNAL_AREA (default) | O | Self-Calibration
NIDMM_VAL_EXTERNAL_AREA 1 External Calibration

Note: The NI 4065 does not support self-calibration.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

Return type hightime.datetime

Returns Indicates date and time of the last calibration.

get_dev_temp

nidmm.Session.get_dev_temp (options="")
Returns the current Temperature of the device.

Note: The NI 4050 and NI 4060 are not supported.

Parameters options (st r)— Reserved.
Return type float

Returns Returns the current temperature of the device.

get_ext_cal_recommended_interval

nidmm.Session.get_ext_cal_ recommended interval ()
Returns the recommended interval between external recalibration in Months.

Note: The NI 4050 and NI 4060 are not supported.

Return type hightime.timedelta

Returns Returns the recommended number of months between external calibrations.

7.3. nidmm module 331

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

NI Modular Instruments Python APl Documentation, Release 1.4.2

get_last_cal_temp

nidmm.Session.get_last_cal_temp (cal_type)
Returns the Temperature during the last calibration procedure.

Note: The NI 4050 and NI 4060 are not supported.

Parameters cal_type (int)— Specifies the type of calibration performed (external or
self-calibration).

NIDMM_VAL_INTERNAL_AREA (default) | O | Self-Calibration
NIDMM_VAL_EXTERNAL_AREA 1 External Calibration

Note: The NI 4065 does not support self-calibration.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

Return type float

Returns Returns the temperature during the last calibration.

get_self_cal_supported

nidmm.Session.get_self_ cal_supported()
Returns a Boolean value that expresses whether or not the DMM that you are using can perform
self-calibration.

Return type bool
Returns

Returns whether Self Cal is supported for the device specified by the given session.

True | 1 | The DMM that you are using can perform self-calibration.
False | O | The DMM that you are using cannot perform self-calibration.

import_attribute_configuration_buffer

nidmm.Session.import_attribute_configuration_buffer (configuration)
Imports a property configuration to the session from the specified configuration buffer.

You can export and import session property configurations only between devices with identical
model numbers.

Coercion Behavior for Certain Devices

Imported and exported property configurations contain coerced values for the following NI-DMM
devices:

332 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

NI Modular Instruments Python APl Documentation, Release 1.4.2

PXI/PCI/PCIe/USB-4065
PXI/PCI-4070

* PXI-4071

* PXI-4072

NI-DMM coerces property values when the value you set is within the allowed range for the property
but is not one of the discrete valid values the property supports. For example, for a property that
coerces values up, if you choose a value of 4 when the adjacent valid values are 1 and 10, the
property coerces the value to 10.

Related Topics:
Using Properties and Properties with NI-DMM

Setting Properties Before Reading Properties

Note: Not supported on the PCMCIA-4050 or the PXI/PCI-4060.

Parameters configuration (bytes) — Specifies the byte array buffer that contains
the property configuration to import.

import_attribute_configuration_file

nidmm.Session.import_attribute_ configuration_file (file_path)
Imports a property configuration to the session from the specified file.

You can export and import session property configurations only between devices with identical
model numbers.

Coercion Behavior for Certain Devices

Imported and exported property configurations contain coerced values for the following NI-DMM
devices:

» PXI/PCI/PCIe/USB-4065
* PXI/PCI-4070

* PXI-4071

* PXI-4072

NI-DMM coerces property values when the value you set is within the allowed range for the property
but is not one of the discrete valid values the property supports. For example, for a property that
coerces values up, if you choose a value of 4 when the adjacent valid values are 1 and 10, the
property coerces the value to 10.

Related Topics:
Using Properties and Properties with NI-DMM

Setting Properties Before Reading Properties

Note: Not supported on the PCMCIA-4050 or the PXI/PCI-4060.

7.3. nidmm module 333

https://docs.python.org/3/library/stdtypes.html#bytes
javascript:LaunchHelp('DMM.chm::/setting_before_reading_attributes')

NI Modular Instruments Python APl Documentation, Release 1.4.2

Parameters file_path (str) — Specifies the absolute path to the file containing the
property configuration to import. If you specify an empty or relative path, this method
returns an error. Default File Extension: .nidmmconfig

initiate

nidmm.Session.initiate ()
Initiates an acquisition. After you call this method, the DMM leaves the Idle state and enters the
Wait-for-Trigger state. If trigger is set to Immediate mode, the DMM begins acquiring measure-
ment data. Use nidmm.Session.fetch (), nidmm.Session.fetch multi_point (),
or nidmm.Session.fetch _waveform/() to retrieve the measurement data.

Note: This method will return a Python context manager that will initiate on entering and abort on
exit.

lock

nidmm.Session.lock ()
Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:
* The application called the nidmm. Session. lock () method.
* A call to NI-DMM locked the session.

» After a call to the nidmm. Session. lock () method returns successfully, no other threads can access
the device session until you call the nidmm. Session.unlock () method or exit out of the with block
when using lock context manager.

e Use the nidmm. Session.lock () method and the nidmm. Session.unlock () method around a
sequence of calls to instrument driver methods if you require that the device retain its settings through the
end of the sequence.

You can safely make nested calls to the nidmm. Session.lock () method within the same thread. To
completely unlock the session, you must balance each call to the nidmm. Session.lock () method with a
call to the nidmm. Session.unlock () method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

with nidmm.Session('devl') as session:
with session.lock():
Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type context manager

Returns When used in a with statement, nidmm. Session.lock () acts as a context manager
and unlock will be called when the with block is exited

334 Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

perform_open_cable_comp

nidmm. Session.perform open_cable_comp ()
For the NI 4082 and NI 4072 only, performs the open cable compensation measurements for the
current capacitance/inductance range, and returns open cable compensation Conductance and Sus-
ceptance values. You can use the return values of this method as inputs to nidmm.Session.
ConfigureOpenCableCompValues ().

This method returns an error if the value of the nidmm. Session.method property is not set to
CAPACITANCE (1005) or INDUCTANCE (1006).

Note: One or more of the referenced methods are not in the Python API for this driver.

Return type
tuple (conductance, susceptance)
WHERE
conductance (float):
conductance is the measured value of open cable compensation conductance.
susceptance (float):

susceptance is the measured value of open cable compensation susceptance.

perform_short_cable_comp

nidmm. Session.perform_short_cable_comp ()
Performs the short cable compensation measurements for the current capacitance/inductance range,
and returns short cable compensation Resistance and Reactance values. You can use the return val-
ues of this method as inputs to nidmm. Session.ConfigureShortCableCompValues ().

This method returns an error if the value of the nidmm. Session.method property is not set to
CAPACITANCE (1005) or INDUCTANCE (1006).

Note: One or more of the referenced methods are not in the Python API for this driver.

Return type
tuple (resistance, reactance)
WHERE
resistance (float):
resistance is the measured value of short cable compensation resistance.
reactance (float):

reactance is the measured value of short cable compensation reactance.

7.3. nidmm module 335

NI Modular Instruments Python APl Documentation, Release 1.4.2

read

nidmm. Session.read (maximum_time=hightime.timedelta(milliseconds=-1))
Acquires a single measurement and returns the measured value.

Parameters maximum time (hightime.timedelta, datetime.
timedelta, or int in milliseconds) — Specifies the maxi-
mum_time allowed for this method to complete in milliseconds. If the

method does not complete within this time interval, the method returns the
NIDMM_ERROR_MAX_TIME_EXCEEDED error code. This may happen if an
external trigger has not been received, or if the specified timeout is not long enough
for the acquisition to complete.

The valid range is 0-86400000. The default value is
NIDMM_VAL_TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

Return type float

Returns The measured value returned from the DMM.

read_multi_point

nidmm. Session.read_multi_point (array_size, maximum_time=hightime.timedelta(milliseconds=-

1))
Acquires multiple measurements and returns an array of measured values. The number of mea-

surements the DMM makes is determined by the values you specify for the Trigger_Count and
Sample_Count parameters in nidmm. Session.configure _multi_point ().

Parameters

* array_size (int)- Specifies the number of measurements to acquire. The max-
imum number of measurements for a finite acquisition is the (Trigger Count x Sam-
ple Count) parameters in nidmm. Session.configure_multi_point ().

For continuous acquisitions, up to 100,000 points can be returned at once. The
number of measurements can be a subset. The valid range is any positive Vilnt32.
The default value is 1.

e maximum_time (hightime.timedelta, datetime.timedelta, or
int in milliseconds) — Specifies the maximum_time allowed for this
method to complete in milliseconds. If the method does not complete within this
time interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been received, or if the
specified timeout is not long enough for the acquisition to complete.

The valid range is 0-86400000. The default value is
NIDMM_VAL_ TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this

336 Chapter 7. License

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

driver. Enums that only define values, or represent True/False, have been removed.

Return type
tuple (reading_array, actual_number_of_points)
WHERE
reading_array (array.array(“d”)):

An array of measurement values.

Note: The size of the Reading_Array must be at least the size that you specify
for the Array_Size parameter.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

read_status

nidmm.Session.read status()
Returns measurement backlog and acquisition status. Use this method to determine how many
measurements are available before calling nidmm.Session.fetch (), nidmm.Session.
fetch _multi_point (),or nidmm.Session.fetch_waveform().

Note: The NI 4050 is not supported.

Return type
tuple (acquisition_backlog, acquisition_status)
WHERE
acquisition_backlog (int):

The number of measurements available to be read. If the backlog continues to
increase, data is eventually overwritten, resulting in an error.

Note: On the NI 4060, the Backlog does not increase when autoranging. On
the NI 4065, the Backlog does not increase when Range is set to AUTO RANGE
ON (-1), or before the first point is fetched when Range is set to AUTO RANGE
ONCE (-3). These behaviors are due to the autorange model of the devices.

acquisition_status (nidmm.AcquisitionStatus):

Indicates status of the acquisition. The following table shows the acquisition
states:

0 | Running

1 | Finished with backlog

2 | Finished with no backlog
3 | Paused

4 | No acquisition in progress

7.3. nidmm module 337

NI Modular Instruments Python APl Documentation, Release 1.4.2

read_waveform

nidmm. Session.read_waveform (array_size, maximum_time=hightime.timedelta(milliseconds=-

1))
For the NI 4080/4081/4082 and the NI 4070/4071/4072, acquires a waveform and returns data as

an array of values or as a waveform data type. The number of elements in the Waveform_Array is
determined by the values you specify for the Waveform_Points parameter in nidmm. Session.
configure waveform acquisition ().

Parameters

* array_size (int) — Specifies the number of waveform points to return. You
specify the total number of points that the DMM acquires in the Waveform Points
parameter of nidmm. Session.configure_waveform acquisition().
The default value is 1.

e maximum time (hightime.timedelta, datetime.timedelta, or
int in milliseconds) — Specifies the maximum_time allowed for this
method to complete in milliseconds. If the method does not complete within this
time interval, the method returns the NIDMM_ERROR_MAX_TIME_EXCEEDED
error code. This may happen if an external trigger has not been received, or if the
specified timeout is not long enough for the acquisition to complete.

The wvalid range is 0-86400000. The default value is
NIDMM_VAL_ TIME_LIMIT_AUTO (-1). The DMM calculates the timeout
automatically.

Note: One or more of the referenced values are not in the Python API for this
driver. Enums that only define values, or represent True/False, have been removed.

Return type
tuple (waveform_array, actual_number_of_points)
WHERE
waveform_array (array.array(“d”)):

An array of measurement values.

Note: The size of the Waveform_Array must be at least the size that you specify
for the Array_Size parameter.

actual_number_of_points (int):

Indicates the number of measured values actually retrieved from the DMM.

reset

nidmm.Session.reset ()
Resets the instrument to a known state and sends initialization commands to the instrument. The
initialization commands set instrument settings to the state necessary for the operation of the instru-
ment driver.

338 Chapter 7. License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Modular Instruments Python APl Documentation, Release 1.4.2

reset_with_defaults

nidmm.Session.reset_with defaults ()
Resets the instrument to a known state and sends initialization commands to the DMM. The initial-
ization commands set the DMM settings to the state necessary for the operation of NI-DMM. All
user-defined default values associated with a logical name are applied after setting the DMM.

self_cal

nidmm.Session.self cal()
For the NI 4080/4081/4082 and the NI 4070/4071/4072, executes the self-calibration routine to
maintain measurement accuracy.

Note: This method calls nidmm. Session.reset (), and any configurations previous to the
call will be lost. All properties will be set to their default values after the call returns.

self_test

nidmm.Session.self_ test ()
Performs a self-test on the DMM to ensure that the DMM is functioning properly. Self-test does not
calibrate the DMM. Zero indicates success.

On the NI 4080/4082 and NI 4070/4072, the error code 1013 indicates that you should check the
fuse and replace it, if necessary.

Raises SelfTestError on self test failure. Properties on exception object:
* code - failure code from driver

* message - status message from driver

Note: Self-test does not check the fuse on the NI 4065, NI 4071, and NI 4081. Hence, even if the
fuse is blown on the device, self-test does not return error code 1013.

Note: This method calls nidmm. Session.reset (), and any configurations previous to the
call will be lost. All properties will be set to their default values after the call returns.

send_software_trigger

nidmm.Session.send_software_trigger ()
Sends a command to trigger the DMM. Call this method if you have configured either the nidmm.
Session.trigger_source or nidmm.Session.sample_ trigger properties. If the
nidmm.Session.trigger_sourceand/or nidmm.Session.sample_ trigger proper-
ties are set to NIDMM_VAL_EXTERNAL or NIDMM_VAL_TTLn, you can use this method to over-
ride the trigger source that you configured and trigger the device. The NI 4050 and NI 4060 are not
supported.

7.3. nidmm module

339

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

unlock

nidmm. Session.unlock ()
Releases a lock that you acquired on an device session using nidmm. Session.lock (). Refer to nidmm.
Session.unlock () for additional information on session locks.

Properties

ac_max_freq

nidmm.Session.ac_max freq
Specifies the maximum frequency component of the input signal for AC measurements. This prop-
erty is used only for error checking and verifies that the value of this parameter is less than the
maximum frequency of the device. This property affects the DMM only when you set the nidmm.
Session.method property to AC measurements. The valid range is 1 Hz-300 kHz for the NI
4070/4071/4072, 10 Hz-100 kHz for the NI 4065, and 20 Hz-25 kHz for the NI 4050 and NI 4060.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Measurement Options:Max Frequency
» C Attribute: NIDMM_ATTR_AC_MAX_ FREQ

ac_min_freq

nidmm.Session.ac_min_freq
Specifies the minimum frequency component of the input signal for AC measurements. This prop-
erty affects the DMM only when you set the nidmm. Session.method property to AC measure-
ments. The valid range is 1 Hz-300 kHz for the NI 4070/4071/4072, 10 Hz-100 kHz for the NI 4065,
and 20 Hz-25 kHz for the NI 4050 and NI 4060.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

340 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

* LabVIEW Property: Configuration:Measurement Options:Min Frequency
¢ C Attribute: NIDMM_ATTR_AC_MIN_FREQ

adc_calibration

nidmm.Session.adc_calibration
For the NI 4070/4071/4072 only, specifies the ADC calibration mode.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.ADCCalibration
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Measurement Options:ADC Calibration
* C Attribute: NIDMM_ATTR_ADC_CALIBRATION

aperture_time

nidmm. Session.aperture_time

Specifies the measurement aperture time for the current configuration. Aperture time
is specified in units set by nidmm.Session.aperture time _units. To override
the default aperture, set this property to the desired aperture time after calling nidmm.
Session.ConfigureMeasurement (). To return to the default, set this property to
NIDMM_VAL_APERTURE_TIME_AUTO (-1). On the NI 4070/4071/4072, the minimum aperture
time is 8.89 usec, and the maximum aperture time is 149 sec. Any number of powerline cycles
(PLCs) within the minimum and maximum ranges is allowed on the NI 4070/4071/4072. On the NI
4065 the minimum aperture time is 333 ps, and the maximum aperture time is 78.2 s. If setting the
number of averages directly, the total measurement time is aperture time X the number of averages,
which must be less than 72.8 s. The aperture times allowed are 333 ps, 667 ps, or multiples of 1.11
ms-for example 1.11 ms, 2.22 ms, 3.33 ms, and so on. If you set an aperture time other than 333
us, 667 ps, or multiples of 1.11 ms, the value will be coerced up to the next supported aperture time.
On the NI 4060, when the powerline frequency is 60 Hz, the PLCs allowed are 1 PLC, 6 PLC, 12
PLC, and 120 PLC. When the powerline frequency is 50 Hz, the PLCs allowed are 1 PLC, 5 PLC,
10 PLC, and 100 PLC.

Note: One or more of the referenced methods are not in the Python API for this driver.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

7.3. nidmm module 341

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Configuration:Advanced:Aperture Time
* C Attribute: NIDMM_ATTR_APERTURE_TIME

aperture_time_units

nidmm.Session.aperture_time_units
Specifies the units of aperture time for the current configuration. The NI 4060 does not support an
aperture time set in seconds.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.ApertureTimeUnits
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Advanced:Aperture Time Units
e C Attribute: NIDMM_ATTR_APERTURE_TIME_UNITS

auto_range_value

nidmm. Session.auto_range_value
Specifies the value of the range. If auto ranging, shows the actual value of the active range. The
value of this property is set during a read operation.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Auto Range Value
e C Attribute: NIDMM_ATTR_AUTO_RANGE_VALUE

342 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

auto_zero

nidmm.Session.auto_zero
Specifies the AutoZero mode. The NI 4050 is not supported.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.AutoZero
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Measurement Options:Auto Zero
* C Attribute: NIDMM_ATTR_AUTO_ZERO

buffer_size

nidmm.Session.buffer_ size
Size in samples of the internal data buffer. Maximum is 134,217,727 (OX7FFFFFF) samples. When
set to NIDMM_VAL_BUFFER_SIZE_AUTO (-1), NI-DMM chooses the buffer size.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Multi Point Acquisition:Advanced:Buffer Size
* C Attribute: NIDMM_ATTR_BUFFER_SIZE

cable_comp_type

nidmm. Session.cable_comp_type
For the NI 4072 only, the type of cable compensation that is applied to the current capacitance or
inductance measurement for the current range. Changing the method or the range through this prop-
erty or through nidmm. Session.configure_measurement_digits () resets the value of
this property to the default value.

The following table lists the characteristics of this property.

7.3. nidmm module 343

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic | Value
Datatype enums.CableCompensationType
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Cable Compensation Type

* C Attribute: NIDMM_ATTR_CABLE_COMP_TYPE

channel_count

nidmm.Session.channel count
Indicates the number of channels that the specific instrument driver supports. For each property for
which the IVI_VAL_MULTI_CHANNEL flag property is set, the IVI engine maintains a separate
cache value for each channel.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Instrument Capabilities:Channel Count
* C Attribute: NIDMM_ATTR_CHANNEL_COUNT

current_source

nidmm.Session.current_source
Specifies the current source provided during diode measurements. The NI 4050 and NI 4060 are not
supported.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Measurement Options: Current Source
e C Attribute: NIDMM_ATTR_CURRENT_SOURCE

344 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

dc_bias

nidmm.Session.dec_bias
For the NI 4072 only, controls the available DC bias for capacitance measurements.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Advanced:DC Bias

» C Attribute: NIDMM_ATTR_DC_BIAS

dc_noise_rejection

nidmm.Session.dc_noise_rejection
Specifies the DC noise rejection mode. The NI 4050 and NI 4060 are not supported.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.DCNoiseRejection
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Measurement Options:DC Noise Rejection
* C Attribute: NIDMM_ATTR_DC_NOISE_REJECTION

driver_setup

nidmm. Session.driver_setup
This property indicates the Driver Setup string that the user specified when initializing the driver.
Some cases exist where the end-user must specify instrument driver options at initialization time. An
example of this is specifying a particular instrument model from among a family of instruments that
the driver supports. This is useful when using simulation. The end-user can specify driver-specific
options through the DriverSetup keyword in the optionsString parameter to the niDMM Init With
Options.vi. If the user does not specify a Driver Setup string, this property returns an empty string.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only

7.3. nidmm module 345

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:User Options:Driver Setup
* C Attribute: NIDMM_ATTR_DRIVER_SETUP

freq_voltage _auto_range

nidmm. Session.freq voltage_auto_range
For the N14070/4071/4072 only, specifies the value of the frequency voltage range. If Auto Ranging,
shows the actual value of the active frequency voltage range. If not Auto Ranging, the value of this
property is the same as that of nidmm. Session.freq voltage range.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

¢ LabVIEW Property: Configuration:Measurement Options:Frequency Voltage Auto Range
Value

» C Attribute: NIDMM_ATTR_FREQ_VOLTAGE_AUTO_RANGE

freq_voltage_range

nidmm. Session.freq voltage_range
Specifies the maximum amplitude of the input signal for frequency measurements.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Measurement Options:Frequency Voltage Range
e C Attribute: NIDMM_ATTR_FREQ_VOLTAGE_RANGE

function

nidmm.Session.function
Specifies the measurement method. Refer to the nidmm. Session.method topic in the NI Dig-
ital Multimeters Help for device-specific information. If you are setting this property directly,

346 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

you must also set the nidmm. Session.operation_mode property, which controls whether
the DMM takes standard single or multipoint measurements, or acquires a waveform. If you are
programming properties directly, you must set the nidmm. Session.operation_mode prop-
erty before setting other configuration properties. If the nidmm. Session.operation_mode
property is set to WAVEFORM, the only valid method types are WAVEFORM_VOLTAGE and
WAVEFORM_CURRENT. Set the nidmm. Session.operation_mode property to IVIDMM to
set all other method values.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.Function
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Function
e C Attribute: NIDMM_ATTR_FUNCTION

input_resistance

nidmm.Session.input_resistance
Specifies the input resistance of the instrument. The NI 4050 and NI 4060 are not supported.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Measurement Options:Input Resistance
* C Attribute: NIDMM_ATTR_INPUT_RESISTANCE

instrument_firmware_revision

nidmm.Session.instrument_firmware_ revision
A string containing the instrument firmware revision number.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.3. nidmm module 347

NI Modular Instruments Python APl Documentation, Release 1.4.2

e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument
Firmware Revision

e C Attribute: NIDMM_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

nidmm.Session.instrument_manufacturer
A string containing the manufacturer of the instrument.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Manu-
facturer

* C Attribute: NIDMM_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

nidmm. Session.instrument_model
A string containing the instrument model.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Model
* C Attribute: NIDMM_ATTR_INSTRUMENT_MODEL

instrument_product_id

nidmm. Session.instrument_product_id
The PCI product ID.

The following table lists the characteristics of this property.

348 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic | Value
Datatype i

nt

Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Prod-

uct ID

* C Attribute: NIDMM_ATTR_INSTRUMENT_PRODUCT_ID

io_resource_descriptor

nidmm.Session.io_resource_descriptor
A string containing the resource descriptor of the instrument.

The following table lists the characteristics of this property.

Characteristic | Value

Datatype

str

Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:I/O Resource

Descriptor

» C Attribute: NIDMM_ATTR_10_RESOURCE_DESCRIPTOR

Ic_calculation_model

nidmm.Session.lc_calculation_model

For the NI 4072 only, specifies the type of algorithm that the measurement processing uses for
capacitance and inductance measurements.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.LCCalculationModel
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property:

Configuration:Measurement Options:Capacitance and Induc-
tance:Advanced:Calculation Model

* C Attribute: NIDMM_ATTR_LC_CALCULATION_MODEL

7.3. nidmm module

349

NI Modular Instruments Python APl Documentation, Release 1.4.2

Ic_number_meas_to_average

nidmm.Session.lc_number_meas_to_average
For the NI 4072 only, specifies the number of LC measurements that are averaged to produce one
reading.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Number of LC Measurements To Average

* C Attribute: NIDMM_ATTR_LC_NUMBER_MEAS_TO_AVERAGE

logical_name

nidmm.Session.logical_name
A string containing the logical name of the instrument.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name
e C Attribute: NIDMM_ATTR_LOGICAL_NAME

meas_complete_dest

nidmm. Session.meas_complete_dest
Specifies the destination of the measurement complete (MC) signal. The NI 4050 is not supported.
To determine which values are supported by each device, refer to the LabWindows/CVI Trigger
Routing section in the NI Digital Multimeters Help.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.MeasurementCompleteDest
Permissions read-write

350 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Trigger:Measurement Complete Dest
» C Attribute: NIDMM_ATTR_MEAS_COMPLETE_DEST

number_of_averages

nidmm. Session.number_of_ averages
Specifies the number of averages to perform in a measurement. For the NI 4070/4071/4072, applies
only when the aperture time is not set to AUTO and Auto Zero is ON. The default is 1. The NI 4050
and NI 4060 are not supported.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Advanced:Number Of Averages
* C Attribute: NIDMM_ATTR_NUMBER_OF_AVERAGES

offset_comp_ohms

nidmm.Session.offset_comp_ohms
For the NI 4070/4071/4072 only, enables or disables offset compensated ohms.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Measurement Options:Offset Compensated Ohms
* C Attribute: NIDMM_ATTR_OFFSET_COMP_OHMS

open_cable_comp_conductance

nidmm.Session.open_cable_comp_conductance
For the NI 4072 only, specifies the active part (conductance) of the open cable compensation. The
valid range is any real number greater than 0. The default value (-1.0) indicates that compensation

7.3. nidmm module 351

NI Modular Instruments Python APl Documentation, Release 1.4.2

has not taken place. Changing the method or the range through this property or through nidmm.
Session.configure_measurement_digits () resets the value of this property to the de-
fault value.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Open Cable Compensation Values:Conductance

» C Attribute: NIDMM_ATTR_OPEN_CABLE_COMP_CONDUCTANCE

open_cable_comp_susceptance

nidmm.Session.open_cable_comp_susceptance
For the NI 4072 only, specifies the reactive part (susceptance) of the open cable compensation.
The valid range is any real number greater than 0. The default value (-1.0) indicates that com-
pensation has not taken place. Changing the method or the range through this property or through
nidmm.Session.configure_measurement_digits () resets the value of this property
to the default value.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Open Cable Compensation Values:Susceptance

e C Attribute: NIDMM_ATTR_OPEN_CABLE_COMP_SUSCEPTANCE

operation_mode

nidmm.Session.operation_mode
Specifies how the NI 4065 and NI 4070/4071/4072 acquire data. When you call nidmm.
Session.configure_measurement_digits (), NI-DMM sets this property to IVIDMM.
When you call nidmm. Session.configure_waveform_acquisition (), NI-DMM sets
this property to WAVEFORM. If you are programming properties directly, you must set this property
before setting other configuration properties.

The following table lists the characteristics of this property.

352 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic | Value
Datatype enums.OperationMode
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Advanced:Operation Mode
* C Attribute: NIDMM_ATTR_OPERATION_MODE

powerline_freq

nidmm.Session.powerline_freq

range

Specifies the powerline frequency. The NI 4050 and NI 4060 use this value to select an aperture
time to reject powerline noise by selecting the appropriate internal sample clock and filter. The NI
4065 and NI 4070/4071/4072 use this value to select a timebase for setting the nidmm. Session.
aperture_time property in powerline cycles (PLCs). After configuring powerline frequency, set
the nidmm. Session.aperture_time_units property to PLCs. When setting the nidmm.
Session.aperture_time property, select the number of PLCs for the powerline frequency.
For example, if powerline frequency = 50 Hz (or 20ms) and aperture time in PLCs = 5, then aperture
time in Seconds = 20ms * 5 PLCs = 100 ms. Similarly, if powerline frequency = 60 Hz (or 16.667
ms) and aperture time in PLCs = 6, then aperture time in Seconds = 16.667 ms * 6 PLCs = 100 ms.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Measurement Options:Powerline Frequency
* C Attribute: NIDMM_ATTR_POWERLINE_FREQ

nidmm.Session.range

Specifies the measurement range. Use positive values to represent the absolute value of
the maximum expected measurement. The value is in units appropriate for the current
value of the nidmm.Session.method property. For example, if nidmm.Session.
method is set to NIDMM VAL VOLTS, the units are volts. The NI 4050 and NI 4060
only support Auto Range when the trigger and sample trigger is set to IMMEDIATE.
NIDMM_VAL_AUTO_RANGE_ON -1.0 NI-DMM performs an Auto Range before acquiring the
measurement. NIDMM_VAL_AUTO_RANGE_OFF -2.0 NI-DMM sets the Range to the current
nidmm.Session.auto_range_value and uses this range for all subsequent measurements
until the measurement configuration is changed. NIDMM_VAL_AUTO_RANGE_ONCE -3.0 NI-
DMM performs an Auto Range before acquiring the next measurement. The nidmm. Session.

7.3. nidmm module

353

NI Modular Instruments Python APl Documentation, Release 1.4.2

auto_range_value is stored and used for all subsequent measurements until the measurement
configuration is changed.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Range
e C Attribute: NIDMM_ATTR_RANGE

resolution_absolute

nidmm.Session.resolution_absolute
Specifies the measurement resolution in absolute units. Setting this property to higher values in-
creases the measurement accuracy. Setting this property to lower values increases the measure-
ment speed. NI-DMM ignores this property for capacitance and inductance measurements on
the NI 4072. To achieve better resolution for such measurements, use the nidmm. Session.
lc_number meas_to_average property.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Absolute Resolution
» C Attribute: NIDMM_ATTR_RESOLUTION_ABSOLUTE

resolution_digits

nidmm.Session.resolution_digits
Specifies the measurement resolution in digits. Setting this property to higher values increases
the measurement accuracy. Setting this property to lower values increases the measurement
speed. NI-DMM ignores this property for capacitance and inductance measurements on the
NI 4072. To achieve better resolution for such measurements, use the nidmm.Session.
lc_number meas_ to_average property.

The following table lists the characteristics of this property.

354 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Configuration:Digits Resolution
e C Attribute: NIDMM_ATTR_RESOLUTION_DIGITS

sample_count

nidmm.Session.sample_count
Specifies the number of measurements the DMM takes each time it receives a trigger in a multiple
point acquisition.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Multi Point Acquisition:Sample Count
* C Attribute: NIDMM_ATTR_SAMPLE_COUNT

sample_interval

nidmm.Session.sample_interval

Specifies the amount of time in seconds the DMM waits between measurement cycles. This property
only applies when the nidmm. Session.sample trigger property is set to INTERVAL. On
the NI 4060, the value for this property is used as the settling time. When this property is set to 0, the
NI 4060 does not settle between measurement cycles. The onboard timing resolution is 1 us on the
NI 4060. The NI 4065 and NI 4070/4071/4072 use the value specified in this property as additional
delay. On the NI 4065 and NI 4070/4071/4072, the onboard timing resolution is 34.72 ns and the
valid range is 0-149 s. Only positive values are valid when setting the sample interval. The NI 4050
is not supported.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

7.3. nidmm module 355

NI Modular Instruments Python APl Documentation, Release 1.4.2

e LabVIEW Property: Multi Point Acquisition:Sample Interval
e C Attribute: NIDMM_ATTR_SAMPLE_INTERVAL

sample_trigger

nidmm.Session.sample_trigger
Specifies the sample trigger source. To determine which values are supported by each device, refer
to the LabWindows/CVI Trigger Routing section in the NI Digital Multimeters Help.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.SampleTrigger
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Multi Point Acquisition:Sample Trigger
* C Attribute: NIDMM_ATTR_SAMPLE_TRIGGER

serial_number

nidmm.Session.serial number
A string containing the serial number of the instrument. This property corresponds to the serial
number label that is attached to most products.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Instrument Serial
Number

e C Attribute: NIDMM_ATTR_SERIAL_NUMBER

settle_time

nidmm.Session.settle_time
Specifies the settling time in seconds. To override the default settling time, set this property. To
return to the default, set this property to NIDMM_VAL_SETTLE_TIME_AUTO (-1). The NI 4050
and NI 4060 are not supported.

356 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Advanced:Settle Time
* C Attribute: NIDMM_ATTR_SETTLE_TIME

short_cable_comp_reactance

nidmm.Session.short_cable_comp_reactance
For the NI 4072 only, represents the reactive part (reactance) of the short cable compensation. The
valid range is any real number greater than 0. The default value (-1) indicates that compensation
has not taken place. Changing the method or the range through this property or through nidmm.
Session.configure_measurement_digits () resets the value of this property to the de-
fault value.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Short Cable Compensation Values:Reactance

e C Attribute: NIDMM_ATTR_SHORT_CABLE_COMP_REACTANCE

short_cable_comp_resistance

nidmm.Session.short_cable_ comp_resistance
For the NI 4072 only, represents the active part (resistance) of the short cable compensation. The
valid range is any real number greater than 0. The default value (-1) indicates that compensation
has not taken place. Changing the method or the range through this property or through nidmm.
Session.configure_measurement_digits () resets the value of this property to the de-
fault value.

The following table lists the characteristics of this property.

7.3. nidmm module 357

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Capacitance and Induc-
tance:Short Cable Compensation Values:Resistance

* C Attribute: NIDMM_ATTR_SHORT_CABLE_COMP_RESISTANCE

simulate

nidmm. Session.simulate
Specifies whether or not to simulate instrument driver I/O operations. If simulation is enabled,
instrument driver methods perform range checking and call IVI Get and Set methods, but they do
not perform instrument I/O. For output parameters that represent instrument data, the instrument
driver methods return calculated values. The default value is False (0). Use the nidmm.Session.
__init__ () method to override this setting. Simulate can only be set within the InitWithOptions
method. The property value cannot be changed outside of the method.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype bool
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes:User Options:Simulate
* C Attribute: NIDMM_ATTR_SIMULATE

specific_driver_description

nidmm.Session.specific_driver_ description
A string containing a description of the specific driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

* LabVIEW Property: Inherent IVI Attributes:Specific Driver Identification:Specific Driver
Description

358 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

» C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_major_version

nidmm. Session.specific_driver_major_ version
Returns the major version number of this instrument driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes: Version Info:Specific Driver Major Version
* C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_MAJOR_VERSION

specific_driver_minor_version

nidmm.Session.specific_driver minor_ version
The minor version number of this instrument driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes: Version Info:Specific Driver Minor Version
* C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_MINOR_VERSION

specific_driver_revision

nidmm.Session.specific_driver_ revision
A string that contains additional version information about this specific instrument driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only

7.3. nidmm module 359

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Inherent IVI Attributes: Version Info:Specific Driver Revision
* C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

nidmm. Session.specific_driver_vendor
A string containing the vendor of the specific driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Specific Driver Identification:Specific Driver
Vendor

e C Attribute: NIDMM_ATTR_SPECIFIC_DRIVER_VENDOR

supported_instrument_models

nidmm. Session.supported_instrument_models
A string containing the instrument models supported by the specific driver.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype str
Permissions read only

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Inherent IVI Attributes:Specific Driver Capabilities:Supported In-
strument Models

e C Attribute: NIDMM_ATTR_SUPPORTED_INSTRUMENT MODELS

temp_rtd_a

nidmm.Session.temp_rtd_a
Specifies the Callendar-Van Dusen A coefficient for RTD scaling when the RTD Type property is
set to Custom. The default value is 3.9083e-3 (Pt3851).

The following table lists the characteristics of this property.

360 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD A

» C Attribute: NIDMM_ATTR_TEMP_RTD_A

temp_rtd_b

nidmm. Session.temp_rtd b
Specifies the Callendar-Van Dusen B coefficient for RTD scaling when the RTD Type property is set
to Custom. The default value is -5.775e-7(Pt3851).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD B

* C Attribute: NIDMM_ATTR_TEMP_RTD_B

temp_rtd_c

nidmm. Session.temp_rtd_c
Specifies the Callendar-Van Dusen C coefficient for RTD scaling when the RTD Type property is set
to Custom. The default value is -4.183e-12(Pt3851).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD C

» C Attribute: NIDMM_ATTR_TEMP_RTD_C

7.3. nidmm module 361

NI Modular Instruments Python APl Documentation, Release 1.4.2

temp_rtd_res

nidmm.Session.temp_rtd_res
Specifies the RTD resistance at O degrees Celsius. This applies to all supported RTDs, including
custom RTDs. The default value is 100 (?).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options: Temperature:Resistance Tem-
perature Detector:RTD Resistance

* C Attribute: NIDMM_ATTR_TEMP_RTD_RES

temp_rtd_type

nidmm. Session.temp_rtd_ type
Specifies the type of RTD used to measure temperature. The default value is PT3851. Refer to
the nidmm. Session.temp_rtd_type topic in the NI Digital Multimeters Help for additional
information about defined values.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.RTDType
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Options:Temperature:Resistance Tem-
perature Detector:RTD Type

» C Attribute: NIDMM_ATTR_TEMP_RTD_TYPE

temp_tc_fixed_ref_junc

nidmm.Session.temp_tc_fixed ref_ junc
Specifies the reference junction temperature when a fixed reference junction is used to take a ther-
mocouple measurement. The default value is 25.0 (°C).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

362 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Op-
tions:Temperature: Thermocouple:Fixed Reference Junction

» C Attribute: NIDMM_ATTR_TEMP_TC_FIXED_REF_JUNC

temp_tc_ref junc_type

nidmm.Session.temp_tc_ref junc_type
Specifies the type of reference junction to be used in the reference junction compensation of a
thermocouple. The only supported value, NIDMM_VAL_TEMP_REF_JUNC_FIXED, is fixed.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.ThermocoupleReferenceJunctionType
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

¢ LabVIEW Property: Configuration:Measurement Op-
tions: Temperature: Thermocouple:Reference Junction Type

» C Attribute: NIDMM_ATTR_TEMP_TC_REF_JUNC_TYPE

temp_tc_type

nidmm.Session.temp_tc_type
Specifies the type of thermocouple used to measure the temperature. The default value is J.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.ThermocoupleType
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Op-
tions:Temperature: Thermocouple: Thermocouple Type

* C Attribute: NIDMM_ATTR_TEMP_TC_TYPE

7.3. nidmm module 363

NI Modular Instruments Python APl Documentation, Release 1.4.2

temp_thermistor_a

nidmm.Session.temp_thermistor_a
Specifies the Steinhart-Hart A coefficient for thermistor scaling when the Thermistor Type property
is set to Custom. The default value is 0.0010295 (44006).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Op-
tions: Temperature: Thermistor: Thermistor A

» C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_A

temp_thermistor_b

nidmm. Session.temp_thermistor_b
Specifies the Steinhart-Hart B coefficient for thermistor scaling when the Thermistor Type proerty
is set to Custom. The default value is 0.0002391 (44006).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Op-
tions:Temperature: Thermistor:Thermistor B

* C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_B

temp_thermistor_c

nidmm.Session.temp_thermistor_c
Specifies the Steinhart-Hart C coefficient for thermistor scaling when the Thermistor Type property
is set to Custom. The default value is 1.568e-7 (44006).

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

364 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Op-
tions: Temperature: Thermistor: Thermistor C

» C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_C

temp_thermistor_type

nidmm. Session.temp_thermistor_type
Specifies the type of thermistor used to measure the temperature. The default value is
THERMISTOR_44006. Refer to the nidmm.Session.temp_thermistor_type topic in
the NI Digital Multimeters Help for additional information about defined values.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.ThermistorType
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

e LabVIEW Property: Configuration:Measurement Op-
tions:Temperature: Thermistor:Thermistor Type

e C Attribute: NIDMM_ATTR_TEMP_THERMISTOR_TYPE

temp_transducer_type

nidmm. Session.temp_transducer_type
Specifies the type of device used to measure the temperature. The default value is
NIDMM_VAL_4_THERMOCOUPLE.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.TransducerType
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Configuration:Measurement Options: Temperature:Transducer Type
* C Attribute: NIDMM_ATTR_TEMP_TRANSDUCER _TYPE

7.3. nidmm module 365

NI Modular Instruments Python APl Documentation, Release 1.4.2

trigger_count

nidmm. Session.trigger_count
Specifies the number of triggers the DMM receives before returning to the Idle state. This property
can be set to any positive Vilnt32 value for the NI 4065 and NI 4070/4071/4072. The NI 4050 and
NI 4060 support this property being set to 1. Refer to the Multiple Point Acquisitions section of the
NI Digital Multimeters Help for more information.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Multi Point Acquisition:Trigger Count
» C Attribute: NIDMM_ATTR_TRIGGER_COUNT

trigger_delay

nidmm.Session.trigger_delay

Specifies the time (in seconds) that the DMM waits after it has received a trigger before taking
a measurement. The default value is AUTO DELAY (-1), which means that the DMM waits an
appropriate settling time before taking the measurement. (-1) signifies that AUTO DELAY is on,
and (-2) signifies that AUTO DELAY is off. The NI 4065 and NI 4070/4071/4072 use the value
specified in this property as additional settling time. For the The NI 4065 and NI 4070/4071/4072,
the valid range for Trigger Delay is AUTO DELAY (-1) or 0.0-149.0 seconds and the onboard
timing resolution is 34.72 ns. On the NI 4060, if this property is set to 0, the DMM does not
settle before taking the measurement. On the NI 4060, the valid range for AUTO DELAY (-1)
is 0.0-12.0 seconds and the onboard timing resolution is 100 ms. When using the NI 4050, this
property must be set to AUTO DELAY (-1). Use positive values to set the trigger delay in seconds.
Valid Range: NIDMM_VAL_AUTO_DELAY (-1.0), 0.0-12.0 seconds (NI 4060 only) Default Value:
NIDMM VAL _AUTO_DELAY

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
e LabVIEW Property: Trigger:Trigger Delay
e C Attribute: NIDMM_ATTR_TRIGGER_DELAY

366 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

trigger_source

nidmm.Session.trigger_source
Specifies the trigger source. When nidmm. Session._initiate () is called, the DMM waits
for the trigger specified with this property. After it receives the trigger, the DMM waits the length
of time specified with the nidmm. Session.trigger. delay property. The DMM then takes
a measurement. This property is not supported on the NI 4050. To determine which values are
supported by each device, refer to the LabWindows/CVI Trigger Routing section in the NI Digital
Multimeters Help.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums.TriggerSource
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Trigger:Trigger Source
e C Attribute: NIDMM_ATTR_TRIGGER_SOURCE

waveform_coupling

nidmm.Session.waveform coupling
For the NI 4070/4071/4072 only, specifies the coupling during a waveform acquisition.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype enums. WaveformCoupling
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Waveform Acquisition: Waveform Coupling
* C Attribute: NIDMM_ATTR_WAVEFORM_COUPLING

waveform_points

nidmm. Session.waveform_points
For the N14070/4071/4072 only, specifies the number of points to acquire in a waveform acquisition.

The following table lists the characteristics of this property.

7.3. nidmm module 367

NI Modular Instruments Python APl Documentation, Release 1.4.2

Characteristic | Value
Datatype int
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
* LabVIEW Property: Waveform Acquisition: Waveform Points
* C Attribute: NIDMM_ATTR_WAVEFORM_POINTS

waveform_rate

nidmm.Session.waveform rate
For the NI 4070/4071/4072 only, specifies the rate of the waveform acquisition in Samples per
second (S/s). The valid Range is 10.0-1,800,000 S/s. Values are coerced to the closest integer
divisor of 1,800,000. The default value is 1,800,000.

The following table lists the characteristics of this property.

Characteristic | Value
Datatype float
Permissions read-write

Tip: This property corresponds to the following LabVIEW Property or C Attribute:
¢ LabVIEW Property: Waveform Acquisition: Waveform Rate
* C Attribute: NIDMM_ATTR_WAVEFORM_RATE

Session

» Session
* Methods
— abort
— close
— configure_measurement_absolute
— configure_measurement_digits
— configure_multi_point
— configure_rtd_custom
— configure_rtd_type
— configure_thermistor_custom

— configure_thermocouple

— configure_trigger

368 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

— configure_waveform_acquisition
— disable
— export_attribute_configuration_buffer
— export_attribute_configuration_file
— fetch
— fetch_multi_point
— fetch_waveform
— fetch_waveform_into
— get_cal_date_and_time
— get_dev_temp
— get_ext_cal_recommended_interval
— get_last_cal_temp
— get_self _cal_supported
— import_attribute_configuration_buffer
— import_attribute_configuration_file
— initiate
- lock
— perform_open_cable_comp
— perform_short_cable_comp
- read
— read_multi_point
— read_status
— read_waveform
— reset
— reset_with_defaults
— self cal
— self test
— send_software_trigger
— unlock
* Properties
— ac_max_freq
— ac_min_freq
— adc_calibration

- (,1])6"1[{}"6_[1.171(?

— aperture_time_units

7.3. nidmm module 369

NI Modular Instruments Python APl Documentation, Release 1.4.2

— auto_range_value

— auto_zero

— buffer_size

— cable_comp_type

— channel_count

— current_source

— dc_bias

— dc_noise_rejection

— driver_setup

— freq_voltage_auto_range

— freq_voltage_range

— function

— input_resistance

— instrument_firmware_revision
- instrument_mamtfa(rrm‘er

— instrument_model

— instrument_product_id

— io_resource_descriptor

— lc_calculation_model

— lc_number_meas_to_average
— logical_name

— meas_complete_dest

— number_of_averages

— offset_comp_ohms

— open_cable_comp_conductance
— open_cable_comp_susceptance
— operation_mode

— powerline_freq

— range

— resolution_absolute

— resolution_digits

— sample_count

— sample_interval

— sample_trigger

— serial_number

370 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

— settle_time

— short_cable_comp_reactance
— short_cable_comp_resistance
— simulate

— specific_driver_description

— specific_driver_major_version
— specific_driver_minor_version
— specific_driver_revision

— specific_driver_vendor

— supported_instrument_models
— temp_rtd_a

— temp_rtd_b

— temp_rtd_c

— temp_rtd_res

— temp_rtd_type

— temp_tc_fixed_ref_junc

— temp_tc_ref _junc_type

— temp_tc_type

— temp_thermistor_a

— temp_thermistor_b

— temp_thermistor_c

— temp_thermistor_type

— temp_transducer_type

— trigger_count

— trigger_delay

— trigger_source

— waveform_coupling

— waveform_points

— waveform_rate

Enums

Enums used in NI-DMM

7.3. nidmm module 371

NI Modular Instruments Python APl Documentation, Release 1.4.2

ADCCalibration

class nidmm.ADCCalibration

AUTO
The DMM enables or disables ADC calibration for you.

OFF
The DMM does not compensate for changes to the gain.

ON
The DMM measures an internal reference to calculate the correct gain for the measurement.

AcquisitionStatus

class nidmm.AcquisitionStatus

RUNNING
Running

FINISHED_ WITH BACKLOG
Finished with Backlog

FINISHED WITH_ NO_BACKLOG
Finished with no Backlog

PAUSED
Paused

NO_ACQUISITION_IN_PROGRESS
No acquisition in progress

ApertureTimeUnits

class nidmm.ApertureTimeUnits

SECONDS
Seconds

POWER_LINE_CYCLES
Powerline Cycles

AutoZero

class nidmm.AutoZero

AUTO
The drivers chooses the AutoZero setting based on the configured method and resolution.

OFF
Disables AutoZero.

372 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

ON
The DMM internally disconnects the input signal following each measurement and takes a zero reading.
It then subtracts the zero reading from the preceding reading.

ONCE
The DMM internally disconnects the input signal for the first measurement and takes a zero reading. It
then subtracts the zero reading from the first reading and the following readings.

CableCompensationType

class nidmm.CableCompensationType

NONE
No Cable Compensation

OPEN
Open Cable Compensation

SHORT
Short Cable Compensation

OPEN_AND_SHORT
Open and Short Cable Compensation

DCNoiseRejection

class nidmm.DCNoiseRejection

AUTO
The driver chooses the DC noise rejection setting based on the configured method and resolution.

NORMAL
NI-DMM weighs all samples equally.

SECOND_ORDER
NI-DMM weighs the samples taken in the middle of the aperture time more than samples taken at the
beginning and the end of the measurement using a triangular weighing method.

HIGH_ORDER
NI-DMM weighs the samples taken in the middle of the aperture time more than samples taken at the
beginning and the end of the measurement using a bell-curve weighing method.

Function

class nidmm.Function

DC_VOLTS
DC Voltage

AC_VOLTS
AC Voltage

DC_CURRENT
DC Current

7.3. nidmm module 373

NI Modular Instruments Python APl Documentation, Release 1.4.2

AC_CURRENT
AC Current

TWO_WIRE_ RES
2-Wire Resistance

FOUR_WIRE_RES
4-Wire Resistance

FREQ
Frequency

PERIOD
Period

TEMPERATURE
NI 4065, NI 4070/4071/4072, and NI 4080/4081/4182 supported.

AC_VOLTS_DC_COUPLED
AC Voltage with DC Coupling

DIODE
Diode

WAVEFORM VOLTAGE
Waveform voltage

WAVEFORM CURRENT
Waveform current

CAPACITANCE
Capacitance

INDUCTANCE
Inductance

LCCalculationModel

class nidmm.LCCalculationModel

AUTO
NI-DMM chooses the algorithm based on method and range

SERIES
NI-DMM uses the series impedance model to calculate capacitance and inductance

PARALLEL
NI-DMM uses the parallel admittance model to calculate capacitance and inductance

MeasurementCompleteDest

class nidmm.MeasurementCompleteDest

NONE
No Trigger

EXTERNAL
AUX I/0 Connector

374 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

PXI_TRIGO
PXI Trigger Line 0

PXI_TRIG1
PXI Trigger Line 1

PXI_TRIG2
PXI Trigger Line 2

PXI_TRIG3
PXI Trigger Line 3

PXI_TRIG4
PXI Trigger Line 4

PXI_TRIGS
PXI Trigger Line 5

PXI_TRIG6
PXI Trigger Line 6

PXI_TRIG7
PXI Trigger Line 7

LBR_TRIGO
Internal Trigger Line of a PXI/SCXI Combination Chassis

OperationMode

class nidmm.OperationMode

IVIDMM
IviDmm Mode

WAVEFORM
Waveform acquisition mode

RTDType

class nidmm.RTDType

CUSTOM
Performs Callendar-Van Dusen RTD scaling with the user-specified A, B, and C coefficients.

PT3750
Performs scaling for a Pt 3750 RTD.

PT3851
Performs scaling for a Pt 3851 RTD.

PT3911
Performs scaling for a Pt 3911 RTD.

PT3916
Performs scaling for a Pt 3916 RTD.

PT3920
Performs scaling for a Pt 3920 RTD.

7.3. nidmm module 375

NI Modular Instruments Python APl Documentation, Release 1.4.2

PT3928
Performs scaling for a Pt 3928 RTD.

SampleTrigger

class nidmm.SampleTrigger

IMMEDIATE
No Trigger

EXTERNAL
AUX T/0O Connector Trigger Line 0

SOFTWARE_TRIG
Software Trigger

INTERVAL
Interval Trigger

PXI_TRIGO
PXI Trigger Line O

PXI_TRIG1
PXI Trigger Line 1

PXI_TRIG2
PXI Trigger Line 2

PXI_TRIG3
PXI Trigger Line 3

PXI_TRIG4
PXI Trigger Line 4

PXI_TRIGS
PXI Trigger Line 5

PXI_TRIG6
PXI Trigger Line 6

PXI_TRIG7
PXI Trigger Line 7

PXI_STAR
PXI Star Trigger Line

AUX_ TRIG1
AUX 1/0 Connector Trigger Line 1

LBR_TRIG1
Internal Trigger Line of a PXI/SCXI Combination Chassis

ThermistorType

class nidmm.ThermistorType

CUSTOM
Custom

376 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

THERMISTOR 44004
44004

THERMISTOR_ 44006
44006

THERMISTOR 44007
44007

ThermocoupleReferencedunctionType

class nidmm.ThermocoupleReferencedJunctionType

FIXED
Thermocouple reference juction is fixed at the user-specified temperature.

ThermocoupleType

class nidmm.ThermocoupleType

B

Thermocouple type B
E

Thermocouple type E
J

Thermocouple type J
K

Thermocouple type K
N

Thermocouple type N
R

Thermocouple type R
S

Thermocouple type S
T

Thermocouple type T

TransducerType

class nidmm.TransducerType

THERMOCOUPLE
Thermocouple

THERMISTOR
Thermistor

7.3. nidmm module 377

NI Modular Instruments Python APl Documentation, Release 1.4.2

TWO_WIRE_RTD
2-wire RTD

FOUR_WIRE RTD
4-wire RTD

TriggerSource

class nidmm.TriggerSource

IMMEDIATE
No Trigger

EXTERNAL
AUX I/O Connector Trigger Line 0

SOFTWARE_TRIG
Software Trigger

PXI_TRIGO
PXI Trigger Line O

PXI_TRIG1
PXI Trigger Line 1

PXI_TRIG2
PXI Trigger Line 2

PXI_TRIG3
PXI Trigger Line 3

PXI_TRIG4
PXI Trigger Line 4

PXI_TRIGS
PXI Trigger Line 5

PXI_TRIG6
PXI Trigger Line 6

PXI_TRIG7
PXI Trigger Line 7

PXI_STAR
PXI Star Trigger Line

AUX_ TRIG1
AUX I/O Connector Trigger Line 1

LBR_TRIG1
Internal Trigger Line of a PXI/SCXI Combination Chassis

WaveformCoupling

class nidmm.WaveformCoupling

AC
AC Coupled

378 Chapter 7. License

NI Modular Instruments Python APl Documentation, Release 1.4.2

DC
DC Coupled

Exceptions and Warnings

Error

exception nidmm.errors.Error
Base exception type that all NI-DMM exceptions derive from

DriverError

exception nidmm.errors.DriverError
An error originating from the NI-DMM driver

UnsupportedConfigurationError

exception nidmm.errors.UnsupportedConfigurationError
An error due to using this module in an usupported platform.

DriverNotInstalledError

exception nidmm.errors.DriverNotInstalledError
An error due to using this module without the driver runtime installed.

DriverTooOIdError

exception nidmm.errors.DriverTooOldError

An error due to using this module with an older version of the NI-DMM driver runtime.

DriverTooNewError

exception nidmm.errors.DriverTooNewError
An error due to the NI-DMM driver runtime being too new for this module.

InvalidRepeatedCapabilityError

exception nidmm.errors.InvalidRepeatedCapabilityError
An error due to an invalid character in a repeated capability

SelfTestError

exception nidmm.errors.SelfTestError
An error due to a failed self-test

7.3. nidmm module

379

20

21

22

23

24

25

26

27

28

29

NI Modular Instruments Python APl Documentation, Release 1.4.2

DriverWarning

exception nidmm.errors.DriverWarning
A warning originating from the NI-DMM driver

Examples

You can download all nidmm examples here

nidmm_fetch_waveform.py

Listing 8: (nidmm_fetch_waveform.py)

#!/usr/bin/python

import argparse
import nidmm
import sys
import time

def example (resource_name, options, function, range, points, rate):
with nidmm.Session (resource_name=resource_name, options=options) as session:
session.configure_waveform_acquisition (measurement_function=nidmm.
—Function[function], range=range, rate=rate, waveform_points=points)
with session.initiate () :
while True:
time.sleep(0.1)
backlog, acquisition_state = session.read_status/()
if acquisition_state == nidmm.AcquisitionStatus.FINISHED_WITH_NO_
—BACKLOG:
break
measurements = session.fetch_waveform(array_size=backloqg)
print (measurements)

def _main(argsv):

parser = argparse.ArgumentParser (description='Performs a waveform acquisition,
—using the NI-DMM API.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2', help='Resource
—name of an NI digital multimeter.')

parser.add_argument ('-f', '—-—function', default='WAVEFORM_VOLTAGE', choices=nidmm.
—Function.__members__ .keys (), type=str.upper, help='Measurement function.")

parser.add_argument ('-r', '—--range', default=10, type=float, help='Measurement,
—range. ')

parser.add_argument ('-p', '—--points', default=10, type=int, help='Specifies the
—number of points to acquire before the waveform acquisition completes.')

parser.add_argument ('-s', '—--rate', default=1000, type=int, help='Specifies the_
—rate of the acquisition in samples per second.')

parser.add_argument ('-op', '—--option-string', default='"', type=str, help='Option,
—string')

args = parser.parse_args (argsv)
example (args.resource_name, args.option_string, args.function, args.range, args.
—points, args.rate)

(continues on next page)

380 Chapter 7. License

https://github.com/ni/nimi-python/releases/download/1.4.2/nidmm_examples.zip
https://github.com/ni/nimi-python/blob/1.4.2/src/nidmm/examples/nidmm_fetch_waveform.py

33

35

36

38

39

40

41

42

43

44

45

46

47

48

49

50

51

20

21

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

def main () :
_main(sys.argv([l:])

def test_example() :
options = {'simulate': True, 'driver_setup': {'Model': '4082', 'BoardType': 'PXIe
‘—"l }/ }

example ('PXI1Slot2', options, 'WAVEFORM VOLTAGE', 10, 10, 1000)

def test_main():
cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4082; BoardType:PXIe

“"l]

_main(cmd_line)

if name == '__main__':

main ()

nidmm_measurement.py

Listing 9: (nidmm_measurement.py)

#!/usr/bin/python

import argparse
import nidmm
import sys

def example (resource_name, option_string, function, range, digits):
with nidmm.Session (resource_name=resource_name, options=option_string) as session:
session.configure_measurement_digits (measurement_function=nidmm.
—Function[function], range=range, resolution_digits=digits)
print (session.read())

def _main(argsv):

supported_functions = list (nidmm.Function.__members__ .keys())

parser = argparse.ArgumentParser (description='Performs a single measurement using
—the NI-DMM API.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2', help='Resource_
—name of an NI digital multimeter.')

parser.add_argument ('-f', '--function', default=supported_functions[0],
—choices=supported_functions, type=str.upper, help='Measurement function."')

parser.add_argument ('-r', '—--range', default=10, type=float, help='Measurement,
—range.')

parser.add_argument ('-d', '—--digits', default=6.5, type=float, help='Digits of
—resolution for the measurement.')

parser.add_argument ('-op', '—--option-string', default='"', type=str, help='Option,
—string')

(continues on next page)

7.3. nidmm module 381

https://github.com/ni/nimi-python/blob/1.4.2/src/nidmm/examples/nidmm_measurement.py

22

23

24
25
26
27
28
29

30

32
33
34
35

36

37
38
39
40
41
4

43

20

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

args = parser.parse_args (argsv)
example (args.resource_name, args.option_string, args.function, args.range, args.
—~digits)

def main() :
_main(sys.argv([l:])

def test_example() :
options = {'simulate': True, 'driver_setup': {'Model': '4082', 'BoardType': 'PXIe
‘—"l }r }

example ('PXI1Slot2', options, 'DC_VOLTS', 10, 6.5)

def test_main():
cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4082; BoardType:PXIe
‘—"l]

_main (cmd_line)

v

if name == main__ ':

main ()

nidmm_multi_point_measurement.py

Listing 10: (nidmm_multi_point_measurement.py)

#!/usr/bin/python

import argparse
import nidmm
import sys

def example (resource_name, options, function, range, digits, samples, triggers):
with nidmm.Session (resource_name=resource_name, options=options) as session:
session.configure_measurement_digits (measurement_function=nidmm.
—Function[function], range=range, resolution_digits=digits)
session.configure_multi_point (trigger_count=triggers, sample_count=samples)
measurements = session.read_multi_point (array_size=samples)
print ('Measurements: ', measurements)

def _main(argsv):
parser = argparse.ArgumentParser (description='Performs a multipoint measurement_
—using the NI-DMM API.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument ('-n', '—--resource-name', default='PXI1Slot2', help='Resource
—name of an NI digital multimeter.')
parser.add_argument ('-f', '--function', default='DC_VOLTS', choices=nidmm.
—Function.__members__ .keys (), type=str.upper, help='Measurement function.")
parser.add_argument ('-r', '—-range', default=10, type=float, help='Measurement
—range.')

(continues on next page)

382 Chapter 7. License

https://github.com/ni/nimi-python/blob/1.4.2/src/nidmm/examples/nidmm_multi_point_measurement.py

21

22

23

24

25

26

27

28

29

31

32

34

35

36

37

38

39

40

41

42

43

44

45

46

47

NI Modular Instruments Python APl Documentation, Release 1.4.2

(continued from previous page)

parser.add_argument ('-d', '--digits', default=6.5, type=float, help='Digits of
—resolution for the measurement.')

parser.add_argument ('-s', '—--samples', default=10, type=int, help='The number of
—measurements the DMM makes.')

parser.add_argument ('-t', '—-—-triggers', default=1, type=int, help='Sets the_

—number of triggers you want the DMM to receive before returning to the Idle state.')

parser.add_argument ('-op', '—--option-string', default='"', type=str, help='Option,
—string')

args = parser.parse_args (argsv)

example (args.resource_name, args.option_string, args.function, args.range, args.
—~digits, args.samples, args.triggers)

def main():
_main(sys.argv([l:])

def test_example():
options = {'simulate': True, 'driver_setup': {'Model': '4082', 'BoardType': 'PXIe
“"l }/ }

example ('PXI1Slot2', options, 'DC_vOLTS', 10, 6.5, 10, 1)

def test_main():

cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4082; BoardType:PXIe
o',

4

_main (cmd_line)

7.4 nifgen module

7.4.1 Installation

As a prerequisite to using the nifgen module, you must install the NI-FGEN runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-FFGEN) can be installed with pip:

’$ python -m pip install nifgen~=1.4.2

Or easy_install from setuptools:

’$ python -m easy_install nifgen

7.4. nifgen module 383

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

NI Modular Instruments Python APl Documentation, Release 1.4.2

7.4.2 Usage

The following is a basic example of using the nifgen module to open a session to a Function Generator and generate
a sine wave for 5 seconds.

import nifgen
import time
with nifgen.Session("Devl") as session:
session.output_mode = nifgen.OutputMode.FUNC
session.configure_standard_waveform(waveform=nifgen.Waveform.SINE, amplitude=1.0,
—frequency=10000000, dc_offset=0.0, start_phase=0.0)
with session.initiate():
time.sleep (5)

Other usage examples can be found on GitHub.

7.4.3 APl Reference

Session

class nifgen.Session (self, resource_name, channel_name=None, reset_device=False, options={})
Creates and returns a new NI-FGEN session to the specified channel of a waveform generator that is used in all
subsequent NI-FGEN method calls.

Parameters

e resource_name (str)—

Caution: Traditional NI-DAQ and NI-DAQmx device names are not case-sensitive.
However, all IVI names, such as logical names, are case-sensitive. If you use logical
names, driver session names, or virtual names in your program, you must ensure that the
name you use matches the name in the IVI Configuration Store file exactly, without any
variations in the case of the characters.

Specifies the resource name of the device to initialize.

For Traditional NI-DAQ devices, the syntax is DAQ::n, where rn is the device number as-
signed by MAX, as shown in Example 1.

For NI-DAQmx devices, the syntax is just the device name specified in MAX, as shown in
Example 2. Typical default names for NI-DAQmx devices in MAX are Dev1 or PXI1Slot].
You can rename an NI-DAQmx device by right-clicking on the name in MAX and entering
anew name.

An alternate syntax for NI-DAQmzx devices consists of DAQ::NI-DAQmx device name, as
shown in Example 3. This naming convention allows for the use of an NI-DAQmx device in
an application that was originally designed for a Traditional NI-DAQ device. For example,
if the application expects DAQ::1, you can rename the NI-DAQmzx device to 1 in MAX and
pass in DAQ::1 for the resource name, as shown in Example 4.

If you use the DAQ::n syntax and an NI-DAQmzx device name already exists with that same
name, the NI-DAQmx device is matched first.

384 Chapter 7. License

https://github.com/ni/nimi-python/tree/master/src/nifgen/examples
https://docs.python.org/3/library/stdtypes.html#str

NI Modular Instruments Python APl Documentation, Release 1.4.2

You can also pass in the name of an IVI logical name or an IVI virtual name configured
with the IVI Configuration utility, as shown in Example 5. A logical name identifies a
particular virtual instrument. A virtual name identifies a specific device and specifies the
initial settings for the session.

Ex- Device Type Syntax Variable
ample
#
1 Traditional NI-DAQ de- | DAQ::/ (1 = device number)
vice
2 NI-DAQmx device myDAQmxDevice | (myDAQmxDevice = de-
vice name)
3 NI-DAQmx device DAQ::myDAQmxDeview DAQmxDevice = de-
vice name)
4 NI-DAQmx device DAQ::2 (2 = device name)
5 IVI logical name or IVI | myLogicalName (myLogicalName =
virtual name name)

* channel_name (str, list, range, tuple)— Specifies the channel that this VI
uses.

Default Value: “0”

reset_device (bool) — Specifies whether you want to reset the device during the ini-
tialization procedure. True specifies that the device is reset and performs the same method
asthe nifgen.Session.Reset () method.

Defined Values

Default Value: False

True | Reset device
False | Do not reset device

options (dict) — Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status | False
cache True
simulate False
record_value_coersions | False
driver_setup {}

Methods

7.4. nifgen module 385

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

NI Modular Instruments Python APl Documentation, Release 1.4.2

abort

nifgen.Session.abort ()
Aborts any previously initiated signal generation. Call the nifgen.Session.initiate ()
method to cause the signal generator to produce a signal again.

allocate_named_waveform

nifgen.Session.allocate_named_waveform (waveform_name, waveform_size)
Specifies the size of a named waveform up front so that it can be allocated in onboard memory
before loading the associated data. Data can then be loaded in smaller blocks with the niFgen Write
(Binary16) Waveform methods.

Tip: This method can be called on specific channels within your nifgen. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].allocate_named_waveform()
To call the method on all channels, you can call it directly on the ni fgen. Session.

Example: my_session.allocate_named_waveform()

Parameters

* waveform_name (st r)— Specifies the name to associate with the allocated wave-
form.

* waveform size (int) — Specifies the size of the waveform to allocate in sam-
ples.

Default Value: “4096”

allocate_waveform

nifgen.Session.allocate_waveform (waveform_size)
Specifies the size of a waveform so that it can be allocated in onboard memory before loading the
associated data. Data can then be loaded in smaller blocks with the Write Binary 16 Waveform
methods.

Note: The signal generator must not be in the Generating state when you call this method.

Tip: This method can be called on specific channels within your nifgen. Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels|[...].allocate_waveform()
To call the method on all channels, you can call it directly on the ni fgen. Session.

Example: my_session.allocate_waveform()

386

Chapter 7. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.4.2

Parameters waveform_size (int) — Specifies, in samples, the size of the waveform
to allocate.

Return type int

Returns The handle that identifies the new waveform. This handle is used later when
referring to this waveform.

clear_arb_memory

nifgen.Session.clear_arb_memory ()
Removes all previously created arbitrary waveforms, sequences, and scripts from the signal genera-
tor memory and invalidates all waveform handles, sequence handles, and waveform names.

Note: The signal generator must not be in the Generating state when you call this method.

clear_arb_sequence

nifgen.Session.clear_arb_sequence (sequence_handle)
Removes a previously created arbitrary sequence from the signal generator memory and invalidates
the sequence handle.

Note: The signal generator must not be in the Generating state when you call this method.

Parameters sequence_handle (int) — Specifies the handle of the arbitrary se-
quence that you want the signal generator to remove. You can create an arbitrary se-
quence using the nifgen.Session.create_arb_sequence () or nifgen.
Session.create_advanced _arb sequence () method. These methods re-
turn a handle that you use to identify the sequence.

Defined Value:

NIFGEN_VAL_ALL_SEQUENCES—Remove all sequences from the signal
generator

Default Value: None

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

clear_freq_list

nifgen.Session.clear_freq list (frequency_list_handle)
Removes a previously created frequency list from the signal generator memory and invalidates the
frequency list handle.

7.4. nifgen module 387

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NI Modular Instruments Python APl Documentation, Release 1.4.2

Note: The signal generator must not be in the Generating state when you call this method.

Parameters frequency_list_handle (int) — Specifies the ha